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24In tissues which express the mineralocorticoid receptor (MR), aldosterone modulates the expression of
25membrane targets such as the subunits of the epithelial Na+ channel, in combination with important sig-
26nalling intermediates such as serum and glucocorticoid-regulated kinase-1. In addition, the rapid ‘non-
27genomic’ activation of protein kinases and secondary messenger signalling cascades has also been
28detected in aldosterone-sensitive tissues of the nephron, distal colon and cardiovascular system. These
29rapid actions are variously described as being coupled to MR or to an as yet unidentified, membrane-
30associated aldosterone receptor. The rapidly activated signalling cascades add a level of fine-tuning to
31the activity of aldosterone-responsive membrane transporters and also modulate the aldosterone-
32induced changes in gene expression through receptor and transcription factor phosphorylation.
33� 2011 Published by Elsevier Ireland Ltd.
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58 1. Introduction

59 The binding of steroid hormones to their cognate receptors in-
60 duces the dissociation of heat shock proteins (Hsp), dimerization
61 of the receptor and translocation into the nucleus. Here the hor-
62 mone-receptor complex acts as a ligand-dependent transcription
63 factor, binding to hormone response elements (HREs) in the pro-
64 moters of various target genes, thereby regulating their transcrip-
65 tion. Steroid hormone receptors also induce rapid extranuclear
66 signalling effects including the activation of kinase signalling cas-
67 cades and increases in second messenger production, and these ef-
68 fects are not dependent on transcription/translation. Many routes
69 of cross-talk exist between the rapid effects which occur within
70 seconds/minutes and the later genomic effects which take hours/
71 days, both pathways integrating to mediate the final physiological
72 outcome.
73 Aldosterone acts as a key mediator of sodium homeostasis by
74 tightly controlling ion transport in the kidney through both geno-
75 mic and non-genomic mechanisms. Aldosterone binds to the min-
76 eralocorticoid receptor (MR) and induces the expression of a
77 number of genes including the renal outer medullary K+ (ROMK)
78 channel, Na+/K+-ATPase and the epithelial Na+ channel (ENaC)
79 (Asher et al., 1996; Beesley et al., 1998; Kolla and Litwack, 2000).
80 Aldosterone also mediates rapid non-genomic effects such as the
81 activation of the PKC–PKD and ERK1/2 MAPK protein kinase cas-
82 cades through the transactivation of the epidermal growth factor
83 receptor (EGFR), via the non-receptor tyrosine kinase, c-Src.
84 Signalling cascades coupled to EGFR transactivation either directly
85 modulate membrane targets through their phosphorylation or
86 alternatively modulate the expression of membrane targets
87 through the phosphorylation of transcription factors such as CREB
88 or MR. Fig. 1 shows a summary of aldosterone-induced rapid non-
89 genomic effects initiated in the cytoplasm such as transactivation

90of EGFR and kinase signalling and the latent genomic effects in
91the nuclear compartment such as the induction of expression of
92ENaC or the serum and glucocorticoid-induced kinase, SGK-1.
93The classical nuclear MR is responsible for transducing numer-
94ous aldosterone-induced rapid signalling effects, as demonstrated
95through the sensitivity of these responses to MR antagonists such
96as spironolactone or eplerenone. However, other studies found that
97rapid aldosterone-mediated effects are not affected by MR antago-
98nism. The identity of this alternative aldosterone receptor to date
99remains elusive. In order to examine MR-dependency in rapid
100non-genomic responses, Grossmann et al. performed a study using
101heterologous expression of human MR in Chinese hamster ovary
102(CHO) and human embryonic kidney (HEK)-293 cells (Grossmann
103et al., 2005). Aldosterone induced rapid extracellular stimulus
104regulated kinase (ERK)1/2 and c-Jun N-terminal kinase (JNK)1/2
105signalling responses, which were spironolactone-sensitive. Con-
106versely, aldosterone also induced a spironolactone-insensitive
107rapid increase in intracellular Ca2+ concentration ([Ca2þ

i ]) in both
108MR-transfected and mock-transfected cells (Grossmann et al.,
1092005). This study clearly outlines two different mechanisms for
110aldosterone-mediated rapid signalling events; MR-dependent and
111MR-independent pathways. The ‘‘unknown’’ aldosterone receptor
112may be an as yet undiscovered novel receptor, or a well character-
113ized signalling molecule. For example, aldosterone binds directly to
114the C2 domain of protein kinase C alpha (PKCa), with a binding
115affinity of between 0.5 and 1 nM resulting in PKCa autophosphory-
116lation (Alzamora et al., 2007). Furthermore, numerous reports have
117proposed that the G protein coupled receptor, GPR30, is a novel
118estrogen receptor. Estrogen binds to GPR30, resulting in intracellu-
119lar Ca2+ mobilization and nuclear phosphatidylinositol 3,4,5-
120triphosphate (PIP3) synthesis (Revankar et al., 2005). Recently,
121the rapid responses to aldosterone in smooth muscle have been
122linked to the GPR30-coupled signalling pathway, where the
123expression of GPR30 is required for the MR-independent rapid ef-
124fects of aldosterone (Gros et al., 2011). The capacity for GPR30 to
125bind multiple steroid ligands is controversial and its promiscuity
126needs to be better understood.
127In the case of other steroid hormone receptors, rapid responses
128are mainly mediated by a small proportion of classical nuclear ste-
129roid receptors localized to the plasma membrane. The estrogen
130receptor (ER) is associated with a subset of lipid rafts termed cav-
131eolae (Kim et al., 1999; Razandi et al., 2002). Caveolin-1, the major
132protein component of caveolae has been implicated as a structural
133scaffold, for the organization of cytoplasmic signalling complexes
134(Okamoto et al., 1998). Palmitoylation of ERa enhances the interac-
135tion of this receptor with caveolin-1 (Acconcia et al., 2005). More-
136over, a conserved palmitoylation motif in the E domain of estrogen
137receptors ERa and b, progesterone receptors PR-A and B as well as
138the androgen receptor (AR) was shown to be required for mem-
139brane localization and rapid signalling events (Pedram et al.,
1402007). More recently it was shown that heat shock protein 27
141(Hsp27) binds ERa and promotes its palmitoylation and its interac-
142tion with caveolin-1 and this same mechanism was extended to
143both AR and PR (Razandi et al., 2010). The glucocorticoid receptor
144(GR) colocalized with c-Src in caveolae and caveolin was required
145to mediate rapid PKB activation and induce cell proliferation
146(Matthews et al., 2008). The androgen receptor also localizes to
147caveolin-rich membrane fractions, and over-expression of caveo-
148lin-1 potentiates ligand-dependent AR activation (Lu et al., 2001).
149To date there is no indication of lipid-modification of MR and this
150steroid receptor lacks the conserved palmitoylation motif men-
151tioned above. Recent evidence points to a fraction of MR localized
152at the membrane through interaction with the epidermal growth
153factor receptor (EGFR); disruption of cholesterol-rich membrane
154domains by cyclodextrin perturbed this MR–EGFR interaction
155(Grossmann et al., 2010a).

Fig. 1. Rapid versus genomic effects of aldosterone. Aldosterone diffuses across the
basolateral membrane and binds to the mineralocorticoid receptor (MR), inducing
dimerization and translocation to the nucleus. Here the hormone-receptor complex
binds to GRE response elements, recruits other transcription factors (TFs), and acts
as a ligand-dependent transcription factor inducing the expression of genes such as
ENaC and SGK-1. Aldosterone binding to the MR also induces rapid kinase signalling
cascades in the cytoplasm, including the activation of extracellular stimulus
regulated kinase 1/2 (ERK1/2), protein kinase C delta (PKCd) and protein kinase D
(PKD), through the transactivation of the epidermal growth factor receptor (EGFR)
via the non-receptor tyrosine kinase, c-Src.
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156 The rapid physiological actions of aldosterone and other steroid
157 hormones have been termed ‘‘non-genomic’’ because the observed
158 effects occur within a time frame after treatment that cannot be
159 accounted for by changes in gene expression at the level of tran-
160 scription. The rapid responses are observed, for the most part, well
161 in advance of the more latent pronounced effects of the hormones
162 and as a result an artificial dichotomy has arisen with the rapid and
163 transcriptional responses being regarded as separate independent
164 actions of the hormone. In fact the different facets of aldosterone
165 action ultimately act through common effectors, so contributing
166 to the physiological outcomes of maintaining whole body electro-
167 lyte balance and regulating blood pressure. The close inter-connec-
168 tion between rapid and transcriptional responses is observed at
169 multiple levels of regulation. For example, the activity and localiza-
170 tion of aldosterone-responsive transcription factors is influenced
171 by their phosphorylation state which can be modulated by rap-
172 idly-induced kinases; while the products of aldosterone-induced
173 transcription may include signalling intermediates that contribute
174 to the aldosterone sensitivity of the target tissues. This review aims
175 to examine the mechanisms which underpin the rapid actions of
176 aldosterone and to show how these rapid actions synergize with
177 the later transcriptional responses that aldosterone elicits in di-
178 verse target tissues.

179 2. Aldosterone-induced signalling cascades

180 2.1. Mitogen activated protein kinases

181 The activation of protein kinase signalling cascades is the most
182 extensively documented facet of rapid aldosterone responses. The
183 mechanisms by which these signalling cascades impact upon cell
184 physiology are now being elucidated. The activation of the differ-
185 ent members of the mitogen activated protein (MAP) kinase family
186 has been described in various aldosterone-responsive tissues. The
187 sometimes antagonistic downstream signalling processes that are
188 coupled to the different MAP kinases leads to subtle, tissue-specific
189 effects that impact upon whole organism physiology. The activa-
190 tion of ERK1/2 has been investigated by many groups using exper-
191 imental models of diverse tissues including Madin–Darby canine
192 kidney (MDCK) cells (Gekle et al., 2001), a model for the intercalat-
193 ing cells of the renal cortical collecting duct (CCD); M1-CCD cells
194 (Markos et al., 2005; McEneaney et al., 2010a) a model for the
195 CCD principal cells; vascular smooth muscle cells (VSMCs)
196 (Manegold et al., 1999); cardiac myocytes (Okoshi et al., 2004)
197 and the mesangial cells of the glomerulus (Nishiyama et al.,
198 2005). ERK1/2 activation is most often associated with the modu-
199 lation of cell growth, either through the promotion of proliferation
200 (McEneaney et al., 2010a; Nishiyama et al., 2005; Stockand and
201 Meszaros, 2003) or hypertrophy (Okoshi et al., 2004). The kinetics
202 of ERK1/2 activation shows some variation and is influenced by the
203 concurrent activation of other signalling cascades. For example in
204 MDCK cells, ERK1/2 activation occurs within 5 min and is sustained
205 over a period of hours (Gekle et al., 2001). In M1-CCD cells the early
206 phase of ERK1/2 activation is coupled to EGFR trans-activation, and
207 the activation of protein kinase D1 (PKD1) is required to maintain
208 ERK1/2 activation beyond 2–5 min (McEneaney et al., 2010a). The
209 contribution of PKD1 to stabilizing ERK1/2 activation has also been
210 described, where ERK1/2 activation occurs in response to growth
211 factors; however, this does not involve direct phosphorylation of
212 ERK1/2 by PKD1 (Sinnett-Smith et al., 2004). The prolonged phase
213 of ERK1/2 activation stimulated by aldosterone in A6 renal cells is
214 coupled to the stimulation of Ki-RasA expression, while aldoste-
215 rone also stimulates Ki-RasA GTPase activity within 15 min of
216 treatment (Tong et al., 2004).
217 The p38 MAP kinase sub-family, another signalling target of
218 aldosterone, has four identified isoforms (a, b, c and d) which have

219different and often antagonistic roles in cell growth. The p38-a iso-
220form is implicated in differentiation (Lovett et al., 2010) and the
221promotion of apoptosis through p53 phosphorylation (Liu et al.,
2222011), while p38-c is implicated in advancing cell cycle progres-
223sion and stimulating DNA repair to promote cell survival (Wu
224et al., 2010). Aldosterone promotes biphasic p38 activation in
225VSMCs within 1 min of treatment (Callera et al., 2005), followed
226by a second phase of activation detectable after 30 min. The VSMC
227p38 response was dependent on MR and c-Src co-activation and
228the authors further implicated p38 in the profibrotic effects of
229aldosterone on VSMCs through NADPH regulation. The connection
230between aldosterone-induced p38 activation and cardiovascular
231disease progression is emphasized by the observation that p38
232antagonism with the novel inhibitor GSK-AHAB, counteracted the
233deleterious effects of high fat and high salt diet in a spontaneously
234hypertensive rat model (Willette et al., 2009). The MR-dependent
235activation of p38 in glomerular podocytes is also stimulated by
236aldosterone and this contributes to the induction of apoptosis in
237these cells (Chen et al., 2009).
238The members of the JNK family of MAP kinases are also acti-
239vated by aldosterone. Aldosterone treatment promotes dopamine
240synthesis by adrenal pheochromocytoma PC12 cells via the tran-
241scriptional regulation of tyrosine hydroxylase (TH) expression.
242TH abundance is interlinked with the transcription-independent
243stimulation of SAP kinase by aldosterone. Aldosterone-induced
244SAP kinase activation was mediated via a rapid, Rho small
245GTPase-dependent pathway and aldosterone-induced RhoA activa-
246tion was enhanced by bone morphogenetic protein (BMP-4) (Goto
247et al., 2009).

