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Abstract 

Neutrophil elastase (NE) activity is increased in many diseases. Other families of 

proteases including cathepsins and matrix-metalloproteases (MMPs) are also present at 

elevated levels in similar disease conditions. We postulated that NE could induce 

expression of cathepsins and MMPs in human macrophages. NE exposure resulted in 

macrophages producing significantly greater amounts of cathepsin B and latent and 

active MMP-2. Cathepsin B and MMP-2 activities were decreased in Pseudomonas-

infected NE knockout mice compared to wild-type littermates. We also demonstrate that 

NE can activate NF-κB in macrophages and inhibition of NF-κB resulted in a reduction 

of NE induced cathepsin B and MMP-2. Also, inhibition of toll-like receptor-4 (TLR-4) 

or transfection of macrophages with dominant negative IRAK-1 resulted in a reduction of 

NE induced cathepsin B and MMP-2. This study describes for the first time a novel 

hierarchy among proteases whereby a serine protease upregulates expression of MMPs 

and cathepsins. This has important implications for therapeutic intervention in protease-

mediated diseases. 
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Introduction 

Proteases are pivotal in a wide range of disease processes including Alzheimer's disease, 

cancer, metastasis, atherosclerosis and acute and chronic lung diseases. An understanding 

of the role played by proteases in these processes and their regulation may provide the 

opportunity for therapeutic intervention.  The primary families of proteases released into 

the extracellular space following cell activation include members of the serine protease, 

matrix metalloprotease (MMP) and cysteinyl cathepsin groups of proteases.  

Neutrophil elastase (NE) is a 29-kDa serine protease stored in azurophil granules 

in its active form until it is released following neutrophil exposure to inflammatory 

stimuli. Once released, NE is potentially fully active because it functions optimally in a 

neutral environment. The main intracellular physiological function of NE is the 

degradation of foreign organic molecules phagocytosed by neutrophils (1). NE can 

degrade almost all extracellular matrix and key plasma proteins, protease inhibitors and 

several proteases (2, 3). One of the most prominent families of proteases cleaved by NE 

are the MMP group of proteases. Serine proteases (NE, cathepsin G and proteinase-3) 

have been shown to activate latent-MMP-2 involving membrane-type 1 matrix 

metalloproteinase (MT1-MMP) expression (4). MMP-2 activation by serine proteases 

was blocked by the elastase inhibitor α1-antitrypsin but not by an MMP inhibitor (4). 

MMP�s are produced by a wide variety of cell types including epithelium, 

fibroblasts, neutrophils and macrophages. MMP-2 is secreted as an inactive, 72-kDa 

zymogen and is extracellularly activated by proteolytic cleavage, involving MT1-MMP 

binding to MMP-2 on the cell membrane in a multimeric complex with TIMP-2 (5). The 

transcriptional regulation of MMP-2 is not well characterized but several factors have 
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been implicated in its regulation, e.g. TGF-β (6), intracellular calcium levels (7, 8), 

insulin-like growth factor-I (9), laminin and vitronectin (10, 11).  

 Macrophages synthesise another group of destructive proteases called cysteinyl 

cathepsins (12-14). Several expression patterns for cathepsins have been identified in 

different tissues. Cathepsin B is abundant and widely expressed in various human tissues 

and cells including cancer cells (15, 16). We have shown previously that cathepsins 

cleave and inactivate key innate immunity proteins including human beta defensins 

(hBD) 2 and 3 (17), Secretory leucoprotease inhibitor (SLPI) (18) and lactoferrin (19). A 

number of cytokines including Interferon (IFN)-γ, interleukin (IL)-6 and IL-13 as well as 

bacterial products activate cathepsin expression (20).  

The ability of proteases to activate gene expression is well documented in the 

literature. NE, cathepsin G and proteinase 3 can activate human gingival fibroblasts to 

produce IL-8 and monocyte chemoattractant protein 1 (MCP-1) through protease-

activated receptors (PAR) -2 in vitro (21). NE and Cathepsin G cleave the peptide 

corresponding to the N terminus of PAR-2 with exposure of its tethered ligand (21). In 

human lung epithelial cells, NE and cathepsin G deactivate PAR-2 by proteolysis of the 

extracellular domain downstream from the trypsin cleavage/activation site (22). However, 

NE does not activate PAR-1 in human blood mononuclear cells (23). We have previously 

demonstrated that NE upregulates IL-8 gene expression in human bronchial epithelial 

cells (HBEs) via a non-PAR-2 pathway (24). IL-1 receptor-associated kinase (IRAK-1), 

MyD88 and TRAF-6 were shown to be involved in NE-induced NF-κB activation and 

subsequent IL-8 expression. This pathway transduces signals of the IL-1 receptor (IL-

1R)/toll-like receptor (TLR) superfamily but not PARs. There are 11 TLR family 
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members which recognise bacterial and viral antigens leading to an immune response 

(25) and we have further demonstrated that IL-8 up-regulation by NE occurs in part 

through the cell surface membrane bound TLR-4 (26).  

