Royal College of Surgeons in Ireland
viruses-11-01089.pdf (1.21 MB)

Pseudomonas aeruginosa PA5oct jumbo phage impacts planktonic and biofilm population and reduces its host virulence

Download (1.21 MB)
journal contribution
posted on 2022-07-29, 10:51 authored by Tomasz Olszak, Katarzyna Danis-Wlodarczyk, Michal Arabski, Grzegorz Gula, Barbara MacIejewska, Slawomir Wasik, Cédric Lood, Gerard Higgins, Brian HarveyBrian Harvey, Rob Lavigne, Zuzanna Drulis-Kawa
The emergence of phage-resistant mutants is a key aspect of lytic phages-bacteria interaction and the main driver for the co-evolution between both organisms. Here, we analyze the impact of PA5oct jumbo phage treatment on planktonic/cell line associated and sessile P. aeruginosa population. Besides its broad-spectrum activity and efficient bacteria reduction in both airway surface liquid (ASL) model, and biofilm matrix degradation, PA5oct appears to persist in most of phage-resistant clones. Indeed, a high percentage of resistance (20/30 clones) to PA5oct is accompanied by the presence of phage DNA within bacterial culture. Moreover, the maintenance of this phage in the bacterial population correlates with reduced P. aeruginosa virulence, coupled with a sensitization to innate immune mechanisms, and a significantly reduced growth rate. We observed rather unusual consequences of PA5oct infection causing an increased inflammatory response of monocytes to P. aeruginosa. This phenomenon, combined with the loss or modification of the phage receptor, makes most of the phage-resistant clones significantly less pathogenic in in vivo model. These findings provide new insights into the general knowledge of giant phages biology and the impact of their application in phage therapy.


Research grants 2012/04/M/NZ6/00335 and 2015/18/M/NZ6/00413 of National Science Centre, Poland.

GOA grant entitled “Phage Biosystems” from the KU Leuven

SB PhD fellowship from FWO Vlaanderen (1S64718N)



The original article is available at

Published Citation

Olszak T. et al. Pseudomonas aeruginosa PA5oct jumbo phage impacts planktonic and biofilm population and reduces its host virulence. Viruses. 2019;11(12):1089

Publication Date

23 November 2019

PubMed ID



  • Beaumont Hospital
  • Molecular Medicine

Research Area

  • Respiratory Medicine
  • Endocrinology




  • Published Version (Version of Record)