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13 Summary Alpha-1 antitrypsin (A1AT) is a serine anti-

14 protease produced chiefly by the liver. A1AT defi-

15 ciency is a genetic disorder characterized by serum

16 levels of less than 11 mmol/L and is associated with

17 liver and lung manifestations. The liver disease, which

18 occurs in up to 15% of A1AT-deficient individuals, is a

19 result of toxic gain-of-function mutations in the A1AT

20 gene, which cause the A1AT protein to fold aberrantly

21 and accumulate in the endoplasmic reticulum of

22 hepatocytes. The lung disease is associated with loss-

23 of-function, specifically decreased anti-protease pro-

24tection on the airway epithelial surface. The so-called

25FZ_ mutation in A1AT deficiency encodes a glutamine-

26to-lysine substitution at position 342 in A1AT and is

27the most common A1AT allele associated with dis-

28ease. Here we review the current understanding of the

29molecular pathogenesis of A1AT deficiency and the

30best clinical management protocols.

31
32Abbreviations
34A1AT alpha-1 antitrypsin

36ATRA all trans-retinoic acid

38BAL bronchoalveolar lavage

40COPD chronic obstructive pulmonary disease

42EDEM ER degradation-enhancing

44a-mannosidase-like protein

eIF2a 46translation initiation factor e2-a
EOR 48ER overload response

ER 50endoplasmic reticulum

ERAD 52ER-associated degradation

ERSE 54ER stress response element

FENIB 56familial encephalopathy with neuroserpin

57inclusion bodies

58FEV1 forced expiratory volume in 1 second

60FVC forced vital capacity

62GOLD Global initiative for Chronic Obstructive

64Lung Disease

HRCT 66high-resolution computed tomography

Ire1 68inositol-requiring kinase 1

NE 70neutrophil elastase

PERK 72PKR-like ER kinase
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PR-374 proteinase-3

RNAi76 RNA interference

siRNA78 small interfering RNA

TMAO80 trimethylamine oxide

UPR82 unfolded protein response

UPRE84 unfolded protein response element

87 Introduction

88 Alpha 1-Antitrypsin (A1AT) deficiency (OMIM

89 +107400) is a lethal hereditary disorder characterized

90 by low plasma levels of A1AT (Laurell and Eriksson

91 1963). The condition is associated with a substantially

92 increased risk for the development of pulmonary

93 emphysema by the third or fourth decade of life and

94 is also associated with risks for development of hepatic

95 disease, cutaneous panniculitis, arterial aneurysm,

96 bronchiectasis, and renal disease. A1AT deficiency is

97 a genetic disorder characterized by misfolding of the

98 A1AT protein and it belongs to a class of genetic

99 diseases associated with aberrant protein folding which

100 are collectively known as conformational disorders.

101 A1AT

102 The A1AT gene is a 12.2-kilobase-pair gene composed

103 of 7 exons and 6 introns, encoded by the protease

104 inhibitor (Pi) locus located on chromosome 14q32.1

105 (Darlington et al 1982; Schroeder et al 1985). The gene

106 is expressed in cells of several lineages, with expression

107 being highest in hepatocytes (Rogers et al 1983). This

108 is consistent with the fact that A1AT is an acute-phase

109 reactant. Translation of the gene results in a 418-

110 amino-acid protein that includes a signal peptide. The

111 A1AT protein is glycosylated and posttranslationally

112 modified in the endoplasmic reticulum (ER) and its

113 carbohydrate side-chains are modified in the cis-Golgi

114 apparatus before being packaged and released. The

115 final product of the gene is a 52 kDa glycosylated

116 protein. Serum A1AT is almost totally derived from

117 hepatic production; however, A1AT is also actively

118 transcribed and secreted by other cells, including

119 mononuclear phagocytes, enterocytes, renal parenchy-

120 mal cells and intestinal epithelium (Carlson et al 1988;

121 Molmenti et al 1993).

122 A1AT is the archetype of the serine protease

123 inhibitor or serpin superfamily, members of which

124 have closely related structures and functions. A1AT

125 has a structural conformation that allows it to tightly

126 grasp and pseudo-irreversibly inhibit serine proteases

127 including neutrophil elastase (NE), cathepsin G and

128 proteinase 3 (PR-3) (Carrell 1986). A1AT functions by

129presenting its reactive centre residue on an exposed

130loop of the molecule such that it forms an ideal

131substrate for proteolytic enzymes. The exact fit be-

132tween enzyme and inhibitor results in a tightly bound

133complex, which inhibits the enzyme and allows it to be

134eliminated from the circulation.

135Genetics of A1AT deficiency

136Since Laurell and Eriksson (1963) first made the

137association between low levels of A1AT protein and

138emphysema we have learned a considerable amount

139about the genetic mechanisms underlying this under-

140diagnosed disease. A1AT deficiency is a classic mono-

141genic disorder. The A1AT gene is highly pleomorphic,

142with approximately 100 alleles identified to date.

143Variants are inherited in an autosomal co-dominant

144fashion, i.e. the products of both alleles are expressed,

145and the protein phenotype is classified according to the

146FPi_ system, as defined by plasma isoelectric focusing.

