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Summary 

   

Background: Psychosis is a multifactorial disorder and one among the top 15 causes 

of disability worldwide.  Availability of complex, expensive and incomplete treatment 

modalities for psychosis increases the need of more investigations in understanding 

the pathophysiology and prevent development of the disease at an early stage. The 

current thesis focuses on the therapeutic role of omega-3 fatty acids (FAs) and 

investigates the biological mechanism underpinning the omega-3 related clinical 

outcome at clinical high risk (CHR) of psychosis. 

Methods: Initially, a systematic literature was performed to understand the existing 

evidence of omega-3 associated improvement in functional outcome in CHR 

participants. Then using baseline and follow-up plasma samples of the CHR subjects 

from the NEURAPRO clinical trial, the role of plasma immune markers and the plasma 

proteomic pathways on omega-3 associated improvement in clinical outcome was 

investigated. A total of 285 CHR participants aged 18.97 ± 4.49 years (mean ± SD) 

were included in this study. The molecular percentage of erythrocyte membrane FAs 

levels which are the markers of dietary omega-3 intake were quantified using the gas-

chromatography. First the mediating role of plasma immune markers on omega-3 

associated clinical outcomes was investigated. Secondly, using support vector 

machine learning techniques, we evaluated whether a combination of biological and 

clinical variables could predict future functional outcome in CHR individuals. Finally, 

using mass-spectrometry based proteomic analysis at baseline and 6-month follow-

up plasma samples, we investigated the plasma proteomic pathways associated with 

omega-3 FAs and the mediating role of plasma proteins on omega-3 associated 

clinical improvement in psychosis.  

Results: The systematic provided a mixed results regarding the association of omega-

3 FAs with functional outcome in CHR state. In the NEURAPRO clinical trial, plasma 

immune markers expressed an inverse association with omega-3 FAs both in cross-

sectional and longitudinal analysis. Although plasma immune markers did not provide 

any mediating effect on omega-3 associated clinical outcome in CHR participants. In 

the prediction models, baseline parameters of both clinical and biological markers did 

not predict the functional outcome and addition of biomarker data with clinical data did 
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not improve prediction of 12-month functional outcome compared to the model based 

on the baseline clinical data alone. Finally, 6-month change in okmegha-3 FAs 

associated significantly with plasma proteins of complement and coagulation 

pathways. Furthermore, the complement and coagulation pathway proteins showed a 

significant mediating effect on omega-3 associated reduction in psychotic symptoms 

and improvement in functional outcome and cognition in CHR participants.  

Conclusion: Overall, the thesis has provided vital biological and clinical effects of 

omega-3 FAs in CHR state. The immune-assay results indicated a significant anti-

inflammatory property of omega-3 FAs on plasma immune markers. Our proteomic 

analysis for the first time, has provided a relationship of complement and coagulation 

pathway proteins with functional outcome in CHR state. Furthermore, the mediation 

analysis indicated the involvement of complement and coagulation protein associated 

molecular mechanisms in omega-3 related clinical improvement in CHR state.  
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Chapter 1: Introduction 

 

1.1. Psychosis- An introduction 

The World Health Organization (WHO) has estimated that more than 16 % of the 

world’s population are affected by mental or addictive disorders, equally involving both 

genders (1, 2). Despite the ongoing drive to predict and prevent psychiatric disorders, 

translation into real-world effects has been very slow (3). Schizophrenia (here after 

psychosis) is among the top 15 leading causes of disability worldwide (4). The WHO 

has estimated that the direct costs for psychosis account for 7% to 12% of the gross 

national product (5), despite its relatively low life-time prevalence of a median of 4.0 

per 1,000 people (6).  Psychosis is a multifactorial psychiatric disorder characterized 

by changes in thoughts, feelings, and behavior. Clinical symptoms of psychosis are 

classified into three major domains of symptoms: positive, negative, and cognitive. 

The positive symptoms such as delusion, hallucination and conceptual disorganization 

are the major reason for patients to seek help. In addition, psychosis also 

demonstrates negative symptoms such as apathy, anhedonia, blunted affect and 

poverty of speech (7). The symptoms of psychosis start usually in adolescence or early 

adulthood and in the majority of subjects continue to cause long-term functional 

impairment (8).  Biological, behavioral and neuroimaging studies of patients with 

psychosis have demonstrated a broad array of differences from healthy controls (9-

11). For instance, several inflammatory mediators that are involved in 

neurodevelopment such as Interleukin (IL)-1β, IL-6, IL-8 are found to be abnormal in 

psychosis patients compared to controls (12, 13). Neuroimaging studies have revealed 

decreased cortical thickness, reduced global gyrification and altered neural 

connectivity in psychosis patients compared to healthy controls (14). Currently, two 

widely established systems of classifications are used for the diagnosis of psychiatric 

disorders, the Diagnostic and Statistical Manual of Mental Disorders (DSM) of the 

American Psychiatric Association and the International classification for Diseases 

(ICD) published by WHO (15).  

1.2. High risk state in Psychosis 

The clinical stages of psychosis can be divided into four stages and all have their own 

relative risk of progressing to the next level in a critical timeline (16, 17). The first stage 
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is considered as the clinical high risk (CHR)/ Ultra High Risk (UHR) that has an 18-

30% increased risk of progressing to the next level within the first 6 months according 

to different studies and systematic reviews (18, 19). The risk of progression almost 

doubles within the first three years of the CHR stage (18, 19). The term ‘prodrome’ is 

a retrospective term indicating the duration between the first observed change in a 

person’s experience until the first diagnosis of psychosis (20). The current concept of 

prodromal phase encompasses the conditions such as ‘at-risk mental state’ (ARMS), 

UHR and CHR (21). The exact criteria for the CHR/UHR state generally comprise of 

a subgroup of help-seeking individuals aged between 14 to 35 years (19, 21).  The 

CHR state is clinically assessed using different assessment scales, which include 

Comprehensive Assessment of At Risk Mental States (CAARMS), the Structured 

Interview for Psychosis-risk Syndrome and the Basel Screening Instrument for 

Psychosis (22). Although the definition of CHR slightly varies based on the tools, it 

generally comprises the following two subgroup of populations: 

i) Subgroups subjects with positive psychotic symptoms that have reduced 

intensity and/or reduced duration, and  

ii) Subgroup with a positive family history of psychosis or schizotypal 

personality disorder with functional impairment 

The duration of untreated psychosis (DUP), the period between onset of symptoms 

until initiation of appropriate treatment by a healthcare professional, is one of the main 

determinants for successful treatment in psychosis (23-26). A shorter DUP is 

associated with clinical recovery and functional improvement and a longer DUP is 

associated with poor therapeutic response in psychosis (23-26). 

The second stage, termed first episode of psychosis (FEP), is the stage where 

psychotic symptoms qualify for a psychosis and the first psychotic episode occurs (27). 

