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8 Abstract Approximately 20 % of human breast cancers

9 (BC) overexpress HER2 protein, and HER2-positivity is

10 associated with a worse prognosis. Although HER2-tar-

11 geted therapies have significantly improved outcomes for

12 HER2-positive BC patients, resistance to trastuzumab-

13 based therapy remains a clinical problem. In order to better

14 understand resistance to HER2-targeted therapies in HER2-

15 positive BC, it is necessary to examine HER family sig-

16 nalling as a whole. An extensive literature search was

17 carried out to critically assess the current knowledge of

18 HER family signalling in HER2-positive BC and response

19 to HER2-targeted therapy. Known mechanisms of trast-

20 uzumab resistance include reduced receptor-antibody

21 binding (MUC4, p95HER2), increased signalling through

22 alternative HER family receptor tyrosine kinases

23 (RTK), altered intracellular signalling involving loss of

24 PTEN, reduced p27kip1, or increased PI3 K/AKT activity

25 and altered signalling via non-HER family RTKs such as

26 IGF1R. Emerging strategies to circumvent resistance to

27HER2-targeted therapies in HER2-positive BC include co-

28targeting HER2/PI3 K, pan-HER family inhibition, and

29novel therapies such as T-DM1. There is evidence that

30immunity plays a key role in the efficacy of HER-targeted

31therapy, and efforts are being made to exploit the immune

32system in order to improve the efficacy of current anti-HER

33therapies. With our rapidly expanding understanding of

34HER2 signalling mechanisms along with the repertoire of

35HER family and other targeted therapies, it is likely that the

36near future holds further dramatic improvements to the

37prognosis of women with HER2-positive BC.

38

39Keywords Trastuzumab · HER2 · Breast cancer ·

40PI3 K

41Introduction

42BC is the second most common cancer in the world, and the

43fifth highest cause of cancermortalityworldwide [1]. 20%of

44human BC’s overexpress HER2, and HER2-positivity is

45associated with a significantly worse prognosis. HER2 first

46became targetable in patients with trastuzumab (Herceptin,

47™ Genentech/Roche), a monoclonal antibody that has sig-

48nificantly improved outcomes for patients with HER2-

49positive BC, but the efficacy of trastuzumab is limited in

50some patients by acquired and de novo resistance [2].

51HER family signalling

52There are 20 known RTK families: since members of over

53half of these have been found to be mutated or overex-

54pressed in diseases marked by abnormal proliferation,

55RTK’s have been considered potential targets for cancer

56therapy. HER2, a type 1 transmembrane protein RTK, and
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57 an oncogenic driver of the growth of HER2-positive BC, is

58 associated with a shorter time to relapse and decreased

59 overall survival (OS). A meta-analysis in 2003 found that

60 of 81 studies spanning sixteen years of research and

61 incorporating 27,161 patients [3], HER2 overexpression

62 predicted a worse BC outcome. In contrast to the other

63 known HER family members, those being epidermal

64 growth factor receptor (EGFR/HER1), HER3 and HER4,

65 no ligand has yet been identified for HER2 (Fig. 1). When

66 overexpressed, HER2 exists in a constitutively open con-

67 formation, leaving it intrinsically capable of interacting

68 with available RTK binding partners even in the absence of

69 ligand [4]. HER family ligands induce quantitative differ-

70 ences in receptor phosphorylation but quantitatively similar

71 physiological responses, suggesting that the identity of

72 activated receptors, rather than the number of activated

73 receptors, determines the cellular response [5]. Coordi-

74 nated overexpression of EGFR and HER2 frequently

75 occurs in HER2-positive BC. Expression profiling has

76 identified at least two subgroups within HER2-positive

77 primary breast tumours. Many of the differently expressed

78 genes track with oestrogen receptor (ER) status, suggesting

79 that HER2+/ER+ and HER2+/ER− represent two distinct

80 entities [6].

