Facial surface analysis by 3D laser scanning and geometric morphometrics in relation to sexual dimorphism in cerebral--craniofacial morphogenesis and cognitive function.

Over early fetal life the anterior brain, neuroepithelium, neural crest and facial ectoderm constitute a unitary, three-dimensional (3D) developmental process. This intimate embryological relationship between the face and brain means that facial dysmorphogenesis can serve as an accessible and informative index of brain dysmorphogenesis in neurological and psychiatric disorders of early developmental origin. There are three principal challenges in seeking to increase understanding of disorders of early brain dysmorphogenesis through craniofacial dysmorphogenesis: (i) the first, technical, challenge has been to digitize the facial surface in its inherent three-dimensionality; (ii) the second, analytical, challenge has been to develop methodologies for extracting biologically meaningful shape covariance from digitized samples, making statistical comparisons between groups and visualizing in 3D the resultant statistical models on a 'whole face' basis; (iii) the third, biological, challenge is to demonstrate a relationship between facial morphogenesis and brain morphogenesis not only in anatomical-embryological terms but also at the level of brain function. Here we consider each of these challenges in turn and then illustrate the issues by way of our own findings. These use human sexual dimorphism as an exemplar for 3D laser surface scanning of facial shape, analysis using geometric morphometrics and exploration of cognitive correlates of variation in shape of the 'whole face', in the context of studies relating to the early developmental origins of schizophrenia.