FEP most commonly occurs in late adolescence or early adulthood and the psychiatric 

disability at this stage significantly derails the patient from his normal trajectory of 

psychosocial development resulting in disturbance of the functional status of the 

patient (28). As the best response (almost 75%) to antipsychotics is achieved in this 

stage, FEP carries important clinical value (29, 30). Evidence from follow-up studies 

point to the existence of a narrow period during FEP that could determine the long-

term outcome in the treatment of schizophrenia (31-35). In the last few decades 
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various models of early intervention programs have been initiated and showed some 

benefits in terms of remission rate, adherence, and retention in treatment (36-38). The 

third and fourth stages of psychosis are determined based on the treatment response 

to antipsychotics as remission and refractory phases, respectively (16, 17).   

1.3. Functional impairment in early psychosis 

Functional capacity is an objective measurement of an individual to perform various 

basic tasks that are needed for everyday life (39). In the field of psychosis, an 

increasing interest to develop more comprehensive models focuses on functional 

recovery (40-42) and evolved over the past number of years. Accumulating evidence 

suggests that functional recovery is influenced by the severity of positive psychotic 

symptoms as well as by other disease related aspects such as neurocognitive 

performance, and mood disorder and negative symptoms (43-47). Additionally, social, 

family, and environmental events contribute substantially to functional recovery 

beyond clinical manifestation of psychosis (43, 46, 48). Recent studies of CHR 

participants have increasingly moved beyond the focus on transition to psychosis, to 

explore the association of clinical symptoms to real-world functioning (49, 50) and 

other non-psychotic psychiatric outcomes (51, 52). A number of studies have focused 

on the presence of functional impairment in psychosis subjects compared to healthy 

individuals including those who convert to psychosis and those who did not (49, 50, 

53-56). Cornblatt et al, reported that among social and role functioning, social 

functioning could be a potential marker of psychosis as it is not affected by anti-

psychotic treatment (49). In first-episode non-affective psychosis patients, a five-year 

follow-up study indicated that normal social functioning at baseline could predict good 

treatment response to anti-psychotics (53). Another study reported that functioning 

status in the CHR state can be used as a diagnostic tool to reduce heterogeneity and 

to decrease false positive cases (50). In addition, in CHR participants’ functioning 

status was demonstrated to be a reliable prognostic marker (53-56). For these 

reasons, it is important to understand beyond the concept of transition, and to 

additionally consider investigating other clinical outcome, and perhaps more 

importantly focus on functional outcome in the CHR state (40-43, 46, 48).  
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1.4. Importance of early intervention in psychosis 

Treatment of schizophrenia is complex, expensive, and provides partial, limited 

improvement in two‐thirds of sufferers (6). Treatment response is best for those in the 

early stage of psychosis, but unfortunately, due to treatment non‐adherence, the 

majority of patients undergo relapse within a few years. With every new relapse, 

treatment resistance increases (57, 58). Thus, over its course, psychotic disorders 

have low overall functional recovery rates (34, 59), and remain among the leading 

causes of disability worldwide (60). A recent meta-analysis has estimated that even 

among CHR subjects who do not undergo transition to psychotic disorder (PD), less 

than half show remission of their symptoms over time (51). In addition to this, the 

observation of worse treatment outcomes in patients with long DUP led to the 

proposition that prevention of transition at an early stage might be substantially more 

beneficial than a standard treatment after the development of psychosis (51, 57, 61-

65).  

Early intervention strategies thus introduced to prevent psychosis are distinct from the 

standard approach by two major elements: First ‘the early detection’ which is defined 

as identification of a population who is likely to develop a psychotic disorder OR the 

identification of people who already have a psychotic disorder and have not yet 

received adequate treatment (57, 61). Second the ‘phase-specific treatment’, defined 

as psychological, social and physical interventions that are specifically targeted at 

people in the early stages of schizophrenia or first episode psychotic disorder (66). 

Early detection and phase-specific treatment can be provided separately or as a 

supplement to existing standard psychiatric care (67). Several early intervention 

strategies have been followed aiming to treat patients in the CHR phase of psychosis 

and preventing the development of psychosis. This includes nutritive supplements, 

alternative medicines, and psycho-social interventions (57). A Cochrane database 

systematic review recently evaluated the safety and efficacy of available early 

intervention strategies in the prodromal phase and found that the intervention with 

omega-3 FAs provided a low-quality effectiveness towards prevention of psychosis, 

whereas other intervention strategies did not provide any effective results (57).  
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1.5 Omega-3 fatty acids (FAs) and psychosis 

1.5.1. Biological role of omega-3 FAs in the brain 

Lipids are integral components of the brain and are necessary for the development 

and functioning of the neural network. The brain contains 60% lipids in its dry weight, 

and more than half of its lipids are polyunsaturated fatty acids (PUFAs) (68, 69). In 

humans, long chain PUFAs such as eicosapentaenoic acid [EPA, 20:5 (with 20 carbon 

chain and 5 double bonds)] and docosahexaenoic acid (DHA, 22:6) have to be either 

converted from short chain fatty acids (FAs) through a process called elongation in the 

liver or should be taken as long chain FAs in the diet (70). Preclinical studies have 

shown that EPAs and DHAs are vital for maintaining neuronal membrane integrity and 

exert neurotrophic activities in the brain (71). Notably, omega-3 FAs also participate 

in synaptic transmission and pruning (7, 72-74). Recent investigations also have 

identified possible anti-inflammatory properties of omega-3 FA metabolites (75, 76).  

1.5.2. Omega-3 FAs in Psychiatric disorders 

In healthy infants, the plasma levels of omega-3 FAs increase sharply from the last 

trimester of gestation to the first 6-10 months after birth (77-79). Clinical studies with 

omega-3 FA supplementation showed beneficial results in the early stage of 

development (80-86). Moreover, omega-3 FA supplementation has been shown to 

improve clinical symptoms of anxiety in a healthy population by blunting the plasma 

levels of epinephrine and adreno-cortico-tropic hormone (ACTH) (76, 87-91). Such 

beneficial results in healthy participants increased the interest in omega-3 FAs being 

used as potential therapeutic agents in psychiatric disorder especially in major 

depressive disorder and psychosis (92, 93). In relation to psychosis, a causal 

relationship between increased polyunsaturated fatty acids and decreased risk of 

psychosis was observed (94, 95). These observations led to the membrane 

phospholipid hypothesis where an imbalance in PUFAs was suspected to be a cause 

for the development of abnormal neurotransmission and thereby resulting in 

symptoms of psychosis (68, 96-108). The involvement of PUFAs in the regulation of 

synaptic pruning activity during the developmental stage provided preliminary 

evidence for a mechanistic involvement of PUFAs in the development of psychosis 

(109-111). In line with these observations, Madore et al. observed that maternal 
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omega-3 PUFA deficiency drives microglia associated synaptic pruning in rodents 

leading to cognitive impairment in the offspring (110). Also, they pointed out that the 

omega-3 FAs influence the synaptic pruning through modifying complement pathway 

proteins, the involvement of which is well known in psychosis (112-114). These 

observations further support the possibility of omega-3 associated therapeutic effects 

in the early stages of psychosis.  

1.5.3. Omega-3 FAs in the prevention of psychosis 

Omega-3 FAs supplementation is one of the many non-pharmacological interventions 

that have been studied in CHR individuals in the prevention of transition to psychosis 

(115). So far, only two clinical studies have been conducted in CHR subjects to 

evaluate the preventive role of omega-3 FAs. In the first clinical trial, the Vienna High 

risk study (VHR), 12 weeks of supplementation with 1.2g/d omega-3 FAs significantly 

reduced the transition rate in the omega-3 FA groups compared to controls (116). 