147A1AT genotypes that confer an increased risk for

148developing pulmonary emphysema and/or liver disease

149are those in which deficiency or null alleles are

150combined in homozygous or heterozygous states, and

151encode A1AT plasma levels below a protective

152threshold of 11 mmol/L (Crystal 1998). On the basis

153of plasma levels and function of A1AT, variants are

154categorized as follows: (a) Normal: commonly M types

155which account for 95% of alleles in caucasian individ-

156uals and are characterized by normal plasma levels

157(more than 20 mmol/L); (b) Deficient: ZA1AT is a

158common deficiency variant, with plasma levels of

159homozygotes in the range of 5–6 mmol/L. The FS_

160variant is also common and PiSS individuals have

161A1AT plasma levels of 8–11 mmol/L; (c) Null: these

162are variants associated with no detectable circulating

163A1AT in the plasma and are not associated with liver

164disease, e.g. QOlisbon, a Thr68Ile exon II mutant; or

165(d) Dysfunctional: the unique Pittsburgh mutation

166(Met358Arg) which converts A1AT into an inhibitor

167of thrombin rather than elastase (Owen et al 1983).

168Null and dysfunctional mutations are rare. The major-

169ity of patients with A1AT deficiency are usually either

170homozygous or heterozygous PiZ or PiS.

171The distribution of A1AT variants probably reflects

172the genetic origins of the disorder. The highest

173incidence of A1AT deficiency is in Europe, with up

174to 6% of people of European descent carrying at least

175one copy of the S gene and 3–4% carrying at least one

176copy of the Z variant (Hutchison 1990 Q3; de Serres

1772002). The highest prevalence of the Z allele is in

178northern and western European countries with a mean

J Inherit Metab Dis
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179 gene frequency of 0.014 or 14 per 1000, which using

180 Hardy–Weinberg principles would yield an estimated

181 ZZ homozygote prevalence of 1 in 5000 (de Serres

182 2002). The highest frequency of PiS is found in

183 southern Europe, particularly in the Iberian Peninsula,

184 suggesting that the mutation is likely to have arisen in

185 that region. The mean gene frequency of PiS in

186 southern Europe is 0.056 or 56 per 1000, yielding an

187 estimated SS homozygote prevalence of 1 in 320

188 (Hutchison 1998). It must also be remembered that

189 these gene frequencies vary widely as A1AT deficien-

190 cy is so under-recognized.

191 Molecular basis of A1AT deficiency

192 Specific mutations of the A1AT gene that occur

193 include base substitutions, in-frame deletions, frame-

194 shift mutations and exon deletions. The medically

195 interesting variants associated with deficiency, are

196 the S and Z genes commonly found in Europeans and

197 the uncommon Null (non-production gene). Both

198 S and ZA1AT result from single amino acid sub-

199 stitutions. In the S variant there is a substitution

200 of a valine residue for glutamate at position 264

201 (Val264Glu) (Curiel et al 1989). The Z mutation

202 (Glu342Lys) results from the substitution of a posi-

203 tively charged lysine for a negatively charged gluta-

204 mine at the base of the reactive centre loop. This

205 mutation distorts the relationship between the loop

206 and the b-pleated FA_ sheet that forms the major

207 feature of the molecule. The consequent perturbation

208 in structure allows the loop of one molecule to interlock

209 with the FA_ sheet of another to form fibril-like

210 polymers (Lomas et al 1992). The formation of these

211 loop–sheet polymers is temperature- and concentra-

212 tion-dependent and is likely to occur in the ER of

213 hepatocytes. Chains of polymers become interwoven

214 to form insoluble inclusions that are the pathological

215 hallmark of A1AT liver disease (Fig. 1). Recent

216 evidence has indicated the possibility of polymer

217formation outside the hepatocyte (Elliott et al 1998 Q5;

218Janciauskiene et al 2002; Mulgrew et al 2004).

219A1AT as a conformational disease

220A1AT deficiency is classed among a group of disorders

221referred to as Fconformational diseases_ (Carrell and

222Lomas 2002). Conformational diseases are caused by

223mutations altering the folding pathway or the final

224conformation of a protein. Many such diseases are

225caused by mutations in secretory proteins and range

226from metabolic diseases such as diabetes to neurolog-

227ical conditions such as Alzheimer disease. Other

228conformational diseases include cystic fibrosis and

229hereditary haemochromatosis, which are also associat-

230ed with intracellular accumulation of misfolded pro-

231teins and ER stress (Knorre et al 2002; Kudo et al

2322002; Lawless et al 2007). A subclass of conformational

233disease includes the serpinopathies and is associated

234with abnormal b-strand linkages in serine proteinases.

235ZA1AT deficiency is the paradigm for these diseases,

236which include thrombosis, angio-oedema and emphy-

237sema due to loss-of-function of antithrombin, C1

238inhibitor and alpha-1 antichymotrypsin, respectively,

239and the recently characterized gain-of-function demen-

240tia Ffamilial encephalopathy with neuroserpin inclu-

241sion bodies_ (FENIB) (Miranda et al 2004).

242ER stress occurs as a result of an imbalance

243between the ER protein folding load and the ability

244to process the load, and is characterized by a number

245of intracellular responses (Fig. 2). These are distinct

246but not exclusive, and include the ER overload

247response (EOR), the unfolded protein response

248(UPR) and apoptosis (Fig. 2).

249EOR

250The EOR pathway culminates in activation of the

251transcription factor NFkB. Latent NFkB resides in the

252cytosol, complexed to its inhibitor IkB. Activation by a
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Fig. 1 Diastase-resistant
periodic acid–Schiff-stained
liver section from a ZA1AT-
deficient individual showing
A1AT deposits
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253 variety of stimuli, including accumulation of misfolded

254 proteins in the ER, leads to phosphorylation and

255 degradation of IkB and nuclear translocation of NFkB.

