Royal College of Surgeons in Ireland
Browse
acsomega.2c00305.pdf (6.41 MB)
Download file

Molecular aspects of the interaction with gram-negative and gram-positive bacteria of hydrothermal carbon nanoparticles associated with Bac8c2,5leuantimicrobial peptide

Download (6.41 MB)
journal contribution
posted on 2023-05-17, 13:47 authored by Giulia Barzan, Ida Kokalari, Giacomo Gariglio, Elena Ghibaudi, Marc DevocelleMarc Devocelle, Marco MonopoliMarco Monopoli, Alessio Sacco, Angelo Greco, Andrea M. Giovannozzi, Andrea M. Rossi, Ivana Fenoglio

Antimicrobial peptides (AMPs) are widely studied as therapeutic agents due to their broad-spectrum efficacy against infections. However, their clinical use is hampered by the low in vivo bioavailability and systemic toxicity. Such limitations might be overcome by using appropriate drug delivery systems. Here, the preparation of a drug delivery system (DDS) by physical conjugation of an arginine-rich peptide and hydrothermal carbon nanoparticles (CNPs) has been explored, and its antimicrobial efficacy against Eschericia coli (E. coli) and Staphylococcus aureus investigated in comparison with the unloaded carrier and the free peptide. The mechanism of interaction between CNPs and the bacteria was investigated by scanning electron microscopy and a combined dielectrophoresis-Raman spectroscopy method for real-time analysis. In view of a possible systemic administration, the effect of proteins on the stability of the DDS was investigated by using albumin as a model protein. The peptide was bounded electrostatically to the CNPs surface, establishing an equilibrium modulated by pH and albumin. The DDS exhibited antimicrobial activity toward the two bacterial strains, albeit lower as compared to the free peptide. The decrease in effectiveness toward E. coli was likely due to the rapid formation of a particle-induced extracellular matrix. The present results are relevant for the future development of hydrothermal CNPs as drug delivery agents of AMPs.

Funding

Science Foundation Ireland(SFI) Equipment Grant No. 06/RFP/CHO024/602EC07

History

Comments

The original article is available at https://pubs.acs.org/

Published Citation

Barzan G, et al. Molecular aspects of the interaction with gram-negative and gram-positive bacteria of hydrothermal carbon nanoparticles associated with Bac8c2,5leu antimicrobial peptide. ACS Omega. 2022;7(19):16402-16413.

Publication Date

5 May 2022

PubMed ID

35601297

Department/Unit

  • Chemistry

Research Area

  • Biomaterials and Regenerative Medicine
  • Chemistry and Pharmaceutical Sciences

Publisher

American Chemical Society (ACS)

Version

  • Published Version (Version of Record)