In this study we describe for the first time a novel hierarchy among proteases 

whereby the serine protease, NE up-regulates expression of MMP-2 and the cysteinyl 

protease cathepsin B. Furthermore, knockout studies of NE demonstrated that during 

Pseudomonas infection the presence of NE is necessary for the activities of these other 

major protease groups. Inhibition of NF-κB or TLR-4 activity or transfection of 

macrophages with dominant-negative IRAK-1 causes a reduction of NE induced 

cathepsin B and MMP-2 expression. Such regulation by a protease of other proteases 

from different families implies the existence of a protease cascade that has important 

implications as to how proteases function in immune responses, tissue development, 

repair and disease with wide ranging implications for many health and disease states.  
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Methods 

Culture and stimulation of monocyte cells 

Myelomonocytic cells (U937) (European Collection of Cell Cultures Health Protection 

Agency, Salisbury, Wiltshire, UK) were cultured in RPMI 1640 medium (Gibco) and 

were differentiated to macrophage-like cells for 48 hours with phorbol myristic acetate 

(PMA). The macrophage-like cells were incubated in fresh medium for a further two days 

before stimulation. An hour prior stimulation, cells were washed and incubated in serum-

free medium. Stimulation was performed with NE (Low-endotoxin elastase derived from 

human sputum (approx. 50% active), Elastin Products, Owensville, MO, USA) at doses 

of 0, 16, 66, 166, 333 and 500 nM for 30 minutes and cultured in fresh serum-free 

medium for either 3 h or 24 hours before harvesting, pending if needed for RNA or 

protein isolation, respectively. NE activity levels were examined before and following 

stimulation to cells, and serum-free media, antibodies, PBS and all buffers added to cells 

used in sub-sequential experiments where found not to reduce NE activity. 

Methoxysuccinyl-Ala-Ala-Pro-Ala-Chloromethyl Ketone (CMK) treated NE was used as 

a negative control. Cells were also treated for 1 hour with SN50 and its inactive control, 

SN50M, (Calbiochem) or with mouse anti human CD284 antibody (AbD serotec) and 

mouse IgG2a (R&D Systems) prior to NE stimuli to block NF-κB activity or TLR-4, 

respectively. The SN50 peptide contains the nuclear localization sequence of NF-κB p50 

and thereby inhibits translocation of the NF-κB active complex into the nucleus. 
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Isolation of PBMCs 

Mononuclear cells were also isolated from heparinised venous peripheral blood obtained 

from healthy volunteers as described (27). Briefly, density gradient centrifugation was 

carried out in Ficoll-Paque (Pharma Biotech, Uppsala, Sweden) to separate the red cell 

pellet containing the neutrophil population from the monolayer. The mononuclear cell 

band was aspirated and washed three times in serum�containing RPMI medium before 

culture. Monocytes were enriched from the mononuclear fraction by selectively attaching 

them to 24- or 12-well plates for 60 min at 37°C. Monocytes were purified to 97% purity 

using the EasySep human CD14 selection cocktail as recommended by manufactures 

(StemCell Technologies, London England). Monocytes were then cultured in RPMI 

containing 40% autologous serum, penicillin G (final concentration 100 U/ml), and 

streptomycin sulfate (final concentration 100 µg/ml) at 37°C in a 5% CO2 atmosphere for 

9 days (28). An hour prior to stimulation, cells were washed and incubated in serum-free 

medium. Stimulation was performed with NE (150 nM) for 30 minutes and cultured in 

fresh serum-free medium for 24 hours before harvesting. 

Semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR) 

After treatment, cells were harvested in Tri reagent (Sigma-Ireland) and RNA was 

extracted as detailed in the manufacturer�s protocol. RNA (2 µg) was reverse-transcribed 

at 37°C with 1 mM deoxynucleotide mix (Promega, Southampton, UK), 1.6 µg oligo-

p[dT]15 primer (Roche, Lewes, UK) and 1 µl M-MLV  reverse transcriptase (Promega, 

Southampton, UK) in a 20 µl volume as described in the manufacturer�s protocol. 2 µl of 

each cDNA was amplified with 1.25 U Taq DNA polymerase, 1×PCR buffer and 10 mM 

dNTPs (Promega) in a 50 µl volume containing 100 pmol each of the following primers: 
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5′- ATG TGG CAG CTC TGG GCC T-3′ and 5′-TAC TGA TCG GTG CGT GGA ATT-

3′ for cathepsin B; 5′-GCC CCC AAA ACG GAC AAA GA-3′ and 5′-TCC CAA GGT 

CCA TAG CTC ATC G-3′ for MMP-2; 5′-AAC TCT GGT AAA GTG GAT-3′ and 5′-

TAC TCA GCG CCA CCA GCA TCG-3′ for GAPDH. PCR products were quantified 

densitometricaly at cycle numbers between 10 and 40 to determine the appropriate cycle 

number at which exponential amplification of products was occurring, and to identify the 

cycle number at which sufficient discrimination was possible to accurately quantify 

increases or decreases in gene expression. After a hot start the amplification profile was 

32 cycles of 1 min denaturation at 94°C, 1 min annealing at 58°C and 1 min extension at 

72°C. RT-PCR amplification of cathepsin B, MMP-2 and GAPDH generated products of 

1004 bp, 525 bp and 211 bp respectively. PCR products were commercially sequenced 

(MWG Biotech AG, Ebersberg, Germany) to verify gene identity. PCR products were 

resolved on a 1% agarose gel containing 0.5 µg/ml ethidium bromide (Sigma). The ratio 

of PCR fragment intensities of cathepsin B and MMP-2 relative to GAPDH was 

determined by densitometry. 

NE Knockout mouse analysis 

NE gene-targeted mice were generated as previously described (29). NE knockout mice 

and their wild type littermates  (n=3/genotype) were intranasally challenged with PBS (50 

µl) or PBS containing P. aeruginosa H103 (4.8 x 106 CFUs).  Twenty four hours after, 

mouse lungs were lavaged with PBS and the protein concentration of the lavages was 

determined as previously described (30). The lungs were processed for histology and 

immunohistochemistry. Briefly, lungs were inflated with 10% formalin in PBS. The 

excised lungs were then immersion-fixed with 10% buffered formalin overnight, 
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dehydrated, embedded in paraffin, and cut into 5-µm sections. Serial lung tissue sections 

were deparaffinized, rehydrated, and H&E stained. Lung sections were stained for 

cathepsin B and MMP-2 with anti-mouse cathepsin B (R&D Systems) and anti-mouse/rat 

MMP-2 antibody (R&D Systems), using the Cell and Tissue HRP-DAB system (R&D 

Systems). 

Presence of cathepsin B 

Cathepsin B activity was determined from either medium taken from macrophage-like 

cells 24 hours after stimulation with or without NE or BAL. Cathepsin B activity was 

determined in 100 µl of each sample using the substrate Z-Arg-Arg-AMC (0.1 mM). A 

cathepsin B inhibitor CA-074 (10 µg/ml) was used as a control for the specificity of the 

cathepsin B substrate. The reaction buffer used for cathepsin B activity estimation was 

0.2 M sodium acetate, 2mM EDTA, 1 mM DTT, 1 µM pepstatin, and 2 mM Pefabloc, pH 

5.5. The samples were incubated with substrate for 60 min at 37°C, and fluorescence 

(substrate turnover) was determined by excitation at 355 nm and emission at 460 nm. 

Results were expressed as a change (delta) in fluorescence units over a 60-minute period 

(FU). 

Zymography 

Gelatin zymography was performed on medium collected from unstimulated or NE 

stimulated cells and BAL samples. Samples were subjected to 7% SDS-polyacrylamide 

gel electrophoresis with a gel-containing gelatin (1mg/ml). After electrophoresis was 

performed gels were incubated in 50mM Tris (pH 7.5), 5mM CaCl2, 1µM ZnCl and 2.5% 

(v/v) Triton X-100 for 30 minutes. The gels were washed in the same buffer without the 
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Triton X-100 for 5 minutes and then incubated at 37oC overnight in the same buffer 

supplemented with 1% (v/v) Triton X-100. The gels were stained with 0.125% 

Coomassie blue and washed with 10% acetic acid and 40% methanol in water. The 

presence of MMPs appears as transparent bands. Latent MMP-2 and active MMP-2 were 

observed at 72 and 66kDa, respectively. Densitometry was carried out to compare the 

intensity of the MMP transparent bands. 