256 This culminates in expression of NFkB-regulated genes.

257 Expression of ZA1AT has been shown to activate

258 NFkB and induce expression of interleukin-6 and

259 interleukin-8 (Lawless et al 2004).

260 UPR

261 The UPR is a tripartite protective system including

262 (i) the translational attenuation of global protein

263 synthesis (Ron 2002); (ii) transcriptional induction of

264 UPR target genes (Mori 2000) and (iii) ER-associated

265 degradation (ERAD) in the proteasome (Kopito 1997)

266 (Fig. 3).

267 Translational attenuation occurs as an immediate

268 response that reduces the load of host protein synthe-

269 sis in the ER and prevents further accumulation of

270 unfolded proteins (Harding et al 2002). The type I

271 transmembrane protein PKR-like ER kinase (PERK)

272 phosphorylates translation initiation factor 2 (eIF2) on

273 its alpha subunit (eIF2a) at serine-51, thus inhibiting

274 the initiation of global translation and paradoxically

291promoting the translation of ATF4 mRNA, a bZIP

292transcription factor (Harding et al 2000). Targets of

293ATF4 include CHOP, GADD34, and ATF3 (Jiang

294et al 2004; Ma et al 2002). Transcriptional induction of

295UPR target genes involves the ER transmembrane

296protein inositol-requiring kinase 1 (IRE1) which can

297regulate chaperone induction, ERAD, and expansion

298of the ER in response to ER stress (Schroder and

299Kaufman 2005). IRE1 is an endoribonuclease that

300targets the basic leucine zipper (bZIP) transcription

301factor XBP-1 causing it to translocate into the nucleus

302and bind to ER stress response elements (ERSE) and/

303or unfolded protein response elements (UPRE), acti-

304vating the transcription of ER chaperone genes, ER

305quality control genes, and folding enzymes (Yoshida

306et al 2001). The function of these gene products is

307to enhance correct folding of misfolded proteins

308and restore ER homeostasis. In a later phase of the

309UPR, components of ERAD are activated. This is

310the process whereby misfolded ER proteins are

311detected, prevented from progressing along the secre-

312tory pathway, and degraded by the ubiquitin–protea-

313some system (Kopito 1997; Travers et al 2000). The

314IRE1-XBP-1 pathway stimulates ERAD, increasing

315the capacity of ER-stressed cells to degrade irrevers-

316ibly misfolded proteins. EDEM (ER degradation-

317enhancing a-mannosidase-like protein) is a type II

318transmembrane protein localized to the ER and is a

319key component of the ERAD machinery (Yoshida

320et al 2003). Rather than being separately dispensable,

321the UPR and ERAD are delicately coordinated,

322complementary pathways that eliminate unfolded

323protein accumulation and prevent its toxic effects.

324The degradation of misfolded A1AT has been shown

325to be mediated by EDEM, a postulated Man8B-

326binding protein that can accelerate degradation of

327terminally misfolded proteins by promoting their

Translational attenuation Transcriptional induction Protein degradation 

ATF6 + ERSE

ER chaperones Phospho-eIF2α

PERK IRE1/XBP1

+ UPRE

ERAD

Promote  

refolding/unfolding 

Levels of protein 

synthesis 

 UPR

Removal of  
misfolded protein

Fig. 3 Signals activated by
the unfolded protein response

Fig. 2 Stress responses induced by accumulation of misfolded
proteins in the ER
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328 release from calnexin in an N-glycan dependent

329 manner (Hosokawa et al 2003; Oda et al 2003).

330 Apoptosis

331 Apoptosis is important for normal development and

332 tissue homeostasis; however, alterations in the rate of

333 apoptosis in certain tissues can cause disease. Pro-

334 longed ER stress leads to cell death, and is linked to

335 the pathogenesis of a number of neurodegenerative

336 conformational disorders, polycystic kidney disease

337 and ischaemia. ER accumulation of ZA1AT is known

338 to induce mitochondrial damage and caspase activa-

339 tion and is likely to play a role in ZA1AT-induced

340 liver cell injury. Recent studies have reported evidence

341 of cleavage and activation of the ER-specific caspase,

342 caspase-4, in vivo in ZAAT-deficient patients (Hidvegi

343 et al 2005), but a number of studies have failed to

344 detect terminally apoptotic cells in vivo, probably

345 owing to robust survival mechanisms in hepatocytes

346 (Perlmutter 2002; Teckman et al 2004). The mecha-

347 nism by which ZA1AT ER accumulation can activate

348 the apoptotic process has recently been delineated

349 (Miller et al 2007). siRNA studies demonstrated that

350 caspase-4, although activated, is not essential for

351 ZA1AT-induced apoptosis. P-I-3 kinase and Bad do

352 play a role and the bile acid tauroursodeoxycholic

353 acid can target this pathway to promote cell survival

354 in ZA1AT-expessing cells. Further studies comparing

355 the effects of ZA1AT on apoptosis in liver and lung

356 cells will no doubt provide new insights into the

357 mechanisms and outcomes involved.

358 A1AT deficiency-associated liver disease:

359 clinical manifestations and pathology

360 A1AT deficiency associated with the PiZ and PiM-

361 malton (DPhe52) (Fraizer et al 1989) mutations is most

362 frequently associated with liver disease. In PiZZ

363 individuals 10–15% develop clinically significant liver

364 disease in their first 20 years of life (Sveger and

365 Eriksson 1995) and are susceptible to liver damage as

366 a result of the accumulation of ZA1AT polymers in

367 the ER of hepatocytes. With the null mutation of

368 A1AT there is no intracellular accumulation and

369 therefore no hepatotoxicity or resulting liver damage.

