High molecular weight polyproline as a potential biosourced ice growth inhibitor: synthesis, ice recrystallization inhibition, and specific ice face binding
Ice-binding proteins (IBPs) from extremophile organisms can modulate ice formation and growth. There are many (bio)technological applications of IBPs, from cryopreservation to mitigating freeze–thaw damage in concrete to frozen food texture modifiers. Extraction or expression of IBPs can be challenging to scale up, and hence polymeric biomimetics have emerged. It is, however, desirable to use biosourced monomers and heteroatom-containing backbones in polymers for in vivo or environmental applications to allow degradation. Here we investigate high molecular weight polyproline as an ice recrystallization inhibitor (IRI). Low molecular weight polyproline is known to be a weak IRI. Its activity is hypothesized to be due to the unique PPI helix it adopts, but it has not been thoroughly investigated. Here an open-to-air aqueous N-carboxyanhydride polymerization is employed to obtain polyproline with molecular weights of up to 50000 g mol–1. These polymers were found to have IRI activity down to 5 mg mL–1, unlike a control peptide of polysarcosine, which did not inhibit all ice growth at up to 40 mg mL–1. The polyprolines exhibited lower critical solution temperature behavior and assembly/aggregation observed at room temperature, which may contribute to its activity. Single ice crystal assays with polyproline led to faceting, consistent with specific ice-face binding. This work shows that non-vinyl-based polymers can be designed to inhibit ice recrystallization and may offer a more sustainable or environmentally acceptable, while synthetically scalable, route to large-scale applications.
Funding
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreements 866056 and 899872)
Marie Skłodowska-Curie grant agreement 814236
MRC award reference MC_PC_17136
History
Data Availability Statement
Any additional research data supporting this publication can be found at http://wrap.warwick.ac.uk.Comments
The original article is available at https://pubs.acs.org/Published Citation
Judge N. et al. High molecular weight polyproline as a potential biosourced ice growth inhibitor: synthesis, ice recrystallization inhibition, and specific ice face binding. Biomacromolecules. 2023;24(6):2459-2468Publication Date
21 February 2023External DOI
PubMed ID
37303170Department/Unit
- Amber (Advanced Material & Bioengineering Research) Centre
- Chemistry
- CURAM Centre for Research in Medical Devices
Publisher
American Chemical SocietyVersion
- Published Version (Version of Record)