Preparation of Subcellular Fractions  

U937 cells were activated with NE and nuclear and cytoplasmic extracts were isolated. 

Briefly cells were washed and resuspended in 1 ml of ice-cold PBS and kept on ice for 

5 min. Cells were lifted from plates with a cell scraper and pelleted by centrifugation at 

10,000 rpm for 5 min at 4 °C. The supernatant was removed, and the cell pellet was 

resuspended in 1 ml of hypotonic buffer (10 mM Hepes (pH 7.9), 1.5 mM MgCl2, 10 mM 

KCl, 0.5 mM PMSF, and 0.5 mM dithiothreitol) (Sigma). Cells were pelleted by 

centrifugation at 14,000 rpm for 10 min at 4 °C and then lysed for 10 min on ice in 20 µl 

of hypotonic buffer containing 0.1% Igepal CA-630. Lysates were centrifuged as before, 

and the cytoplasmic extract was removed. The remaining nuclear pellet was lysed in 

15 µl of lysis buffer (20 mM Hepes (pH 7.9), 420 mM NaCl, 1.5 mM MgCl2, 0.2 mM 

EDTA, 25% (v/v) glycerol, 0.5 mM PMSF) (Sigma) for 15 min on ice. After 

centrifugation at 14,000 rpm for 10 min at 4 °C, nuclear extracts were removed into 35 µl 

of storage buffer (10 mM Hepes (pH 7.9), 50 mM KCl, 0.2 mM EDTA, 20% (v/v) 

glycerol, 0.5 mM PMSF, and 0.5 mM dithiothreitol). Protein concentrations of 

cytoplasmic and nuclear extracts were determined, and extracts were stored at -80 °C 

until required for use.  
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Western blot 

Cytoplasmic fractions from macrophages were separated by electrophoresis on 12% SDS-

polyacrylamide gels and transferred to a nitrocellulose membrane (Sigma-Aldrich) and 

this was probed using rabbit anti-GAPDH (Santa Cruz) and mouse anti-IRAK-1 antibody 

(BD Transduction Labs). Binding was detected using the appropriate horseradish 

peroxidase-conjugated secondary antibody and visualised by chemiluminescence 

(Pierce).  

IL-8 and NF-κB activity ELISA 

IL-8 protein concentrations in the cell supernatants were determined by enzyme-linked 

immunosorbent assays (R&D Systems). The effect of NE on NF-κB activity was 

determined using the TransAM NF-κB ELISA (Active Motif), using nuclear protein 

fractions.  

Dominant negative IRAK-1 transfection 

U937 cells were seeded at 1 x 105 on 12-well plates in the presence of PMA for 48 h and 

were incubated in fresh medium for a further two days before transfection. Transfections 

were performed with JetPei transfection reagent (Polyplus-transfection) using 1 µg of an 

Renilla luciferase reporter gene, pRLSV40. In combination with the luciferase reporter 

gene, dominant-negative expression vector IRAK-1∆ (gift from Tularik), was 

cotransfected into the cells. IRAK-1∆ is a truncated death domain-containing N terminus 

version of the IRAK-1 protein that lacks the kinase-binding domain. The total amount of 

DNA introduced into the cells was kept constant by supplementation with the relevant 

empty vectors. Transfection efficiencies were quantified using a Renilla luciferase vector 
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(Promega). Transfections were left untreated for 24 hours and were stimulated with NE 

(as before). After 24 h, supernatants were recovered for cathepsin B and MMP-2 activity 

estimation. Cells were lysed with Reporter Lysis Buffer (Promega), protein 

concentrations were determined, and reporter gene activity was quantified by 

luminometry on a Wallac Victor2 1420 multilabel counter (PerkinElmer) using the 

Promega luciferase assay system. Data are expressed as the relative luciferase activity ± 

SE.  

Densitometric analysis 

Gels were analysed by densitometry and compared in a semiquantitative manner using 

the GeneGenius Gel Documentation and analysis system (Cambridge, UK) and 

GeneSnap and GeneTools software. All expression values were verified by at least three 

independent experiments. 

Statistical analysis 

Data were analyzed with the PRISM 3.0 software package (GraphPad, San Diego, CA). 