370 The liver damage occurs through a gain-of-function

371 mechanism, unlike the lung disease, which is due to

372 loss-of-function. This gain-of function is also evident

373 in ZA1AT transgenic mice where liver disease is

374 apparent although normal levels of anti-elastases are

375 still present (Perlmutter 2002). Sharp and colleagues

376(1969) first described cirrhosis in A1AT deficiency in

37710 children from six families and later reported intra-

378hepatocyte periodic acid–Schiff diastase-resistant

379inclusions, which occur owing to polymer formation

380of ZA1AT in the ER (Sharp et al 1971). In Sweden

381between 1972 and 1974, 200 000 neonates were

382screened for A1AT deficiency. 120 PiZZ, 2 PiZj, 54

383PiSZ and I PiSj children were found. Of these only

38414 PiZZ children had prolonged jaundice, 9 of whom

385had severe liver disease. All infants appeared healthy

386at 6 months of age. Infants with a PiSZ phenotype had

387no signs of liver disease (Sveger 1976).

388Hepatic disease associated with A1AT deficiency is

389most common in children. Of the 127 newborn PiZZ

390infants studied by Sveger (1976), all showed increased

391liver enzyme concentrations, 10% had prolonged

392neonatal jaundice and 1 in 10 of these developed

393cirrhosis and required liver transplantation. In early

394childhood the most common presentation of A1AT

395deficiency_s effect on the liver is prolonged jaundice.

396The stools generally contain no yellow or green

397pigment, indicating cholestasis and mimicking biliary

398atresia. All patients have hepatomegaly and about

39950% also have splenomegaly. Approximately 5% of

400the patients present with an increased bleeding ten-

401dency. This is due to vitamin K deficiency caused by

402the cholestasis-induced malabsorption. Less commonly

403children present later in childhood with hepatospleno-

404megaly or with cirrhosis (Kok et al 2007). Overall 10%

405of PiZZ neonates develop hepatitis and cholestasis.

406Cholestasis usually occurs in the first two months,

407though it may persist for up to eight months. Breast-

408feeding and vitamin E supplements are recommended

409for cholestatic children (Sokol et al 1985).

410In Italy routine neonatal screening found that 5% of

411PiSZ children were affected by liver involvement with

412elevated liver enzymes in early childhood. By the ages of

4135 and 10 years, none had liver disease (Kok 2007 Q6).

414Abnormal liver function is largely self-limiting, but it

415can sometimes persist into adolescence. Of the neonates

416screened in Sweden at the age of 16 years, elevated liver

417enzymes were found in 17% of PiZZ adolescents and in

4188% of PiSZ adolescents. The adults with liver disease in

419infancy were clinically healthy (Sveger and Eriksson

4201995 Q7). At the age of 26 years the PiZZ subjects were

421compared to PiMM individuals. The PiZZ subjects had

422normal lung function but 4–9% of them had mild liver

423abnormalities (Pittulainen et al 2005).

424In adults, liver damage can manifest itself as chronic

425liver disease or hepatocellular carcinoma. Cirrhosis

426may develop and hepatocellular carcinoma will result

427in advanced cases; 5–10% of A1AT-deficient patients

428over the age of 50 years will develop cirrhosis. A study

J Inherit Metab Dis
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429 examining 19 adult patients with A1AT deficiency and

430 chronic liver disease revealed a late onset of symp-

431 tomatic hepatic abnormalities. Thirteen patients

432 (68%) were 60 years or older when the liver disease

433 was discovered. The mean ages of the patients with the

434 PiZZ, PiSZ, and PiMZ phenotypes were 58, 66, and

435 72.5 years, respectively; this suggested a later onset of

436 the liver disease in heterozygotes. At the time of

437 diagnosis, the hepatic condition was usually advanced

438 (Rakela et al 1987Q8 ). According to Massi (1996),

439 cirrhosis may be accelerated by incorrect repair of

440 hepatic connective structures damaged by inflamma-

441 tory proteases More recently, Rudnick and Perlmutter

442 (2005) have proposed a model whereby the accumula-

443 tion of ZA1AT in the ER activates a number of ER

444 stress responses but apoptosis is blocked at terminal

445 steps, generating a population of globule-containing

446 hepatocytes that are Fsick but not dead_. A trans-signal

447 generated by these cells stimulates proliferation of

448 adjacent globule-devoid hepatocytes. A cancer-prone

449 state is thus engendered by some cells that are unable

450 to die and others that are chronically dividing in an

451 inflamed milieu.

452 It is relatively uncommon for hepatic and pulmo-

453 nary disease to co-exist in the same individual. Liver

454 disease is thought to be caused by the retention of the

455 mutant, presumably hepatotoxic, ZA1AT molecule in

456 the ER of liver cells, as previously explained, with only

457 10–15% of PiZZ individuals developing clinically

458 significant liver disease. With the use of fibroblast cell

459 lines from PiZZ patients with liver disease

460 (Fsusceptible_ hosts) compared with those from PiZZ

461 individuals without liver disease (FFprotected__ hosts),

462 it was found that more efficient ER degradation of

463 retained mutant ZA1AT correlated with protection

464 from liver disease (Teckman et al 2001a). A detailed

465 elucidation of the mechanisms by which mutant

466 aggregated ZA1AT is degraded in the ER is essential

467 for understanding how the quality control apparatus of

468 the ER works in general and for understanding the

469 specific issue of how a subgroup of A1AT-deficient

470 individuals become susceptible to liver injury and

471 carcinogenesis. There are three main methods of degra-

472 dation. The first is proteasomal degradation (Teckman

473 et al 2001b) in a ubiquitin-dependent or ubiquitin-

474 independent manner (Teckman and Perlmutter 2000),

475 and there is also evidence that nonproteasomal mech-

476 anisms may contribute in part to ER degradation of

477 some substrates. In the case of A1AT the main non-

478 proteasomal method of degradation seems to be

479 autophagy (Teckman and Perlmutter 2000).