2482.2. Protein kinase C

249The PKC family regulate cellular processes as diverse as prolifer-
250ation, apoptosis, trafficking and tight-junction formation. Aldoste-
251rone promotes the MR-independent activation of PKCa in renal
252CCD cells within 2–5 min (Le Moellic et al., 2004; Markos et al.,
2532005). Here PKCa activation relies upon the direct binding of aldo-
254sterone to the kinase (Alzamora et al., 2007) and a concurrent rise
255in [Ca2þ

i ]. PKCd and PKCe can also be activated rapidly in response
256to aldosterone, but this does not rely upon direct binding of the
257hormone to the kinases but instead is coupled to MR through EGFR
258trans-activation (McEneaney et al., 2008). Protein kinase D isoform
2591 (PKD1) is rapidly activated in response to aldosterone and is a
260substrate for the non-classical, Ca2+-independent PKC isoforms
261(nPKCs) such as PKCd and PKCe. The aldosterone-induced activa-
262tion of PKD1 in M1-CCD cells follows the same kinetics as does
263aldosterone-induced nPKC isoform activation and is coupled to
264MR through EGFR transactivation (McEneaney et al., 2007, 2008).
265Rapid activation of PKD1 has been implicated in aldosterone-in-
266duced proliferation in M1-CCD cells (McEneaney et al., 2010a)
267and in the stimulation of hypertrophy in cardiac myocytes follow-
268ing aldosterone treatment (Tsybouleva et al., 2004).
269In addition to steroid receptor-dependent and -independent
270activation of protein kinases, several studies have demonstrated
271direct activation of different PKC isoforms by a wide variety of ste-
272roid hormones. The first evidence of direct activation of specific
273PKC isoforms (PCKa, PKCc and the novel PKCe) by a steroid hor-
274mone was demonstrated for 1,25(OH)2-vitamin D3 by Slater
275et al. (1995). This direct ‘in vitro’ stimulatory effect on protein ki-
276nases has been shown for other hormones such as aldosterone,
277estrogen (Alzamora et al., 2007; Doolan et al., 2000) and glucocor-
278ticoids (for review see (Alzamora and Harvey, 2008)). These direct
279effects appear additive to the stimulatory effects of diacylglycerol
280and phorbol esters and require an intact C2 binding domain. These
281findings raise the interesting and controversial possibility that PKC
282isoforms may act as receptors for non-genomic transduction of

R. Dooley et al. / Molecular and Cellular Endocrinology xxx (2011) xxx–xxx 3

MCE 7946 No. of Pages 13, Model 5G

26 July 2011

Please cite this article in press as: Dooley, R., et al. Non-genomic actions of aldosterone: From receptors and signals to membrane targets. Molecular and
Cellular Endocrinology (2011), doi:10.1016/j.mce.2011.07.019

http://dx.doi.org/10.1016/j.mce.2011.07.019
Original text:
Inserted Text
Activated Protein Kinases

Original text:
Inserted Text
Madin-Darby 

Original text:
Inserted Text
minutes 

Original text:
Inserted Text
Protein Kinase 

Original text:
Inserted Text
2 to 5 minutes 

Original text:
Inserted Text
minutes 

Original text:
Inserted Text
)

Original text:
Inserted Text
minute 

Original text:
Inserted Text
minutes. 

Original text:
Inserted Text
Kinase 

Original text:
Inserted Text
2 to 5 minutes 

Original text:
Inserted Text
[Ca2+i]. 

Original text:
Inserted Text
2007; McEneaney et al., 

Original text:
Inserted Text
(Slater et al., 1995

Original text:
Inserted Text
). 



283 certain rapid responses to steroid hormones additional to the acti-
284 vation of PKC isoforms by DAG and phospholipase C via membrane
285 receptors.

286 2.3. Secondary messengers: calcium and cAMP

287 Aldosterone promotes the activation of multiple secondary
288 messenger responses including a rise in [Ca2þ

i ], cyclic adenosine
289 monophosphate (cAMP) biosynthesis and nitric oxide (NO) release.
290 Aldosterone raised [Ca2þ

i ] in renal CCD (Harvey and Higgins, 2000),
291 in isolated colonic crypts (Maguire et al., 1999), VSMCs (Wehling
292 et al., 1994) and in the brain, preferentially in the ventral hippo-
293 campus over the dorsal hippocampus (Maggio and Segal, 2010).
294 The regulatory mechanism and route of the [Ca2þ

i ] increase in the
295 nephron and colon is not defined; however, the Ca2+ response
296 was insensitive to spironolactone in CCD cells and sustained by
297 Ca2+ entry from outside of the cell and PKC-dependent in colonic
298 crypts (Doolan et al., 1998). Aldosterone enhanced a tetanic stress
299 response in hippocampal cells by stimulating Ca2+ entry through
300 nifedipine-sensitive, L-type calcium channels (Maggio and Segal,
301 2010). The dorsal and ventral hippocampus express MR but the
302 nature of the initiating receptor for the Ca2+ response is not yet
303 confirmed. The PLC/PKC-dependent activation of L-type calcium
304 channels is required to elicit vasoconstriction within 5 min of aldo-
305 sterone treatment in the afferent arterioles of the renal micro-cir-
306 culation, while stimulation of vasoconstriction in efferent
307 arterioles is mediated by aldosterone-induced activation of T-type
308 Ca2+ channels (Hayashi et al., 2003).
309 The interplay between rapid aldosterone effects and cAMP sig-
310 nalling as expressed through cAMP response element binding pro-
311 tein (CREB)-dependent transcription differs between tissues.
312 Aldosterone stimulated an increase in intracellular cAMP within
313 1 min and CREB phosphorylation within 5 min in VSMCs (Christ
314 et al., 1999). In HEK-293 cells, aldosterone treatment suppressed
315 CREB-dependent transcription through the stimulation of calcineu-
316 rin/protein phosphatase 2B (PP2B) activity (Grossmann et al.,
317 2010b). It is unclear whether aldosterone had a rapid effect on ba-
318 sal CREB phosphorylation in the HEK-293 cells; however, pre-incu-
319 bation with aldosterone for 20 min was sufficient to suppress the
320 CREB induction by forskolin.

321 2.4. Secondary messenger: nitric oxide

322 Nitric oxide (NO), a gaseous molecule synthesized in the vascu-
323 lature by the endothelial nitric oxide synthase (eNOS) is a key reg-
324 ulator of vascular tone. In smooth muscle cells, NO activates
325 soluble guanylyl cyclase which via cGMP, phosphorylates the myo-
326 sin light chain kinase and Ca2+-ATPase, thereby inducing vasodila-
327 tion. Vascular endothelium exposed to aldosterone shows a
328 decreased synthesis and release of NO (Hashikabe et al., 2006;
329 Nagata et al., 2006; Nishizaka et al., 2004). However, other reports
330 show that aldosterone induces an acute increase in NO bioavail-
331 ability in endothelial cells. Short-term treatment with aldosterone
332 enhanced ATP-induced NO production in endothelial cells, along
333 with an increase in the phosphorylation of eNOS, in an MR- and
334 phosphoinositol 3-kinase (PI3K)-dependent manner (Mutoh et al.,
335 2008).
336 Aldosterone induces the rapid induction of either vasoconstric-
337 tion or vasodilation, depending on the bioavailability of endoge-
338 nous nitric oxide (NO) (Arima et al., 2004; Schmidt et al., 2003,
339 2006; Uhrenholt et al., 2003). Aldosterone infused into the brachial
340 artery of healthy male volunteers decreased blood flow signifi-
341 cantly within 4 min compared with the contralateral forearm, indi-
342 cating rapid vasoconstrictor responses; this effect was not
343 sustained and flow returned to baseline after 30 min (Romagni
344 et al., 2003). Similarly, aldosterone induced vasoconstriction in

345microperfused rabbit afferent arterioles through the activation of
346PLC and Ca2+ mobilization, and this response was spironolactone
347insensitive (Arima et al., 2003), and was modulated by NO (Arima
348et al., 2004). On the other hand, aldosterone-induced vasodilation
349has also been described in both rodents and humans (Liu et al.,
3502003; Uhrenholt et al., 2003). Aldosterone counteracted
351K+-induced vasoconstriction within 2–5 min in microperfused rab-
352bit renal afferent arterioles, an effect which was dependent on MR,
353and inhibition of NO formation by L-NAME restored K+-induced
354vasoreactivity (Uhrenholt et al., 2003). Similarly, aldosterone coun-
355teracted phenylephrine-induced vasoconstriction in rat aortic
356rings, while a dose-dependent enhancement of the vasoconstric-
357tion response was induced by aldosterone in endothelial-denuded
358vessels (Liu et al., 2003). In the same study, the authors demon-
359strated that in cultured endothelial cells, aldosterone induced a
360PI3K-dependent increase in nitric oxide synthase activity as well
361as a PI3K-dependent activation of ERK1/2 and p70/S6 kinase (Liu
362et al., 2003). NO can modulate intracellular signalling cascades
363by acting on a variety of kinases and G protein-coupled receptors
364(Iwakiri et al., 2006; Rizzo and Piston, 2003; Ushio-Fukai, 2009).
365For example, shear stress-induced NO release leads to an
366S-nitrosylation of several proteins including ER-ATPase, Hsp90,
367and tubulin-b chain (Huang et al., 2009).
368In chronic diseases such as hypertension and diabetes mellitus,
369reactive oxygen species (ROS) are generated, which uncouple eNOS
370from NO production and divert eNOS to superoxide generation
371(Forstermann and Li, 2010). Aldosterone-induced renal injury is
372mediated by ROS generation through NADPH oxidase-dependent
373mechanisms (Nishiyama and Abe, 2006). Aldosterone exerts nega-
374tive effects on the cardiovascular system through the production of
375ROS. Aldosterone increased the expression of the NADPH oxidase
376subunits p22phox and gp91phox in the aorta, leading to an in-
377crease in ROS (Calo et al., 2004; Hirono et al., 2007). Aldosterone
378also induced a rapid non-genomic activation of NADPH oxidase,
379resulting in an induction of apoptosis in neonatal rat cardiac myo-
380cytes (Hayashi et al., 2008). Fig. 2 depicts a summary of aldoste-
381rone-induced actions in the vasculature.

3823. Crosstalk between rapid and genomic responses

3833.1. Post-translational modulation of receptors and coactivators

384Aldosterone-induced transcription is subject to modulation and
385potentiation by rapidly activated signalling cascades. Aldosterone
386stimulates the expression of type-I, -III and -IV collagens after
38736 h in renal fibroblasts; an effect that is inhibited by MR and
388ERK1/2 antagonism, even though ERK1/2 activation is detected
389within 5 min (Nagai et al., 2005). The impact of rapid signalling
390events may be through direct phosphorylation of MR, phosphory-
391lation of co-factors required for transcription initiation by MR or
392phosphorylation of factors that initiate transcription at nuclear
393receptor-independent promoters. Steroid receptors have multiple
394phosphorylation sites; Ser118 of ERa is phosphorylated in
395response to ERK1/2 activation in breast carcinoma and stabilizes
396ERa in the nucleus (Kato et al., 1995). The progesterone receptor
397is also phosphorylated by ERK1/2 after 5 min progestin treatment
398and this leads to the recruitment of factors involved in chromatin
399remodelling (Vicent et al., 2006). The glucocorticoid receptor GRa
400is phosphorylated by MAPKs, cyclin-dependent kinases and
401GSK-3 (glycogen synthase kinase 3) (Oakley and Cidlowski, 2011)
402and phosphorylation-deficient GRa mutants were compromised
403in their ability to activate reporter genes in a promoter-dependent
404fashion (Webster et al., 1997). Phosphorylation also modulates the
405subcellular trafficking of GRa; phosphorylation at Ser-203 pro-
406motes the cytoplasmic retention of the receptor and thus results
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407 in a diminished recruitment to glucocorticoid-responsive target
408 genes (Blind and Garabedian, 2008). The rapid phosphorylation
409 of MR following aldosterone treatment has been described; how-
410 ever, the role of receptor phosphorylation in regulating MR locali-
411 zation and transcriptional activity is undetermined (Le Moellic
412 et al., 2004). PKA inhibition blocks the dissociation of Hsp90 from
413 MR that precedes nuclear accumulation of the receptor (Massaad
414 et al., 1999) and p21 activated kinase activation augments MR nu-
415 clear-association (Shibata et al., 2008).
416 The p160 family of steroid receptor co-activators (SRCs) SRC1,
417 SRC2 (TIF2) and SRC3 (AIB1) are selectively recruited to sites of
418 transcription initiation by nuclear receptors. The phosphorylation
419 state of these co-activators at multiple amino acid residues influ-
420 ences their association with nuclear receptors, the recruitment of
421 other co-factors and co-activator resistance to degradation. Estra-
422 diol-induced SRC-3 phosphorylation is dependent on a direct inter-
423 action between SRC-3 and ERa (Zheng et al., 2005), and ERK1/2
424 phosphorylation was implicated in regulating the localization of
425 SRC-3 and its interaction with ERa (Amazit et al., 2007). Aldoste-
426 rone-stimulated kinases may also phosphorylate the SRCs. PKA
427 phosphorylates SRC2, while SRC3 is a substrate for p38; the effect
428 of these specific phosphorylation events is to promote ubiquitina-
429 tion and turnover of the SRCs (Gianni et al., 2006; Hoang et al.,
430 2004).