81 HER2 dimerization is mediated by the formation of

82 disulphide bonds between cysteine residues in the juxta-

83 membrane region, and disrupting these disulphide bonds

84 disrupts the ability of HER2 to transform cells [7].

85 Phosphorylated tyrosine residues on the receptor molecule

86serve as recognition and docking sites for SH2-containing

87proteins. These serve as linker molecules, recruiting

88components of downstream signalling pathways, such as

89the phosphoinositide-3-kinase (PI3 K) pathway, through

90which the activated RTK exerts its biological effect(s)

91(Fig. 1). HER family signalling is governed by a strict

92hierarchy, with HER2 the preferred dimerization partner

93of all other HER family members [8]. Cells transformed

94by HER2 display increased tyrosine phosphorylation of

95both HER2 and other proteins [9], and a recent study

96identified a subset of patients which were classed as

97HER2-negative by FISH analysis yet displayed HER2

98activation that was coincident with EGFR and HER3

99activation (n = 415) [10]. HER2/HER3 heterodimers have

100been proposed to be the main oncogenic unit in HER2-

101positive BC, with HER3 coupling activated HER2 to the

102downstream PI3 K and other pathways [11]. There is a

103correlation between simultaneous high HER2 and high

104HER3 levels and reduced sensitivity to trastuzumab [12].

105Further synergistic targeting of HER2 and HER3 was

106demonstrated to achieve higher therapeutic efficacy [13],

107and the HER3 ligand neuregulin confers resistance to

108chemotherapy and has recently been implicated as a

109potential mechanism of resistance to T-DM1 [14]. In

110contrast, some studies suggest a tumour suppressor role

111for HER4 in HER2-positive BC, although this is likely to

112be isoform specific and context specific [15]. A recent

113study suggested that the localisation of HER4 may play a

114role in its activity, with nuclear, but not cytoplasmic
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115 HER4 associated with poorer survival and trastuzumab

116 resistance [16].

117 Current HER2-targeted therapies

118 First generation HER2-targeted agents

119 The first indication that HER2-targeted therapy could attain

120 high specificity and avoid off-target toxicity came when

121 murine antibodies against HER2 were shown to selectively

122 inhibit growth of neu-transformed cells, but not ras-trans-

123 formed cells [17]. Subsequently, a humanised mAb against

124 HER2 inhibited proliferation of HER2-amplified cells

125 in vitro, and enhanced the antitumour effect of paclitaxel

126 and doxorubicin in xenograft models of HER2-positive BC

127 [18]. That trastuzumab significantly improves outcomes for

128 HER2-positive BC patients is now well established

129 (Table 1), although its mechanism of action remains

130 incompletely defined.

131 Potential mechanisms include inhibition of HER2

132 dimerization [4], inhibition of cleavage of the ectodomain

133 of activated HER2 [19], induction of p27KIP1 [20], inhibi-

134 tion of PI3 K signalling, downregulation of HER2 leading

135 to enhanced apoptosis mediated by tumour necrosis factor

136 alpha-related apoptosis inducing ligand [21], and antibody-

137 dependent cell-mediated cytotoxicity [22]. Trastuzumab-

138 mediated internalisation and degradation of HER2 may

139 inhibit receptor signalling, although some studies report

140 that receptor levels are unaffected by trastuzumab treat-

141 ment [23]. Despite its benefits, trastuzumab is limited in

142 some patients by de novo and acquired resistance, and

143 because it cannot cross the blood-brain barrier. Approxi-

144 mately 35 % of metastatic HER2-positive BC patients

145 treated with trastuzumab go on to develop brain metastases

146 [24].