480 The consistent overt liver disease in newborns in

481 comparison with the occasional occurrence in young

482adults may be explained by the lower capability of the

483liver cells of infants to degrade the polymerized

484protein (Carrell and Lomas 2002). Other factors can

485also predispose A1AT-deficient individuals to liver

486disease such as male sex and obesity (Bowlus et al

4872005). The role of hepatitis is less clear. A study in

488Austria looking at A1AT-deficient patients with chron-

489ic liver disease found that of those with cirrhosis 62%

490were HCV positive, 33% showed evidence of HBV

491infection, 41% had a history of alcohol abuse, and

49212% had features of autoimmune liver disease. Out of

49353 cirrhotic A1AT-deficient patients, only 5 had no

494co-existing liver disease. These authors suggested that

495the risk for chronic liver disease is increased in patients

496with the PiZ gene, because they may have increased

497susceptibility to viral infection or additional factors

498(Propst et al 1992). Another study looking patients

499with end-stage liver disease found that the prevalences

500of PiMZ and PiMS were 7.3% and 8.2%, respectively,

501compared with 2.8% and 4.2% in the control popula-

502tion. The odds of having a heterozygous Z phenotype

503were significantly increased in patients with hepatitis C

504virus, primary hepatic malignancy, and cryptoge-

505nic cirrhosis compared with the control population.

506Patients with hepatitis C or B virus were 3.6 times more

507likely to have a heterozygous Z phenotype than a

508normal phenotype compared with patients with dis-

509eases of autoimmune aetiology (Eigenbrodt et al 1997).

510However, some studies have found no association

511between hepatitis C infection and A1AT deficiency

512(Elzouki et al 1997). In particular, a study looking at

513the PiMZ phenotype found that the prevalence of

514A1AT PiMZ was no greater in hepatitis C patients than

515in the general population—2% compared with 4% in

516the Northern European population. Furthermore, there

517was no difference in the prevalence according to the

518degree of fibrosis on liver biopsy. Since PiMZ is

519common it was expected that PiMZ would be over-

520represented in either the group with fibrosis or with

521cirrhosis if it was a major co-factor with HCV (Scott and

522Egner 2006). Other co-morbidities such as autoim-

523mune liver disease, alcoholic cirrhosis and non-alco-

524holic steatohepatitis are all factors that can enhance

525the phenotypic expression of liver disease in PiMZ

526heterozygotes (Banner et al 1998; Bell et al 1990;

527Bergwitz et al 2002; Bowlus et al 2005; Czaja 1998).

528The clinical course of liver disease within siblings

529with PiZZ A1ATD is not clear. Some studies have

530demonstrated varying patterns of disease progression

531within siblings (Cox and Mansfield 1987; Psacharopou-

532los et al 1983). Hinds and colleagues (2006) retrospec-

533tively analysed 29 families in which more than one

534child was diagnosed with PiZZ A1AT deficiency and

J Inherit Metab Dis
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535 compared the pattern of liver disease between affected

536 siblings: 72% of PiZZ siblings of the probands had

537 liver disease, which was equally severeQ9 in 29% of cases,

538 while 28% had no liver involvement. Also, 5 of 7

539 children requiring liver transplantation had siblings

540 with no persistent liver dysfunction, suggesting that

541 there is a variable degree of liver involvement in

542 siblings with ZA1AT-related liver disease and that

543 environmental and genetic factors are likely to be

544 involved in determining disease severity.

545 Polymerization of ZA1AT is accelerated with

546 increasing temperature. As A1AT is an acute-phase

547 reactant its expression also is regulated by tempera-

548 ture. Thus febrile episodes lead to increased A1AT

549 synthesis and, in the case of ZA1AT, a likely increase

550 in polymerization. Changes in temperature have the

551 potential to affect multiple steps in the pathways by

552 which ZA1AT is translocated through secretory and

553 degradative pathways. The variability in expression of

554 liver damage may be explained in part by individual

555 variations in episodes of systemic inflammation and

556 the concomitant increase in temperature. This was

557 recently also shown in vitro by Lawless and colleagues

558 (2004), who reported an increase in ER stress in a

559 model system of ZA1AT expression in the presence of

560 increased temperature.

561 Autophagy

562 Autophagy is the primary means for the degradation

563 of cytoplasmic constituents within lysosomes and is

564 the process by which cells recycle cytoplasm and

565 dispose of excess or defective organelles. Morpholog-

566 ical changes associated with autophagy, including

567 marked expansion and dilatation of the ER, are

568 characteristic of fibroblasts overexpressing ZA1AT

569 and liver cells from ZA1AT individuals (Teckman et

570 al 2004). ZA1AT molecules have been detected in

571 autophagosomes by electron microscopy and intracel-

572 lular degradation of ZA1AT can be partially reduced

573 by chemical inhibitors of autophagy, showing that ER

574 retention of ZA1AT is associated with a marked

575 autophagic response. It has also been reported that

576 the autophagic response induced by ER retention of

577 ZA1AT involves the mitochondria, with specific

578 patterns of both mitochondrial autophagy and mito-

579 chondrial injury seen in cell culture models of A1AT

580 deficiency, in PiZ transgenic mouse liver, and in

581 liver from A1AT-deficient patients (Perlmutter 2002;

582 Teckman and Perlmutter 2000; Teckman et al 2002).

583 Although the majority of PiZZ individuals are pro-

584 tected from liver injury by efficient mechanisms of

585intracellular degradation of ZA1AT, it has been

586suggested that patients susceptible to liver injury may

587have inefficient mechanisms to deal with the aberrant

588accumulation of misfolded ZA1AT. This may lead to a

589net increase in ER accumulation of ZA1AT, and thus

590chaperone dysfunction may have a role in susceptibil-

591ity to development of A1AT-associated liver disease.