Furthermore, the same population showed a reduced risk of progression to psychiatric 

morbidity in long-term follow-up (117). In contrast, the results of the second omega-3 

based clinical trial in CHR subjects (the NEURAPRO study) did not find the same 

beneficial effects (118, 119). These inconsistent results raise questions concerning 

the therapeutic effect of omega-3 FAs and point to a need to further understand 

potential biological mechanisms underlining this nutritional intervention in early 

psychosis. 

1.6. Complement component proteins 

1.6.1. Introduction 

Complement proteins are membrane bound proteins produced mainly by the liver and 

play a central role in the innate immune response. Under physiological conditions 

complement proteins present as inactive zymogens and are sequentially cleaved and 

activated in a reaction cascade to maintain homeostasis. Complement proteins act 

through three distinct cascades of reactions called the classical, lectin and alternative 

pathways, which finally converge into one terminal pathway. This involves the 

complement protein 3 (C3), which is the most abundant complement protein found in 

blood. Activation of C3 leads to formation of C3a, C3b, C5a and the membrane attack 

complex (MAC) (105). Apart from this traditional, C3 dependant pathway, another 

peripheral pathway also has been identified that forms the MAC in a C3 independent 
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manner. Recently, a novel intracellular complement system called ‘the complosome’ 

has been discovered in cells such as lymphocytes, monocytes and endothelial cells 

(120). Through their inflammatory and non-inflammatory actions, the complement 

proteins seem to influence the brain and related activities (121). The extracellular and 

intracellular pathways of complement proteins are described in Figure 1.1. 

Figure 1.1. The extracellular and intracellular pathways of complement proteins. 
The flow chart depicts extracellular and intracellular pathways identified with complement proteins 
resulting in final activation of membrane attack complex (MAC). The extracellular pathway is further 
divided into two based on the involvement of Complement 3 proteins.  The intracellular pathway mainly 
involves complement protein containing vesicle which in autocrine fashion activates MAC. 

1.6.2. Complement proteins in the brain 

Complement protein activities are noticed at various stages of brain development. For 

instance, localised expression of C1qR, C3, C5 and C3aR1 were recorded during the 

process of neurulation (122). Similarly, expression of C5aR1 and its precursor C5 was 

identified in human embryonic stem cell-derived progenitor cells (123). Cell culture 

studies have demonstrated that the complement proteins C3and C3aR1 control 

collective cell migration in neural crest cells (124). Knockdown mice lacking C3 and 

C3aR1 showed decreased neurogenesis in neocortical and cerebellar regions (125). 

Glial associated complement activity was also found to be involved in synaptic pruning 

activity, which is crucial for brain development and plasticity (126, 127). Furthermore, 

in preclinical studies, a toxicity specific neuroprotective activity of complement proteins 

was observed (128, 129). Recent evidence indicates a role for a C5a induced 
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upregulation of glutamate transporter-1 in microglia to decrease extracellular 

glutamate levels (130). Overall, complement pathway proteins were found to be 

involved in development, maintaining homeostasis, regeneration and repairing 

processes of neurons and glial cells. Hence, any abnormal expression of complement 

proteins could indicate or result in an abnormal development of neural structures.  

1.6.3. Complement proteins in Schizophrenia 

Epidemiological and clinical studies have indicated the association of altered immune 

activities with psychosis (131-137). In 2009, a Genome wide association study 

(GWAS) shed light on complement proteins in the pathophysiology of schizophrenia. 

Several reports from GWAS pointed to a strong association of the extended major 

histocompatibility complex (xMHC) with psychosis (138-146). Recently, fine mapping 

analyses further revealed the involvement of the complement component 4 region of 

the xMHC genome in relation to schizophrenia (113). Following genetic findings, a few 

hypothesis driven studies on peripheral complement proteins in psychosis patients 

provided mixed results. Most of the studies found inconsistent results regarding the 

peripheral C3 and C4 levels in schizophrenia patients (147-152). A few studies have 

investigated plasma C1q protein levels in psychosis and found increased expression 

of C1q and enhanced reactivity in schizophrenia patients (153-155). Provided that our 

knowledge regarding the neuropathology of the disease is limited, the quantification 

of peripheral complement proteins will be useful in understanding their part in the 

pathology of psychosis.  

The rapid development in the field of proteomics provides new opportunities for 

understanding the role of multiple complement pathway proteins at various stages of 

schizophrenia. Our research group has recently reported that thirty-four proteins were 

differentially expressed in children who later developed psychotic experiences 

compared to healthy counterparts. Further, these studies pointed to an association of 

complement and coagulation pathways’ dysregulation with the development of 

psychotic experiences (156). We have also reported an increased expression of 

complement and coagulation proteins in CHR subjects who transitioned to FEP and 

significantly predicted transition to disease (157)(Figure 1.2). As the complement and 

coagulation pathways have well recognized roles in inflammation, we view our findings 
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as reflecting a likely dysregulated inflammatory process in schizophrenia (13, 158, 

159).   

 

Figure 1.2. Schematic representation of clinical and immune markers at early 
stage of psychosis. The picture depicts the biological and clinical events happening during the 

early stage of psychosis. In high-risk of psychosis, decline in functioning happens which is followed by 
development of psychotic symptoms. The existing literature evidence indicate that alteration in immune 
markers such as cytokines and complement proteins at high-risk state predicted the future development 
of psychotic symptoms and functional deterioration.  

 

1.7. Aim and objectives 

The overall aim of this thesis is to investigate the relationship of omega-3 FA 

supplementation to biological parameters (such as plasma immune markers and 

plasma proteins) and to clinical parameters (such as psychotic symptoms, functional 

outcome and cognitive status) in CHR subjects.  

Objective 1 

To review the literature investigating the relationship of dietary omega-3 FAs treatment 

with functional status in CHR subjects. For objective 1, we hypothesised that high 

levels of omega-3 FAs will associate cross sectionally and longitudinally with functional 

improvement in the CHR population.  

Objective 2 

To estimate the immune association of omega-3 supplementation in CHR participants. 

For objective 2, we hypothesised that omega-3 FAs will exert anti-inflammatory 

properties by exerting an inverse relationship with plasma cytokines.  
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Objective 3 

To investigate the mediating role of plasma immune markers on omega-3 associated 

functional improvement in CHR subjects. Here we hypothesised that plasma immune 

markers will, at least partially, mediate the relationship between omega-3 FAs and 

functional outcome.  

Objective 4 

To investigate the combined predictive ability of blood-based biological markers 

including inflammatory cytokines, erythrocyte membrane fatty acids and the plasma 

proteome on functional outcome. In this analysis, our hypothesis was that combining 

the baseline biomarkers relevant to psychosis with the clinical parameters will improve 

the performance of the machine learning based prediction model. 

Objective 5 

To explore the biological pathways that are substantially influenced by change in 

PUFAs (both omega-3 and omega-6). Since there is little literature available regarding 

the omega-3 FAs and associated plasma proteomic pathways, we conducted a 

hypothesis free approach using proteomics for this objective.  