147 Lapatinib (Tykerb,™ GlaxoSmithKline) is an orally

148 bioavailable small molecule tyrosine kinase inhibitor (TKI)

149 targeted to EGFR and HER2. Pre-clinical [25] and clinical

150 [26] evidence shows that lapatinib is effective against

151 trastuzumab-resistant HER2-positive BC, and it is cur-

152 rently used as subsequent therapy for patients with disease

153 that has progressed on trastuzumab. Lapatinib inhibits

154 HER2 phosphorylation more strongly than trastuzumab,

155 and unlike trastuzumab, it inhibits extracellular signal-

156 related kinase (Erk) 1 and 2 as well as PI3 K in vivo [27,

157 28]. Lapatinib inhibited tumour growth in p95HER2-

158 overexpressing pre-clinical mouse models and has shown

159 clinical benefit in patients refractory to trastuzumab whose

160 tumours overexpressed p95HER2 (n = 537) [26]. It

161 inhibits the development of brain metastases in vivo [24]

162 and has modest activity against HER2-positive brain

163 metastases clinically (n = 242) [29]. Trastuzumab and la-

164 patinib have complementary mechanisms of action, and the

165combination of both [30, 31] confers an OS benefit in

166patients with heavily pretreated, trastuzumab-resistant

167HER2-positive metastatic BC compared to lapatinib

168monotherapy [32]. However, the success of lapatinib has

169been hit by a number of recent disappointing clinical trial

170results including the adjuvant study ALTTO [33], a number

171of neoadjuvant studies, and the NCIC CTG first-line met-

172astatic study [34] (Table 1). These studies, along with the

173success of pertuzumab and T-DM1, mean that lapatinib’s

174place in the clinic remains in patients with HER2-positive

175metastatic BC, who have received at least 1–2 prior lines of

176therapy for metastatic disease.

177Second generation HER2-targeted agents

178Pertuzumab (Omnitarg ™, Genentech) is a humanised

179monoclonal antibody which binds to HER2’s extracellular

180domain II, which is involved in dimerization [4]. This is in

181contrast to trastuzumab, which binds to domain IV. Pert-

182uzumab thus blocks HER2/HER3 interaction, diminishes

183ligand-activated HER2 signalling in BC cell lines, and

184inhibits the growth of high- and low-HER2-expressing

185HER2-positive breast xenografts in vivo [35, 36]. The

186combination of trastuzumab and pertuzumab in vivo results

187in an additive increase in ADCC and marked regression of

188metastatic HER2-positive BC in treated animals [37]. In

189clinical trials, pertuzumab significantly improved patient

190outcomes when added to trastuzumab and docetaxel in

191first-line metastatic HER2-positive BC and in the neoad-

192juvant setting (Table 1). Other trials with pertuzumab are

193ongoing (Table 3).

194Trastuzumab-emtansine (T-DM1, Genentech) is an

195antibody-drug conjugate (ADC) which links trastuzumab to

196a highly cytotoxic maytansinoid agent, emtansine, which

197binds tubulin and arrests mitosis at metaphase [38]. Fol-

198lowing the binding of T-DM1 to HER2, receptor-mediated

199internalisation transports it to the cytoplasm, where lyso-

200somal degradation releases and activates the cytotoxic

201agent [39]. In addition to the anti-mitotic properties of

202emtansine, T-DM1 retains the mechanisms of action of

203trastuzumab including initiation of ADCC, inhibition of

204HER2 shedding and downregulation of PI3 K/AKT path-

205way activity, and is effective in models of lapatinib-

206resistance in vitro [40]. TDM-1 is now in clinical use in the

207second-line setting in metastatic HER2-positive BC based

208on the results of the EMILIA study [41] (Table 1).

209The role of immunology in HER2-targeted therapy

210There is compelling pre-clinical evidence of the impor-

211tance of the immune response in the efficacy of

212trastuzumab in HER2-positive disease, and from a clinical

213perspective, data point to HER2-positive and triple
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219219219219219219negative as the breast cancer subtypes with the most con-

220sistent association between immune infiltration and good

221prognosis [42]. The interaction of monoclonal antibody

222therapies with Fcγ receptors expressed on effector immune

223cells is the basis of ADCC, [43] and the association

224between tumour-infiltrating lymphocytes and benefit from

225trastuzumab and chemotherapy has been observed in The

226FinHER and GeparQuattro trials [44, 45]. Prospective

227analysis of BIG 02-98 showed increasing stromal lym-

228phocyte infiltration (10 % increments) was related to

229benefit from adjuvant anthracycline-only chemotherapy in

230HER2-positive disease [46] suggesting lymphocyte pre-

231dominant BC status may have repercussions for anticipated

232response to classical chemotherapies as well as newer

233targeted therapies. Cytotoxic drugs may also alter the

234immune response directly and these effects may play a

235major role in the efficacy of chemotherapy [47].

236Efforts have been made to improve the effector function

237of mAb therapies as a strategy to enhance their efficacy.

238Afucosylated trastuzumab has shown enhanced ADCC

239function and efficacy in vitro and in vivo pre-clinical tests

240[48]. Margetuximab (MGAH22) is an Fc-optimised anti-

241HER2 antibody proteolytic cleavage has been shown to

242reduce the ADCC function of trastuzumab in a pre-clinical

243study and could be the basis for reduced trastuzumab

244efficacy in matrix metalloprotease-rich tumours [49]. Pro-

245tease resistant antibodies maintaining effector function are

246being developed [50].

247An IgE-homologue of trastuzumab (containing an epsi-

248lon in the place of the gamma-1 heavy chain constant

249region) has been shown to initiate monocyte-mediated

250ADCC against HER2-positive breast cancer cells [51].

251Trastuzumab IgE also induced mast cell degranulation

252which is capable of triggering a potent antitumour immune

253response in vivo with pre-clinical studies point to improved

254efficacy compared to IgG1 equivalents providing support

255for clinical evaluation [52].

256CD137, a member of the tumour necrosis factor (TNF)

257receptor family, is upregulated on human natural killer

258cells following exposure to trastuzumab-treated HER2-

259positive tumour cells [53]. In vitro and in vivo studies have

260shown that the ADCC response to monoclonal antibody

261therapies including trastuzumab is augmented through

262stimulation of the CD137 receptor on NK cells with an

263agonistic antibody therapy [53–55]. Anti-CD137 agonistic

264antibodies are currently in Phase I and II clinical trials [42].

265Adaptive immune response

266Murine models have been used to exhibit the importance of

267Fcγ receptors and T cells in an effective response to

268trastuzumab in vivo, providing the basis of a link between

269NK cell induced trastuzumab-mediated ADCC and theT
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270 adaptive immune response [56]. A more recent study has

271 shown that tumour cells from patients expressing a breast

272 cancer stem cell-related marker (ALDH1) evade direct NK

273cell cytotoxicity through downregulation of the NKG2D

274ligands, MICA and MICB resulting in increased metastases

275[57]. Increases in NK2GD and DNAM1 ligands in response

Table 2 Mechanisms of Resistance HER2-targeted therapies in HER2-positive BC

Biomarker Mechanism Known to mediate

resistance to

Shown

in vitro

Shown

in vivo

Clinical

studies

Possible

targeting

strategies

PIK3CA

mutation

HER2-independent activation of

the PI3 K pathway downstream

from HER2

Trastuzumab/

Lapatinib

Yes [2] Yes [51] Yes [2, 46, 54, 56] Cotarget PI3 K/

HER2

PTEN loss HER2-independent activation of

the PI3 K pathway downstream

of HER2

Trastuzumab/

Lapatinib

Yes [51, 84] Yes [51] Yes [46] Cotarget PI3 K/

HER2

p95HER2 Lacks extracellular antibody

binding domain but retains full

kinase activity

Trastuzumab Yes [85] Yes [85, 86] Yes [12] [49, 87] Lapatinib/novel

TKI’s

MUC4 Masks trastuzumab binding site Trastuzumab Yes [45] Yes [45] No Lapatinib/novel