592Calnexin, Grp78, Grp94, and Grp170 have all been

593shown to interact with ZA1AT. Approximately 85%

594of ZA1AT forms heterogeneous soluble complexes

595with multiple chaperones, with the other 15% forming

596large polymers or aggregates devoid of chaperones

597(Schmidt and Perlmutter 2005).

598Therapeutics for the liver disease

599Currently liver transplantation provides the only

600effective means of intervention for A1AT-deficient

601patients with liver disease. Whilst transplantation has

602been shown to successfully achieve A1AT serum

603conversion, its usefulness as a treatment is confound-

604ed by a lack of suitable donors and concomitant

605immunosuppressive therapy. There is a 70–80%

606survival rate in children, and up to 70% in adults.

607One-year survival rates have improved over the past

608several years to approximately 90% with the devel-

609opment of improved immunosuppressive drugs. Xeno-

610genic hepatocyte transplantation from living donors is

611under investigation as an alternative to full liver

612transplantation. In stem cell research, allogenic and

613autologous stem cell transplants are also under devel-

614opment. It has been suggested by Novoradovskaya

615and colleagues (1998) that proteasome inhibitors such

616as lactacytsin, an agent that binds covalently to the

617active-site N-terminal threonine residue in certain

618beta-subunits of the proteasome, may increase delivery

619of ZA1AT to the extracellular milieu and provide a

620potential treatment for ZA1AT deficiency and other

621diseases associated with misfolded proteins. Unfortu-

622nately, others failed to detect an increase in secretion

623of ZA1AT from fibroblasts, hepatoma cells and

624HeLa cells treated with lactacystin and furthermore

625observed a marked increase in the formation of

626insoluble aggregates of ZA1AT, which lessens enthu-

627siasm for this agent as a therapeutic (Teckman et al

6282001b). Chemical chaperones can reverse the cellular

629mislocalization or misfolding of several mutant plasma

630membrane, lysosomal, nuclear, and cytoplasmic pro-

631teins. Compounds such as trimethylamine oxide

632(TMAO), 4-phenylbutyric acid (4PBA) or glycerol have

633potential to reverse the cellular mislocalization or

634misfolding of ZA1AT. TMAO can stabilize both M
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635 and Z A1AT in an active conformation, but rather

636 than aiding the refolding of denatured A1AT instead

637 enhances its polymerization (Devlin et al 2001). 4PBA

638 alters secretion of ZA1AT without apparently increas-

639 ing its de novo synthesis or decreasing ER degradation

640 (Sharp et al 2006), while glycerol and erythritol,

641 trehalose and glucose can all decrease the rate of

642 ZA1AT polymerization but are unable to refold the

643 misfolded conformer. The mechanism by which this

644 occurs remains unclear, but it is not thought to be

645 due to an increase in viscosity, rather to act via a spe-

646 cific interaction between glycerol, for example, and

647 ZA1AT that can slow down conformational transitions

648 of the protein (Burrows et al 2000).

649 As ZA1AT deficiency occurs owing to a single gene

650 defect, inhibiting expression of the ZA1AT gene

651 represents a promising therapeutic strategy. Ribo-

652 zyme-mediated specific gene replacement is a dual

653 therapy that aims to treat the manifestations of A1AT

654 deficiency by inhibiting the expression of the mutated

655 gene with a ribozyme at the same time as replacing the

656 defective gene the with a normally functioning A1AT

657 gene in the liver (Ozaki et al 1999Q10 ). Unfortunately, this

658 approach has not been successful to date. Although

659 antisense technology held much promise initially, its

660 usefulness in vivo for diseases other than A1AT has

661 been confounded by the inherent instability of anti-

662 sense molecules. Second- and third-generation oligo-

663 nucleotides based on a peptide nucleic acid backbone

664 are now available that have considerably improved

665 stability and recent advances in gene knockdown

666 technology (also known as RNA interference or

667 RNAi) have superseded these other approaches to

668 some extent. There are hopes that RNA, using siRNAs

669 targeting A1AT may have therapeutic potential for

670 A1AT deficiency (Cruz et al 2007).

671 Prevention of polymerization of ZA1AT may result

672 in the release of mutant ZA1AT and relieve ER

673 perturbations (Mahadeva et al 2002). Parfrey et al

674 (2003) designed a synthetic peptide capable of insert-

675 ing into a hydrophobic cavity of the A1AT molecule

676 and preventing polymer formation. Obstacles that

677 must be overcome for the future development of such

678 inhibitors include efficient intracellular delivery sys-

679 tems and the ability to reversibly remove the bound

680 peptide from ZA1AT. Several imino sugar compounds

681 have also been suggested to be useful for chemopro-

682 phylaxis of the liver disease. For example, castano-

683 spermine, kifunesine and deoxymannojirimicin have

684 been shown to have positive effects in mediating an

685 increase in secretion of ZA1AT protein (Marcus and

686 Perlmutter 2000).

687Lung disease: clinical manifestations

688Patients with A1AT deficiency characteristically devel-

689op pulmonary disease in the third and fourth decades of

690life. Recent estimates suggest that 75–85% of patients

691with severe A1AT deficiency develop chronic obstruc-

692tive pulmonary disease (COPD) (Ranes and Stoller

6932005) and the majority of patients with A1AT

694deficiency have a history of cigarette smoking. In the

695National Heart Lung and Blood Institute (NHLBI)

