Royal College of Surgeons in Ireland
Browse
AMPK preferentially depresses retrograde transport of axonal mitochondria during localised nutrient deprivation.pdf (8.55 MB)

AMPK preferentially depresses retrograde transport of axonal mitochondria during localised nutrient deprivation

Download (8.55 MB)
journal contribution
posted on 2020-06-12, 14:09 authored by Orla Watters, Niamh M. C. Connolly, Hans-Georg König, Heiko DuessmannHeiko Duessmann, Jochen PrehnJochen Prehn

Mitochondrial clusters are found at regions of high energy demand, allowing cells to meet local metabolic requirements while maintaining neuronal homeostasis. AMP-activated protein kinase (AMPK), a key energy stress sensor, responds to increases in AMP/ATP ratio by activating multiple signalling cascades to overcome the energetic deficiency. In many neurological conditions, the distal axon experiences energetic stress independent of the soma. Here, we used microfluidic devices to physically isolate these two neuronal structures and to investigate whether localised AMPK signalling influenced axonal mitochondrial transport. Nucleofection of primary cortical neurons, derived from E16 mouse embryos (both sexes), with mito-GFP allowed monitoring of the transport dynamics of mitochondria within the axon, by confocal microscopy.

Pharmacological activation of AMPK at the distal axon (0.1 mM AICAR) induced a depression of the mean frequency, velocity and distance of retrograde mitochondrial transport in the adjacent axon. Anterograde mitochondrial transport was less sensitive to local AMPK stimulus, with the imbalance of bi-directional mitochondrial transport resulting in accumulation of mitochondria at the region of energetic stress signal. Mitochondria in the axon-rich white matter of the brain rely heavily on lactate as a substrate for ATP synthesis. Interestingly, localised inhibition of lactate uptake (10 nM AR-C155858) reduced mitochondrial transport in the adjacent axon in all parameters measured, similar to that observed by AICAR treatment. Co-addition of compound C restored all parameters measured to baseline levels, confirming the involvement of AMPK. This study highlights a role of AMPK signalling in the depression of axonal mitochondrial mobility during localised energetic stress.

Funding

Science Foundation Ireland (SFI), 08/IN.1/B1949, 14/JPND/B3077 and 16/RC/3948, the latter of which is co-funded under the European Regional Development Fund and by FutureNeuro industry partners

This project has also received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No. 821522. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA and Parkinson’s UK.

History

Comments

This article is also available at https://www.jneurosci.org/

Published Citation

Watters O, Connolly NMC, Konig HG, Dussmann H, Prehn JHM. AMPK Preferentially Depresses Retrograde Transport of Axonal Mitochondria During Localised Nutrient Deprivation. Journal of Neuroscience. 2020; May 11 [epub ahead of print]

Publication Date

2020-05-11

PubMed ID

32393534

Department/Unit

  • Physiology and Medical Physics

Usage metrics

    Royal College of Surgeons in Ireland

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC