Royal College of Surgeons in Ireland
Browse
Effects of sustained hypoxia on sternohyoid and diaphragm muscle.pdf (554.72 kB)

Effects of sustained hypoxia on sternohyoid and diaphragm muscle during development.

Download (554.72 kB)
journal contribution
posted on 2019-11-22, 17:00 authored by Jayne C. Carberry, Clodagh McMorrow, Aidan Bradford, James FX Jones, Ken d. O'Halloran

Sustained hypoxia is a dominant feature of respiratory disease. Despite the clinical significance, the effects of sustained hypoxia on the form and function of respiratory muscle during development are relatively underexplored. Wistar rats were exposed to 1 week of sustained hypoxia (ambient pressure 450 mmHg) or normoxia at various time points during development. Sternohyoid and diaphragm muscle contractile and endurance properties were assessed in vitro. Muscle succinate dehydrogenase and myosin heavy chain composition were determined. The role of reactive oxygen species in hypoxia-induced muscle remodelling was assessed. Sustained hypoxia increased sternohyoid muscle force and fatigue in early but not late development, effects that persisted after return to normoxia. Hypoxia-induced sternohyoid muscle fatigue was not attributable to fibre type transitions or to a decrease in oxidative capacity. Chronic supplementation with the superoxide scavenger tempol did not prevent hypoxia-induced sternohyoid muscle fatigue, suggesting that mechanisms unrelated to oxidative stress underpin hypoxia-induced maladaptation in sternohyoid muscle. Sustained hypoxia had no effect on diaphragm muscle fatigue. We conclude that there are critical windows during development for hypoxia-induced airway dilator muscle maladaptation. Sustained hypoxia-induced impairment of upper airway muscle endurance may persist into later life. Upper airway muscle dysfunction could have deleterious consequences for the control of pharyngeal airway calibre in vivo.

Funding

Health Research Board (Ireland) (grant number RP/2008/159)

History

Comments

"This is the peer reviewed version of the following article: Carberry JC1, McMorrow C, Bradford A, Jones JF, O'Halloran KD. Effects of sustained hypoxia on sternohyoid and diaphragm muscle during development. European Respiratory Journal. 2014;43(4):1149-58, which has been published in final form at DOI: 10.1183/09031936.00139512. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."

Published Citation

Carberry JC1, McMorrow C, Bradford A, Jones JF, O'Halloran KD. Effects of sustained hypoxia on sternohyoid and diaphragm muscle during development. European Respiratory Journal. 2014;43(4):1149-58

Publication Date

2014-04-01

PubMed ID

23766332

Department/Unit

  • Physiology and Medical Physics