431 3.2. Genomic induction of rapid signalling intermediates

432 The expression of crucial signalling intermediates, including
433 some of those that are integral to the cascades rapidly activated
434 by aldosterone are subject to modulation by MR. Aldosterone
435 treatment promoted the expression of EGFR in aorta smooth mus-
436 cle cells, rendering the cells more sensitive to EGF (Grossmann
437 et al., 2007). EGFR is also a signalling hub for cascades rapidly in-
438 duced by aldosterone (Grossmann et al., 2005; McEneaney et al.,
439 2007) and enhanced expression of EGFR may serve to amplify
440 these rapid responses. Aldosterone also induces the expression

441of the serum and glucocorticoid-induced kinase (SGK-1)
442(Naray-Fejes-Toth and Fejes-Toth, 2000). SGK-1 regulates the cell
443surface expression of the epithelial sodium channel, ENaC by
444phosphorylating the E3 ubiquitin ligase Nedd4-2, thus preventing
445the ubiquitination and degradation of the ENaC channel (Debo-
446nneville et al., 2001; Snyder et al., 2002). PDK1 phosphorylates
447SGK1 in the activation loop (Biondi et al., 2001) and the fully acti-
448vated kinase is then recruited by glucocorticoid-induced leucine
449zipper (GILZ) to substrates that are associated with ENaC, such
450as Nedd 4-2 (Soundararajan et al., 2009). The convergence be-
451tween the rapid signalling and transcriptional responses coupled
452to the interaction of aldosterone with MR thus occurs at multiple
453levels, and contributes to the precise regulation of mineralocorti-
454coid-sensitive physiology.

4553.3. Aldosterone and microRNAs

456microRNAs (miRNAs) are endogenous small non-coding RNA
457molecules with the ability to repress gene expression and are be-
458lieved to play an important role in development, differentiation,
459proliferation, survival and oncogenesis (Inui et al., 2010). Pre-miR-
460NA precursor transcript and mature miRNA can be modulated
461within minutes by transcription factors such as CREB, which are
462known targets of rapid responses to steroid hormones. Although
463this research is in its infancy, miRNAs represent a novel class of
464molecules rapidly activated by steroid hormones. microRNA
465expression in the kidney has been shown to be modulated by aldo-
466sterone, in particular miR-192 which regulates WNK1 (with no ly-
467sine kinase 1) expression, was down-regulated by aldosterone,
468sodium depletion or potassium loading (Elvira-Matelot et al.,
4692010). Moreover, the post-transcriptional regulation of MR gene
470expression was shown to be modulated by miR-124 and miR-
471135a (Sober et al., 2010). Taken together, these results suggest a
472miRNA-driven mechanism of gene modulation by aldosterone,
473involved in the control of sodium and potassium balance by the
474kidney, and therefore in blood pressure regulation.
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Fig. 2. Rapid aldosterone actions and vascular tone. Aldosterone elicits multiple rapid actions on the vascular endothelium and vascular smooth muscle cell (VSMC) layer to
regulate vascular tone. MR-coupled phosphorylation of endothelial nitric oxide synthase (eNOS) by an as yet unidentified kinase stimulates nitric oxide (NO) release that acts
on the VSMCs to promote vasodilation in synergy with the delayed transcriptional up-regulation of NADPH oxidase. Endothelial denudation followed by aldosterone
treatment promotes vasoconstriction, suggesting that aldosterone may act to restrict blood flow in damaged vessels. Aldosterone treatment promotes rapid activation of c-Src
and p38 mitogen activated kinase in VSMCs which chronically results in fibrosis of the vessel wall.
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475 4. Membrane targets of aldosterone and mechanisms of
476 regulation by rapid signalling events

477 4.1. Na+/H+ exchanger (NHE)

478 The nine isoforms of the Na+/H+ exchanger family (NHE1-9) reg-
479 ulate intracellular pH (pHi) via electroneutral exchange of intracel-
480 lular H+ for extracellular Na+ and play central roles in cell volume
481 regulation, initiation of cell growth and proliferation (Aronson,
482 1985; Frelin et al., 1990; Little et al., 1986). In polarized epithelia,
483 NHE1 is expressed basolaterally and is mainly involved in cyto-
484 plasmic pH and volume regulation, whereas NHE3 is expressed
485 apically and mediates NaHCO3 and NaCl reabsorption. Aldosterone
486 regulates the activity of NHE isoforms through various mecha-
487 nisms (Fig. 3). In cells of the amphibian kidney, aldosterone rapidly
488 activated Na+/H+ exchange to promote cytoplasmic alkalinization
489 within 20 min (Oberleithner et al., 1987). The aldosterone-depen-
490 dent rise in intracellular pH (pHi) associated with activation of
491 NHE in MDCK cells is dependent upon ERK1/2 activation and a ra-
492 pid 3-fold increase in [Ca2þ

i ], within 1 min of aldosterone treatment
493 (Gekle et al., 2001, 1996). In another study, aldosterone induced a
494 concentration-dependent increase in pHi recovery from an acid
495 load within 5 min in M1-CCD cells, and this effect was attenuated
496 by inhibiting PKCa or MAPK activity (Markos et al., 2005).
497 Aldosterone induced activation of NHE1 in rat distal colonic
498 crypts, independently of MR but dependent on activation of a G
499 protein-coupled receptor (Winter et al., 1999).
500 Aldosterone regulates NHE activity in VSMC through both rapid
501 and genomic actions (Ebata et al., 1999). In cultured VSMCs, long-
502 term exposure to aldosterone resulted in a 3-fold increase in NHE1
503 mRNA levels, whereas short-term aldosterone treatment resulted
504 in a significant increase in NHE activity, which was insensitive to
505 inhibitors of transcription/translation. Aldosterone also rapidly

506activated PKC within 5 min and this contributed to both the rapid
507and transcriptional effects of aldosterone on NHE activity (Ebata
508et al., 1999). The rapid activation of NHE was inhibited by disrup-
509tors of microtubules and filamentous actin, outlining the crucial
510role of cytoskeletal components in the induction of NHE activity
511and pointing towards a trafficking-based regulatory mechanism.
512In the renal proximal tubule, 60–70% of filtered NaCl is reab-
513sorbed; the main transporters involved are the apically expressed
514NHE3 and basolateral Na+/K+ATPase. The regulation of NHE3 is cru-
515cial for the maintenance of Na+ balance, extracellular fluid volume,
516blood pressure, and acid–base homeostasis. Early studies discov-
517ered that aldosterone enhanced proximal tubule NaCl and fluid
518reabsorption in rats, in a spironolactone-sensitive manner (Stolte
519et al., 1969). Subsequent studies in adrenalectomized rats found
520that this was due to elevated NHE3 abundance in brush border
521membranes, which occurred without increasing gene expression
522(Krug et al., 2003). A similar response in primary human renal
523proximal tubule epithelial cells was dependent on EGFR activity
524(Drumm et al., 2006). In contrast, aldosterone-mediated inhibition
525of NHE3 has also been demonstrated. Aldosterone exposure for
52615 min resulted in a 30% decrease in apical NHE3 activity in renal
527medullary thick ascending limb (MTAL), resulting in decreased
528transepithelial HCO�3 absorption (Good et al., 2002, 2006). The
529aldosterone-mediated inhibition of NHE3 was mediated via
530MR-independent ERK1/2 signalling (Watts et al., 2006). This con-
531trasts with other experimental systems where ERK1/2 activation
532by aldosterone is MR-dependent. How ERK1/2 signalling regulates
533NHE activity is unclear. Regulation of NHE3 in other cell systems
534involves trafficking between the plasma membrane and intracellu-
535lar vesicles (Moe, 1999) and a role for ERK1/2 signalling in regulat-
536ing intracellular trafficking of membrane proteins has been
537described (Giovannardi et al., 2002; Huang et al., 2003). However,
538ERK1/2 may also regulate NHE activity through direct phosphory-
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Fig. 3. Schema of rapid actions of aldosterone on ion transporters in intercalated and principal cells of the renal collecting duct. Aldosterone activates the trafficking of
H+ATPase pumps in intercalated cells and ENaC subunits in principal cells via rapid protein kinase signalling which is transduced by the mineralocorticoid receptor (MR).
H+ATPase and anion exchanger (kAE) activity and expression levels are also modulated by whole animal acid/base status. K+ secretion is mediated via large conductance
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combined association with, and phosphorylation by, mammalian target of rapamycin with rictor (mTORC2) and PDK1. Aldosterone-MR transactivation of EGFR activates
protein kinase D to stimulate rapid trafficking of ENaC subunits to the membrane. The rapid stimulation by aldosterone of basolateral membrane Na+/K+ ATPase, Na+/H+

exchange and KATP channels ensures covariant ‘cross-talk’ regulation of all transporters required to sustain the transepithelial reabsorption of Na+.
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539 lation of the exchanger or the phosphorylation of interacting pro-
540 teins such as Na+/H+ exchange regulatory factor (NHERF)-1/2.
541 In another study on the effects of aldosterone on NHE3 activity,
542 the authors described an overlap between long-term genomic re-
543 sponses and acute rapid responses. They showed increases in cell
544 surface expression of NHE and Na+/K+ATPase a-subunit after
545 1 nM aldosterone treatment in human intestinal Caco-2BBE mono-
546 layers, with overall expression levels increasing after 4 h (Musch
547 et al., 2008). Serum and glucocorticoid regulated kinase (SGK)-1
548 and PI3K were rapidly activated by aldosterone and aldosterone-
549 induced NHE3 gene promoter activity was inhibited by PI3K inhi-
550 bition or SGK-1 silencing (Musch et al., 2008). This study elegantly
551 outlines the synergism between aldosterone-mediated long-term
552 genomic effects and the preceding rapid signalling effects and that
553 both levels of effects cannot easily be separated. More recently,
554 acute stimulation of placental tissue with 10 nM aldosterone re-
555 sulted in a spironolactone-sensitive rapid regulation of NHE activ-
556 ity as seen by an increased rate of pHi recovery from an acid load
557 (Speake et al., 2010). Interestingly, this effect was only present in
558 placental tissue derived from female infants and was absent in that
559 of male infants, introducing a gender-specific difference in aldoste-
560 rone-mediated rapid responses.

561 4.2. H+-ATPase

562 Aldosterone stimulates urinary acidification through stimula-
563 tion of H+ flux through H+-ATPase pumps. These responses were
564 first described in detail in turtle urinary bladder (Al-Awqati et al.,
565 1976) and frog skin (Ehrenfeld and Garcia-Romeu, 1977). Proton
566 pumps were shown to be localised to apical cell membranes of
567 mitochondria-rich cells whose number and morphology were al-
568 tered by aldosterone treatment. Whole-cell patch-clamp recordings
569 in these cells revealed that aldosterone produced a rapid exocytotic
570 insertion of H+ pumps into luminal membranes within 10 min,
571 which was sensitive to PKC inhibitors and disruptors of the cyto-
572 skeleton (Harvey, 1992). In the kidney, acid–base regulation is
573 controlled in the distal nephron through the reabsorption of bicar-
574 bonate and the release of H+ into the renal ultrafiltrate. The vacuolar
575 H+-ATPase, expressed apically in type A intercalated cells of the col-
576 lecting duct, actively mediates H+ secretion. Aldosterone plays a key
577 role in the regulation of the renal H+-ATPase pump and many facets
578 of this regulation are governed by rapid signalling events (Fig. 3).
579 For example, in outer medullary collecting ducts of mouse kidney,
580 exposure to 10 nM aldosterone for 15 min resulted in an MR-depen-
581 dent increase in H+ extrusion from acid-loaded type A intercalated
582 cells (Winter et al., 2004). Interestingly, similar to the response in
583 frog skin, the increase in H+-ATPase activity was dependent on
584 Ca2+-induced PKC activity and blocked by colchicine, indicating an
585 involvement of the microtubule network (Winter et al., 2004). Fur-
586 thermore, aldosterone-injected mice showed increased apical
587 expression of H+-ATPase in type A intercalated cells (Winter et al.,
588 2004), supporting the idea of aldosterone-regulated trafficking of
589 the H+-ATPase as a means to control acid–base homeostasis.
590 A recent study demonstrated that aldosterone invoked both ra-
591 pid and genomic stimulatory effects on the H+-ATPase in isolated
592 proximal tubules of rat kidney (Leite-Dellova et al., 2010). Here,
593 after 2 min of aldosterone pre-incubation, a significant increase
594 was observed in the intracellular pH recovery rate from an acid
595 load, and a transient increase in [Ca2þ

i ] was observed after 1 min
596 aldosterone. These effects were MR-independent as shown by their
597 insensitivity to spironolactone and were also not dependent on
598 transcription/translation. After 6 min aldosterone, a further
599 increase in [Ca2þ

i ] occurred and this persisted after 1 h. This
600 later effect was MR- and transcription/translation-dependent
601 (Leite-Dellova et al., 2010).