696registry of A1AT deficiency, 8% were current smokers,

69772% were ex-smokers and 20% never smoked

698(McElvaney et al 1997). Common symptoms include

699shortness of breath on exertion, wheezing (with or

700without respiratory tract infection) and chronic cough.

701Individuals are usually diagnosed on the basis of

702pulmonary symptoms, but a substantial percentage,

703up to 20%, may only be detected through family

704screening, as many people with A1AT deficiency

705are asymptomatic without lung function impairment

706(Silverman et al 1989). Occasionally individuals are

707identified as a result of abnormal chest radiographs or

708pulmonary function tests (2%), liver disease (2%) or

709blood screening tests (1%) (Gadek and Crystal 1983).

710The clinical signs of A1AT-related lung disease are

711those of obstructive lung disease and emphysema. They

712include hyperinflation of the chest and reduced inten-

713sity of breath and heart sounds as well as wheezing in up

714to 20% of cases (Cox 1999; Tobin et al 1983). The

715association between A1AT deficiency and the devel-

716opment of emphysema was first described in 1963

717(Eriksson 1963). The typical pattern shows lower zone

718predominance, although emphysema may affect all

719zones. The characteristic pulmonary pathological

720abnormality is diffuse emphysema. This contrasts with

721centrilobular emphysema characteristic of cigarette

722smoking, which predominantly affects the respiratory

723bronchioles in the central portion of the lobule. These

724pathological abnormalities are reflected in a charac-

725teristic appearance on plain chest radiographs. There

726is a hyperlucent appearance with a basal predilection

727and oligaemia because of destruction of the pulmo-

728nary parenchyma and progressive loss of vascularity

729(Brantly et al 1988; Gishen et al 1982).

730High-resolution CT (HRCT) scan of the chest

731demonstrates widespread abnormally low-attenuation

732areas resulting from a lack of lung tissue. There

733are also increased air spaces and bullous formation

734(Guest and Hansell 1992). These changes predate the

735associated abnormalities of pulmonary function

736(McElvaney et al 1989; Simon et al 1989). In moderate

737disease the panlobular nature of the process and the
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738 characteristic lower zone predominance are more

739 obvious. Very severe forms may be indistinguishable

740 from severe centrilobular emphysema (Fig. 4).

741 Pulmonary function in patients with established

742 disease reveals evidence of reduced forced expiratory

743 volume in 1 second (FEV1), whereas the forced vital

744 capacity (FVC) is generally preserved or modestly

745 reduced (Brantly et al 1988). Both residual volume and

746 total lung capacity are increased. The diffusing capac-

747 ity of the lung for carbon monoxide is diminished and

748 the alveolar-arterial oxygen gradient is widened. Flow–

749 volume curves demonstrate coving of the expiratory

750 portion of the curve, reflecting expiratory flow limita-

751 tion (Fig. 5). Pulmonary function can be preserved

752 until the fifth or even sixth decade of life in those who

753 have never smoked and generally until the third or

754 fourth decade of life in most other patients (Wall et al

755 1990). Airflow limitation seen on pulmonary function

756 testing is not always fixed and the symptoms and signs

757 in A1AT deficiency can be similar to features of

758 asthma. Patients can often be given this diagnosis in

759 childhood or early adulthood. Indeed, 15% of patients

760 in a Swedish cohort identified by neonatal screening

761 had been diagnosed as having asthma by the age of

762 22 years (Piitulainen and Sveger 2002).

763 Other than emphysema and airflow obstruction,

764 patients may also have chronic bronchitis or bron-

765 chiectasis. Patients with chronic bronchitis tend to

766 have more severe airflow obstruction and more

767 extensive emphysema than those without chronic

768 bronchitis, despite similarities in age and smoking

769 history (Dawson et al 2002). Exacerbations occur

770 more frequently in patients with chronic bronchitis,

771 in index patients identified as a result of their lung

772 disease, and in those with more severe disease as

773assessed by the GOLD (Global Initiative for Chronic

774Obstructive Lung Disease) criteria (Pauwels et al

7752001). A tentative association with Wegener granulo-

776matosis has also been suggested and a number of

777other conditions, including rheumatoid arthritis and

778hepatocellular carcinoma, have been reported to

779occur with increased frequency in patients with

780A1AT deficiency.

781Therapeutics for A1AT-related lung disease

782A1AT has been purified from the plasma of healthy

783individuals and delivered intravenously to patients

784with A1AT deficiency since 1987 (Wewers et al

7851987). This intravenous augmentation therapy used a

786dose of 60 mg/kg body weight weekly, and successfully

787raised levels of serum A1AT above the putative

788protective threshold of 11 mmol/L throughout the

789duration of therapy. Furthermore, serum anti-neutro-

790phil elastase capacities increased from 5.4 T 0.1 to

79113.3 T 0.1 mmol/L and there were concomitant signifi-

792cant increases in A1AT levels in BAL fluid. A number

793of plasma-derived intravenous augmentation products

794have been developed but, as yet, conclusive evidence

795of their effectiveness in preventing A1AT deficiency-

Fig. 4 Slice through lung bases from HRCT of the thorax of a
56-year-old woman with A1AT deficiency, showing widespread
emphysematous change bilaterally

Fig. 5 Flow–volume loop of a 61-year-old man with A1AT
deficiency. There is coving of the expiratory portion of the curve
(see arrow), reflecting expiratory flow limitation. A normal expi-
ratory curve is shown in green
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796 associated lung disease is lacking. As yet none has

797 been evaluated in randomized placebo-controlled

798 trials to show effectiveness in treating or preventing

799 emphysema.