TKI’s

MET receptor Upregulates AKT and abrogates

p27 induction in response to

trastuzumab

Trastuzumab Yes [88] No Yes [89] MET inhibition

IGF1R Heterodimerizes with HER2 to

activate downstream signalling

Trastuzumab Yes [47] No Yes [47] Co-target

IGF1R/HER2

Inhibition/loss

of P27Kip1

Impairs anti-HER2 antibody

induced cell cycle arrest,

thereby increasing proliferation

Trastuzumab Yes [20] No Yes [90] None currently

available

IGF1R insulin-like growth factor-1 receptor, MUC4 mucin-4, PTEN phosphatase and tensin deleted in chromosome 10

Table 3 Important ongoing clinical trials with novel HER2-targeted therapies in HER2-positive BC

Trial Setting Sample size Aims/arms/investigation Results expected

Pertuzumab-based trials

Pherexa HER2-positive BC patients who

progressed following

trastuzumab

450 Trastuzumab and

capecitabine ± pertuzumab

June 2017

Aphinity Early stage HER2-positive BC 3,806 (estimated

enrolment)

Adjuvant chemotherapy and

trastuzumab ± pertuzumab

December 2023

T-DM1-based trials

Marianne Metastatic HER2-positive BC 1,095 Combination pertuzumab and

T-DM1

April 2016

Katherine HER2-positive BC with residual

tumour in breast/lymph nodes

following preoperative therapy

1,484 (estimated

enrolment)

Adjuvant trastuzumab vs adjuvant

T-DM1

March 2023

Neratinib-based trials

ExteNET Early stage HER2-positive BC 2,842 Neratinib after adjuvant

trastuzumab on overall survival

Completed, not yet reported

NALA Metastatic HER2-positive BC 600 (estimated

enrolment)

Neratinib plus capecitabine vs

lapatinib plus capecitabine

May 2018

Afatinib-based trials

Lux-Breast 1 HER2-positive metastatic BC

patients who have progressed on

trastuzumab

508 (estimated

enrolment)

Afatinib plus vinolrebine vs.

trastuzumab plus vinolrebine

June 2014

Lux-Breast 3 HER2-positive BC patients with

brain metastasis

120 Vinorelbine ±/− Afatinib September 2014
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276 to taxane treatment have been shown to increase trast-

277 uzumab-mediated ADCC in HER2-positive cell line

278 models [58]. This may provide further indications for the

279 importance of trastuzumab alone and in combination with

280 chemotherapy in the treatment of HER2-expressing breast

281 cancer.

282 Monoclonal antibody therapies like trastuzumab, pert-

283 uzumab, TDM1 and anti-PD-1/PD-L1 could be considered

284 passive immunotherapies. The exclusive localisation of

285 HER2 overexpression in tumours also makes HER2 an

286 attractive target for active immunotherapies. Some patients

287 are capable of producing a specific anti-HER2 response

288 involving cellular and humoral immunity [59, 60]. Peptide-

289 based vaccines aim to elicit an immune response using

290 epitopes from tumour-associated antigens. E75, consisting

291 of HER2 amino acids 369–377, is the most extensively

292 studied peptide-based vaccine in the clinic. Phase I studies

293 in the metastatic setting showed that the combination of

294 E75 with an adjuvant was safe and generated cytotoxic T

295 lymphocyte responses [61]. Combined analysis of two tri-

296 als combining escalating E75 doses and GM-CSF in the

297 adjuvant setting found that DFS was 94 versus 79.4 % in

298 the vaccine group and control group, respectively, at

299 24 months, [62] and a trend towards reduced recurrence

300 was observed in optimally dosed patients. [63] Protein-

301 based vaccines utilise entire or truncated forms of HER2 in

302 order to take advantage of HLA-I and HLA-II class epi-

303 topes within HER2 and therefore potentially activate a

304 CD4+ T cell response. One clinical study has reported

305 limited tumour regression (2/42 patients) [64, 65]. DNA

306 vaccines and whole cell (autologous or allogeneic) vac-

307 cines are designed to interact with antigen presenting cells

308 (APCs) with subsequent activation of T cells. These have

309 been shown to produce a pronounced immune response

310 which included antibody production with no dose limiting

311 toxicity in the metastatic setting (n = 28) [66]. Dendritic

312 cells (DC) are potent APCs, expressing HLA-CLASS I and

313 II, T cell co-stimulatory factors and producing T cell

314 stimulating cytokines [67]. Dendritic cell vaccines are in

315 the preliminary phase of development. Clinical studies

316 examining combinations of active and passive immuno-

317 therapies are ongoing with the hope that these

318 combinations will produce increased immunological

319 responses [68].

320 Mechanisms of resistance to HER2-targeted therapies

321 Many potential mechanisms of trastuzumab resistance in

322 HER2 positive BC have been proposed (Table 2); these

323 include reduced receptor-antibody binding due to increased

324 HER2 masking [69]; increased signalling through alterna-

325 tive HER family RTKs[12]; altered intracellular signalling

326 involving loss of PTEN, reduced p27kip1, or increased

327PI3 K/AKT activity (e.g. by PIK3CA mutations) [70]; and

328altered signalling via non-HER family RTKs [71, 72].

329P95HER2, which lacks an extracellular domain but retains

330kinase activity, has been proposed as a mechanism of

331resistance [73]. However, it was not shown to have a sig-

332nificant association with pCR clinically, [74] and

333difficulties in developing a robust clinical assay for

334p95HER2 have prevented its introduction as a clinically

335relevant biomarker.

336Clinical studies provide strong evidence that the PI3 K

337pathway is involved in trastuzumab resistance, reflecting

338in vitro observations that the PI3 K pathway is involved in

339both trastuzumab and lapatinib resistance [75]. Pre-clinical

340studies have demonstrated that AKT can be activated

341independently of HER2 [2]. Such HER2-independent

342PI3 K pathway activation may result from aberrant RTK

343signalling upstream of PI3 K, PTEN loss or PIK3CA

344mutations and lead to less dependency on HER family

345signalling for tumourigenesis [75], indicating that HER2

346inhibition without co-inhibition of the PI3 K pathway may

347not be sufficient to inhibit tumour growth in some HER2-

348positive BC’s. Patients with PI3 K pathway activation in

349their HER2-positive BC have shorter OS and a worse

350response to trastuzumab [70, 76]. Although some reports

351are conflicting in this regard [77], [78], PIK3CA mutations

352have been shown to predict resistance to HER2-targeted

353therapy-based regimens in primary HER2-positive BC [2,

35479], with one study suggesting that this effect is restricted

355to cancers that are HER2+/ER+ [80].

356Targeting the PI3 K pathway

357Pre-clinical data consistently suggest that targeting PI3 K

358pathway signalling nodes downstream from HER2 (e.g.

359mammalian target of rapamycin (mTOR) or PI3 K itself) in

360addition to targeting HER2 will overcome resistance of

361HER2-amplified BC to HER2-targeted therapies in some

362cases [81].

363mTOR, a serine/threonine kinase, is a downstream

364component of the PI3 K pathway. The mTOR inhibitor

365everolimus (Afinitor,™ Novartis) improves the antitumour

366efficacy of trastuzumab [82]. However, the added efficacy

367of everolimus in combination with trastuzumab and vino-

368relbine in the metastatic setting was disappointing in the

369phase 3 clinical trial BOLERO-3 [82]. mTOR may thus not

370be not an optimal target for inhibiting the PI3 K pathway as

371mTOR is only one downstream target of PI3 K. Further-

372more, targeting mTOR leads to feedback loop-induced

373AKT activation, shown to significantly decrease the anti-

374tumour efficacy of mTOR inhibition [83].