Objective 6  

To identify whether the plasma proteins of complement and coagulation pathways 

mediate the relationship between change in omega-3 PUFAs and clinical outcomes. 

Based on the literature we hypothesised that complement proteins will mediate the 

relationship between omega-3 FAs and clinical outcome in CHR participants. 
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Abstract: 

Introduction: Among different types of poly unsaturated fatty acids, omega-3 fatty 

acids (FAs) play a substantial role in brain development and functioning. This review 

was designed to evaluate and synthesise available evidence regarding omega-3FAs 

and functional outcome in the Ultra high risk (UHR) population. 

Methodology: An electronic search in PubMed, EMBASE, PSYCINFO and 

COCHRANE search engines has been performed for all articles published until 

January 2019. The studies that have data regarding omega-3 FAs and functional 

outcome in UHR population were included. 

Results: Out of 397 non-duplicate citations, 19 articles met selection criteria. These 

articles were from four different primary studies namely the Program of Rehabilitation 

and Therapy (PORT), the North American Prodromal Longitudinal Studies (NAPLS), 

Vienna High risk study (VHR) and the NEURAPRO. The data from the NAPLS study 

found a positive correlation between functional improvement and frequency of dietary 

intake omega-3 FA. Moreover, among the erythrocyte omegs-3 FA only 

eicosapentaenoic acid (EPA) showed a positive correlation with functional score. The 

VHR study found long term improvement in functional outcome in omega-3 group 

compared to control whereas such difference was noticed in the NEURAPRO. In the 

VHR study both omega-3 and omega-6 together predicted the functional improvement 

at 12 weeks. 

Conclusion: The number of studies available remains insufficient and more studies 

with standardized outcome measures in a clinically comparable UHR population would 

be of more value to understand the clinical benefits of omega-3 FAs in the UHR 

population. 
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2.1. Rationale: 

Lipids are an integral component of the brain and are necessary for the 

development and functioning of the neural network. The brain contains 60% lipids in 

its dry weight, and more than half of its lipids are polyunsaturated fatty acids (PUFA) 

(1, 2). Mammals lack the desaturase enzymes which are necessary for producing 

short chain PUFAs such as Linoleic acid (LA) and alpha linoleic acid (ALA), which are 

the precursors for the synthesis of long chain omega-6 and omega-3 PUFA, 

respectively (3-6). Evidence suggest that the efficiency of desaturase enzymes 

required to produce long chain PUFAs particularly that of omega-3 FA are relatively 

low in mammals (4, 6). This was noticed especially in children with inborn error of 

amino-acid metabolism who must consume a low protein diet deficient with very low 

long-chain PUFA content. In such children, intake of low levels of PUFA had little 

impact on synthesis of arachidonic acid (omega-6) but significantly decreased the 

production of plasma and erythrocyte DHA (omega-3) (7). Hence, long-chain omega-

3 fatty acids such as DHA must be supplemented through the diet to maintain 

adequate levels (8). Various preclinical studies have shown that long chain FA such 

as eicosapentaenoic acid (EPA, 20:5) and docosahexaenoic acid (DHA, 22:6) are 

involved in maintaining membrane fluidity, enhancing the activity of peroxisome 

proliferator-activator receptors and in various neurotrophic activities within the brain 

(9). Notably, omega-3 FA participate in synaptic transmission and pruning functions 

which are proposed to be altered in neuropsychiatric disorders (10-13). Recent 

investigations have emphasized the possible anti-inflammatory and therapeutic 

properties of omega-3 FA metabolites such as eicosanoids, E- and D-series resolvins 

and neuroprotectin D1 in the field of psychiatry (14, 15).  

Clinical evidence suggests the beneficial role of PUFA in the early stages of 

neurodevelopment. In healthy infants, the plasma levels of omega-3 FA increase 

sharply until the first 6-10 months after birth (16-19). Further studies on healthy 

subjects have reported clinically beneficial effects of dietary supplementation with 

omega-3 FA in early childhood. For instance, Jensen et al. reported that the children 

of mothers who had received omega-3 supplementation outperformed in tests for 

psychomotor activity, eye-hand coordination and visual acuity. Moreover, the same 

children performed better after 5 years on a test for sustained attention compared to 
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the placebo group (19, 20). Similarly, administering a DHA rich diet to the mothers 

improved mental processing scores, degree of stereopsis and stereo acuity in their 

children (21-25). Such beneficial results further increased the interest of a potential 

therapeutic role of omega-3 FA in neurological and psychiatric disorders. Omega-3 FA 

supplementation has been shown to improve the clinical symptoms of anxiety in a 

healthy population by blunting the plasma levels of epinephrine and 

adrenocorticotropic hormone (ACTH) (15, 26-28). Moreover, placebo-controlled trials 

in patients who had consumed EPA showed delayed onset and lower incidence of 

depression and clinical recovery from anxiety, depression, sleep and suicidal ideation 

(29, 30). These results support a possible clinical relevance of omega-3 FA in 

psychiatric disorders, especially in schizophrenia (31, 32).  

Since early intervention is considered as a gold standard in schizophrenia, 

there is increasing focus on the preventive measures in ultra-high risk (UHR) subjects. 

The UHR status, otherwise known as clinical high risk or at-risk mental status, is 

defined as condition in which the subject has potential prodromal syndromes with a 

30% increased risk of transition to psychotic disorder within 3 years (33-37). Several 

non-pharmacological interventions and nutritional options such as omega-3 

supplements have been studied in UHR with the aim of preventing the development 

of psychosis (35). Therefore, in this review our aim was to evaluate and synthesise 

available evidence concerning the relationship between dietary and erythrocyte 

omega-3 fatty acids with functional outcome in the UHR population. Among various 

clinical outcomes, functional status has been preferred as it is a vital diagnostic 

component and is considered as a reliable prognostic marker in psychosis (38-46). 

Moreover, functional improvement is one of the essential objectives for any therapeutic 

intervention in the field of psychiatry.  
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2.2. Materials and methods  

2.2.1. Protocol and registration 

The protocol for this review is registered on the PROSPERO database 

(Registration number: CRD42019117423).  

2.2.2. Eligibility criteria 

We included all case-control, cohort and randomized controlled studies 

performed in UHR participants and studies published in English were selected. Since 

the erythrocyte membrane PUFA composition closely reflects that of neuronal 

membrane omega-3 composition and is a better indicator of dietary PUFA content 

than plasma omega-3 levels (47-50), the articles with dietary omega-3 PUFA 

measures or erythrocyte omega-3 levels for analysis were included. Studies without 

functional outcome assessment were excluded from the review.  

2.2.3. Information sources and search strategy 

We performed an electronic search in PubMed, EMBASE, PSYCINFO and 

COCHRANE search engines for articles published in English up until January 2019 

(Complete search strategy: please see Appendix 2.10.1).  

iv) Study selection process 

Titles and abstracts were screened independently by two authors (SRS and 

SS). Full-text articles were obtained for the identified records. The articles were then 

segregated based on the type of study and divided into randomized and non-

randomized trials. Studies containing data from the same study population were then 

clustered for data collection.  

2.2.4. Data collection 

Two investigators independently performed the data extraction. Details such as 

type of study, geographical location, corresponding authors and related reference 

articles were collected. Study-specific details such as aim, inclusion and exclusion 

criteria as well as study design were recorded, and data related to outcome measures 

such as that of omega-3 PUFA and functional outcomes at baseline and follow-up 
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stages were recorded (Table 2, 3 & 4). The risk of bias assessment was recorded 

using the Joanna Briggs Institute (JBI) Critical Appraisal Tool and the Cochrane Risk 

of Bias 2 Tool for cross sectional and randomized controlled trials respectively (51, 52) 

(Table 2.3.1). 

 

2.3. Results:  

Figure 2.3.1: PRISMA flow diagram 
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Table: 2.3.1. Risk Assessment of studies 

ROB 2 assessment for individual randomized trials VHR NEURAPRO 

Domain 1 Risk of Bias arising from the randomization process Low Low 

Domain 2 
Risk of bias due to deviations from the intended 

interventions 
Low Low 

Domain 3 Missing outcome data Low Some concerns 

Domain 4 Risk of bias in measuring of the outcome Low Low 

Domain 5 Risk of bias in selection of the reported results Low Low 

Overall risk of bias Low Low 

The Joanna Briggs Institute (JBI) Critical Appraisal Tool 
The 

PORT 
The NAPLS 

Domain 1 
Were the criteria for inclusion in the sample clearly 

defined? 
Yes Yes 

Domain 2 
Were the study subjects and the setting described 

in detail? 
Yes Yes 

Domain 3 
Was the exposure measured in a valid and reliable 

way? 
Yes Unclear 

Domain 4 
Were objective, standard criteria used for 

measurement of the condition? 
Yes Yes 

Domain 5 Were confounding factors identified? Yes Yes 

Domain 6 
Were strategies to deal with confounding factors 

stated? 
Yes Yes 

Domain 7 
Were the outcomes measured in a valid and 

reliable way? 
Yes Yes 

Domain 8 Was appropriate statistical analysis used? Yes Yes 

Overall appraisal Include Include 

 

Our search in PubMed. EMBASE, PSYCINFO, and COCHRANE yielded 397 

non-duplicate citations altogether (Figure 2.3.1). We excluded 375 articles following 

the two-phased screening process and included 22 articles for data extraction. 19 

articles were included in this review that had data for both, omega-3 FA and functional 

scores. These 19 articles were based on data from 4 different primary studies, namely 

the Program of Rehabilitation and Therapy (PORT), the North American Prodromal 

Longitudinal Studies (NAPLS), Vienna High risk study (VHR) and NEURAPRO (Table 

2.3.2).  
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Table 2.3.2. Preliminary details of studies grouped under RCTs and Non-RCTs: 
RCTs- Randomized controlled trials, VHR- Vienna High Risk, PORT, PORT - Program of Recognition 
and Therapy, NAPLS- North American Prodrome Longitudinal Study 

 

Among these, PORT and NAPLS are non-randomized clinical trials (RCTs) 

containing cross-sectional/retrospective data, whereas VHR and NEURAPRO are 

RCTs with follow-up data. All studies except NEURAPRO are uni-centric studies 

conducted predominantly in the Caucasian population. All four studies together consist 

of data of a total of 560 participants between the age of 12 to 40 years. Each study 

used different criteria for recruiting UHR subjects, e.g. based on the Comprehensive 

Assessment of At-risk Mental Status (CAARMS), Structured Interview for Psychosis-

risk syndromes (SIPS) and the Diagnostic and Statistical Manual of Mental Disorder 

(DSM). All these studies considered functional assessment as secondary outcome 

measure (Table 2.3.3). 

i) Non-Randomized controlled trials: 

Two non-RCT studies were found containing data for omega-3 FA and functioning 

scores of the UHR population: PORT and NAPLS (Table 2.3.3). The primary aim of 

the PORT study was to evaluate the role of dietary omega-3 and omega-6 FA levels 

on the transition to psychosis. The participants were between 16 and 30 years of age 

and were selected based on CAARMS scores, who fulfilled any one or more of the 

following three criteria: attenuated psychotic symptoms (APS), brief limited intermittent 

psychotic syndrome (BLIPS) or a vulnerable group with personality disorder in first 

degree relatives (VUL). In addition to the UHR individuals, the study included healthy 

Type of 

the 

study 

Name/place of 

the study 

Availability of data References 

Assessment of 

Dietary omega-3 

PUFA 

Erythrocyte 

omega-3 

measurement 

Functional 

assessment 

RCTs VHR, Vienna - Available Available (53-58) 

NEURAPRO, 

Multicenter 

- Available Available (59-66) 

Non 

RCTs 

PORT, Poland Available - Available (67, 68) 

NAPLS, United 

States 

Available Available Available (69) 
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controls who had no previous history of psychosis. Dietary fatty acid content was 

recorded retrospectively using a semi-quantitative food frequency questionnaire (FFQ) 

and PUFA content of the diet was quantified using food composition tables. In the 

PORT study functional assessment was recorded using SOFAS which is a sub-

requirement for CAARMS criteria (67, 68). The second study by Cadenhead et al. is a 

cross-sectional analysis of baseline characteristics from the NAPLS clinical trial. The 

study population included only UHR subjects between 12 to 29 years of age without 

any control group. Structured Interviews for Psychosis-risk syndromes (SIPS) were 

used to define the UHR status of the participants. Both studies have data of erythrocyte 

omega-3 composition measured using a capillary gas chromatography method. In 

contrast to the PORT study, the NAPLS study used a systematic checklist by Vilma 

Gabbay to evaluate the dietary omega-3 FA level and Global assessment scale (GAF) 

and Global functioning social & role (GF: S & R) scales were used to assess the 

functioning status of UHR subjects (69). 

Table: 2.3.3.  Study design of Non-Randomized Controlled trials with data PORT- 

Program of Rehabilitation and Therapy, NAPLS- North American Prodrome Longitudinal Study, PUFA- 
Poly Unsaturated Fatty Acids,  CAARMS- Comprehensive Assessment of At-risk Mental Status, SIPS- 
Structured Interview for Psychiatric Risk Syndromes, DSM- Diagnostic and Statistical Manual of Mental 
Disorders, SOFAS- Social and Occupational Functioning Assessment Scale, GAF- The Global 
Assessment of Functioning, GF: S & R- Global Functioning Social and Role scale, EPA- 
Eicosapentaenoic acid, DHA- Docosahexaenoic acid, NC-Non converters, C-Converters, EPA- 
Eicosapentaenoic acid, DHA- Docosahexaenoic acid, SD-Standard Deviation, IQR- Inter Quartile 
Range, SOFAS- Social and Occupational Functional Assessment Scale, RBC- Red Blood Cell, GF- 
Global Functioning and GAF- The Global Assessment of Functioning. 
 