Results are expressed as the mean ± SE and were compared by t test. When more than 2 

groups were being compared an ANOVA test was used, followed by a Tukeys post hoc 

test. Differences were considered significant at p≤0.05.  
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Results 

Neutrophil Elastase induces Cathepsin B and MMP-2 release from Macrophages 

We hypothesised that NE could induce a protease cascade. To test this hypothesis, the 

effect of NE on macrophage protease gene expression was examined. U937 

differentiated-cells were exposed to NE (0, 16, 66, 166, 333, 500 nM) for 30 minutes in 

serum-free medium before removing the NE and incubating the cells for a further 3 

hours. Cathepsin B and MMP-2 mRNA expression levels were investigated by RT-PCR 

(Figure 1A) and were observed to significantly increase when cells were stimulated with 

NE at concentrations of 166nM and higher (P=0.02, <0.01 and <0.01 for cathepsin B and 

P=0.02, 0.01 and <0.01 for MMP-2 expression between control cells (0nM) and cells 

stimulated with 166, 333 and 500nM NE, respectively). Cathepsin B and MMP-2 

activities were measured in the supernatants 24 hours after NE stimulation and elevated 

cathepsin B and MMP-2 activity was observed in NE treated cell supernatants compared 

to non-stimulated control cells (Figure 1B and 1C). Both latent and active MMP-2 were 

significantly different to the control in the presence of NE (166nM or greater). NE was 

also observed to activate MMP-9 (data not shown), as described previously (31). NE 

treated with CMK prior to incubation with cells resulted in no increase in cathepsin B or 

MMP-2 activation (data not shown) showing that the effect by NE on cathepsin B and 

MMP-2 expression is dependent on its activity. 

Protease profile from NE-stimulated peripheral blood monocyte-derived 

macrophages 

To investigate this increase in macrophage protease production, monocyte-derived 

macrophages (MDM) extracted from the blood of healthy volunteers was exposed to NE. 
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Increased cathepsin B and MMP-2 gene expression (figure 2A) were again observed 

following stimulation of MDM with NE in serum-free media, as before. Protease activity 

levels were also increased as before (cathepsin B -figure 2B, P=0.03 and MMP-2 - figure 

2C) following stimulation of MDM.  

Cathepsin B and MMP-2 activity in NE+/+ and NE-/- mice 

A deficiency of NE could alter the production of cathepsin B and MMP-2 responses. To 

investigate this, cathepsin B and MMP-2 activities were measured in BAL fluid from 

NE+/+ and NE-/- mice intravenously challenged with P. aeruginosa. Mice possessing NE 

(NE+/+) produced greater quantities of cathepsin B (Figure 3A, P=0.03) and MMP-2 

(latent and active MMP-2, P= 0.02 and 0.02, respectively) than knockout mice (NE-/-) 

(Figure 3B). Analysis of lung tissue from NE+/+ and NE-/- mice for cathepsin B and 

MMP-2 expression, by immunohistochemistry, further examined these protease levels 

confirmed greater levels of positive staining for cathepsin B and MMP-2 in NE+/+ mice 

compared to NE-/- mice (Figure 3C-3F).  

IRAK-1 degradation, NF-κB activation and IL-8 protein production in U937 

macrophages stimulated with NE 

Time course studies demonstrated that 100 nM NE induced maximum NF-κB activation 

at 30 min (Figure 4B). NE-induced NF-κB nuclear translocation was increased 5-fold 

compared with control. Western blotting of cytoplasmic extracts was performed using 

anti-IRAK-1 antibody. Stimulation with NE resulted in degradation of IRAK-1 (Figure 

4A). Our group has previously shown that NE induces IL-8 gene up-regulation in 

bronchial epithelial cells through an IRAK signaling pathway resulting in nuclear 

translocation of NF-κB (24). NE-induced IL-8 protein levels in cell supernatants from 
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U937s were quantified by enzyme-linked immunosorbent assay (Figure 4C). U937s 

produced a mean basal level of IL-8 of 347.6 ± 51.89 pg/mg of protein. Dose-response 

experiments demonstrated that 100 nM NE induced maximal IL-8 protein production 

from U937 cells, increasing IL-8 levels to 1002 ± 122.9 pg/mg of protein (P=0.01). 