375Therefore newer inhibitors of PI3 K and AKT are being

376investigated in combination with HER2-targeted therapies

377in HER2-positive BC. Examples include copanlisib, a pan-

Breast Cancer Res Treat

123
Journal : Large 10549 Dispatch :22-12-2014 Pages :11

Article No. :3250
LE TYPESET

MS Code :BREA-D-14-00867 CP DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

378 class 1 PI3 K inhibitor, GDC-0941, and dual PI3 K/mTOR

379 inhibitors GDC0980 and NVP-BEZ235 [84]. Such com-

380 pounds show clear in vitro and in vivo efficacy [85] and are

381 in early clinical trials in HER2-positive breast and other

382 cancers, [86] both alone and in combination with trast-

383 uzumab[87]. The combination of the PI3 K inhibitor

384 buparlisib (BKM120) and trastuzumab was recently shown

385 to be well tolerated with preliminary signs of clinical

386 activity in HER2-positive BC patients with trastuzumab-

387 resistant disease [88]. In this trial, pharmacodynamic

388 studies showed inhibition of both the PI3 K and MAPK

389 pathways.

390 Novel HER2-targeted therapies

391 Some early phase clinical trials (Table 1) suggest encour-

392 aging efficacy for the novel HER2-directed TKI’s neratinib

393 and afatinib in HER2-positive BC. Neratinib is an irre-

394 versible TKI against EGFR and HER2. It potently inhibits

395 HER2 and EGFR kinase activity, MAPK and AKT phos-

396 phorylation, and enhances p27 induction in vitro, and

397 inhibits the growth of HER2-positive tumours in vivo [89].

398 Unlike trastuzumab, it decreases phosphorylation of EGFR,

399 HER2, HER4 and ERK, and the addition of neratinib to

400 trastuzumab overcomes trastuzumab resistance in vitro

401 [90]. The combination of neratinib and vinorelbine has

402 shown significant antitumour effects with no synergistric

403 toxicity [91].

404 Somatic, including activating, HER2 mutations have

405 recently been found to be present at a low frequency in

406 HER2-negative BC [92], suggesting that HER2-targeted

407 therapy may benefit some patients who are HER2-negative

408 but bear HER2 somatic mutations. Several of those muta-

409 tions were associated with resistance to lapatinib; one

410 mutation increased the phosphorylation of EGFR and

411 HER3, suggesting that HER2 signalling could be activated

412 by HER2 somatic mutations as well as by HER2 gene

413 overexpression. Neratinib potently inhibited the growth of

414 cells bearing these HER2 mutations, including those

415 associated with lapatinib resistance.

416 Afatinib is a TKI which irreversibly binds EGFR and

417 HER2. Afatinib inhibits ligand-dependent phosphorylation of

418 HER3 [93], and demonstrates antitumour activity in patients

419 with HER2-positive BCwho have progressed on trastuzumab

420 [94]. It may also have potential to treat some patients with

421 triple-negative BC, due to its anti-EGFR activity [95]. Afati-

422 nib monotherapy may have a higher overall response rate

423 compared to both trastuzumab and lapatinib monotherapy in

424 treatment naı̈ve patients with HER2-positive, locally

425 advanced BC [96]. Table 3 lists some ongoing clinical trials

426 with neratinib and afatinib in HER2-positive BC.

427Conclusion

428The HER family is a group of related RTKs that signal

429cooperatively to mediate oncogenic effects. One member,

430HER2, is overexpressed by gene amplification in approxi-

431mately 20 % of human BC. Although the established

432HER2-targeted therapies trastuzumab and lapatinib have

433had some success, resistance remains a clinical problem.

434Emerging strategies to circumvent this resistance include

435co-targeting the PI3 K pathway and HER family, pan-HER

436family inhibition, and novel therapies such as T-DM1.
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