6024.3. K+ channels

603In the principal cells of the collecting duct, K+ enters the cell via
604the basolateral Na+/K+ATPase and is secreted into the lumen
605through apical K+ channels, along a favourable electrochemical gra-
606dient (O’Neil and Sansom, 1984). The renal outer medullary K+

607channel (ROMK) is the principal K+ secreting channel in the kidney
608and is expressed apically along the aldosterone-sensitive distal
609nephron (ASDN) (Kohda et al., 1998). ROMK mediates apical K+

610recycling in the thick ascending limb (TAL) and net K+ secretion
611by ASDN cells in the connecting segment and CCD (Aguilar-Bryan
612et al., 1998; Hebert et al., 2005). Aldosterone regulates ROMK
613function mainly through the actions of SGK-1 activity (Fig. 3). Cell
614surface expression of ROMK was found to be regulated by aldoste-
615rone-induced SGK-1 activity (Yoo et al., 2003). Co-expression of
616SGK-1 and the scaffolding protein NHERF2 with ROMK1 increased
617K+ channel activity through an increase in membrane abundance
618(Yun et al., 2002). NHERF-1 and NHERF-2 each contain 2 PDZ (pro-
619tein–protein interaction) domains; ROMK preferentially associates
620with the second PDZ domain of NHERF-1 and the first PDZ domain
621of NHERF-2 (Yoo et al., 2004). The association with NHERF scaffold-
622ing proteins increases surface abundance of ROMK and also in-
623creases the interaction between ROMK and CFTR (Yoo et al.,
6242004). CFTR was found to be required for the PKA-regulated ATP
625sensitivity of ROMK in murine TAL (Lu et al., 2006). SGK-1 can also
626stimulate ROMK activity by the phosphorylation of WNK4 (with no
627lysine (K)) kinase (Ring et al., 2007). Mutations in WNK4 cause
628pseudohypoaldosteronism type II (PHAII), a disease featuring in-
629creased renal NaCl reabsorption and impaired K+ secretion. PKC-in-
630duced phosphorylation of ROMK was required for trafficking of
631ROMK1 to the cell membrane in HEK293 cells (Lin et al., 2002).
632PKC was also shown to inhibit ROMK activity, through a PIP2-
633dependent mechanism (Zeng et al., 2003). Here, the interaction be-
634tween PIP2 and ROMK was required for channel opening and a
635reduction in membrane PIP2 levels contributed to the inhibition
636of ROMK1 by PKC.
637In the CCD, K+ can also enter the cell via basolateral K+ channels,
638if the basolateral membrane hyperpolarizes to exceed the K+

639equilibrium potential (Wang and Giebisch, 2009). This may occur
640as a consequence of mineralocorticoid-induced stimulation of the
641Na+/K+ATPase (Sansom and O’Neil, 1986). Aldosterone rapidly
642(within 15 min) stimulated the activity of ATP-dependent K+ chan-
643nel (KþATP) activity in A6 amphibian renal principal cells, by modu-
644lating the open probability of the channel (Urbach et al., 1996). The
645mammalian colon is a major target of aldosterone action, with
646levels of MR expression observed at even higher levels than in
647the kidney (Fuller and Verity, 1990; Will et al., 1980). In the distal
648colon, aldosterone induces the apical expression of ENaC and the
649basolateral expression of Na+/K+ATPase, thus inducing a switch
650from electroneutral NaCl absorption to stimulated electrogenic
651Na+ absorption (Binder et al., 1989; Kunzelmann and Mall, 2002).
652Here, aldosterone also induces apical K+ channels, resulting in a
653switch from net K+ absorption to net K+ secretion (Sweiry and
654Binder, 1989). Aldosterone mediated the non-genomic inhibition
655of Ca2+-dependent intermediate conductance K+ channels (IKCa)
656in the basolateral membranes of human colonic crypt cells, and
657this involved stimulation of Na+/H+ exchange (Bowley et al.,
6582003). This effect was later found to be dependent on PKC activity,
659whereby the inhibition of IKCa was blocked using PKC inhibitors
660(chelerythrine chloride and Go 6976) and IKCa activity was rapidly
661decreased within 10 min of addition of PMA (a PKC activator)
662(Bowley et al., 2007). Aldosterone activated basolateral Na+/H+

663exchange via a PKC- and Ca2+-dependent signalling pathway; the
664resultant intracellular alkalinization up-regulated KþATP channel
665and inhibited a KþCa channel (Maguire et al., 1999). These effects
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666 were MR-independent and were insensitive to inhibitors of tran-
667 scription/translation.

668 4.4. ENaC

669 The ENaC channel, thought to be a heterotrimer composed of
670 1a, 1b and 1c subunit (Jasti et al., 2007), is expressed apically in
671 absorptive epithelia, including the ASDN. Here the basolateral
672 Na+/K+ATPase provides the main electrochemical driving force for
673 ENaC-mediated Na+ reabsorption and the rate of Na+ reabsorption
674 is determined by ENaC cell surface abundance and open probabil-
675 ity. Aldosterone is a central regulator of Na+ reabsorption in the
676 ASDN, through the stimulation of both ENaC and Na+/K+ATPase
677 activities. Aldosterone induces ENaCa expression in the distal
678 nephron and ENaCb and ENaCc in the colon, through MR-depen-
679 dent transcription. Aldosterone also has many indirect effects on
680 the expression, stability and trafficking of the channel (Fig. 3). Cell
681 surface ENaC can be targeted for degradation by the proteasome by
682 the action of the E3 ubiquitin ligase Nedd4-2 (Goulet et al., 1998),
683 which interacts with ENaC via a C-terminal PY internalization
684 motif. Interestingly, an inherited form of hypertension, Liddle Syn-
685 drome, is defined by a defect in the interaction between Nedd4-2
686 and ENaC caused by a mutation/deletion in the PY motifs of ENaCb
687 or ENaCc (Shimkets et al., 1994). The result is the increased mem-
688 brane abundance of ENaC. Nedd4-2 is phosphorylated by SGK-1,
689 both in vitro and in vivo and this phosphorylation leads to a disrup-
690 tion in the interaction between Nedd4-2 and ENaC, thereby
691 increasing the surface residency time of ENaC, resulting in in-
692 creased Na+ transport (Debonneville et al., 2001; Snyder et al.,
693 2004, 2002). Aldosterone induces the MR-mediated upregulation
694 of SGK-1 mRNA expression in the distal nephron of rat kidney
695 within 30 min (Bhargava et al., 2001) the earliest transcriptional
696 response of aldosterone. In this way aldosterone indirectly regu-
697 lates the rate of Na+ absorption by modulating the transcription
698 of the rapidly-acting kinase SGK-1. Moreover, SGK-1 is also re-
699 quired for the aldosterone-mediated upregulation in activity of
700 the Na+/K+ATPase, which provides the electrochemical driving
701 force for Na+ reabsorption.
702 SGK1 activity, as is the case for the related serine–threonine
703 kinase PKB/Akt, is dependent on phosphorylation at two serine
704 residues by phosphoinositide-dependent protein kinase (PDK1),
705 an effector of PI3K signalling (Kobayashi and Cohen, 1999). SGK-
706 1 activity is therefore blocked by PI3K inhibitors and is dependent
707 on PIP3, (a phosphoinositide generated when PI3K phosphorylates
708 PIP2 at the 30 position), for complete activation (Kobayashi and
709 Cohen, 1999; Park et al., 1999). Interestingly, in a mouse CCD cell
710 line, aldosterone induced PIP3 production in the plasma membrane
711 and PIP3 was found to mediate aldosterone stimulation of ENaC
712 (Helms et al., 2005), suggesting an interplay between the activa-
713 tion of SGK-1 via PI3K-mediated PDK-1 activation and the lipid
714 product of PI3K activity, PIP3, which could be involved in SGK-1
715 membrane recruitment. Recently, the phosphorylation-induced
716 activation of the hydrophobic motif domain of SGK1 has been
717 shown to be dependent upon association with mTOR including
718 rictor (mTORC2), which then permits interaction and phosphoryla-
719 tion with PDK1 and the activation of ENaC (Lu et al., 2010).
720 Work from our own laboratory has shown that the novel pro-
721 tein kinase D1 (PKD1) plays a crucial role in the regulation of ENaC.
722 Aldosterone rapidly activated PKD1 within 5 min in a murine CCD
723 cell line, in an MR- and EGFR-dependent manner (McEneaney et al.,
724 2007). This activation was found to be required for the aldoste-
725 rone-mediated rapid trafficking of CFP-tagged ENaC subunits
726 (McEneaney et al., 2008) and for the apical membrane expression
727 and activity of endogenous ENaC subunits, an effect observed after
728 chronic aldosterone treatment (McEneaney et al., 2010b). PKD1 is a
729 member of a family of proteins (PKD1, 2 and 3) with a multitude of

730functions, including the regulation of post-Golgi trafficking events
731(Rykx et al., 2003; Van Lint et al., 2002). PKD1 phosphorylates
732phosphatidylinositol 4-kinase (PI4K) at the Golgi complex, result-
733ing in the upregulation of vesicle fission from the trans Golgi net-
734work to the plasma membrane (Hausser et al., 2005). Therefore,
735aldosterone may regulate fission events at the Golgi complex, so
736up-regulating the rate of ENaC translocation to the plasma
737membrane.
738Members of the Ras superfamily of small GTPases have emerged
739as key regulators of vesicular transport. These molecular switches
740cycle between GDP- and GTP-bound forms, as regulated by guan-
741ine nucleotide exchange factors (GEFs) and GTPase activating pro-
742teins (GAPs). Aldosterone induces K-RasA expression and activity,
743promoting ENaC open probability via a PI3K signalling pathway
744(Staruschenko et al., 2004). Aldosterone promotes the interaction
745between K-RasA and PI3K, and K-RasA interacts with ENaC
746(Staruschenko et al., 2005), highlighting the dual role of K-RasA
747acting as both a molecular scaffold, bringing PI3K in close proxim-
748ity to ENaC, and as an activator of PI3K. Another member of the Ras
749superfamily, RhoA, also plays a central role in ENaC regulation.
750RhoA rapidly increases ENaC membrane levels via Rho-kinase
751and PI(4)P5-kinase activation, and the resulting increases in PIP2
752levels likely promote ENaC plasma membrane insertion
753(Pochynyuk et al., 2006). Aldosterone promotes the rapid activa-
754tion of Rho kinase within 10 min in mesangial cells, resulting in
755hypertrophy and increased actin polymerization (Diah et al.,
7562008). Moreover, VSMC remodelling induced by aldosterone was
757mediated via Rho kinase activation (Miyata et al., 2008). Rho GTP-
758ases and their associated kinases are well known to be important
759regulators of cytoskeleton structure, and consequently play an
760important role in subcellular vesicle trafficking. Total internal
761reflection (TIRF) microscopy and fluorescence recovery after
762photobleaching (FRAP) analysis showed that RhoA accelerates the
763rate of ENaC trafficking to the plasma membrane, through effects
764on microtubules (Pochynyuk et al., 2007). Aldosterone increased
765the expression and phosphorylation of the Rab-GAP, AS160, in
766CCD epithelia, and these phosphorylation sites were found to over-
767lap with SGK-1 substrate sites (Liang et al., 2010). Aldosterone
768induced an increase in apical ENaC localization in AS160-over-
769expressing epithelia, and in the absence of aldosterone, AS160
770over-expression increased total ENaC expression without affecting
771surface abundance or activity. AS160 thus stabilizes ENaC in intra-
772cellular compartments under basal conditions, while aldosterone-
773dependent AS160 phosphorylation facilitates ENaC forward
774trafficking (Liang et al., 2010).
775Aldosterone stimulates the expression of the small chaperone
776protein, GILZ (glucocorticoid-induced leucine zipper protein 1) in
777renal CCDs (Robert-Nicoud et al., 2001). GILZ is a component of
778the ENaC regulatory signalling complex found to selectively mod-
779ulate the cell surface expression of ENaC (Soundararajan et al.,
7802009). The inhibitory components of this complex, Raf-1 and
781Nedd4-2, interact with ENaC and decrease the cell surface abun-
782dance of this channel. The aldosterone-stimulated components of
783the ENaC regulatory complex, SGK-1 and GILZ, cooperatively inhi-
784bit the activities of Raf-1 and Nedd4-2 and therefore synergistically
785increase ENaC cell surface expression (Soundararajan et al., 2009).
786Moreover, GILZ1 inhibits the ubiquitinylation of SGK-1 and its sub-
787sequent proteasome-mediated degradation, thereby prolonging its
788half-life and increasing its steady-state expression (Soundararajan
789et al., 2010).
790Rho family members and their regulatory proteins are involved
791in the trans-activation of several steroid receptors (Kino et al.,
7922006; Rubino et al., 1998; Su et al., 2001). Constitutive over-
793expression of Rac1, a member of the Rho family GTPases, induced
794an up-regulation in MR nuclear translocation and MR-dependent
795transcription, whereas constitutively active RhoA suppressed
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796 aldosterone-stimulated reporter activity (Shibata et al., 2008). This
797 study provides a clear example of one of the possible routes of
798 cross-talk between intracellular signalling cascades and MR-medi-
799 ated transcription.

