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Abstract | The integrins are a large family of cell adhesion molecules that are essential 

for the regulation of cell growth and function. The identification of key roles for 

integrins in a diverse range of diseases, including cancer, infection, thrombosis and 

autoimmune disorders has revealed their substantial potential as therapeutic targets. 

However, so far, pharmacological inhibitors for only three integrins have received 

approval. This article discusses the structure and function of integrins, their 

physiological functions and roles in disease and the checkered history of the approved 

integrin antagonists. Recent advances in the understanding of integrin function, ligand 

interaction and signalling pathways suggest novel strategies for inhibiting integrin 

function that could help harness their full potential as therapeutic targets. 

 

Introduction 
 
The first integrin was identified in 1986, when a complex, fibronectin-binding, 

membrane glycoprotein that was integral in linking the cytoskeleton with the 

extracellular matrix was identified1. Following this initial discovery, it soon became 

clear that this glycoprotein was only one member of a diverse family of receptors 

exhibiting similar functions, all of which are heterodimers composed of an α and a β 

subunit (FIG. 1)2. Today, the integrins are known to have vital roles in both health and 

disease and their potential to be therapeutically targeted is now widely recognized.   

 

So far, pharmacological inhibitors have been approved for three integrins, although 

each of these classes of inhibitors has important limitations. The first integrin to be 

successfully targeted was the platelet integrin αIIbβ3 which plays a key role in platelet 
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aggregation. In the 1990’s three αIIbβ3 inhibitors —the antibody fragment abciximab 

and the small molecule inhibitors eptifibatide and tirofiban, all of which are 

administered intravenously —were approved to reduce the risk of ischaemic events in 

patients with acute coronary syndromes (ACS) and those undergoing percutaneous 

coronary intervention (PCI)3. However, despite initial expectations that antagonists 

targeting this integrin would be blockbuster drugs, attempts to develop oral 

antagonists for more convenient administration were not successful and the use of the 

approved intravenous inhibitors has largely been restricted to high-risk patients. 

Instead, clopidogrel, an orally active ADP-receptor antagonist, filled the market that 

was expected for αIIbβ3 antagonists and became the second biggest-selling drug 

globally4.  

 

Antagonists have also been approved for two integrins involved in autoimmune 

disorders. Natalizumab, a monoclonal antibody (mAb) that binds to the α4 integrin 

subunit, is approved for the treatment of multiple sclerosis5  and Crohn’s disease6 and 

efalizumab, a mAb that targets the αLβ2 integrin, was approved for the treatment of 

moderate to severe psoriasis7. However, both of these agents are associated with 

progressive multifocal leukoencephalopathy (PML) a potentially fatal side effect 

thought to be related to their immune suppressant properties8. The initial reports of 

PML cases led to withdrawal from the market of natalizumab in 2005, but supported 

by its high efficacy in reducing the rate of relapses in multiple sclerosis and the level 

of medical need in this indication, it was reintroduced with a black-box label warning 

and a risk-management strategy in 2006. However, efalizumab was simply withdrawn 

from the market in 2009.  
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Recent advances in our understanding of the nature of ligand-integrin interactions, 

integrin structure and signalling have created opportunities for the development of 

different types of integrin antagonists, as well as raising the possibility of targeting 

down-stream signalling events as an alternative to blocking receptor occupancy. This 

article discusses how such advances could inform potential future strategies for the 

development of integrin targeted drugs, with a focus on those integrins for which 

therapeutic inhibitors have been developed. Issues associated with the clinical use of 

approved integrin inhibitors are also considered. 

Physiological role of integrins 

Integrins, which are found on nearly all cells, mediate cell-cell and cell-substrate 

interactions. This extensive family of cell-adhesion molecules, which includes more 

than twenty known α-β heterodimer combinations (FIG. 1), bind to a diverse 

collection of ligands which are mostly large molecules, usually found in the sub-

endothelial matrix, including fibronectin1, vitronectin9 and collagen10. Other ligands 

are plasma proteins including complement factors11, C-reactive protein12 and 

fibrinogen13. Many integrins also recognize the amino acid sequence Arg-Gly-Asp 

(RGD) in their ligands2,14.  

 

However, integrins do not simply act as “glue-like” molecules; they are true receptors, 

generating intracellular signals15. Given that contact with other cells and extra-cellular 

matrix components regulates the activity of all cells, and that integrins are an 

important family of receptors that mediate these interactions, they have essential roles 

in the function of most cells. Areas in which integrins are especially important are 

those that involve growth of tissue or where cell attachment is necessary for function. 

Thus, embryonic development16 and angiogenesis17 are critically dependent on 
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integrins, as is the immune system18 in which immune cell attachment is necessary for 

normal function (see below). 

 

Integrins and disease 

Although integrins are known to be involved in a variety of disorders, identifying the 

specific integrin involved and their precise role is difficult because many diseases are 

multi-factorial and integrins are only one of many types of receptors involved. 

Moreover, many cells posses multiple integrins that exhibit complementary binding 

properties. In this section, a brief overview of the disorders in which integrins are 

known to have an important role is presented, together with discussion of clinical 

experience with relevant integrin-targeted drugs where applicable 

 

Thrombosis. The first disease-related process to be clearly associated with integrins 

was thrombosis, the formation of a blood clot inside a blood vessel, which occurs 

when platelets adhere to damaged blood vessels and become activated19. These 

activated platelets recruit other platelets, resulting in the formation of a haemostatic 

plug. This is an essential mechanism for preventing blood loss, but inappropriate 

thrombus formation can lead to a stroke or heart attack.  

 

In the 1970s, it was noted that some patients with a severe bleeding disorder known as 

Glanzmann's thrombasthenia lacked two functional glycoproteins (GPIIb and GPIIIa) 

on their blood platelets, which are now known as the integrin αIIbβ3
20. It was 

subsequently found that the platelet-platelet interaction that mediates thrombus 

formation is facilitated by fibrinogen binding to the platelet-specific integrin αIIbβ3 

following platelet activation caused by thrombotic stimuli13.  
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This knowledge provided the basis for the development of the first three integrin-

targeted drugs to be approved which were introduced in the 1990’s21. The first anti-

integrin to be commercialized was the anti-β3 monoclonal antibody abciximab 

(ReoPro; Centocor/Eli Lilly). It is a potent inhibitor of platelet aggregation and has 

been extensively tested in clinical studies22-23 resulting in approval for use during 

percutaneous coronary intervention (PCI). Eptifibatide (Integrilin; 

Millenium/Schering-Plough) is a cyclic-peptide derived from barbourin, a component 

of viper venom. Like barbourin it contains a KGD sequence rather than an RGD 

sequence. It is very potent and highly effective at inhibiting αIIbβ3
24 and is currently 

used for patients undergoing PCI25-26 and in patients with acute coronary syndromes27. 

Tirofiban (Aggrastat; Merck) is a non-peptide, small-molecule inhibitor of αIIbβ3, 

although it has no oral activity (see Table 1). Like eptifibatide its development was 

based on a viper venom peptide (echistatin). It was approved for use in PCI and acute 

coronary syndromes28-29.  

 

Inspired by the success of these intravenous αIIbβ3 antagonists, the development of 

orally active antagonists of αIIbβ3 was an area of intense activity in the 1990’s. 

Several compounds went into phase III trials including xemilofiban, orbofiban, 

sibrafiban and lotrafiban (see table 1). However, in contrast to the success of the 

intravenous compounds, the oral compounds showed no benefit and patients even did 

worse due to an increase in cardiovascular events30. This surprising failure of the oral 

αIIbβ3 antagonists was probably not due to any single factor31. Although there were 

problems with agonist-like activity with some of these drugs, other factors such as 
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poor bioavailability and under-dosing also played a role. There was also a lack of 

understanding of the role of αIIbβ3 in thrombosis, in particular its role in signalling. 

 

Immune system disorders. Integrins have a key role in the migration and interaction 

of cells of the immune system. Both β1 and β2 integrins are important in immune 

function where they play essential roles in localizing the immune response to the site 

of inflammation11 and a defect in β2 integrins leads to life-threatening immune 

dysfunction (leucocyte adhesion deficiency, LAD)32. Engagement of the T-cell 

receptor and subsequent inside-out signalling leads to activation of T-cell integrins18.  

 

The initial focus on anti-integrins for immune disorders was on targeting αLβ2 and α4 

integrins. Interest in developing anti-α4 integrins was catalysed by the discovery in the 

early 1990s that α4β1  integrin had a key role in the migration of lymphocytes to 

inflamed regions of central nervous system in rodent models of multiple sclerosis, and 

that blockade of α4 with a monoclonal antibody could inhibit the development of 

paralysis in these models33. Natalizumab, a humanized mAb specific for the α4 

integrin subunit was found to be effective in the treatment of multiple sclerosis5,34-39 

and also for the inflammatory bowel disorder Crohn’s disease6. Inhibitors of α4 

integrins have been effective in animal models of asthma but none have been effective 

in Phase II trials40. 

 

Natalizumab (Tysabri; Elan/Biogen-Idec) was first approved by the US FDA for the 

treatment of multiple sclerosis in 2004, and has shown substantial efficacy in clinical 

trials37-39. However, a few months after its initial approval, several patients treated 

with natalizumab developed a fatal, progressive multifocal leukoencephalopathy 
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(PML)41, leading the manufacturer to withdraw the drug from the market. It was 

found that PML in the initial cases was due to re-activation of JC virus infection of 

the central nervous system42. However, this might not be specific to JC virus, as 

herpes virus 6 re-activation has also been seen in natalizumab-treated patients43. 

Reflecting the major need for effective treatments for multiple sclerosis, natalizumab 

was reintroduced in to the market in 2006 with a black-box warning, and a risk 

evaluation and mitigation strategy (REMS) known as TOUCH to identify patients at 

risk of developing PML. Annual sales of the drug surpassed $US 1 billion in 2009, 

but it remains under close regulatory scrutiny. 

 

Antagonists of αLβ2 integrin (also known as leukocyte-function-associated antigen 1, 

LFA1), which is involved in the activation and migration of T cells, have shown 

benefit in the inflammatory skin disorder psoriasis44-45. Efalizumab (Raptiva; 

Genentech), a humanized mAb specific for the αL subunit, was approved in 2003 for 

the treatment of plaque psoriasis and shown to be effective in long-term trials46-49. 

However, reports of cases of PML associated with efalizumab led to its withdrawal 

from the market in 200950. 

 
Cancer. During carcinogenesis, the growth of the tumour and its subsequent 

metastasis is highly dependent on tumour cells being able to regulate their attachment 

to the extracellular matrix and adjacent cells. Given that integrins play important roles 

in cell attachment, survival, migration, invasion and angiogenesis17,51-53, which are all 

critical for carcinogenesis, they have attracted considerable attention as potential anti-

cancer targets. Usually anti-integrins are used in combination with other anti-cancer 

agents but they also have potential as imaging agents in cancer diagnosis54-55. 
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Many different integrins have been implicated in carcinogenesis. One of the most 

important is αVβ3
56 which is known to act as a trigger for cell survival57 and this may 

be important in angiogenesis where endothelial cell survival is critical. It also plays a 

key role in metastasis where its expression in melanoma is associated with highly 

metastatic disease58. Etaracizumab is a monoclonal antibody to αVβ3 that is 

undergoing early clinical development for treatment of melanoma59-60 and solid 

tumours61. The cyclic-RGD peptide cilengitide is a specific αVβ3 antagonist and is 

currently under going clinical trials for use in glioblastoma62-63 and in other brain 

cancers64 and has recently become the first anti-integrin to enter Phase III trials for 

cancer65. The orally-active, non-peptide αVβ3 antagonist MK 0429 is under going 

clinical development for prostate cancer66. 

 

Another integrin of interest in cancer is α5β1 which is involved in cell survival and 

migration67 and angiogenesis68. Volociximab is an anti-α5 antibody under 

development for solid tumours69-70. Recent evidence suggests that inhibition of both 

αVβ3 and α5β1 may be required for optimum effects on angiogenesis71.  

 

 
Infection. A number of infectious agents have developed the ability to interact with 

integrins and subsequently become internalized allowing access to the intracellular 

milieu72-73. Three general mechanisms are used to achieve this:  first the binding of 

integrin ligands that mediate an interaction with an integrin, for example the binding 

of Staphylococcus aureus and Staphylococcus epidermidis to fibrinogen74-75 and S. 

aureus to fibronectin76 mediate an interaction with platelet αIIbβ3 triggering platelet 

aggregation. The second mechanism is direct interaction with an integrin for example 

Papilloma virus binds to α6β4
77, Rotavirus binds to α2β1 and α4β1

78-80 and Ebola 
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glycoprotein interacts with α5β1
81. The third mechanism is binding of bacterial 

secreted products to an integrin, for example αLβ2 binds RTX (repeat in toxin) family 

of cytotoxins82-84 and Helicobacter pylori Vac A toxin binds to β2 integrins85. H. 

pylori CagL86, S. aureus α-toxin87 and Bacillus anthracis lethal factor-protective 

antigen complex88 interact with α5β1. Integrins can also modulate the immune 

response to infection; for example mindin, an αMβ2 and α4β1 ligand89, acts as a pattern 

recognition molecule for microbes90, C-reactive protein binds to αIIbβ3
12 and αMβ2 and 

αXβ2 are complement receptors11. However, the role of integrins in infection has yet 

to be exploited for therapeutic purposes but inhibition of these interactions, which are 

involved in the infection process, has a potential role in the treatment of infection. 

 

Osteoporosis. Osteoporosis occurs when the balance between bone formation and 

degradation is disturbed. Integrins play an important role in the function of 

osteoclasts, which mediate bone resorption. Osteoclast α1β1 is responsible for 

adhesion of osteoclasts to collagen, and polymorphisms in this receptor are related to 

bone mineral density and fractures91. αVβ3 is also important in osteoclast function and 

polymorphisms in this receptor are also associated with increased rate of fracture92. 

An antagonist of this receptor has been shown to increase bone density in post-

menopausal women in a Phase II study93. However, there is no evidence that this or 

any other anti-integrin is undergoing clinical development for osteoporosis. 

 

Emerging opportunities. The initial drug discovery work for several of the integrins 

described above often occured in the absence of detailed understanding of their 

function. However, recent advances in our knowledge of the structure of integrins, 

their interaction with ligands and their signalling pathways has shed light on the 
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difficulties associated with early integrin antagonists and suggests novel strategies for 

more effectively inhibiting integrin function94-95. The remainder of the article first 

discusses relevant advances in structural understanding and integrin signalling, and 

then considers how these could be applied to the development of novel and/or 

improved integrin-targeted drugs.  

 

Insights into integrin structure 

 

Integrin domain structure. Advances in crystallography, together with mutagenesis 

studies, have yielded a great deal of information regarding integrin structure. A 

schematic of the integrin domain structure is outlined in FIG. 2a. The α-chain is made 

up of a short cytoplasmic domain and a transmembrane domain attached to two calf 

domains that make up the lower leg region. The thigh domain makes up the upper leg 

region, which is followed by the 7 repeats constituting the β-propeller. The interactive 

domain (I-domain) is inserted between repeats 2 and 3 in nine of the α subunits (α1, 

α2, α10, α11, αL, αD, αM, αX, αE) and plays a role in ligand binding. This is known as 

the α-I domain.  

 

The β-chain has a longer cytoplasmic domain, a transmembrane domain, four integrin 

epidermal growth factor-like domains making up the lower leg region and an I-like 

domain inserted into the hybrid domain forming the head domain. This I-like domain 

is known as the β-I domain. The N-terminal hybrid domain and the plexin semaphorin 

integrin (PSI) domain fold over to form the upper leg domain, exposing the β-I 

domain. 
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Integrin conformations. Integrins display three distinct conformations, a resting 

inverted V shaped conformation, an intermediate partially activated extended state, 

and a fully activated open, ligand-binding conformation (FIG. 2b)96-98. The PSI and 

hybrid domains swing out away from the α-chain in the transition between 

intermediate and fully activated states97. Some integrins can bind their ligands in a 

resting state while others require activation prior to binding. Activation is mediated by 

signalling events leading to alterations in the intracellular domains, also known as 

inside-out signalling. Ligand binding results in transmission of a signal into the cell 

which is known as outside-in signalling (FIG 2c). A number of partial intermediates 

between these three states have also been proposed97,99-100. Crystal structure data for 

the resting αvβ3 and activated αIIbβ3 has been assimilated with electron microscopy 

data providing a model of the intermediate structures99-101.  

 

Ligand-binding. Both the α-I and β-I domains contain a metal ion that interacts with 

the ligand, known as the metal-ion-dependent adhesion site (MIDAS) (FIG. 3a and 

B). If the α-I domain is present, it forms the ligand-binding domain. If the α-I domain 

is absent, the ligand-binding domain lies between the two subunits, between the β-I 

domain (on the β-subunit) and the β-propellor domain (on the α-subunit) (FIG. 3b). 

The α-I and β-I domains both contain a central Rossman fold surrounded by seven 

helices (see FIG. 3a).  

 

Ligand binding leads to allosteric changes within the molecule through movements in 

the α7 and α1 helices in the α-I and β-I domains (FIG. 3c)102. Movement of these 

helices is thought to be responsible for the shape changes in the ectodomain upon 
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ligand binding. The piston-like displacement of the α7 helix leads to changes in the 

legs and ultimately tail separation, likely translating changes further into the 

cytoplasmic regions leading to signalling events (FIG. 2c, upper schematic). This is 

known as outside-in signalling.  

 

The structural changes resulting from inside-out signalling are thought to be due to 

separation of the lower legs of the ectodomain due to changes in the cytoplasmic 

regions which are then translated to the head region, ultimately leading to changes in 

the ligand binding domain, which increases affinity for the integrins’ ligand, (FIG. 2c, 

lower schematic)97. Due to the dynamic changes upon activation, there are a number 

of different regions to be considered when investigating integrins as drug targets. 

 

Integrin signalling 

 

Integrins were originally thought to simply be adhesion molecules and not true 

receptors as they had no homology to the four main types of known receptors and no 

evidence of intracellular signalling motifs. However, recent work has clearly 

identified signalling molecules that associate with integrins. Many studies have 

focused on the short cytoplasmic tails and the transmembrane domains of the integrin 

α and β subunits (Box 1, panel a), which may have applications in future anti-integrin 

strategies103-105.  

 

Role of integrin cytoplasmic tails. Integrin activation occurs as a result of inside-out 

signalling, whereby cell-activating stimuli initiate a cascade of intracellular events. 

These events ultimately impact on the integrin cytoplasmic tails (CTs) and cause a 
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conformational change in the extracellular portion of the integrin13. Over two decades 

of research has expanded our understanding of the intracellular signalling pathways 

that affect the integrin cytoplasmic tails, resulting in integrin activation94,105. 

However, the intracellular consequences of integrin activation, ligand occupancy and 

the ensuing outside-in cascade of cell-signalling events remains unclear in many 

cellular systems106.  

The transmembrane helices and short cytoplasmic domains of integrin α-and β-

subunits are critical in coordinating these cellular responses
94
. Integrin cytoplasmic 

tails are between 15 and 78 amino acids in length for α-subunits and between 46 and 

68 amino-acids in length for β-subunits (with the exception of the atypical β
4
 subunit). 

They contain no known enzymatic activity and must therefore interact with 

cytoplasmic signalling or adaptor proteins to affect or respond to the changing cellular 

activation state.  

Strong evolutionary conservation of membrane-proximal sequences KxGFFKR and 

LLxxxHDRRE (Box 1, panels b and c) in the α and β subunits respectively, suggest 

that these sequences hold a key to understanding the coordination of molecular events 

that either cause, or result from, integrin activation. The integrin α- and β membrane-

proximal domains interact weakly, but distinctly, constraining the integrin in a 

‘resting’ conformation
107-108

. An intracellular molecular clasp between oppositely 

charged membrane-adjacent residues strengthens this conformational state
94

. Events 

that are triggered by cellular activation can interrupt this association, allowing the 

binding of alternative cytoplasmic binding partners to each individual α or β-CT, 

driving integrin activation and downstream signalling events
109

. Integrin β-CTs also 

contain one or two highly conserved NPXY/F domains at their membrane-distal C-



 15 

terminals, suggestive of a regulatory role in recruiting phosphotyrosine–binding 

signaling proteins. These phosphotyrosine-like motifs act as a docking site for talin
110

, 

a cytoskeletal molecule that plays a key role in integrin-mediated cell adhesion and 

cytoskeletal reorganization. Competition by proteins such as filamin and tensin for 

binding to this site in its phosphorylated or non-phosphorylated state underlies our 

current understanding of the cellular regulation of integrin activation
105

.  

 

ββββ-integrin tails. For the β-integrin CTs, talin is the major interacting cytoplasmic 

protein94. Its binding to the membrane-distal section of the β-tail is a common and 

necessary event in integrin activation in many cell types and events including T-cell 

adhesion and migration on ICAM-1111, lymphocyte-endothelial cell interactions112, 

macrophage-mediated phagocytosis by αMβ2
 integrin113, αIIbβ3–mediated platelet 

adhesion and spreading110 and clathrin-mediated endocytosis in the neuronal 

synapse114. Whole-animal disruption of talin expression is lethal in embryonic mice115 

but conditional inhibition of talin expression demonstrates that talin is required 

specifically for the outside-in activation of integrins in vivo
116. 

 

Talin. Talin (270 kDa) comprises a globular N-terminal head region (~50kDa) and an 

extended flexible rod domain (~220kDa). The head contains an N-terminal FERM 

(band 4.1, ezrin, radixin, and moesin) domain with three subdomains: F1, F2, and F3 

which comprise the binding sites for the β-integrin CTs as well as for filamentous 

actin (F-actin)117. The talin rod contains additional binding sites for other integrin 

domains, for actin and several binding sites for vinculin, which itself has multiple 

partners. The talin rod domain can also bind to the talin head-domain in an anti-
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parallel manner, masking the integrin-binding regions and exerting an auto-inhibitory 

function. This is an important regulatory mechanism for preventing inappropriate 

integrin activation118.  

Talin binding to integrin β-tails is highly regulated94. Kindlin119, ILK120 and tensin105 

are just three proteins known to regulate talin binding to integrin β-cytoplasmic tails. 

Tight coordination of the choreography of protein interactions appears to underlie the 

control of downstream integrin signalling and adhesion events. 

 

αααα-integrin tails. The role for the α-integrin CTs in the regulation of integrin functions 

in cells remains largely an unanswered question. It is widely believed that the α-

integrins regulate the affinity of the integrin complex for its ligand121-122 through a 

coordinated association between the highly-conserved KxGFFKR α-integrin signature 

motif and the membrane-proximal region of the integrin β- CT108-109,123. Dissociation 

of the integrin α-β tails results in integrin activation and an enhanced affinity for 

ligand binding122,124. Moreover, deletion of the KxGFFKR regulatory region, or 

introduction of mutations, induces a constitutive activation of the integrin122,125. Thus 

the integrin α-cytoplasmic tail exerts a regulatory influence on integrin activation by 

controlling the availability of the β-cytoplasmic tail for binding to talin. Following 

activation-induced binding of talin, the α-KxGFFKR motif is liberated from its β-

tethered position and it is free to interact with its own range of adaptor proteins126. 

However, available evidence suggests that the affinity of α-CTs for β-CTs is not very 

strong107,127, suggesting that other facilitatory cytoplasmic proteins might enhance this 

function. Many such proteins have been identified, but the choreography of their 

interaction is not fully understood106,128.  
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Paxillin. Paxillin plays a role in regulating integrin function in some haematopoietic 

cells. It binds downstream from the KxGFFKR regulatory domain to a hydrophobic 

Tyr residue and actively regulates cellular functions such as cell spreading or 

migration in inflammatory T-cells129. Phosphorylation can down-regulate paxillin 

binding and thereby modulate cellular responses to inflammation. Paxillin acts as a 

hub, binding both positive (FAK, Src and others) and negative (CSK, an inhibitor of 

Src, and various protein phosphatases) regulators of integrin signalling, bringing them 

into close proximity to their targets130.  

 

 

Strategies to therapeutically target integrins 

 

There are three approaches to inhibiting integrin function. The original strategy, and 

the one used by all of the currently approved inhibitors, is blockade of ligand binding. 

However, with recent advances in our understanding of integrin signalling pathways 

the concept of blocking downstream integrin signalling has become attractive. A third 

approach is the modulation of integrin expression, which, although it has not been a 

specific strategy has been implicated in the effect of some drugs. Below we discuss 

these strategies, in particular with respect to the integrins for which inhibitors have 

been approved (α4 integrins, αLβ2 and αIIbβ3). 
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Inhibition of ligand binding 

 
Structural analysis of integrin antagonists. Both integrins and their ligands are large 

molecules, and thus there is the potential for competitive antagonists to interact with 

more than one site on the integrin in order to block ligand binding. Two key binding 

sites for the competitive antagonists are the α-I domain and β-I domain. Figure 4 

illustrates the known binding sites for integrin antagonists. In α-I domain-containing 

integrins, competitive inhibitors compete for the ligand-binding MIDAS on the α-

chain (FIG. 4 a-d). In integrins lacking the α-I domain, competitive antagonists 

occlude the MIDAS of the β-I domain on the β-chain (FIG. 4 e-h). Inhibitors that bind 

to sites distal to the MIDAS domains have been suggested to act by sterically 

blocking the MIDAS. Putative allosteric sites are indicated with red Xs in FIG. 4.  

 

A major challenge associated with the development of integrin antagonists is the 

identification of activation-specific agents in addition to both subunit- and integrin 

complex-specific inhibitors. Below we have summarized the structural information 

associated primarily with approved drugs that target αL, αIIbβ3 and α4.  

 

αααα-I domain-containing integrins: efalizumab. Efalizumab binds to the αL subunit 

of αLβ2, which is a typical α-I domain containing integrin. The structure of 

efalizumab in complex with the α-I domain of the αL subunit has been solved131. It 

binds distal to the MIDAS-domain; however, the crystalographic structure suggests 

that it acts to sterically hinder the binding of the αLβ2 ligand ICAM-1 (FIG. 5a). The 

crystal structure of efalizumab-bound αL suggests that it is in the unliganded 

resting/closed conformation when compared to the resting132 and activated 
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structures133. Efalizumab interacts with the α1 and α3 helices, and is thus thought to 

also act by stablizing the closed, low affinity conformation, thereby preventing 

changes in the ligand-binding region. Along with a number of hydrophobic 

interactions in the efalizumab binding site, the residues Asp193, Lys197, Lys200, 

His201 on αL form hydrogen bonds and salt-bridges with efalizumab. These residues 

are not conserved in the α-I domains of other integrins, revealing the potential to 

design specific inhibitors by exploiting this region of α-I domains. 

 

Inhibitors of the αααα/ββββ-I domain linker site. There are also a group of small molecule 

αL ligand mimetics based on the stucture of ICAM-1134-135, which are proposed to 

bind competitively to the ICAM-1 binding site in the α-I domain135. It has also been 

suggested that these antagonists could bind to the ligand-binding site between the β-I 

like domain MIDAS and the β-propeller, also known as the α/β I-domain allosteric 

site or the ‘linker site’ (see FIG. 4d)136-139. While inhibiting this linker site is an 

enticing prospect, no inhibitors of this region have been co-crystalized as yet. 

 

Allosteric inhibitors. αLβ2 interacts with ICAM through its α-I domain. The carboxyl 

group of Glu34 on the D1 domain of ICAM-1 co-ordinates directly with the Mg2+ in 

the MIDAS domain of αL
133. Displacement of helices α1 and α7 occurs with ligand 

binding leading to receptor activation (see FIG. 3c). The α-I domain of the αL subunit 

has been co-crystalized with a number of small molecule inhibitors131,140-145 

identifying the first model of true allosteric inhibition of an α-I domain (FIG. 5b). 

Crystallographic studies have demonstrated that the small molecules bind to a pocket 

in contact with the α7 helix on the opposite side of the molecule from the MIDAS 
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domain140-145. This region has been previously shown to be important for ligand 

binding and receptor function146-147. Binding of small molecules do not significantly 

change the MIDAS domain, suggesting that they do not activate the receptor. 

Lovastatin, a lipid-lowering drug that was found unexpectedly to inhibit binding of 

ICAM to αL, and the volatile anesthetic isoflurane have both been co-crystallized in 

this position142,148 and both have been shown to inhibit immune functioning149-150. 

Kallen et al. suggest that lovastatin may play a role in signalling by locking the 

molecule in an inactive, low-affinity form through stabilizing the C-terminal α7 

helix142. 

 

Activation state-specific antagonists. It is possible to develop inhibitors that are 

selective for the activation state of the receptor151. Drugs that bind to the resting 

receptor can be effective even if there is a low plasma concentration of free drug 

although this may be associated with more adverse effects. Conversely, drugs that 

only bind to the activated receptor may have reduced adverse events but require a 

stable plasma concentration. The antibody AL-57 has been shown to bind specifically 

to the activated/open αL MIDAS152. This inhibitor demonstrates the possibilities for 

developing competitive activation-specific inhibitors for the α-I domain. 

 

 

ββββ-I domain-containing integrins. 

Integrins lacking the α-I domain bind their ligands between the β-propeller of the α 

subunit and the β-I domain (see FIG. 3b and 4e-h). Examples of therapeutically 

important β-I domain-containing integrins are the α4 and β3-containing integrins. In 

the case of β3 integrins, the ligand interacts with the MIDAS of the β-I domain and an 
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acidic residue/residues on the β-propeller domain at the RGD ligand binding site 

(FIG. 5c). Tirofiban (see Table 1), eptifibatide and L-739758 have been crystalized in 

this position in αIIbβ3. The αvβ3 antagonist RGD-f-(NMe)V (cilengitide) has also been 

crystalized in a similar position (FIG. 5f). Eptifibatide competes directly for the ligand 

binding site inhibiting both αIIbβ3 and αvβ3, whereas tirofiban is specific for αIIbβ3 

providing selectivity between the two receptors (see FIG. 5c & e). Abciximab binds to 

an alternative site on the β3 subunit of both αIIbβ3 and αvβ3. This site is distal to the 

RGD-ligand binding site on the β3 chain (FIG. 5d; 7E3 site). Its binding is thought to 

lead to steric hindrence of the fibrinogen macromolecule due to the proximity of 

residues involved to the RGD site97,153.  

 

The extracellular domain of αvβ3 receptor has been crystalized in the resting state98, 

while the ligand-binding domain of αIIbβ3 has been crystalized in the activated form, 

and in complex with the ligand-mimetics tirofiban and eptifibatide97. These ligands 

bound to the same site co-ordinating with the Mg2+ ion associated with Ser123 

through their carboxy groups, and with Asp224 on the β-propeller through their basic 

guanidinium group (figure 5E). This binding mode is analagous to cilengitide binding 

to αvβ3
154 (figure 5F). The guanidinum group of the arginine of cilengitide forms a 

bidentate salt bridge with Asp150 and Asp218. The carboxy group of the aspartic acid 

of cilengitide hydrogen bonds with the Mn2+ in the MIDAS, and the backbone amides 

of Tyr122 and Asn215154. This binding mode is very similar to that of the binding 

interaction for the RGD analogues in αIIbβ3.  

 

αααα4 antagonists. In addition to natalizumab, the approved mAb antagonist of α4, small-

molecule antagonists have been developed (see table 1). There is no crystal structure 
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data for any of the α4 antagonists in complex with the integrin; however, a model has 

been proposed in which these small molecules bind to the Mg2+ of the MIDAS 

through their common carboxylic acid group analagous to the mechanism of many 

other integrin antagonists155. Removal of this carboxylic acid group decreased 

potency, but it also increased absorption, which has been a major stumbling block for 

the α4 small molecule antagonists156.  

 

Selective antagonists. Even though many integrins share a subunit, such as αIIbβ3 and 

αvβ3, or can bind to the same motif, such as RGD, selective antagonists have been 

developed for many integrins. As αvβ3 is known to be important in angiogenesis, 

whereas αIIbβ3 is important in thrombosis, the development of selective integrin 

antagonists is vital. For example, unwanted inhibition of αIIbβ3 when targeting αvβ3 

could lead to bleeding side effects. The easiest approach to developing a selective 

antagonist is with complex-specific monoclonal antibodies. A complex-specific α4β7 

antibody MLN-02 has shown efficacy in a Phase II trial for ulcerative colitis157 and 

specific small-molecule antagonists for α4β7 have been discovered156.  

 

While αIIbβ3 and αvβ3 share a subunit and both recognise the RGD-motif, specific 

antagonists of each receptor have been discovered. The selectivity of these antagonists 

was explored using a modelling approach158  suggesting that selectivity is due to two 

main factors: first, the length between the acidic carboxyl group and the guanidinium 

group of the ligands that bind to the Asp148 and Arg214 integrin residues; and 

second, a π−π stacking interaction between Tyr178 on the β-propeller and the ligand. 

There are no crystal structures available for  the compounds the authors used in this 

study, or any other similar compounds binding in similar postions. It seems that 
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compounds obey the rule of binding through their basic group to an acid group on the 

β-propellor, and through their carboxyl group to the MIDAS in the β-I domain.  

 

Analysis of the crystal structures of the ligand binding domain of αIIbβ3 and αvβ3 

reveals significant differences in the distance between the acidic residues that interact 

with the ligand and the MIDAS domain. It appears that in αvβ3 12.8-14.5 angstroms 

are required from the carbonyl of the carboxy group on the ligand to the nitrogen 

which hydrogen bonds with Asp148 or Arg214; while in αIIbβ3, a distance of 15.5-

16.5 angstroms is required (FIG. S1; supplementary material). The difference between 

the average distances is 2.3 angstroms which equates to approximately 3 atoms on a 

carbon chain. This supports a study showing an αIIbβ3-specific antagonist with a 

linker of 15 atoms between the acidic and basic residues, while the αvβ3 specific 

antagonists generally only have a linker of 12 atoms158.  

 

There are other differences that affect selectivity such as hydrophobicity and the space 

available within the pockets of αIIbβ3 and αVβ3 integrins (FIG. S2; supplementary 

material). The amino acid Tyr178 in αvβ3 causes a bulge in the pocket which prevents 

large and inflexible subgroups from interacting with the acidic residues (Asp150 and 

Asp218). On the other hand, there appears to be more space in the ‘chimney’ region 

(Figure 5F). Therefore, selectivity seems to be achieved due to the properties of the 

binding pocket of the integrin, and the length of the linker between the acidic and 

basic groups on the ligand.  

 

Receptor antagonists that do not induce conformational changes. A major problem 

with integrin antagonists is their potential to activate the receptor. All the clinically 
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approved β3 antagonists act as partial agonists, activating signalling through allosteric 

changes in the β-chain159. Receptor activation can be measured using antibodies to 

epitopes exposed with receptor activation (ligand-induced binding sites; LIBS). For 

receptors containing a β-I domain such as αIIbβ3, it has been proposed that targeting 

the α-chain will prevent allosteric activation through the β-chain160. The antibody 

10E5 binds to the β-propellor on the α-chain (see FIG. 5d). It acts by sterically 

blocking fibrinogen binding. This antibody is selective for αIIb and, unlike abciximab, 

it does not stimulate LIBS expression.  

 

A recently described αIIbβ3 small molecule antagonist was found not to induce LIBS 

exposure on the β3 subunit160. Molecular docking studies suggested that this molecule 

was unlikely to interact with the MIDAS domain which is consistent with the lack of 

carboxyl group required for the interaction with the metal ion in the β-I domain (FIG. 

5g). It is also too small to simultaneously bind to both the α-chain (β-propeller) and 

β-chain (β-I domain MIDAS). This is potentially the start of a paradigm shift for 

αIIbβ3 antagonists in which inhibitors could be designed to block ligand binding 

without interacting with the β-I  domain on the β-chain of the integrin.  

 

There is, however, another antagonist that does not induce αIIb or β3-LIBS expression 

despite it containing a carboxyl group and being large enough to stretch between 

Asp224 of the β-propellor and the MIDAS domain161-162. It is not clear why this small 

molecule (UR-2922) would not induce LIBS while others do, as it obeys the basic 

RGD-mimetic structure with an acidic group on one side, and a basic group on the 

other. Molecular docking studies in our laboratory predict that UR-2922 will interact 
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with the Asp224 in the β-propeller (FIG. 5h). The model predicts that UR-2922 does 

not interact with the MIDAS but rather, its carboxy group forms a salt bridge with 

Arg165 and a hydrogen bond with Tyr166. This supports the assertion by Blue et al. 

that preventing the interaction with the MIDAS can inhibit β3 LIBS activation160. UR-

2922 is also predicted to have an additional π−π stacking interaction with Phe160, 

where neither tirofiban, nor L-739758 do. This may explain the very strong binding 

affinity of UR-2922 (<1nM) and its slow dissociation rate (koff = 90 min). Therefore, 

binding affinity may have more of a role than previously thought in LIBS activation 

and signalling.  

 

 

Inhibition of integrin signalling and expression. 

 

Although many current therapeutic strategies are aimed at blocking integrin 

association with ligands, there is a recent appreciation that an alternative strategy may 

be to target intracellular signalling mechanisms to inhibit integrin activation, thereby 

suppressing ligand binding, or to prevent the downstream sequela of integrin 

activation116,163-165. Potential strategies are focused on the short cytoplasmic tails of 

the integrin α and β subunits, although there is also evidence that the transmembrane 

domains may play a role103-104,166.  

 

As discussed earlier, talin binding is a critical event in integrin function and therefore 

represents a potential novel target for developing anti-integrin strategies. Similarly, 

kindlin or c-src binding to β-integrin tails and paxillin binding to α-integrin 

cytoplasmic tails represent additional targets for development of selective inhibitors 
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of integrin-signalling pathways. In particular, talin and paxillin represent hub proteins 

that facilitate the assembly of critical integrin downstream signal regulators.  

Inhibitors of interactions with these key proteins will prevent the coordinated 

assembly of focal adhesions critical for integrin function.  

 

Other novel strategies are currently being explored to affect selective integrin 

inhibition. These include peptide inhibitors that mimic integrin cytoplasmic tails106 

and transmembrane helix modulators95. To date, the peptidomimetic compounds that 

have emerged from such programmes are not potent or specific enough to encourage 

further development. In contrast, inhibition of paxillin binding has been shown to 

selectively inhibit α4-integrin-mediated responses in T-cells whilst maintaining α4-

independent cellular responses167. Recently, as proof-of-principle of the 

pharmacological use of such agents a selective small-molecule inhibitor of the paxillin 

interaction with the integrin α4  cytoplasmic tail (see Table 1) has been shown to 

potently reduce T-cell migration in vivo
168.  

 

The D-amino acid peptide KIKMVISWKG (HYD1) binds to α6β1 and inhibits 

signaling but not ligand binding169. ATN-161 (Ac-PHSCN-NH2) is a mimetic of the 

fibronectin sequence PHSRN undergoing clinical development for the treatment of 

solid tumours170. It appears to interact with β sub-units, blocking signalling rather 

than adhesion, and it is thought that this may be due to inhibition of the re-

arrangement of disulphide bonds necessary for signalling in a similar manner to 

inhibitors of thiol isomerase action on integrins164,171.  
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Integrin-linked kinase (ILK) is also a potential target in cancer172-173, although there is 

the possibility of non-specific actions on other kinases. A number of small-molecule 

inhibitors of ILK have been tested in in vitro models of cancer and metastasis174-175. 

Compounds such as QLT0267, a pharmacological inhibitor of the kinase activity of 

ILK, abolishes downstream integrin signalling events such as phosphorylation of 

Akt/PKB and are proposed to have a strong potential role in treatment of acute 

myeloid leukemia176.  

 

Finally, modulation of integrin expression also has the potential to be an effective 

strategy. One such modulator is E7820 (see Table 1), which inhibits angiogenesis by 

reducing the expression of β2 integrins177. 

Conclusions and future directions 

The diversity of integrins and their complex role in many diseases suggests great 

potential for this superfamily as drug targets. However, while initially a promising 

strategy, successful therapeutic inhibition of integrins has proven to be elusive, 

despite the discovery of highly potent inhibitors. This is due to a number of reasons 

including redundancy among the integrins, the importance of integrins in key 

physiological systems and antagonists whose properties are less than optimal.  

 

Redundancy among integrins may be impossible to overcome but the use of less 

selective inhibitors, such as the use of an anti-α4 inhibitor rather than an α4β1 inhibitor 

may prove to be more effective in some cases. However, care must be taken to 

monitor potential unwanted effects. Moreover, existing studies suggest that some 

integrins can play critical roles in many physiological systems and any inhibition of 
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these may result in serious adverse effects; for example the role of α4 and αLβ2 

integrins in normal B-cell function.  

 

For antibody-based integrin-targeted drugs, there is a risk of the generation of 

neutralizing antibodies to the drug leading to reduced efficacy. This has been shown 

to happen with abciximab178 and natalizumab179. In the case of abciximab, this can 

also lead to severe thrombocytopenia, although this is not solely due to anti-abciximab 

antibodies as it also occurs with small molecule αIIbβ3 antagonists178. 

 

For small-molecule integrin-targeted drugs, as many have been designed around the 

natural ligand for the receptors, such as RGD, it is not surprising that the resulting 

antagonists often display agonist-like activity180. RGD-based αVβ3 and αVβ5 

inhibitors were found to stimulate angiogenesis at low doses181. This has also been 

seen with oral αIIbβ3 antagonists, for which low doses were shown to induce platelet 

aggregation while higher doses were inhibitory182. In both cases, the problems appear 

to arise during trough periods. In the case of αIIbβ3 antagonists, this is not a problem 

with the intravenous agents, as these are maintained at high plasma concentrations 

using an infusion. However, it was a major problem for the development of oral 

compounds31.  

 

It is noteworthy that the discovery and development of the first generation of anti-

integrins occurred at a critical juncture in the pharmaceutical industry, as it was 

undergoing a transition from a chemistry-led to a target-led discovery strategy. Indeed 

many of the problems with the anti-integrins developed so far could be linked to the 

strategy of target-led discovery. Often inhibitors of newly discovered receptors are 
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developed without a detailed understanding of the receptor, and thus, the lack of 

understanding of integrin signalling led to the failures of many candidates due to 

agonist-like properties of the antagonists. However, more recent studies of the 

competitive and non-competitive ligand-binding sites should allow us to design more 

effective antagonists. Also, as discussed the growing body of knowledge of the 

integrin signalling pathways make it possible to consider targeting specific aspects of 

integrin signalling as an alternative to the traditional approach of receptor blockade. 

 

A serious concern, however, is whether the pharmaceutical industry will take on 

board the lessons of the failed compounds and develop better antagonists. After the 

initial failure of the oral αIIbβ3 antagonists, xemilofiban and orbofiban, other 

companies continued to perform clinical studies on this class of drug, but appeared 

not to take account of the previous problems encountered or their causes. As a result 

the subsequent trials failed with increased mortality since the new compounds had the 

same problems31. However, when new-generation compounds such as UR-2922 were 

developed that had the potential to addressed all of the short comings of the earlier 

compounds161, there was no appetite to develop them clinically.  

 

In addition, although the success of natalizumab and efalizumab has shown the 

clinical relevance of the α4 and αLβ2 integrins, and encouraged the search for small-

molecule antagonists183-185, the side-effects with both natalizumab and efalizumab 

could discourage companies from pursuing small-molecule antagonists for these 

targets even if they appear to have improved characteristics. Two key questions need 

to be addressed. Will small molecule inhibitors have the same propensity to cause 

PML? Is it possible to expand the therapeutic applications of such inhibitors? Given 
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the severity of diseases such as multiple sclerosis and the limited treatment options, 

identifying and addressing the problems with existing integrin-targeted therapies 

could be the key to developing successful treatments for these diseases. 

 

Overall, the complexity and diversity of integrins provide great opportunities for drug 

development, but also major challenges. Nevertheless, a greater understanding of their 

activation mechanisms and structural information has opened new doors for the 

development of both allosteric and activation-specific drugs. This, coupled with 

possibilities of modulating integrin signalling, means that the potential of integrins as 

drug targets is far from exhausted.  
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Figure legends 

 

Figure 1 | Integrin families. Integrins are heterodimers comprised of an α and β 

subunit, and at least twenty-four such heterodimers have been identified, which are 

shown here. Initially, integrin families were defined by their β subunit2, but later it 

became apparent that the eighteen α subunits and ten β subunits formed specific but 

diverse heterodimers. Thus, αV can associate with many different β subunits, whereas 

other α subunits are singular in their choice of β partner. Moreover, the α subunit 

appears to be important in defining the ligand binding properties of the integrin. 

Consequently, defining integrin families requires a more flexible system taking into 

consideration their ligand-binding properties and functions.  

 

Figure 2 | Integrin structure and changes upon activation. This figure is based on 

the structures of αVβ3 and αIIbβ3, adapted from Xiao et al.97 and Shimaoka et al.102 

The overall integrin sequence structure is outlined in a, and the three main activation 

states are shown in b.  The ‘resting’ state is represented by the bent, closed 

conformation, which has a low affinity for the ligand. The ‘intermediate’ state is 

extended; however, the headpiece is still ‘closed’, and therefore this state also has a 

low affinity for the ligand. In the fully ‘activated’ state, the hybrid domain of the thigh 

domain swings out by 62° and the α 7 helix moves downwards, opening up the head 

domain into a high affinity state.  c  | A model of the activation due to ‘outside-in’ 

signalling (top), and ‘inside-out’ signalling (bottom), based on the proposal by Xiao et 



 32 

al
97. The model represents a number of intermediates between the three main 

activation states outlined in b. 

 

Figure 3 | Structure and function of integrin α-I and β-I domains. Structures are 

displayed as cartoon ribbons or as surface representations. Helices are represented in 

pink, β-sheets in grey, and turns in cyan. The metal ion of the MIDAS is displayed in 

blue and the calcium ions are displayed in cyan. a |  Representative structure of an α-I 

domain (αL 1CPQ). b |  Representative structure of the head domain an integrin 

lacking an α-I domain. This integrin contains an I-like domain on the β-chain known 

as the β-I domain. The integrin used in this example is the αIIbβ3 head domain 

(2VDK). The β-propeller surface is displayed as a blue surface complexed with the β-

I domain displayed as a ribbon structure. The ligand binding site stretches between the 

β-propeller domain and the β-I domain contacting the Mg2+ ion of the MIDAS. c |  

Cartoon displaying the major changes that occur to the α1 and α7 helices with 

receptor activation. This image was generated from an overlay of the open (1IDO) 

and closed (1JLM) structure of αM.  