Name of the study PORT NAPLS 

Aim of the trial To study the role of PUFA 

consumption on transition to 

psychosis 

To investigate baseline cardio-

metabolic, dietary omega-3 fatty 

acids and oxidative stress indices 

Assessment tool 

used 



Age group (in years) 16-30  12-29 

Key exclusion criteria  diagnosed with mental 

retardation or organic brain 

disorder,  

 in whom symptoms occurred 

primarily due to drug or alcohol 

use and  

 with schizophrenia spectrum 

disorder (DSM-IV),  

 history of antipsychotic 

medication in the previous 

month,  

 with concomitant medical or 

neurological illness,  

 Having IQ below 80,  
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Name of the study PORT NAPLS 

 those with consumed special 

diets or PUFA supplements in 

the past 12 months  

 having active suicidal or 

homicidal ideation,  

 having allergies to seafood or 

seafood related products or no 

history of seafood consumption 

and  

 Pregnant and lactating mother 

Total number of UHR 

participants 

62 113 

Details of control 

population 

Healthy controls (n=33) No control group 

Definition of transition Retrospective assessment of Frank 

psychotic symptoms occurring at 

least daily for one week or more (70)  

- 

Functional 

assessment scale(s) 

used 

SOFAS GAF and GF:S & R 

Key results  UHR population who had 

converted to psychosis showed 

higher consumption of n-6 fatty 

acids than non-converted 

population 

 Higher EPA and DHA 

consumption rate is associated 

with converted to psychosis 

Healthy controls showed higher 

consumption of omega-3 and lower 

consumption of n-6 than HR 

individuals 

Metabolic parameters and a diet 

low in omega-3 rich foods were 

significantly associated with 

prodromal symptoms and poor 

functioning 

References (67, 68) (69) 

Groups (n) NC (47) C (15)  

Age [Mean ± SD] 19.0 ± 3.5 20.0 ± 3.4 18.7 ± 4.6 

Sex (male/female)  23/24 8/7 65/48 

Erythrocytes n-3 

levels, % total 

[Mean ± SD] 

- - 0.4 ± 0.3 (EPA) 

2.5 ± 1.0 (DHA) 

4.8 ± 1.7 (omega-3 index) 

Dietary n-3 intake,  

 

(g/day)  

[Median, IQR] 

(g/day)  

[Median, IQR] 

Weekly frequency  

(Mean ± SD) 
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Name of the study PORT NAPLS 

 2.9, 4.94 (Total) 

0.04, 0.09 (EPA) 

0.09, 0.16 (DHA) 

3.14, 2.44 

(Total) 

0.05, 0.04 (EPA) 

0.1, 0.11 (DHA) 

 

13.9 ±10.7 

SOFAS  [Mean ± SD] 

59.85 ± 8.04 

[Mean ± SD] 

55.8 ± 6.29 

Correlation Coefficient = -0.24 

(p<0.05) vs RBC n-3 Index 

(EPA+DHA) 

GF: Social - - Not significant 

GF: Role - - Correlation Coefficient = 0.17 

(p=0.05 – 0.10) vs RBC n-3 Index 

(EPA+DHA) 

GAF - - Correlation Coefficient = 0.37 

(p<0.01) vs omega-3 FA diet  

Correlation Coefficient = 0.21 

(p<0.05) vs RBC EPA  

ii) Randomized Controlled Trials: 

We included two RCTs with baseline and follow-up data at three different timepoints 

(Table 2.3.4). The VHR study is a double-blind placebo-controlled trial that was carried 

out at a psychosis detection unit at the Medical University of Vienna. In total 81 UHR 

subjects were recruited based on DSM-IV criteria. The active intervention group and 

the placebo group received a daily dosage of 1.2 g of omega-3 FA or coconut oil for 

12-weeks, respectively. For this trial, follow-up data was recorded after 12 weeks, 12 

months and 6.7 years from the time of the start of the intervention (53, 54, 56-58, 71). 

The NEURAPRO study is another double-blind placebo-controlled multi-centre clinical 

trial with 6 months of intervention. A total of 304 UHR participants were recruited based 

on the CAARMS protocol. Among them, 153 participants received a daily dosage of 

1.4 g of omega-3 FA and the control group received the same amount of paraffin oil 

as a placebo. Irrespective of the group, all participants received cognitive behavioural 

case management (CBCM) as an adjunct therapy. In NEURAPRO the follow-up data 

were documented at 6 months, 12 months and 3.4 years from the beginning of the 

intervention. In the VHR study, the functional assessment was measured using the 

GAF scale whereas in the NEURAPRO trial SOFAS and GF: S & R scales were used. 

Even though both RCTs have different outcome measures, their primary objective was 

to evaluate the role of omega-3 FA in the transition to first episode psychosis (FEP) 

(59-66).  



 

54 
 

Table: 2.3.4. Study design of Randomized Controlled trials with baseline data 
VHR- Vienna High Risk Study, PANSS- Positive and Negative Syndrome Scale, GRS- Global Rating 
Scale, CAARMS- Comprehensive Assessment of At-Risk Mental Status, SOFAS- Social and 
Occupational Functional Assessment Scale, GAF- The Global Assessment of Functioning, DSM- 
Diagnostic and Statistical Manual of Mental Disorders, IQ- Intelligence Quotient, EPA- 
Eicosapentaenoic acid, DHA- Docosahexaenoic acid and GF: S & R- Global Functioning Social and 
Role scale. 

Name of the trial VHR NEURAPRO 

Place Austria Multicenter 

Aim of the trial To determine the role of omega-3 

on the rate of transition to first 

episode psychotic disorders  

To determine the combined 

effect of omega-3 & CBCM on 

the rate of transition to first 

episode psychotic disorders 

Age range (in years) 13-25 13-40 

At risk population 

criteria 

Attenuated Psychotic Symptoms 

Based on PANSS assessment 

Attenuated positive psychotic 

symptoms group 

Based on 

GRS/CAARMS/SOFAS 

Transient Psychosis 

Based on PANSS assessment 

Transient psychosis 

Based on 

GRS/CAARMS/SOFAS 

Trait Plus State Risk Factors 

Based on GAF score 

Vulnerability group (trait and 

state risk factors) 

Based on SOFAS score 

Key exclusion criteria  history of a previous psychotic 

disorder or manic episode  

 substance-induced psychotic 

disorder  

 acute suicidal or aggressive 

behavior  

 a current DSM-IV diagnosis of 

substance dependence except 

cannabis dependence 

 other neurological disorders  

 premorbid IQ< 70  

 Apparent MRI findings 

indicating structural brain 

changes  

 a history of a treated or 

untreated psychotic episode 

of 1-week duration or longer  

 any physical illness with 

psychotropic effect, if not 

stabilized  

 current treatment with any 

mood stabilizer, or 

recreational use of 

 organic brain disease, for 

example, epilepsy, 

inflammatory brain disease 

 abnormal coagulation 

profile parameters or thyroid 

function test results >10% 
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Name of the trial VHR NEURAPRO 

 previous treatment with an 

antipsychotic or mood-

stabilizing agent (>1week)  

 omega-3 supplementation 

within the last 8 weeks 

 laboratory values more than 

10% outside the normal range 

for transaminases, thyroid 

hormones, C-reactive protein, 

or bleeding parameters; and  

 

above or below the limits of 

the normal range  

 current treatment with any 

mood stabilizers/ 

recreational use of 

ketamine  

 past neuroleptic exposure 

equivalent to a total lifetime 

haloperidol dose of >50 mg  

 a diagnosis of a serious 

developmental disorder 

 premorbid IQ < 70 and a 

documented history of 

developmental delay or 

intellectual disability 

 current acute 

suicidality/self-harm or 

aggression/ dangerous 

behavior (indicated by a 

CAARMS severity score of 

6 on items 7.3 and/ or5.4) 

 current pregnancy; 

 Greater than 4 weeks of 

regular omega-3 

supplementation (>600 mg 

combined EPA/DHA) within 

the last 6 months. 

Active intervention 

(daily dosage) 

700 mg of EPA  

480 mg of DHA  

220 mg of other omega-3 FA  

7.6 mg of Vitamin E 

840 mg of EPA  

560 mg of DHA  

5 mg of Vitamin E 

Placebo intervention 

(daily dosage) 

Coconut oil  

7.6 mg of Vitamin E 

1% fish oil 

Paraffin oil  

5 mg of vitamin E  

1% fish oil 

Duration of intervention 12 weeks 6 months 

Total number of 

participants 

81  304  



 

56 
 

Name of the trial VHR NEURAPRO 

Functional assessment 

scale(s) used   

GAF SOFAS and GF: S & R 

Groups  Omega-3  Placebo  Omega-3  Placebo 

Age in years  

[Mean ± SD] 

 

16.8 ± 2.4 16.0 ± 1.7 19.4 ± 4.8 18.9 ± 4.3 

Sex (male/female) 14/27 13/27 62/91 77/74 

Erythrocytes n-3 levels, 

% total, [Mean ± SD] 

5.6 ± 1.2 (Total) 

0.5 ± 0.2 (EPA) 

2.8 ± 0.8 (DHA) 

5.3 ± 1.0 (Total) 

0.5 ± 0.1 (EPA) 

2.5 ± 0.6 (DHA) 

3.00 ± 1.14 (n-3 index) 

0.53 ± 0.18 (EPA) 

2.48 ± 1.02 (DHA) 

Baseline Functional Data 

SOFAS [Mean ± SD] - - 53.2 (11.8) 53.5 (12.2) 

GF: Social [Mean ± SD] - - 6.5 (1.2) 6.5 (1.3) 

GF: Role [Mean ± SD] - - 6.0 (1.5) 5.9 (1.5) 

GAF [Mean ± SD] 61.0 (12.0) 60.0 (13.1) - - 

Post-intervention functional data 

SOFAS [Mean ± SD] - - 8.9 ± 16.5 12.6 ± 14.9 

GF: Social [Mean ± SD] - - 0.5 ± 1.2 0.6 ± 1.4 

GF: Role [Mean ± SD] - - 0.5 ± 1.7 0.9 ± 1.6 

GAF [Mean ± SD] 61 ± 21.6 59.9 ± 3.2 - - 

 

The studies provide data with cross sectional and multiple follow-up analyses 

indicating varying effects of omega-3 FA on functional status. Given the 

heterogeneous study designs and diverse data presentation, we interpreted the results 

under three topics: 

i) Evidence for cross-sectional associations between omega-3 FA and functional 

status in people at UHR 

The NAPLS study’s weekly frequency of omega-3 rich diet intake and 

erythrocyte EPA level showed a weak positive correlation with the baseline functional 

status. Moreover, the erythrocyte EPA level positively correlated with functional score 

at baseline (69). In contrast, in the NEURAPRO trial none of the omega-3 measures 

were found to be cross-sectionally associated with functional outcome (72). In the 

PORT study the direct relationship between omega-3 FA diet and functional outcome 

was not analyzed (68, 73). 



 

57 
 

ii) Evidence from intervention studies for associations between omega-3 FA and 

functional outcome in people at UHR 

In the VHR study, the omega-3 group reported significantly higher functioning 

at 12 weeks, 12 months and long term follow-up (median of 6.7 years) (58, 74), 

however the omega-3 group of the NEURAPRO study showed no significant 

difference compared to the placebo group in follow-ups (75, 76) (Table 2.3.5). 

iii) Evidence for omega-3 FA at baseline as a predictor of future functional outcome in 

people at UHR  

In the VHR study, omega-3 FA along with omega-6 FA predicted the 

improvement of functioning at 12 weeks follow-up in both study arms (55). 

Table: 2.3.5. Follow-up data of functional outcome from Randomized Controlled 
Trials- VHR- Vienna High Risk Study, SD- Standard Deviation, SOFAS- Social and Occupational 

Functional Assessment Scale, GF:S- Global Functioning Social, GF:R- Global Functioning Role and 
GAF- The Global Assessment of Functioning.  

 The VHR-GAF 
NEURAPRO-

SOFAS 
NEURAPRO-GF:S NEURAPRO-GF:R 

Groups n-3  Placebo  n-3  Placebo  n-3  Placebo  n-3  Placebo  

Follow-up 1 

[Mean 

 ±  

SD] 

12 months(change) 12 months(change) 12 months(change) 12 months(change) 

17.7 ± 

2.3 

7.2  

±  

2.3 

14.7  

±  

19.1 

14.3  

±  

16.8 

0.5  

±  

1.4 

0.7  

±  

1.6 

0.9  

±  

1.7 

1.0  

±  

2.0 

Follow-up 2 

[Mean 

 ±  

SD] 

6.7 years 

(change) 

3.4 years 

(change) 

3.4 years 

(change) 

3.4 years 

(change) 

7.7 

± 

2.7 

-0.8  

±  

2.7 

14.8  

±  

18.3 

15.3  

±  

16.5 

0.6  

± 

1.4 

0.8  

±  

1.6 

1.0  

±  

1.6 

1.3  

±  

1.7 

 

2.4. Discussion 

To our knowledge, this is the first systematic literature review concerning the 

association between omega-3 FA and functioning in the ultra-high risk for psychosis 

population. Of the four primary studies included in this review, three (NAPLS, PORT 

and NEURAPRO) analysed the cross-sectional relationship between omega-3 FA and 

functional status and two (VHR and NEURAPRO) further analysed the longitudinal 

association of omega-3 FA supplementation with functional outcome on follow-up.  
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2.4.1. Evidence for cross-sectional associations between omega-3 FA and 

functional status in people at UHR 

In the NAPLS study, the cross-sectional data showed a weak positive correlation 

between the weekly intake of omega-3 consumption (as measured by dietary 

questionnaire) and GAF functional scores at baseline. The authors also evaluated the 

correlation between fasting erythrocyte omega-3 FA composition with functional 

status. The total omega-3 FA level of the participants was found to be 4.8 % (SD1.7), 

of which the contribution of DHA is approximately 6 times higher than that of EPA 

(Table 2). In a correlation analysis, EPA showed a weak positive correlation with GAF 

general functioning score (r=0.21, p<0.05) but no significant correlations were found 

for other erythrocyte omega-3 FA measures. Moreover, the functional scores of Global 

social and role scales were associated neither with dietary omega-3 intake nor with 

erythrocyte omega-3 FA levels (69). Similarly, in the NEURAPRO study, none of the 

omega-3 FA measures were associated with functional status at baseline, although 

such an association was found for omega-6 FA (72). 