Inhibition of NF-κB, TLR-4 or transfection of dominant negative IRAK-1 leads to a 

reduction of NE induced cathepsin B and MMP-2 

SN50, a cell-permeable peptide that inhibits NF-κB nuclear translocation downstream of 

IKK, and its mutant peptide, NF-κB SN50M, were used to investigate whether inhibition 

of NF-κB could reduce NE-induced protease expression. SN50 was able to prevent the 

effects of NE on cathepsin B (Figure 5A, P=0.02) and MMP-2 (Figure 5B) protein 

activity, demonstrating that NE signals via NF-κB to induce cathepsin B and MMP-2 

expression in macrophages. Inhibition of TLR-4 with the aid of mouse anti human 

CD284 was also able to prevent the effects of NE on cathepsin B (Figure 5C, P=0.01) and 

MMP-2 (Figure 5D) protein activity. Transfection of dominant negative IRAK-1 also 

lead to a reduction in NE-induced protease expression (Figure 6, P<0.01 for cathepsin B). 

The empty vector had no effect on the effects of NE on cathepsin B and MMP-2. 
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Discussion 

Elevated levels of proteases are typically observed at many sites of inflammation leading 

to a multitude of effects including tissue destruction, tissue remodelling and cleavage of 

soluble innate factors. We have previously shown that NE can induce expression of IL-8 

via the NF-kB pathway of activation in HBE (24). We postulated that increased 

extracellular NE activity may induce expression of other proteases such as cathepsins and 

MMPs, which have previously been demonstrated to be present along with NE in 

conditions such as emphysema and cystic fibrosis (CF) (17, 32). This study demonstrates 

that NE can induce increased cathepsin B and MMP-2 expression and activity in 

macrophages. Previous studies have observed increased levels of protease activation in 

the presence of raised NE levels (4, 33-36) but have not demonstrated corresponding 

increased protease gene expression. This study provides molecular and animal model data 

that supports the view that NE presides over a novel hierarchy in protease regulation. 

Cathepsin B and MMP-2 gene expression and activity were both increased in 

macrophages exposed to NE. Increased cathepsin B and MMP-2 levels were observed in 

wild-type mice compared to NE-knockout mice intravenously challenged with P. 

aeruginosa. This study illustrates a potential novel method for NE to cause tissue 

destruction particularly in diseases associated with high NE burden.  

Increased levels of NE have been demonstrated in many disease processes 

characterised by an inflammatory response (34, 35). It is estimated that approximately 

250mg of NE is turned over kilogram of body weight per day in normal individuals, 

demonstrating the requirement for a large anti-NE protective screen in the body (37). NE 

driven diseases also tend to exhibit reduced levels of anti-protease levels (18). Shapiro et 
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al (38) postulated that NE is meant to function within the cell or perhaps at the cell 

surface where it has a role in intracellular killing of Gram-negative bacteria and that free 

NE in the extracellular space is pathological. These investigators postulated that this 

could occur during inefficient apoptosis or due to the inability of macrophages to clear 

dead neutrophils. It is also possible that extracellular NE is released as a result of 

receptor-mediated degranulation responses in neutrophils. Our data demonstrating that 

NE can stimulate cathepsin B and MMP-2 gene expression and activation are supportive 

of the theory that free NE in the extracellular space can indeed be pathological.  

Cathepsin B has previously been shown to induce emphysema in experimental 

models of emphysema (20, 39). Zheng et al (20) have shown that cathepsins are released 

in response to cigarette smoke. Cathepsin B release in smoking-related lung disease 

results in degradation of the extracellular matrix and emphysema. Our study 

demonstrated that extracellular NE is not only required to activate cathepsin B (33) but 

causes increased expression of the gene.  The predominant form of cathepsin B (Mr 

42,000) is converted to an active form (Mr 38,000) upon treatment with NE (31, 33). We 

have also previously shown that cathepsin B can inactivate important respiratory tract 

innate immune proteins such as SLPI, hBD-2/3 and lactoferrin (17, 19, 32). In this study 

we show a novel pathway for cathepsin upregulation. Cathepsin B released in response to 

stimulation by NE causes may cause degradation of the extracellular matrix, generating 

the emphysema seen in lung disease, as well as impact on the function of important 

antimicrobial proteins and peptides. It has been well documented that NE-burden 

conditions like cardiopulmonary bypass demonstrate increased plasma levels of NE and 

MMPs, which cause pulmonary injury. Inhibition of both NE and MMPs in this condition 
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can prevents pulmonary injury (35, 40) and, interestingly, increased MMPs levels 

correlate with NE levels in CF patients (34). 