 

Figure 4 | Integrin activation states and inhibitor sites. Panels a to d represent 

integrins containing the inserted α-I domain, based on the model proposed for the 

complement receptor 4186. Panels e to h represent integrins lacking the α-I domain 

based on the structures of αVβ3 and αIIbβ3, and the model proposed by Xiao et al.97 

Ligand binding regions are indicated by the grey oval areas. Integrins containing the 

α-I domain are thought to have a great deal of freedom of their α-I domain in the 

closed state indicated by the arrow (a). Activation of the β-I domain MIDAS site and 
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interaction between the MIDAS and the acidic residue (at the ‘linker site’) locks the 

α-I domain at an angle with high strain (b). Movement of the α7 helix downwards 

due to the activation of the α-I MIDAS site leads to release of this tension, and a 

reduction in the angle of the α-I domain to the β-I domain (c). The model for the 

integrins lacking the inserted α-I domain is simpler with activation of the β-I MIDAS 

leading to increased affinity for ligands (f). The α7 helix also moves down with 

activation of the MIDAS leading to allosteric changes in the molecule resulting in 

activating signalling events within the cell (g). Inhibition sites for each group of 

integrins that have been identified are indicated with an ‘X’ (d and h). Putative sites 

that have been proposed are identified with a red ‘X’. 

 

Figure 5 | Structural analysis of inhibitors of integrins. Panels a,b represent α-I 

domain inhibitor sites on αL, while c-f represent β-I domain inhibitor binding sites on 

αIIbβ3 and αvβ3. Structures are displayed as cartoon ribbons or as surface 

representations. Helices are represented in pink, β-sheets in grey, and turns in cyan. 

The metal ion of the MIDAS is displayed as blue and the calcium ions are displayed 

as cyan. When ligands are displayed, carbons are coloured green or grey, oxygens red, 

nitrogens blue, and hydrogens white. a | Binding site of the antibody efalizumab to the 

α-I domain of  αL. The structure of αL (3EOB) has been displayed with the area 

identified to interact with efalizumab represented as a surface and coloured according 

to amino acid residue type; acidic residues-red,basic residues-blue, polar residues-

white, and non-polar residues green. b | Allosteric inhibition of the α-I domain of αL 

by small molecules. Lovastatin is shown bound to the α-I domain of αL (1CQP) as a 

representative molecule of allosteric inhibitors that bind to this site. c |  Structure of 
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the head domain of αIIbβ3 in complex with tirofiban (2VDM). D224 is rendered in red. 

d |  Summary image depicting the orientation of binding sites for the antibodies 10E5 

and 7E3 (abciximab site). The interacting region is displayed as a surface coloured 

according to amino acid residue type as in a. The representative small molecule 

competitive antagonist, tirofiban is displayed to highlight the ligand binding pocket. e 

| Surface representation of the binding site for tirofiban in αIIbβ3. Positively charged 

regions are coloured red, negatively charged areas blue, and neutral regions white. f | 

cycloRGD-f-(N-Me)V bound to αVβ3. g | Docking pose of compound 1 in the αIIbβ3 

binding pocket160. h | Predicted binding position of UR-2922. These images were 

generated using Visual Molecular Dynamics software187 and Molecular Operating 

Environment, CCG, Montreal. 

 

Box 1  | Choreography of ααααIIbββββ3-mediated signalling 

As shown in panel a of the figure, the default conformation of the platelet-specific 

αIIbβ3 integrin in unactivated platelets is maintained by clasps in the cytoplasmic 

tails94, whereby the integrin α and β cytoplasmic tails form a salt bridge between the 

highly conserved β-HDRKE motif and the arginine in the α- KVGFFKR motif188. 

Following separation of the two integrin tails by activation events that direct talin 

binding to the C-terminal NPXY phosphotyrosine domain of the β-integrin tail, the 

membrane proximal regions of both α and β become available to bind a range of 

proteins105,109, including tensin, filamin, paxillin and, either directly or indirectly, 

focal-adhesion kinase (FAK). Talin then binds a second β-integrin binding site closer 

to the membrane and initiates a second phase of activation/regulatory events. 

Phosphorylation of the proximal β-NPXY motifs acts as a regulatory switch for 

adaptor binding110,189. Kindlins bind to the distal NXXY motif and are co-activators 
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with talin and tensin119. A unique role for c-src has been demonstrated for αIIbβ3. C-

src binds to the C-terminal tip of the β-CT and regulates the capacity of this integrin 

subunit to be phosphorylated.   

 

To date, there are 7 platelet proteins known to interact with the regulatory KVGFFKR 

domain of αIIb integrin cytoplasmic tail. These include CIB1190, AUP-1191, PP1C192, 

PP2A193, TIM194, ICln195 and RN181196. In addition, paxillin binds more distally and 

regulates the capacity of the integrin to transduce strain via talin associations with the 

cytoskeleton130,167. Paxillin acts as a hub, binding both positive (FAK, Src and others) 

and negative (CSK, an inhibitor of Src, and various protein phosphatases) regulators 

of integrin signalling, bringing them into close proximity to their targets. Thus, the α-

integrin tail is a molecular scaffold for the coordination of interactions of cytoplasmic 

regulatory proteins to promote or modulate integrin responses. A controlled 

choreography of binding is apparent, showing that CIB1 and protein phosphatases 

bind to the αβ-CT complex in resting integrins, while ICln only binds transiently 

following activation195. Targeting any of these specific interactions has the potential 

to disrupt integrin activation therapeutically. As shown in panels b and c, the 

cytoplasmic membrane-adjacent regions are highly conserved in integrin α and β 

subunits and act as a docking point for many cytoplasmic proteins. 

 

 

Figure S1: Analysis of the lengths of ββββ3 antagonists. a-c represent ligands bound to 

αIIbβ3 while d represents cycloRGD-f-(NMe)V bound to αVβ3. The ligands are 

coloured according to atom type with oxygen coloured red, nitrogen blue and sulphur 

yellow. The carbon atoms are coloured orange in tirofiban a, green in eptifibatide b, 
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grey in L-739758 c and purple in cycloRGD-f-(NMe)V. Distances between the 

carbonyl of the carboxy group interacting with the MIDAS and the nitrogens involved 

in hydrogen bonding with the Asp218 or Asp150 on αVβ3 or Asp224 on αIIbβ3 labeled 

in  a-d are summarized in the table. 

 

Figure S2: Structural overlay of the binding pocket of ααααIIbββββ3 and ααααVββββ3. a 

represents the crystal structure of the cyclo-RGD-f-(N-Me)V bound to αVβ3. b depicts 

the binding pocket of αIIbβ3 in complex with tirofiban. The surface of the αVβ3 pocket 

is coloured red, and the surface of αIIbβ3 is coloured cyan b. The two structures are 

overlaid in C to highlight the spacial differences in the pocket. The ligands are 

coloured according to atom type: oxygen- red, nitrogen- blue, sulphur-yellow. Carbon 

atoms are coloured purple in cyclo RGD-f-(N-Me)V, and orange in tirofiban. The 

metal ions are depicted in space fill with Ca2+ coloured cyan, Mg2+ coloured blue and 

Mn2+ coloured orange.  
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Table 1. Structure of small, non-peptide inhibitors of integrins that have undergone clinical development. 
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