Royal College of Surgeons in Ireland
Browse
1/1
2 files

Phenotyping dividing cells in mouse models of neurodegenerative basal ganglia diseases.

journal contribution
posted on 2019-11-23, 10:34 authored by Arthur Smardencas, Kerelos Rizkalla, Hyun Ah Kim, Jim Massalas, Claire O'Leary, Michelle E. Ehrlich, Günter Schütz, Andrew J. Lawrence, John Drago

BACKGROUND: Mice generated by a Cre/LoxP transgenic paradigm were used to model neurodegenerative basal ganglia disease of which Huntington disease (HD) is the prototypical example. In HD, death occurs in striatal projection neurons as well as cortical neurons. Cortical and striatal neurons that express the D1 dopamine receptor (Drd1a) degenerate in HD. The contribution that death of specific neuronal cell populations makes to the HD disease phenotype and the response of the brain to loss of defined cell subtypes is largely unknown.

METHOD: Drd1a-expressing cells were targeted for cell death and three independent lines generated; a striatal-restricted line, a cortical-restricted line and a global line in which Drd1a cells were deleted from both the striatum and cortex. Two independent experimental approaches were used. In the first, the proliferative marker Ki-67 was used to identify proliferating cells in eighty-week-old mice belonging to a generic global line, a global in which Drd1a cells express green fluorescent protein (GFP-global) and in eighty-week-old mice of a cortical line. In the second experiment, the proliferative response of four-week-old mice belonging to GFP-global and striatal lines was assessed using the thymidine analogue BrdU. The phenotype of proliferating cells was ascertained by double staining for BrdU and Olig2 (an oligodendrocyte marker), Iba1 (a microglial cell marker), S100beta (an astroglial cell marker), or NeuN (a neuronal cell marker).

RESULTS: In the first study, we found that Ki-67-expressing cells were restricted to the striatal side of the lateral ventricles. Control mice had a greater number of Ki-67+ cells than mutant mice. There was no overlap between Ki-67 and GFP staining in control or mutant mice, suggesting that cells did not undergo cell division once they acquired a Drd1a phenotype. In contrast, in the second study we found that BrdU+ cells were identified throughout the cortex, striatum and periventricular region of control and mutant mice. Mutant mice from the GFP-global line showed increased BrdU+ cells in the cortex, striatum and periventricular region relative to control. Striatal line mutant mice had an increased number of BrdU+ cells in the striatum and periventricular region, but not the cortex. The number of microglia, astrocytes, oligodendrocytes and neurons generated from dividing progenitors was increased relative to control mice in most brain regions in mutant mice from the GFP-global line. In contrast, striatal line mutant mice displayed an increase only in the number of dividing microglia in striatal and periventricular regions.

CONCLUSIONS: Genetically programmed post-natal ablation of Drd1a-expressing neurons is associated with an extensive proliferative response involving multiple cell lineages. The nature of the tissue response has the potential not only to remove cellular debris but also to forge physiologically meaningful brain repair. Age related deficits in proliferation are seen in mutant lines. A blunted endogenous reparative response may underlie the cumulative deficits characteristic of age related neurodegeneration.

History

Comments

The original article is available at www.biomedcentral.com

Published Citation

Smardencas A, Rizkalla K, Kim HA, Massalas J, O Leary C, Ehrlich ME, Schütz G, Lawrence AJ, Drago J. Phenotyping dividing cells in mouse models of neurodegenerative basal ganglia diseases. BMC Neuroscience. 2013;14(1):111.

Publication Date

2013-10-03

PubMed ID

24090101

Department/Unit

  • School of Pharmacy and Biomolecular Sciences

Usage metrics

    Royal College of Surgeons in Ireland

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC