marinedrugs-18-00074-v2 Coral Gonzalez Sheehy.pdf (3.88 MB)

The incorporation of marine coral microparticles into collagen-based scaffolds promotes osteogenesis of human mesenchymal stromal cells via calcium ion signalling.

Download (3.88 MB)
journal contribution
posted on 18.01.2021, 16:56 by Eamon Sheehy, Mark Lemoine, Declan Clarke, Arlyng Gonzalez Vazquez, Fergal O'Brien
Composite biomaterial scaffolds consisting of natural polymers and bioceramics may offer an alternative to autologous grafts for applications such as bone repair. Herein, we sought to investigate the possibility of incorporating marine coral microparticles into a collagen-based scaffold, a process which we hypothesised would enhance the mechanical properties of the scaffold as well its capacity to promote osteogenesis of human mesenchymal stromal cells. Cryomilling and sieving were utilised to achieve coral microparticles of mean diameters 14 µm and 64 µm which were separately incorporated into collagen-based slurries and freeze-dried to form porous scaffolds. X-ray diffraction and Fourier transform infrared spectroscopy determined the coral microparticles to be comprised of calcium carbonate whereas collagen/coral composite scaffolds were shown to have a crystalline calcium ethanoate structure. Crosslinked collagen/coral scaffolds demonstrated enhanced compressive properties when compared to collagen only scaffolds and also promoted more robust osteogenic differentiation of mesenchymal stromal cells, as indicated by increased expression of bone morphogenetic protein 2 at the gene level, and enhanced alkaline phosphatase activity and calcium accumulation at the protein level. Only subtle differences were observed when comparing the effect of coral microparticles of different sizes, with improved osteogenesis occurring as a result of calcium ion signalling delivered from collagen/coral composite scaffolds. These scaffolds, fabricated from entirely natural sources, therefore show promise as novel biomaterials for tissue engineering applications such as bone regeneration.

Funding

EU BlueHuman Intereg Atlantic Area Project (EAPA_151/2016)

Enterprise Ireland Innovation Voucher (IV-2017-3259)

History

Associated research data files

Supplementary materials available at: http://www.mdpi.com/1660-3397/18/2/74/s1

Comments

The original article is available at https://www.mdpi.com/

Published Citation

Sheehy EJ, Lemoine M, Clarke D, Gonzalez Vazquez A, O'Brien FJ. The incorporation of marine coral microparticles into collagen-based scaffolds promotes osteogenesis of human mesenchymal stromal cells via calcium ion signalling. Marine Drugs. 2020;18(2):74.

Publication Date

23 January 2020

PubMed ID

31979233

Department/Unit

  • Amber (Advanced Material & Bioengineering Research) Centre
  • Anatomy and Regenerative Medicine
  • RCSI Tissue Engineering Group (TERG)

Research Area

  • Chemistry and Pharmaceutical Sciences
  • Biomaterials and Regenerative Medicine
  • Immunity, Infection and Inflammation

Publisher

MDPI

Version

  • Published Version (Version of Record)

Licence

Exports