800 5. Conclusion

801 Steroid hormones such as aldosterone induce rapid effects
802 independent of de novo protein synthesis in numerous target tis-
803 sues and these effects play a crucial role in the fine-tuning of la-
804 tent genomic responses to the hormone. Aldosterone-mediated
805 rapid signalling effects such as the activation of multiple kinase
806 cascades allows for the dynamic regulation of transcriptional
807 events through the phosphorylation of the mineralocorticoid
808 receptor itself, of coactivators or direct phosphorylation of the
809 target proteins themselves such as the various ion channels/
810 transporters discussed.
811 The rapid responses to aldosterone are mediated either via the
812 classical nuclear MR or through an as yet unidentified membrane
813 MR. Interestingly, as opposed to the ER, AR and PR, MR lacks the
814 conserved palmitoylation motif involved in the membrane anchor-
815 ing of these receptors. Controversy still abounds on the identity of
816 a membrane MR and its functional role in physiology, and further
817 work is required to examine the membrane targeting of classical
818 MR, which could occur either through a lipid modification of the
819 receptor or through direct interactions with membrane scaffolding
820 proteins. Some rapid non-genomic effects of aldosterone do not ap-
821 pear to require MR such as intracellular Ca2+ mobilization and spe-
822 cific protein kinase isoform activation. The activation of Ca2+ entry
823 can occur within seconds and represents one of the earliest non-
824 genomic responses to a wide range of steroid hormones. Some ste-
825 roid hormones such as vitamin D, estrogen, glucocorticoids and
826 aldosterone have been shown to directly activate specific protein
827 kinase isoforms (PKCa, PKCf, PKCd) in cell-free systems raising
828 the possibility that under certain conditions these kinases can act
829 as receptors for steroid hormones. The question is still open if this
830 type of ‘in vitro’ non-genomic signalling can occur in an intact cell,
831 how its specificity to cell types can be conferred given the ubiqui-
832 tous expression of these kinases and its importance to the physio-
833 logical response to steroid hormones. A fast PKCa–Ca2+ response
834 has been demonstrated for aldosterone and estrogen in CCD and
835 colonic crypts. One possibility is the direct activation of PKCa as
836 the missing-link receptor to produce the near instantaneous entry
837 of Ca2+ through a microdomain localization and activation of the
838 kinase and another as yet unidentified co-regulator (e.g. calmodu-
839 lin kinase).
840 Aldosterone-induced rapid signalling effects modulate multiple
841 membrane targets, either by directly affecting their activity, or
842 indirectly through the modulation of MR-dependent transcription.
843 A complex network of cross-talk exists between rapid and
844 latent-induced effects and synergism between both pathways re-
845 sults in the ultimate fine-tuning of the physiological response to
846 aldosterone.

847 Acknowledgements

848 The authors work is funded by Science Foundation Ireland Grant
849 08/RFP/BMT1521 (W.T.) and by the Higher Education Authority of
850 Ireland PRTLI4 (B.J.H.).

851 References

852 Acconcia, F., Ascenzi, P., Bocedi, A., Spisni, E., Tomasi, V., Trentalance, A., Visca, P.,
853 Marino, M., 2005. Palmitoylation-dependent estrogen receptor alpha
854 membrane localization: regulation by 17beta-estradiol. Mol. Biol. Cell 16,
855 231–237.

856Aguilar-Bryan, L., Clement, J.P.T., Gonzalez, G., Kunjilwar, K., Babenko, A., Bryan, J.,
8571998. Toward understanding the assembly and structure of KATP channels.
858Physiol. Rev. 78, 227–245.
859Al-Awqati, Q., Norby, L.H., Mueller, A., Steinmetz, P.R., 1976. Characteristics of
860stimulation of H+ transport by aldosterone in turtle urinary bladder. J. Clin.
861Invest. 58, 351–358.
862Alzamora, R., Harvey, B.J., 2008. Direct binding and activation of protein kinase C
863isoforms by steroid hormones. Steroids 73, 885–888.
864Alzamora, R., Brown, L.R., Harvey, B.J., 2007. Direct binding and activation of protein
865kinase C isoforms by aldosterone and 17beta-estradiol. Mol. Endocrinol. 21,
8662637–2650.
867Amazit, L., Pasini, L., Szafran, A.T., Berno, V., Wu, R.C., Mielke, M., Jones, E.D.,
868Mancini, M.G., Hinojos, C.A., O’Malley, B.W., Mancini, M.A., 2007. Regulation of
869SRC-3 intercompartmental dynamics by estrogen receptor and
870phosphorylation. Mol. Cell. Biol. 27, 6913–6932.
871Arima, S., Kohagura, K., Xu, H.L., Sugawara, A., Abe, T., Satoh, F., Takeuchi, K., Ito, S.,
8722003. Nongenomic vascular action of aldosterone in the glomerular
873microcirculation. J. Am. Soc. Nephrol. 14, 2255–2263.
874Arima, S., Kohagura, K., Xu, H.L., Sugawara, A., Uruno, A., Satoh, F., Takeuchi, K., Ito,
875S., 2004. Endothelium-derived nitric oxide modulates vascular action of
876aldosterone in renal arteriole. Hypertension 43, 352–357.
877Aronson, P.S., 1985. Properties of the renal Na+–H+ exchanger. Ann. NY Acad. Sci.
878456, 220–228.
879Asher, C., Wald, H., Rossier, B.C., Garty, H., 1996. Aldosterone-induced increase in
880the abundance of Na+ channel subunits. Am. J. Physiol. 271, C605–C611.
881Beesley, A.H., Hornby, D., White, S.J., 1998. Regulation of distal nephron K+ channels
882(ROMK) mRNA expression by aldosterone in rat kidney. J. Physiol. 509 (Pt 3),
883629–634.
884Bhargava, A., Fullerton, M.J., Myles, K., Purdy, T.M., Funder, J.W., Pearce, D., Cole, T.J.,
8852001. The serum- and glucocorticoid-induced kinase is a physiological mediator
886of aldosterone action. Endocrinology 142, 1587–1594.
887Binder, H.J., McGlone, F., Sandle, G.I., 1989. Effects of corticosteroid hormones on the
888electrophysiology of rat distal colon: implications for Na+ and K+ transport. J.
889Physiol. 410, 425–441.
890Biondi, R.M., Kieloch, A., Currie, R.A., Deak, M., Alessi, D.R., 2001. The PIF-binding
891pocket in PDK1 is essential for activation of S6K and SGK, but not PKB. EMBO J.
89220, 4380–4390.
893Blind, R.D., Garabedian, M.J., 2008. Differential recruitment of glucocorticoid
894receptor phospho-isoforms to glucocorticoid-induced genes. J. Steroid
895Biochem. Mol. Biol. 109, 150–157.
896Bowley, K.A., Morton, M.J., Hunter, M., Sandle, G.I., 2003. Non-genomic regulation of
897intermediate conductance potassium channels by aldosterone in human colonic
898crypt cells. Gut 52, 854–860.
899Bowley, K.A., Linley, J.E., Robins, G.G., Kopanati, S., Hunter, M., Sandle, G.I., 2007.
900Role of protein kinase C in aldosterone-induced non-genomic inhibition of
901basolateral potassium channels in human colonic crypts. J. Steroid Biochem.
902Mol. Biol. 104, 45–52.
903Callera, G.E., Montezano, A.C., Yogi, A., Tostes, R.C., He, Y., Schiffrin, E.L., Touyz, R.M.,
9042005. C-Src-dependent nongenomic signaling responses to aldosterone are
905increased in vascular myocytes from spontaneously hypertensive rats.
906Hypertension 46, 1032–1038.
907Calo, L.A., Zaghetto, F., Pagnin, E., Davis, P.A., De Mozzi, P., Sartorato, P., Martire, G.,
908Fiore, C., Armanini, D., 2004. Effect of aldosterone and glycyrrhetinic acid on the
909protein expression of PAI-1 and p22(phox) in human mononuclear leukocytes. J.
910Clin. Endocrinol. Metab. 89, 1973–1976.
911Chen, C., Liang, W., Jia, J., van Goor, H., Singhal, P.C., Ding, G., 2009. Aldosterone
912induces apoptosis in rat podocytes: role of PI3-K/Akt and p38MAPK signaling
913pathways. Nephron Exp. Nephrol. 113, e26–e34.
914Christ, M., Gunther, A., Heck, M., Schmidt, B.M., Falkenstein, E., Wehling, M., 1999.
915Aldosterone, not estradiol, is the physiological agonist for rapid increases in
916cAMP in vascular smooth muscle cells. Circulation 99, 1485–1491.
917Debonneville, C., Flores, S.Y., Kamynina, E., Plant, P.J., Tauxe, C., Thomas, M.A.,
918Munster, C., Chraibi, A., Pratt, J.H., Horisberger, J.D., Pearce, D., Loffing, J., Staub,
919O., 2001. Phosphorylation of Nedd4-2 by SGK1 regulates epithelial Na(+)
920channel cell surface expression. EMBO J. 20, 7052–7059.
921Diah, S., Zhang, G.X., Nagai, Y., Zhang, W., Gang, L., Kimura, S., Hamid, M.R., Tamiya,
922T., Nishiyama, A., Hitomi, H., 2008. Aldosterone induces myofibroblastic
923transdifferentiation and collagen gene expression through the Rho-kinase
924dependent signaling pathway in rat mesangial cells. Exp. Cell Res. 314, 3654–
9253662.
926Doolan, C.M., O’Sullivan, G.C., Harvey, B.J., 1998. Rapid effects of corticosteroids on
927cytosolic protein kinase C and intracellular calcium concentration in human
928distal colon. Mol. Cell. Endocrinol. 138, 71–79.
929Doolan, C.M., Condliffe, S.B., Harvey, B.J., 2000. Rapid non-genomic activation
930of cytosolic cyclic AMP-dependent protein kinase activity and [Ca(2+)](i)
931by 17beta-oestradiol in female rat distal colon. Br. J. Pharmacol. 129,
9321375–1386.
933Drumm, K., Kress, T.R., Gassner, B., Krug, A.W., Gekle, M., 2006. Aldosterone
934stimulates activity and surface expression of NHE3 in human primary proximal
935tubule epithelial cells (RPTEC). Cell. Physiol. Biochem. 17, 21–28.
936Ebata, S., Muto, S., Okada, K., Nemoto, J., Amemiya, M., Saito, T., Asano, Y.,
9371999. Aldosterone activates Na+/H+ exchange in vascular smooth muscle
938cells by nongenomic and genomic mechanisms. Kidney Int. 56,
9391400–1412.
940Ehrenfeld, J., Garcia-Romeu, F., 1977. Active hydrogen excretion and sodium
941absorption through isolated frog skin. Am. J. Physiol. 233, F46–F54.

R. Dooley et al. / Molecular and Cellular Endocrinology xxx (2011) xxx–xxx 9

MCE 7946 No. of Pages 13, Model 5G

26 July 2011

Please cite this article in press as: Dooley, R., et al. Non-genomic actions of aldosterone: From receptors and signals to membrane targets. Molecular and
Cellular Endocrinology (2011), doi:10.1016/j.mce.2011.07.019

http://dx.doi.org/10.1016/j.mce.2011.07.019
Original text:
Inserted Text
Vitamin 

Original text:
Inserted Text
‘in-vitro’ 

Original text:
Inserted Text
PKCα – Ca

Original text:
Inserted Text
latent -induced 

Original text:
Inserted Text
grant 

Original text:
Inserted Text
(WT) 

Original text:
Inserted Text
(BJH).



942 Elvira-Matelot, E., Zhou, X.O., Farman, N., Beaurain, G., Henrion-Caude, A.,
943 Hadchouel, J., Jeunemaitre, X., 2010. Regulation of WNK1 expression by miR-
944 192 and aldosterone. J. Am. Soc. Nephrol. 21, 1724–1731.
945 Forstermann, U., Li, H., 2010. Therapeutic effect of enhancing endothelial nitric
946 oxide synthase (eNOS) expression and preventing eNOS uncoupling. Br. J.
947 Pharmacol..
948 Frelin, C., Vigne, P., Lazdunski, M., 1990. The Na+/H+ exchange system in vascular
949 smooth muscle cells. Adv. Nephrol. Necker Hosp. 19, 17–29.
950 Fuller, P.J., Verity, K., 1990. Mineralocorticoid receptor gene expression in the
951 gastrointestinal tract: distribution and ontogeny. J. Steroid Biochem. 36, 263–
952 267.
953 Gekle, M., Golenhofen, N., Oberleithner, H., Silbernagl, S., 1996. Rapid activation of
954 Na+/H+ exchange by aldosterone in renal epithelial cells requires Ca2+ and
955 stimulation of a plasma membrane proton conductance. Proc. Natl. Acad. Sci.
956 USA 93, 10500–10504.
957 Gekle, M., Freudinger, R., Mildenberger, S., Schenk, K., Marschitz, I., Schramek, H.,
958 2001. Rapid activation of Na+/H+-exchange in MDCK cells by aldosterone
959 involves MAP-kinase ERK1/2. Pflugers Arch. 441, 781–786.
960 Gianni, M., Parrella, E., Raska Jr., I., Gaillard, E., Nigro, E.A., Gaudon, C., Garattini, E.,
961 Rochette-Egly, C., 2006. P38MAPK-dependent phosphorylation and degradation
962 of SRC-3/AIB1 and RARalpha-mediated transcription. EMBO J. 25, 739–751.
963 Giovannardi, S., Forlani, G., Balestrini, M., Bossi, E., Tonini, R., Sturani, E., Peres, A.,
964 Zippel, R., 2002. Modulation of the inward rectifier potassium channel IRK1 by
965 the Ras signaling pathway. J. Biol. Chem. 277, 12158–12163.
966 Good, D.W., George, T., Watts 3rd, B.A., 2002. Aldosterone inhibits HCO absorption
967 via a nongenomic pathway in medullary thick ascending limb. Am. J. Physiol.
968 Renal Physiol. 283, F699–F706.
969 Good, D.W., George, T., Watts 3rd, B.A., 2006. Nongenomic regulation by
970 aldosterone of the epithelial NHE3 Na(+)/H(+) exchanger. Am. J. Physiol. Cell
971 Physiol. 290, C757–C763.
972 Goto, J., Otsuka, F., Yamashita, M., Suzuki, J., Otani, H., Takahashi, H., Miyoshi, T.,
973 Mimura, Y., Ogura, T., Makino, H., 2009. Enhancement of aldosterone-induced
974 catecholamine production by bone morphogenetic protein-4 through activating
975 Rho and SAPK/JNK pathway in adrenomedullar cells. Am. J. Physiol. Endocrinol.
976 Metab. 296, E904–E916.
977 Goulet, C.C., Volk, K.A., Adams, C.M., Prince, L.S., Stokes, J.B., Snyder, P.M., 1998.
978 Inhibition of the epithelial Na+ channel by interaction of Nedd4 with a PY motif
979 deleted in Liddle’s syndrome. J. Biol. Chem. 273, 30012–30017.
980 Gros, R., Ding, Q., Sklar, L.A., Prossnitz, E.E., Arterburn, J.B., Chorazyczewski, J.,
981 Feldman, R.D., 2011. GPR30 expression is required for the mineralocorticoid
982 receptor-independent rapid vascular effects of aldosterone. Hypertension.
983 Grossmann, C., Benesic, A., Krug, A.W., Freudinger, R., Mildenberger, S., Gassner, B.,
984 Gekle, M., 2005. Human mineralocorticoid receptor expression renders cells
985 responsive for nongenotropic aldosterone actions. Mol. Endocrinol. 19, 1697–
986 1710.
987 Grossmann, C., Krug, A.W., Freudinger, R., Mildenberger, S., Voelker, K., Gekle, M.,
988 2007. Aldosterone-induced EGFR expression: interaction between the human
989 mineralocorticoid receptor and the human EGFR promoter. Am. J. Physiol.
990 Endocrinol. Metab. 292, E1790–E1800.
991 Grossmann, C., Husse, B., Mildenberger, S., Schreier, B., Schuman, K., Gekle, M.,
992 2010a. Colocalization of mineralocorticoid and EGF receptor at the plasma
993 membrane. Biochim. Biophys. Acta 1803, 584–590.
994 Grossmann, C., Wuttke, M., Ruhs, S., Seiferth, A., Mildenberger, S., Rabe, S., Schwerdt,
995 G., Gekle, M., 2010b. Mineralocorticoid receptor inhibits CREB signaling by
996 calcineurin activation. FASEB J. 24, 2010–2019.
997 Harvey, B.J., 1992. Energization of sodium absorption by the H(+)-ATPase pump in
998 mitochondria-rich cells of frog skin. J. Exp. Biol. 172, 289–309.
999 Harvey, B.J., Higgins, M., 2000. Nongenomic effects of aldosterone on Ca2+ in M-1

1000 cortical collecting duct cells. Kidney Int. 57, 1395–1403.
1001 Hashikabe, Y., Suzuki, K., Jojima, T., Uchida, K., Hattori, Y., 2006. Aldosterone impairs
1002 vascular endothelial cell function. J. Cardiovasc. Pharmacol. 47, 609–613.
1003 Hausser, A., Storz, P., Martens, S., Link, G., Toker, A., Pfizenmaier, K., 2005. Protein
1004 kinase D regulates vesicular transport by phosphorylating and activating
1005 phosphatidylinositol-4 kinase IIIbeta at the Golgi complex. Nat. Cell Biol. 7,
1006 880–886.
1007 Hayashi, K., Ozawa, Y., Fujiwara, K., Wakino, S., Kumagai, H., Saruta, T., 2003. Role of
1008 actions of calcium antagonists on efferent arterioles – with special references to
1009 glomerular hypertension. Am. J. Nephrol. 23, 229–244.
1010 Hayashi, H., Kobara, M., Abe, M., Tanaka, N., Gouda, E., Toba, H., Yamada, H., Tatsumi,
1011 T., Nakata, T., Matsubara, H., 2008. Aldosterone nongenomically produces
1012 NADPH oxidase-dependent reactive oxygen species and induces myocyte
1013 apoptosis. Hypertens. Res. 31, 363–375.
1014 Hebert, S.C., Desir, G., Giebisch, G., Wang, W., 2005. Molecular diversity and
1015 regulation of renal potassium channels. Physiol. Rev. 85, 319–371.
1016 Helms, M.N., Liu, L., Liang, Y.Y., Al-Khalili, O., Vandewalle, A., Saxena, S., Eaton, D.C.,
1017 Ma, H.P., 2005. Phosphatidylinositol 3,4,5-trisphosphate mediates aldosterone
1018 stimulation of epithelial sodium channel (ENaC) and interacts with gamma-
1019 ENaC. J. Biol. Chem. 280, 40885–40891.
1020 Hirono, Y., Yoshimoto, T., Suzuki, N., Sugiyama, T., Sakurada, M., Takai, S., Kobayashi,
1021 N., Shichiri, M., Hirata, Y., 2007. Angiotensin II receptor type 1-mediated
1022 vascular oxidative stress and proinflammatory gene expression in aldosterone-
1023 induced hypertension: the possible role of local renin-angiotensin system.
1024 Endocrinology 148, 1688–1696.
1025 Hoang, T., Fenne, I.S., Cook, C., Borud, B., Bakke, M., Lien, E.A., Mellgren, G., 2004.
1026 CAMP-dependent protein kinase regulates ubiquitin–proteasome-mediated

1027degradation and subcellular localization of the nuclear receptor coactivator
1028GRIP1. J. Biol. Chem. 279, 49120–49130.
1029Huang, Y., Kim, S.O., Jiang, J., Frank, S.J., 2003. Growth hormone-induced
1030phosphorylation of epidermal growth factor (EGF) receptor in 3T3-F442A
1031cells. Modulation of EGF-induced trafficking and signaling. J. Biol. Chem. 278,
103218902–18913.
1033Huang, B., Chen, S.C., Wang, D.L., 2009. Shear flow increases S-nitrosylation of
1034proteins in endothelial cells. Cardiovasc. Res. 83, 536–546.
1035Inui, M., Martello, G., Piccolo, S., 2010. MicroRNA control of signal transduction. Nat.
1036Rev. Mol. Cell Biol. 11, 252–263.
1037Iwakiri, Y., Satoh, A., Chatterjee, S., Toomre, D.K., Chalouni, C.M., Fulton, D.,
1038Groszmann, R.J., Shah, V.H., Sessa, W.C., 2006. Nitric oxide synthase generates
1039nitric oxide locally to regulate compartmentalized protein S-nitrosylation and
1040protein trafficking. Proc. Natl. Acad. Sci. USA 103, 19777–19782.
1041Jasti, J., Furukawa, H., Gonzales, E.B., Gouaux, E., 2007. Structure of acid-sensing ion
1042channel 1 at 1.9 A resolution and low pH. Nature 449, 316–323.
1043Kato, S., Endoh, H., Masuhiro, Y., Kitamoto, T., Uchiyama, S., Sasaki, H., Masushige, S.,
1044Gotoh, Y., Nishida, E., Kawashima, H., Metzger, D., Chambon, P., 1995. Activation
1045of the estrogen receptor through phosphorylation by mitogen-activated protein
1046kinase. Science 270, 1491–1494.
1047Kim, H.P., Lee, J.Y., Jeong, J.K., Bae, S.W., Lee, H.K., Jo, I., 1999. Nongenomic
1048stimulation of nitric oxide release by estrogen is mediated by estrogen
1049receptor alpha localized in caveolae. Biochem. Biophys. Res. Commun. 263,
1050257–262.
1051Kino, T., Souvatzoglou, E., Charmandari, E., Ichijo, T., Driggers, P., Mayers, C.,
1052Alatsatianos, A., Manoli, I., Westphal, H., Chrousos, G.P., Segars, J.H., 2006. Rho
1053family guanine nucleotide exchange factor Brx couples extracellular signals to
1054the glucocorticoid signaling system. J. Biol. Chem. 281, 9118–9126.
1055Kobayashi, T., Cohen, P., 1999. Activation of serum- and glucocorticoid-regulated
1056protein kinase by agonists that activate phosphatidylinositide 3-kinase is
1057mediated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and PDK2.
1058Biochem. J. 339 (Pt 2), 319–328.
1059Kohda, Y., Ding, W., Phan, E., Housini, I., Wang, J., Star, R.A., Huang, C.L., 1998.
1060Localization of the ROMK potassium channel to the apical membrane of distal
1061nephron in rat kidney. Kidney Int. 54, 1214–1223.
1062Kolla, V., Litwack, G., 2000. Transcriptional regulation of the human Na/K ATPase via
1063the human mineralocorticoid receptor. Mol. Cell. Biochem. 204, 35–40.
1064Krug, A.W., Papavassiliou, F., Hopfer, U., Ullrich, K.J., Gekle, M., 2003. Aldosterone
1065stimulates surface expression of NHE3 in renal proximal brush borders. Pflugers
1066Arch. 446, 492–496.
1067Kunzelmann, K., Mall, M., 2002. Electrolyte transport in the mammalian colon:
1068mechanisms and implications for disease. Physiol. Rev. 82, 245–289.
1069Le Moellic, C., Ouvrard-Pascaud, A., Capurro, C., Cluzeaud, F., Fay, M., Jaisser, F.,
1070Farman, N., Blot-Chabaud, M., 2004. Early nongenomic events in aldosterone
1071action in renal collecting duct cells: PKCalpha activation, mineralocorticoid
1072receptor phosphorylation, and cross-talk with the genomic response. J. Am. Soc.
1073Nephrol. 15, 1145–1160.
1074Leite-Dellova, D.C., Malnic, G., Mello-Aires, M.D., 2010. Genomic and nongenomic
1075stimulatory effect of aldosterone on H+-ATPase in proximal S3 segment. Am. J.
1076Physiol. Renal Physiol..
1077Liang, X., Butterworth, M.B., Peters, K.W., Frizzell, R.A., 2010. AS160 modulates
1078aldosterone-stimulated epithelial sodium channel forward trafficking. Mol. Biol.
1079Cell 21, 2024–2033.
1080Lin, D., Sterling, H., Lerea, K.M., Giebisch, G., Wang, W.H., 2002. Protein kinase C
1081(PKC)-induced phosphorylation of ROMK1 is essential for the surface
1082expression of ROMK1 channels. J. Biol. Chem. 277, 44278–44284.
1083Little, P.J., Cragoe Jr., E.J., Bobik, A., 1986. Na–H exchange is a major pathway for Na
1084influx in rat vascular smooth muscle. Am. J. Physiol. 251, C707–C712.
1085Liu, S.L., Schmuck, S., Chorazcyzewski, J.Z., Gros, R., Feldman, R.D., 2003. Aldosterone
1086regulates vascular reactivity: short-term effects mediated by
1087phosphatidylinositol 3-kinase-dependent nitric oxide synthase activation.
1088Circulation 108, 2400–2406.
1089Liu, H., Pedram, A., Kim, J.K., 2011. Oestrogen prevents cardiomyocyte apoptosis by
1090suppressing p38alpha-mediated activation of p53 and by down-regulating p53
1091inhibition on p38beta. Cardiovasc. Res. 89, 119–128.
1092Lovett, F.A., Cosgrove, R.A., Gonzalez, I., Pell, J.M., 2010. Essential role for p38alpha
1093MAPK but not p38gamma MAPK in Igf2 expression and myoblast
1094differentiation. Endocrinology 151, 4368–4380.
1095Lu, M.L., Schneider, M.C., Zheng, Y., Zhang, X., Richie, J.P., 2001. Caveolin-1 interacts
1096with androgen receptor. A positive modulator of androgen receptor mediated
1097transactivation. J. Biol. Chem. 276, 13442–13451.
1098Lu, M., Leng, Q., Egan, M.E., Caplan, M.J., Boulpaep, E.L., Giebisch, G.H., Hebert, S.C.,
10992006. CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium
1100channels in mouse kidney. J. Clin. Invest. 116, 797–807.
1101Lu, M., Wang, J., Jones, K.T., Ives, H.E., Feldman, M.E., Yao, L.J., Shokat, K.M., Ashrafi,
1102K., Pearce, D., 2010. MTOR complex-2 activates ENaC by phosphorylating SGK1.
1103J. Am. Soc. Nephrol. 21, 811–818.
1104Maggio, N., Segal, M., 2010. Cellular basis of a rapid effect of mineralocorticosteroid
1105receptors activation on LTP in ventral hippocampal slices. Hippocampus.
1106Maguire, D., MacNamara, B., Cuffe, J.E., Winter, D., Doolan, C.M., Urbach, V.,
1107O’Sullivan, G.C., Harvey, B.J., 1999. Rapid responses to aldosterone in human
1108distal colon. Steroids 64, 51–63.
1109Manegold, J.C., Falkenstein, E., Wehling, M., Christ, M., 1999. Rapid aldosterone
1110effects on tyrosine phosphorylation in vascular smooth muscle cells. Cell Mol.
1111Biol. (Noisy-le-grand) 45, 805–813.

