Royal College of Surgeons in Ireland
Browse
- No file added yet -

A new semi-orthotopic bone defect model for cell and biomaterial testing in regenerative medicine.

Download (11.86 MB)
journal contribution
posted on 2022-01-17, 10:40 authored by E Andrés Sastre, Y Nossin, I Jansen, N Kops, Claudio IntiniClaudio Intini, J Witte-Bouma, B van Rietbergen, S Hofmann, Y Ridwan, John P Gleeson, Fergal O'BrienFergal O'Brien, EB Wolvius, GJVM van Osch, E Farrell
In recent decades, an increasing number of tissue engineered bone grafts have been developed. However, expensive and laborious screenings in vivo are necessary to assess the safety and efficacy of their formulations. Rodents are the first choice for initial in vivo screens but their size limits the dimensions and number of the bone grafts that can be tested in orthotopic locations. Here, we report the development of a refined murine subcutaneous model for semi-orthotopic bone formation that allows the testing of up to four grafts per mouse one order of magnitude greater in volume than currently possible in mice. Crucially, these defects are also "critical size" and unable to heal within the timeframe of the study without intervention. The model is based on four bovine bone implants, ring-shaped, where the bone healing potential of distinct grafts can be evaluated in vivo. In this study we demonstrate that promotion and prevention of ossification can be assessed in our model. For this, we used a semi-automatic algorithm for longitudinal micro-CT image registration followed by histological analyses. Taken together, our data supports that this model is suitable as a platform for the real-time screening of bone formation, and provides the possibility to study bone resorption, osseointegration and vascularisation.

Funding

European Union’s Horizon 2020 research and innovation program under Marie Sklodowska Curie grant agreement no. 721432

History

Comments

The original article is available at https://www.sciencedirect.com/

Published Citation

Andrés Sastre E. et al. A new semi-orthotopic bone defect model for cell and biomaterial testing in regenerative medicine. Biomaterials. 2021;279:121187

Publication Date

18 October 2021

PubMed ID

34678648

Department/Unit

  • Amber (Advanced Material & Bioengineering Research) Centre
  • Anatomy and Regenerative Medicine
  • Tissue Engineering Research Group (TERG)

Research Area

  • Immunity, Infection and Inflammation
  • Biomaterials and Regenerative Medicine
  • Chemistry and Pharmaceutical Sciences

Publisher

Elsevier BV

Version

  • Published Version (Version of Record)