800 Alternative routes of administration of augmenta-

801 tion therapy, most notably delivery by inhalation, are

802 being explored. The ease of administration compared

803 with the intravenous route, as well as the use of

804 smaller doses, makes delivery by inhalation an attrac-

805 tive option. It has been shown that the airways of

806 individuals with A1AT deficiency are under a constant

807 inflammatory barrage (Rouhani et al 2000) and that

808 administration of exogenous inhaled A1AT can recon-

809 stitute the lower respiratory tract anti-protease screen

810 and potentially reduce inflammation (Hubbard and

811 Crystal 1990; Hubbard et al 1989). Polymerization of

812 locally produced ZA1AT acts as a neutrophil chemo-

813 attractant in A1AT deficiency and is a contributory

814 factor to the lung inflammation (Mulgrew et al 2004),

815 thus standard anti-protease therapies alone may not

816 address the problem fully.

817 There is increasing evidence that A1AT has anti-

818 inflammatory activity independent of its anti-protease

819 effects. This suggests that the administration of aug-

820 mentation therapy may do more than simply restore

821 the protease/anti-protease balance. Monocytes that

822 have been induced to express surface PR-3 release

823 significant amounts of biologically active IL-8 when

824 exposed to either monoclonal anti-PR-3 IgG or IgG

825 from Wegener granulomatosis patients with high titres

826 of cANCA. Interestingly, this interaction is prevented

827 by the addition of A1AT (Ralston et al 1997),

828 suggesting that A1AT may indirectly regulate inflam-

829 mation by suppressing the inflammatory cascade

830 induced by cANCA. A1AT has also been shown to

831 inhibit lipopolysaccharide-mediated human monocyte

832 activation in vitro. (Janciauskiene et al 2004).

833 Worries surrounding the potential transmission of

834 infectious agents by a human plasma-derived product

835 have led to the development of transgenic/recombi-

836 nant sources of human A1AT and the evaluation of

837 synthetic inhibitors of neutrophils elastase (NE).

838 Transgenic production of human A1AT protein has

839 been achieved in goats (Ziomek 1998) and sheep

840 (Wright et al 1991), and human A1AT has also been

841 produced in yeast using recombinant technology

842 (Casolaro et al 1987). Unfortunately, all these proteins

843 are cleared rapidly from the human circulation. Those

844 raised in yeast are non-glycosylated, with a resultant

845 short plasma half-life, while those produced from

846 transgenic animals have different glycosylation pat-

847 terns also leading to alterations in half-life and making

848their intravenous use impractical. The inhaled route,

849however, is a possibility for the future. Several

850inhibitors of NE have been evaluated in humans but

851not in A1AT deficiency to date (Cadene et al 1997;

852Edwards and Bernstein 1994; Kawabata et al 1991;

853Luisetti et al 1996; Williams et al 1991).

854Other treatments, although not all specific for

855A1AT deficiency emphysema, are under investigation.

856The administration of all-trans retinoic acid (ATRA) is

857being studied in relation to pulmonary emphysema in

858the general COPD population and may have a

859potential application in A1AT deficiency. Retinoids

860can activate genes involved in lung development and

861promote alveolar septation and growth. Clinical trials

862to date are disappointing, however (Mao et al 2002).

863Trials of inhaled hyaluronic acid in individuals with

864A1AT deficiency are based on the fact that animals

865administered hyaluronic acid are protected from exo-

866genous NE-induced emphysema (Cantor et al 1995,

8671998). Drugs with antioxidant potential are also being

868considered. A number of gene therapeutics for A1AT

869deficiency have been developed. For example, the

870normal A1AT gene has been successfully introduced

871into the striated muscle cells of animals using an

872adeno-associated virus vector (Song et al 1998; Flotte

8732002). However, this approach does not address the

874problems associated with endogenous production of

875abnormal A1AT, making the role of gene-targeted

876therapies more appealing.

877The future and A1AT deficiency

878The past 40 years have seen a huge increase in our

879understanding of the molecular basis of the lung

880and liver manifestations of A1AT deficiency. This

881knowledge, in conjunction with significant technolog-

882ical and pharmacological advances, has led us to

883a point where it is possible to manage and relieve

884many of the clinical manifestations associated with

885this disorder. However, our goal as clinicians and

886scientists is to develop an effective cure, and as yet

887there are still many unanswered questions. Given the

888emerging complexity of signalling cascades regulating

889protein folding, intracellular stress responses and

890inflammation, it appears that the way to achieve this

891goal will be by gaining even greater insights into the

892key factors regulating the different aspects of this

893complex disorder. What is known to date regarding

894A1AT deficiency is likely to have implications for

895other conformational diseases, in particular the serpi-

896nopathies and neurological disorders associated with
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897 aberrant protein folding. Reciprocally, it is likely that

898 therapeutics developed for these diseases may, in turn,

have use for A1AT deficiency.
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