Q3

10 R. Dooley et al. / Molecular and Cellular Endocrinology xxx (2011) xxx–xxx

MCE 7946 No. of Pages 13, Model 5G

26 July 2011

Please cite this article in press as: Dooley, R., et al. Non-genomic actions of aldosterone: From receptors and signals to membrane targets. Molecular and
Cellular Endocrinology (2011), doi:10.1016/j.mce.2011.07.019

http://dx.doi.org/10.1016/j.mce.2011.07.019


1112 Markos, F., Healy, V., Harvey, B.J., 2005. Aldosterone rapidly activates Na+/H+

1113 exchange in M-1 cortical collecting duct cells via a PKC–MAPK pathway.
1114 Nephron Physiol. 99, p1–p9.
1115 Massaad, C., Houard, N., Lombes, M., Barouki, R., 1999. Modulation of human
1116 mineralocorticoid receptor function by protein kinase A. Mol. Endocrinol. 13,
1117 57–65.
1118 Matthews, L., Berry, A., Ohanian, V., Ohanian, J., Garside, H., Ray, D., 2008. Caveolin
1119 mediates rapid glucocorticoid effects and couples glucocorticoid action to the
1120 antiproliferative program. Mol. Endocrinol. 22, 1320–1330.
1121 McEneaney, V., Harvey, B.J., Thomas, W., 2007. Aldosterone rapidly activates protein
1122 kinase D via a mineralocorticoid receptor/EGFR trans-activation pathway in the
1123 M1 kidney CCD cell line. J. Steroid Biochem. Mol. Biol. 107, 180–190.
1124 McEneaney, V., Harvey, B.J., Thomas, W., 2008. Aldosterone regulates rapid
1125 trafficking of epithelial sodium channel subunits in renal cortical collecting
1126 duct cells via protein kinase D activation. Mol. Endocrinol. 22, 881–892.
1127 McEneaney, V., Dooley, R., Harvey, B.J., Thomas, W., 2010a. Protein kinase D
1128 stabilizes aldosterone-induced ERK1/2 MAP kinase activation in M1 renal
1129 cortical collecting duct cells to promote cell proliferation. J. Steroid Biochem.
1130 Mol. Biol. 118, 18–28.
1131 McEneaney, V., Dooley, R., Yusef, Y.R., Keating, N., Quinn, U., Harvey, B.J., Thomas,
1132 W., 2010b. Protein kinase D1 modulates aldosterone-induced ENaC activity in a
1133 renal cortical collecting duct cell line. Mol. Cell. Endocrinol. 325, 8–17.
1134 Miyata, K., Hitomi, H., Guo, P., Zhang, G.X., Kimura, S., Kiyomoto, H., Hosomi, N.,
1135 Kagami, S., Kohno, M., Nishiyama, A., 2008. Possible involvement of Rho-kinase
1136 in aldosterone-induced vascular smooth muscle cell remodeling. Hypertens.
1137 Res. 31, 1407–1413.
1138 Moe, O.W., 1999. Acute regulation of proximal tubule apical membrane Na/H
1139 exchanger NHE-3: role of phosphorylation, protein trafficking, and regulatory
1140 factors. J. Am. Soc. Nephrol. 10, 2412–2425.
1141 Musch, M.W., Lucioni, A., Chang, E.B., 2008. Aldosterone regulation of intestinal Na
1142 absorption involves SGK-mediated changes in NHE3 and Na+ pump activity.
1143 Am. J. Physiol. Gastrointest. Liver Physiol. 295, G909–G919.
1144 Mutoh, A., Isshiki, M., Fujita, T., 2008. Aldosterone enhances ligand-stimulated nitric
1145 oxide production in endothelial cells. Hypertens. Res. 31, 1811–1820.
1146 Nagai, Y., Miyata, K., Sun, G.P., Rahman, M., Kimura, S., Miyatake, A., Kiyomoto, H.,
1147 Kohno, M., Abe, Y., Yoshizumi, M., Nishiyama, A., 2005. Aldosterone stimulates
1148 collagen gene expression and synthesis via activation of ERK1/2 in rat renal
1149 fibroblasts. Hypertension 46, 1039–1045.
1150 Nagata, D., Takahashi, M., Sawai, K., Tagami, T., Usui, T., Shimatsu, A., Hirata, Y.,
1151 Naruse, M., 2006. Molecular mechanism of the inhibitory effect of aldosterone
1152 on endothelial NO synthase activity. Hypertension 48, 165–171.
1153 Naray-Fejes-Toth, A., Fejes-Toth, G., 2000. The SGK, an aldosterone-induced gene in
1154 mineralocorticoid target cells, regulates the epithelial sodium channel. Kidney
1155 Int. 57, 1290–1294.
1156 Nishiyama, A., Abe, Y., 2006. Molecular mechanisms and therapeutic strategies of
1157 chronic renal injury: renoprotective effects of aldosterone blockade. J.
1158 Pharmacol. Sci. 100, 9–16.
1159 Nishiyama, A., Yao, L., Fan, Y., Kyaw, M., Kataoka, N., Hashimoto, K., Nagai, Y.,
1160 Nakamura, E., Yoshizumi, M., Shokoji, T., Kimura, S., Kiyomoto, H., Tsujioka, K.,
1161 Kohno, M., Tamaki, T., Kajiya, F., Abe, Y., 2005. Involvement of aldosterone and
1162 mineralocorticoid receptors in rat mesangial cell proliferation and
1163 deformability. Hypertension 45, 710–716.
1164 Nishizaka, M.K., Zaman, M.A., Green, S.A., Renfroe, K.Y., Calhoun, D.A., 2004.
1165 Impaired endothelium-dependent flow-mediated vasodilation in hypertensive
1166 subjects with hyperaldosteronism. Circulation 109, 2857–2861.
1167 Oakley, R.H., Cidlowski, J.A., 2011. Cellular processing of the glucocorticoid receptor
1168 gene and protein: new mechanisms for generating tissue-specific actions of
1169 glucocorticoids. J. Biol. Chem. 286, 3177–3184.
1170 Oberleithner, H., Weigt, M., Westphale, H.J., Wang, W., 1987. Aldosterone activates
1171 Na+/H+ exchange and raises cytoplasmic pH in target cells of the amphibian
1172 kidney. Proc. Natl. Acad. Sci. USA 84, 1464–1468.
1173 Okamoto, T., Schlegel, A., Scherer, P.E., Lisanti, M.P., 1998. Caveolins, a family of
1174 scaffolding proteins for organizing ‘‘preassembled signaling complexes’’ at the
1175 plasma membrane. J. Biol. Chem. 273, 5419–5422.
1176 Okoshi, M.P., Yan, X., Okoshi, K., Nakayama, M., Schuldt, A.J., O’Connell, T.D.,
1177 Simpson, P.C., Lorell, B.H., 2004. Aldosterone directly stimulates cardiac
1178 myocyte hypertrophy. J. Card. Fail. 10, 511–518.
1179 O’Neil, R.G., Sansom, S.C., 1984. Characterization of apical cell membrane Na+ and K+

1180 conductances of cortical collecting duct using microelectrode techniques. Am. J.
1181 Physiol. 247, F14–F24.
1182 Park, J., Leong, M.L., Buse, P., Maiyar, A.C., Firestone, G.L., Hemmings, B.A., 1999.
1183 Serum and glucocorticoid-inducible kinase (SGK) is a target of the PI 3-kinase-
1184 stimulated signaling pathway. EMBO J. 18, 3024–3033.
1185 Pedram, A., Razandi, M., Sainson, R.C., Kim, J.K., Hughes, C.C., Levin, E.R., 2007. A
1186 conserved mechanism for steroid receptor translocation to the plasma
1187 membrane. J. Biol. Chem. 282, 22278–22288.
1188 Pochynyuk, O., Medina, J., Gamper, N., Genth, H., Stockand, J.D., Staruschenko, A.,
1189 2006. Rapid translocation and insertion of the epithelial Na+ channel in
1190 response to RhoA signaling. J. Biol. Chem. 281, 26520–26527.
1191 Pochynyuk, O., Staruschenko, A., Bugaj, V., Lagrange, L., Stockand, J.D., 2007.
1192 Quantifying RhoA facilitated trafficking of the epithelial Na+ channel toward the
1193 plasma membrane with total internal reflection fluorescence-fluorescence
1194 recovery after photobleaching. J. Biol. Chem. 282, 14576–14585.
1195 Razandi, M., Oh, P., Pedram, A., Schnitzer, J., Levin, E.R., 2002. ERs associate with and
1196 regulate the production of caveolin: implications for signaling and cellular
1197 actions. Mol. Endocrinol. 16, 100–115.