MMPs are up-regulated during allergic inflammation but participate in the 

formation of many lung diseases (20) (41). Previously, NE has been shown to activate 

MMP-9 (31). MMP-9 and MMP-12 have been implicated in the pathogenesis of chronic 

lung injury, particularly in emphysema. This is shown in MMP-12 knockout mice, which 

do not develop air space enlargement in response to smoke exposure (42). We observed 

an increase in active MMP-9 but MMP-9 gene expression was unchanged (data not 

shown) unlike NE activation of MMP-2 was observed to occur at the level of gene 

expression. MMP-2 has an important anti-inflammatory role, playing an central role in 

the IL-13�dependent regulatory loop that has been shown to be responsible for 

dampening airway inflammation (43). Parenchymal inflammatory cells egress into the 

airway lumen in an MMP2-dependent manner and MMP-2-/- mice are also more 

susceptible to lethal asphyxiation using a model of allergic inflammation, indicating the 

importance of MMP-2 in leukocyte infiltration (43).  

Previously, NF-κB has been shown to mediate cathepsin B and MMP-2 activation 

by doxorubicin treatment (44) and LPS (45), respectively. Interestingly, our study shows 

that inhibition of the NF-κB pathway (with SN50) will result in decreased cathepsin B 

and MMP-2 expression. Furthermore, a TLR-4 neutralizing antibody or transfection of 

macrophages with dominant negative IRAK-1 abrogates NE-induced cathepsin B and 

MMP-2 expression.  We have therefore demonstrated that NE induces IL-8, cathepsin B 

and MMP-2 production through an IRAK-1/TLR-4 mediated pathway in macrophages. 

PAR-2 has been shown to cause activation of NF-κB in human keratinocytes resulting in 
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upregulation of cell adhesion molecules such as ICAM-1 (46).  However PAR-2 has not 

been shown to interact with TLR-4/IRAK-1 pathway, thereby indicating that PAR-2 does 

not play a role in the NE-induced protease production observed in this study. The role of 

TLR-4 in the NE activation of cathepsin B and MMP-2 by macrophages is still unclear 

and further research into this area may be beneficial. 

The data in this manuscript demonstrates that extracellular NE can induce a 

protease cascade involving cathepsin B and MMP2 expression. Elucidation of such a 

hierarchy in protease control and regulation coupled with identification of key 

protease/proteases central to direct tissue destruction or activation of other proteases 

represents an important advancement in protease biology. This would greatly enhance our 

understanding of these proteases and could lead to potential new therapeutic strategies to 

treat protease-mediated diseases. Neutralization of NE activities may be sufficient to 

lessen the overall protease burden without the need for inhibition of all proteases. 

Investigating the effect of other serine proteases on expression levels of different protease 

families may highlight other areas of interest. 
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Figure legends 

FIGURE 1. Cathepsin B and MMP-2 gene expression and activity from 

macrophages (U937) exposed to increasing concentrations of NE. (a) RT-PCR was 

carried out on mRNA from differentiated U937 cells treated with varying concentrations 

of NE (0, 16, 66, 166, 333 and 500nM activity) to amplify regions of the cathepsin B, 

MMP-2 and GAPDH genes. The quantification of the expression of cathepsin B and 

MMP-2 was assessed compared to GAPDH. * P= 0.02, <0.01 and <0.01 when cells were 

exposed to NE at concentrations 166, 333 and 500nM, respectively, versus 0nM NE. # P= 

0.02, <0.01 and <0.01 when cells were exposed to NE at concentrations 166, 333 and 

500nM, respectively, versus 0nM NE. (b) Cathepsin activity was determined using the Z-

Arg-Arg-AMC substrate 24 hours after stimulation with NE. *, # and ~ P=0.01, P<0.01 

and P<0.01 when cells are exposed to NE concentrations of 166, 333 and 500nM, 

respectively, versus 0nM NE. (c) MMP-2 was determined using gelatin zymography and 

by densitometry. Bands at 72 and 66kDa are representative of latent MMP-2 and active 

MMP-2, respectively. * P= 0.02, 0.01, <0.01 and <0.01, respectively, for latent MMP-2 

when cells are exposed to NE concentrations of 66, 166, 333 and 500nM versus 0nM NE. 

# P<0.01, <0.01, <0.01 and P<0.01, respectively, for active MMP-2 when cells are 

exposed to NE concentrations of 66, 166, 333 and 500nM versus 0nM NE. The band 

observed at 78 kDa is active MMP-9. Experiments were performed at least 3 times and 

representative data and SE are shown. 

