Isolation and identification of cell-specific microRNAs targeting a messenger RNA using a biotinylated anti-sense oligonucleotide capture affinity technique.

MicroRNAs (miRNAs) are small non-coding RNAs that regulate expression by translational repression or messenger RNA (mRNA) degradation. Although numerous bioinformatic prediction models exist to identify miRNA-mRNA interactions, experimental validation of bona fide interactions can be difficult and laborious. Few methods can comprehensively identify miRNAs that target a single mRNA. We have developed an experimental approach to search for miRNAs targeting any mRNA using a capture affinity assay involving a biotinylated DNA anti-sense oligonucleotide. This method identifies miRNAs targeting the full length of the mRNA. The method was tested using three separate mRNA targets: alpha-1 antitrypsin (AAT) mRNA, interleukin-8 mRNA and secretory leucoprotease inhibitor mRNA. AAT mRNA-specific and total miRNAs from three different cell lines (monocytic THP-1, bronchial epithelial 16HBE14o- and liver HepG2 cells) were profiled, and validation studies revealed that AAT mRNA-specific miRNAs functionally target the AAT mRNA in a cell-specific manner, providing the first evidence of innate miRNAs selectively targeting and modulating AAT mRNA expression. Interleukin-8 and secretory leucoprotease inhibitor mRNAs and their cognate miRNAs were also successfully captured using this approach. This is a simple and an efficient method to potentially identify miRNAs targeting sequences within the full length of a given mRNA transcript.