1198Razandi, M., Pedram, A., Levin, E.R., 2010. Heat shock protein 27 is required for sex
1199steroid receptor trafficking to and functioning at the plasma membrane. Mol.
1200Cell. Biol. 30, 3249–3261.
1201Revankar, C.M., Cimino, D.F., Sklar, L.A., Arterburn, J.B., Prossnitz, E.R., 2005. A
1202transmembrane intracellular estrogen receptor mediates rapid cell signaling.
1203Science 307, 1625–1630.
1204Ring, A.M., Leng, Q., Rinehart, J., Wilson, F.H., Kahle, K.T., Hebert, S.C., Lifton, R.P.,
12052007. An SGK1 site in WNK4 regulates Na+ channel and K+ channel activity and
1206has implications for aldosterone signaling and K+ homeostasis. Proc. Natl. Acad.
1207Sci. USA 104, 4025–4029.
1208Rizzo, M.A., Piston, D.W., 2003. Regulation of beta cell glucokinase by S-
1209nitrosylation and association with nitric oxide synthase. J. Cell Biol. 161, 243–
1210248.
1211Robert-Nicoud, M., Flahaut, M., Elalouf, J.M., Nicod, M., Salinas, M., Bens, M., Doucet,
1212A., Wincker, P., Artiguenave, F., Horisberger, J.D., Vandewalle, A., Rossier, B.C.,
1213Firsov, D., 2001. Transcriptome of a mouse kidney cortical collecting duct cell
1214line: effects of aldosterone and vasopressin. Proc. Natl. Acad. Sci. USA 98, 2712–
12152716.
1216Romagni, P., Rossi, F., Guerrini, L., Quirini, C., Santiemma, V., 2003. Aldosterone
1217induces contraction of the resistance arteries in man. Atherosclerosis 166, 345–
1218349.
1219Rubino, D., Driggers, P., Arbit, D., Kemp, L., Miller, B., Coso, O., Pagliai, K., Gray, K.,
1220Gutkind, S., Segars, J., 1998. Characterization of Brx, a novel Dbl family member
1221that modulates estrogen receptor action. Oncogene 16, 2513–2526.
1222Rykx, A., De Kimpe, L., Mikhalap, S., Vantus, T., Seufferlein, T., Vandenheede, J.R., Van
1223Lint, J., 2003. Protein kinase D: a family affair. FEBS Lett. 546, 81–86.
1224Sansom, S.C., O’Neil, R.G., 1986. Effects of mineralocorticoids on transport properties
1225of cortical collecting duct basolateral membrane. Am. J. Physiol. 251, F743–
1226F757.
1227Schmidt, B.M., Oehmer, S., Delles, C., Bratke, R., Schneider, M.P., Klingbeil, A.,
1228Fleischmann, E.H., Schmieder, R.E., 2003. Rapid nongenomic effects of
1229aldosterone on human forearm vasculature. Hypertension 42, 156–160.
1230Schmidt, B.M., Sammer, U., Fleischmann, I., Schlaich, M., Delles, C., Schmieder, R.E.,
12312006. Rapid nongenomic effects of aldosterone on the renal vasculature in
1232humans. Hypertension 47, 650–655.
1233Shibata, S., Nagase, M., Yoshida, S., Kawarazaki, W., Kurihara, H., Tanaka, H.,
1234Miyoshi, J., Takai, Y., Fujita, T., 2008. Modification of mineralocorticoid receptor
1235function by Rac1 GTPase: implication in proteinuric kidney disease. Nat. Med.
123614, 1370–1376.
1237Shimkets, R.A., Warnock, D.G., Bositis, C.M., Nelson-Williams, C., Hansson, J.H.,
1238Schambelan, M., Gill Jr., J.R., Ulick, S., Milora, R.V., Findling, J.W., et al., 1994.
1239Liddle’s syndrome: heritable human hypertension caused by mutations in the
1240beta subunit of the epithelial sodium channel. Cell 79, 407–414.
1241Sinnett-Smith, J., Zhukova, E., Hsieh, N., Jiang, X., Rozengurt, E., 2004. Protein kinase
1242D potentiates DNA synthesis induced by Gq-coupled receptors by increasing the
1243duration of ERK signaling in swiss 3T3 cells. J. Biol. Chem. 279, 16883–16893.
1244Slater, S.J., Kelly, M.B., Taddeo, F.J., Larkin, J.D., Yeager, M.D., McLane, J.A., Ho, C.,
1245Stubbs, C.D., 1995. Direct activation of protein kinase C by 1 alpha, 25-
1246dihydroxyvitamin D3. J. Biol. Chem. 270, 6639–6643.
1247Snyder, P.M., Olson, D.R., Thomas, B.C., 2002. Serum and glucocorticoid-regulated
1248kinase modulates Nedd4-2-mediated inhibition of the epithelial Na+ channel. J.
1249Biol. Chem. 277, 5–8.
1250Snyder, P.M., Olson, D.R., Kabra, R., Zhou, R., Steines, J.C., 2004. CAMP and serum and
1251glucocorticoid-inducible kinase (SGK) regulate the epithelial Na(+) channel
1252through convergent phosphorylation of Nedd4-2. J. Biol. Chem. 279, 45753–
125345758.
1254Sober, S., Laan, M., Annilo, T., 2010. MicroRNAs miR-124 and miR-135a are potential
1255regulators of the mineralocorticoid receptor gene (NR3C2) expression. Biochem.
1256Biophys. Res. Commun. 391, 727–732.
1257Soundararajan, R., Melters, D., Shih, I.C., Wang, J., Pearce, D., 2009. Epithelial sodium
1258channel regulated by differential composition of a signaling complex. Proc. Natl.
1259Acad. Sci. USA 106, 7804–7809.
1260Soundararajan, R., Wang, J., Melters, D., Pearce, D., 2010. Glucocorticoid-induced
1261Leucine zipper 1 stimulates the epithelial sodium channel by regulating serum-
1262and glucocorticoid-induced kinase 1 stability and subcellular localization. J.
1263Biol. Chem. 285, 39905–39913.
1264Speake, P.F., Glazier, J.D., Greenwood, S.L., Sibley, C.P., 2010. Aldosterone and
1265cortisol acutely stimulate Na+/H+ exchanger activity in the syncytiotrophoblast
1266of the human placenta: effect of fetal sex. Placenta 31, 289–294.
1267Staruschenko, A., Patel, P., Tong, Q., Medina, J.L., Stockand, J.D., 2004. Ras activates
1268the epithelial Na(+) channel through phosphoinositide 3-OH kinase signaling. J.
1269Biol. Chem. 279, 37771–37778.
1270Staruschenko, A., Pochynyuk, O.M., Tong, Q., Stockand, J.D., 2005. Ras couples
1271phosphoinositide 3-OH kinase to the epithelial Na+ channel. Biochim. Biophys.
1272Acta 1669, 108–115.
1273Stockand, J.D., Meszaros, J.G., 2003. Aldosterone stimulates proliferation of cardiac
1274fibroblasts by activating Ki-RasA and MAPK1/2 signaling. Am. J. Physiol. Heart
1275Circ. Physiol. 284, H176–H184.
1276Stolte, H., Wiederholt, M., Fuchs, G., Hierholzer, K., 1969. Time course of
1277development of transtubular sodium concentration differences in proximal
1278surface tubules of the rat kidney. Micropuncture experiments in intact and
1279adrenalectomized rats. Pflugers Arch. 313, 252–270.
1280Su, L.F., Knoblauch, R., Garabedian, M.J., 2001. Rho GTPases as modulators of the
1281estrogen receptor transcriptional response. J. Biol. Chem. 276, 3231–3237.
1282Sweiry, J.H., Binder, H.J., 1989. Characterization of aldosterone-induced potassium
1283secretion in rat distal colon. J. Clin. Invest. 83, 844–851.

R. Dooley et al. / Molecular and Cellular Endocrinology xxx (2011) xxx–xxx 11

MCE 7946 No. of Pages 13, Model 5G

26 July 2011

Please cite this article in press as: Dooley, R., et al. Non-genomic actions of aldosterone: From receptors and signals to membrane targets. Molecular and
Cellular Endocrinology (2011), doi:10.1016/j.mce.2011.07.019

http://dx.doi.org/10.1016/j.mce.2011.07.019


1284 Tong, Q., Booth, R.E., Worrell, R.T., Stockand, J.D., 2004. Regulation of Na+ transport
1285 by aldosterone: signaling convergence and cross talk between the PI3-K and
1286 MAPK1/2 cascades. Am. J. Physiol. Renal Physiol. 286, F1232–F1238.
1287 Tsybouleva, N., Zhang, L., Chen, S., Patel, R., Lutucuta, S., Nemoto, S., DeFreitas, G.,
1288 Entman, M., Carabello, B.A., Roberts, R., Marian, A.J., 2004. Aldosterone, through
1289 novel signaling proteins, is a fundamental molecular bridge between the
1290 genetic defect and the cardiac phenotype of hypertrophic cardiomyopathy.
1291 Circulation 109, 1284–1291.
1292 Uhrenholt, T.R., Schjerning, J., Hansen, P.B., Norregaard, R., Jensen, B.L., Sorensen,
1293 G.L., Skott, O., 2003. Rapid inhibition of vasoconstriction in renal afferent
1294 arterioles by aldosterone. Circ. Res. 93, 1258–1266.
1295 Urbach, V., Van Kerkhove, E., Maguire, D., Harvey, B.J., 1996. Rapid activation of
1296 KATP channels by aldosterone in principal cells of frog skin. J. Physiol. 491 (Pt
1297 1), 111–120.
1298 Ushio-Fukai, M., 2009. Vascular signaling through G protein-coupled receptors: new
1299 concepts. Curr. Opin. Nephrol. Hypertens. 18, 153–159.
1300 Van Lint, J., Rykx, A., Maeda, Y., Vantus, T., Sturany, S., Malhotra, V., Vandenheede,
1301 J.R., Seufferlein, T., 2002. Protein kinase D: an intracellular traffic regulator on
1302 the move. Trends Cell Biol. 12, 193–200.
1303 Vicent, G.P., Ballare, C., Nacht, A.S., Clausell, J., Subtil-Rodriguez, A., Quiles, I., Jordan,
1304 A., Beato, M., 2006. Induction of progesterone target genes requires activation of
1305 Erk and Msk kinases and phosphorylation of histone H3. Mol. Cell 24, 367–381.
1306 Wang, W.H., Giebisch, G., 2009. Regulation of potassium (K) handling in the renal
1307 collecting duct. Pflugers Arch. 458, 157–168.
1308 Watts 3rd, B.A., George, T., Good, D.W., 2006. Aldosterone inhibits apical NHE3 and
1309 HCO�3 absorption via a nongenomic ERK-dependent pathway in medullary thick
1310 ascending limb. Am. J. Physiol. Renal Physiol. 291, F1005–F1013.
1311 Webster, J.C., Jewell, C.M., Bodwell, J.E., Munck, A., Sar, M., Cidlowski, J.A., 1997.
1312 Mouse glucocorticoid receptor phosphorylation status influences multiple
1313 functions of the receptor protein. J. Biol. Chem. 272, 9287–9293.
1314 Wehling, M., Ulsenheimer, A., Schneider, M., Neylon, C., Christ, M., 1994. Rapid
1315 effects of aldosterone on free intracellular calcium in vascular smooth muscle
1316 and endothelial cells: subcellular localization of calcium elevations by single
1317 cell imaging. Biochem. Biophys. Res. Commun. 204, 475–481.

1318Will, P.C., Lebowitz, J.L., Hopfer, U., 1980. Induction of amiloride-sensitive
1319sodium transport in the rat colon by mineralocorticoids. Am. J. Physiol.
1320238, F261–F268.
1321Willette, R.N., Eybye, M.E., Olzinski, A.R., Behm, D.J., Aiyar, N., Maniscalco, K.,
1322Bentley, R.G., Coatney, R.W., Zhao, S., Westfall, T.D., Doe, C.P., 2009.
1323Differential effects of p38 mitogen-activated protein kinase and
1324cyclooxygenase 2 inhibitors in a model of cardiovascular disease. J.
1325Pharmacol. Exp. Ther. 330, 964–970.
1326Winter, D.C., Schneider, M.F., O’Sullivan, G.C., Harvey, B.J., Geibel, J.P., 1999. Rapid
1327effects of aldosterone on sodium–hydrogen exchange in isolated colonic crypts.
1328J. Membr. Biol. 170, 17–26.
1329Winter, C., Schulz, N., Giebisch, G., Geibel, J.P., Wagner, C.A., 2004. Nongenomic
1330stimulation of vacuolar H+-ATPases in intercalated renal tubule cells by
1331aldosterone. Proc. Natl. Acad. Sci. USA 101, 2636–2641.
1332Wu, C.C., Wu, X., Han, J., Sun, P., 2010. P38gamma regulates UV-induced checkpoint
1333signaling and repair of UV-induced DNA damage. Protein Cell 1, 573–583.
1334Yoo, D., Kim, B.Y., Campo, C., Nance, L., King, A., Maouyo, D., Welling, P.A., 2003. Cell
1335surface expression of the ROMK (Kir 1.1) channel is regulated by the
1336aldosterone-induced kinase, SGK-1, and protein kinase A. J. Biol. Chem. 278,
133723066–23075.
1338Yoo, D., Flagg, T.P., Olsen, O., Raghuram, V., Foskett, J.K., Welling, P.A., 2004.
1339Assembly and trafficking of a multiprotein ROMK (Kir 1.1) channel complex by
1340PDZ interactions. J. Biol. Chem. 279, 6863–6873.
1341Yun, C.C., Palmada, M., Embark, H.M., Fedorenko, O., Feng, Y., Henke, G., Setiawan, I.,
1342Boehmer, C., Weinman, E.J., Sandrasagra, S., Korbmacher, C., Cohen, P., Pearce,
1343D., Lang, F., 2002. The serum and glucocorticoid-inducible kinase SGK1 and the
1344Na+/H+ exchange regulating factor NHERF2 synergize to stimulate the renal
1345outer medullary K+ channel ROMK1. J. Am. Soc. Nephrol. 13, 2823–2830.
1346Zeng, W.Z., Li, X.J., Hilgemann, D.W., Huang, C.L., 2003. Protein kinase C inhibits
1347ROMK1 channel activity via a phosphatidylinositol 4,5-bisphosphate-
1348dependent mechanism. J. Biol. Chem. 278, 16852–16856.
1349Zheng, F.F., Wu, R.C., Smith, C.L., O’Malley, B.W., 2005. Rapid estrogen-induced
1350phosphorylation of the SRC-3 coactivator occurs in an extranuclear complex
1351containing estrogen receptor. Mol. Cell. Biol. 25, 8273–8284.

1352

12 R. Dooley et al. / Molecular and Cellular Endocrinology xxx (2011) xxx–xxx

MCE 7946 No. of Pages 13, Model 5G

26 July 2011

Please cite this article in press as: Dooley, R., et al. Non-genomic actions of aldosterone: From receptors and signals to membrane targets. Molecular and
Cellular Endocrinology (2011), doi:10.1016/j.mce.2011.07.019

http://dx.doi.org/10.1016/j.mce.2011.07.019

	Non-genomic actions of aldosterone: From receptors and signals to membrane targets.