 

FIGURE 2. Protease profile from peripheral blood monocytes. (a) RT-PCR was 

carried out on mRNA from PBM treated with varying concentrations of NE (250 nM) to 
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amplify regions of the cathepsin B, MMP-2 and GAPDH genes. The quantification of the 

expression of cathepsin B and MMP-2 was assessed compared to GAPDH. * P <0.01 

when cells were exposed to NE, versus 0nM NE. # P <0.01 when cells were exposed to 

NE versus 0nM NE.  (b) Cathepsin activity in supernatant of macrophages from healthy 

volunteers following stimulation with NE (250nM) compared to cells incubated in 

medium only. * P=0.03 versus control. MMP-2 activity was determined in supernatants 

from control (Con) and NE-treated (NE) PBM using gelatin zymography (c). Bands at 72 

and 66kDa are representative of latent MMP-2 and active MMP-2, respectively. 

Experiments or analyses of results were performed at least 3 times and representative 

data and SE are shown. 

 

FIGURE 3. NE-/- mice have less cathepsin B and MMP-2 activity than wild-type 

mice following P. aeruginosa lung function. (a) Cathepsin activity was determined 

using the Z-Arg-Arg-AMC substrate in BAL from NE+/+ and NE-/- mice. * P=0.03 versus 

NE+/+ BAL. (b) MMP-2 activity was determined from 1µg of BAL protein using gelatin 

zymography and by densitometry. Bands at 72 and 66kDa are representative of latent 

MMP-2 and active MMP-2, respectively. * and ~ P=0.02 and P=0.03 for latent and active 

MMP-2, respectively, between the NE+/+ and NE-/- mice. Histologic sections from the 

lungs of NE-/- (C and D) and NE+/+ (E and F) mice were stained for cathepsin B (C and E) 

and MMP-2 (D and F) following P. aeruginosa infection. Scale bar represents 50 µm. 

Analyses of results were performed at least 3 times and representative data and SE are 

shown. 
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FIGURE 4. IRAK-1 degradation, NF-κB activation and IL-8 protein production in 

U937 macrophages stimulated with NE. (a) IRAK degradation was analyzed by 

Western blot using an anti-IRAK antibody and cytosolic extracts (10 µg) from control (-) 

and NE-treated macrophages (100 nM, 30, 60, 90 and 120 minutes). (b) NF-κB activation 

was measured using the TransAM NF-κB activity ELISA in nuclear extracts (2 µg) from 

control (-) and NE-treated macrophages (100 nM, 5, 15, 30, 60, 90 and 120 minutes). * 

P<0.01 versus control. (c) Levels of IL-8 in supernatants were measured by enzyme-

linked immunosorbent assay, and values were corrected to pg/mg of total protein. * 

P<0.01 versus control. Experiments were performed at least 3 times. 

 

FIGURE 5. Inhibition of NF-κB and TLR-4 leads to a reduction of NE induced 

cathepsin B and MMP-2. Cells were treated for 60 minutes with SN50 (1µg/ml) and its 

inactive control (Calbiochem), or with mouse anti human CD284 antibody (1 µg/ml) and 

mouse IgG2a (isotype control IgG) prior to NE (100 nM) stimulation to block NF-κB and 

TLR-4 activity. (a & c) - Cathepsin activity was determined using the Z-Arg-Arg-AMC 

substrate 24 hours after stimulation with NE. * P=0.02 and P=0.01 for NE compared to 

NE with SN50 and TLR-4 antibody, respectively. (b & d) - MMP-2 activity was 

determined using gelatin zymography and by densitometry. Bands at 72 and 66kDa are 

representative of latent MMP-2 and active MMP-2, respectively. The band observed at 78 

kDa is active MMP-9. Experiments or analyses of results were performed at least 3 times 

and representative data and SE are shown. 
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FIGURE 6. Transfection of dominant negative IRAK-1 leads to a reduction of NE 

induced cathepsin B and MMP-2. U937 cells were transfected with dominant-negative 

expression vector IRAK-1∆ and the relevant empty vector 24 hours prior to NE 

stimulation. (a) Cathepsin B activity was determined using the Z-Arg-Arg-AMC 

substrate 24 hours after stimulation with NE. * P<0.01 for cells transfected with IRAK-1 

compared to transfection with the empty vector when both are stimulated with NE. (b) 

MMP-2 activity was determined using gelatin zymography and by densitometry. Bands at 

72 and 66kDa are representative of latent MMP-2 and active MMP-2, respectively. The 

band observed at 78 kDa is active MMP-9. Experiments or analyses of results were 

performed at least 3 times and representative data and SE are shown. 
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