Mechanistic interrogation of combination Bevacizumab/dual PI3K/mTOR inhibitor response in Glioblastoma implementing novel MR and PET imaging biomarkers.

Purpose:

Resistance to bevacizumab (BEV) in glioblastoma (GBM) is believed to occur via activation of molecular networks including the mTOR/PI3K pathway. Implementing an MRI/PET molecular imaging biomarker approach, we sought to interrogate response to combining BEV with the mTOR/PI3K inhibitor BEZ235.

Methods:

Tumors were established by orthotopically implanting U87MG-luc2 in mice. Animals were treated with BEZ235 and/or BEV, and imaged using diffusion weighted-MRI, T2 weighted (T2w), and T2* weighted (T2*w) before and following delivery of superparamagnetic iron oxide (SPIO) contrast. Maps for changes in relaxation rates: ΔR2, ΔR2* and apparent diffusion coefficient (ADC) were calculated. Vessel Size Index (VSI) and micro vessel density index (MDI) were derived. 3´-deoxy-3´-[18F]fluorothymidine ([18F]FLT)- and O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) PET was further performed and tumor endothelium/proliferation markers assessed by immunohistochemistry.

Results:

Treatment with BEV resulted in a pronounced decrease in tumor volume (T2w MRI). No additive effect on tumour volume was observed in BEV/BEZ235 combination compared with BEV monotherapy. Ki67 proliferation index staining and [18F]FLT uptake studies were used to support observations. Using ΔR2* and ΔR2 values respectively, BEZ235 + BEV combination significantly reduced tumor microvessel volume in comparison to BEV alone. Decreased MDI was further observed in the combination group; supported by von Willebrand Factor (vWF) immunohistochemistry. We observed decreased [18F]FET uptake following BEV, but failed to observe further reduced [18F]FET uptake in the combination cohort. vWF IHC analysis showed mean tumor vessel size increased in all cohorts. Conclusions: Assessing MR imaging biomarker parameters together with [18F]FET and [18F]FLT PET, informed drug combination mechanism of action and provided clues as to potential clinical response. Translation of a BEZ35/BEV combination regimen could support reduction of peritumoral edemaobviating the requirement for steroids. Implementing hypothesis driven molecular imaging studies facilitates the interrogation of drug response in the pre-clinic. These data may more accurately predict the clinical potential of novel therapeutic approaches in oncology.