In contrast to these findings, previous studies in psychiatric disorders have found a 

positive association of DHA with cognitive and behavioural functions. For instance, a 

decrease in the dietary DHA level and an altered erythrocyte FA ratio were commonly 

observed in patients with bipolar disease (77-79), (80). In both NAPLS and 

NEURAPRO, data regarding the erythrocyte omega-3 FA levels of UHR subjects in 

relation to healthy controls were not available. To our knowledge, only one study has 

reported the physiological difference in erythrocyte omega-3 FA levels between UHR 

patients and healthy subjects. According to Rice et al., erythrocyte levels of α-Linoleic 

acid and EPA in UHR subjects is lower than in the healthy population (81). Whereas 

in chronic schizophrenia patients, omega-3 FA levels have been found to be increased 

compared to the healthy control population (30, 82-84) and a meta-analysis by Hoen 

et al., has indicated a substantial decrease of DHA in schizophrenia patients compared 

to controls (85). Hence, this uncertainty has to be investigated further to understand 

the therapeutic role of omega-3 FA in psychosis. In the PORT study, the high-risk 

psychosis patients who transitioned to psychosis reported to have consumed less 

omega-3 FA than the non-converters. Although, no significant difference was noticed 

in their functional status between the groups (68). 
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2.4.2. Evidence from intervention studies for associations between omega-3 FA 

and functional outcome in people at UHR 

The interventional studies included in this review (VHR and NEURAPRO) provided 

information regarding the relationship of omega-3 FA supplementation with functional 

outcome at different time points (Table 3). In the VHR study, those randomized to 

receive omega-3 FA supplementation showed a significantly improved functional 

score at 12 months follow-up compared to those who received placebo (effect size -

0.72) (86). This improvement in functioning in the omega-3 FA group was consistently 

observed at both medium term (12 months) and long-term (median of 6.7 years) 

follow-up (87). For the biomarker analysis, the erythrocyte omega-3 FA level showed 

a significant increase compared to the omega-6 FA value in the active intervention 

group for 12 weeks intervention. Moreover, the change in the omega-6 to omega-3 FA 

ratio from baseline to 12 weeks was significantly associated with functional 

improvement (58). 

 On the other hand, the results of the NEURAPRO study contrasted that of the VHR 

study. In NEURAPRO, at six months follow-up, the functional scores of Global 

functioning Social & Role scales was found to be improved at the end of the 

intervention in all participants irrespective of study arms. A 96% increase in functional 

score was noticed during the intervention period and only 4 % increased after the 

intervention period until the medium-term follow-up in all participants (76). However, 

no statistical difference was found between the omega-3 FA and placebo group with 

respect to functional outcome. This may indicate that supplementation is ineffective in 

improving functioning in UHR. Such findings could be due to the relatively low levels 

of omega-3 FA in the erythrocyte membrane and a narrow range of variation before 

and after the intervention. The total omega-3 FA level, which was about 3% at 

baseline, increased by only 1% after omega-3 FA supplementation (75, 76). In addition 

to the low baseline omega-3 FA levels, the lack of compliance to omega-3 FA 

supplements and the overshadowing effects of effective co-intervention were reported 

to have an impact on the clinical outcome of omega-3 FA. From the assessment of 

study medication, Schlögelhofer et al. estimated that 57.9% of the participants of the 

omega-3 FA group were non-adherent to study medication (88). Furthermore, the non-

adherent group had significantly lower baseline functional scores and a lower baseline 

erythrocyte omega-3 index compared to the adherent group (88). Similarly, the 
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additional beneficial effects of CBCM, which is an efficacious co-intervention given to 

both the groups, may have eclipsed the effect of omega-3 FA (76, 89).  

2.4.3. Evidence for omega-3 FA at baseline as a predictor of future functional 

outcome in people at UHR  

In the RCTs, multiple follow-up data enable analysis of whether omega-3 levels at 

baseline might predict future functional outcome in people at UHR. In the VHR study, 

none of the baseline erythrocyte membrane omega-3 FA individually predicted 

functional improvement. However, in a multivariate analysis, all FA of erythrocyte 

membrane together significantly predicted the improvement of functional status after 

12-weeks in both, the intervention and placebo group (55). This finding further raises 

the question of a possible synergistic role of EPA and DHA acting in concert with other 

PUFAs to produce clinical improvement in UHR status.  

In a recent analysis, Amminger et al. investigated the predictive nature of the change 

in omega-3 FA levels on various clinical outcomes in 218 participants in the 

NEURAPRO study. They reported that six months increase in omega-3 FA levels 

during the intervention successfully predicted the improvement of the functional score 

at 6 months and 12-months follow-up. According to this report, an increase in 

erythrocyte omega-3 FA levels significantly predicted an improvement of functional 

score by at least three points in UHR participants (90). This data further indicates that 

functional improvement could be achieved even in participants with low baseline 

omega-3 FA levels (90). Considering our limited knowledge on the underlying 

biological processes in psychosis, further studies to evaluate the dose dependent 

clinical effects of omega-3 FA would be helpful to understand the therapeutic role of 

omega-3 FA in psychosis.   

 

2.4.4. Evidence in context of previous literature 

Previous studies on animals support the positive influence of dietary omega-3 FA on 

biological and behavioural outcomes. For instance, intra-hippocampal infusion of DHA 

enhanced 5-HT levels and enrichment of rat brain with DHA caused an increase in 

synaptic dopamine and serotonin resulting in anti-depressant like behavioural 

changes (91, 92). Similarly, diet induced antidepressant effects of omega-3 FA were 

noticed by a few other studies in experimental animals (93-95). However, the results 

from clinical studies are not as convincing as the animal counterparts. In humans, the 
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functional outcome was estimated by various measures such as cognitive functioning, 

physiological and clinical symptoms. A recent meta-analysis on a young healthy 

population by Emery et al., did not find any beneficial effects of domain specific 

cognitive performances of omega-3 FA supplementation. Nevertheless, the meta-

analysis indicated beneficial effects of EPA supplementation on some cognitive 

domains such as long-term memory, working memory and problem solving (96). On 

the other hand, findings from psychiatric patients revealed varying effects of dietary 

omega-3 FA levels on clinical symptoms (97-101). Such inconsistencies with clinical 

results are evident in the studies mentioned in our review. Clinical trials have started 

considering erythrocyte membrane omega-3 FA composition as a biological measure 

for biologically active omega-3 FA levels, since the FA composition of erythrocytes 

closely reflects that of neuronal membrane and easily influenced by FA content in the 

diet (102, 103). Even though, evidence regarding the influence of erythrocyte omega-

3 FA levels on local environment in the brain is still not clearly understood and hence 

underlying biological activities should be investigated in order to appreciate the long-

term effects of erythrocyte omega-3 FA levels on functional status (104, 105). Overall, 

however beneficial effects of an omega-3 FA diet on functional status was observed 

by cross-sectional and intervention studies (the NAPLS and the VHR respectively), 

more investigations are required to validate these results in UHR subjects to reach a 

definite conclusion.  

2.5. Conclusion and future directions 

To our knowledge, this is the first systematic review reporting the influence of omega-

3 FA on functional outcome in UHR of psychosis. Cross-sectional data indicated a 

positive correlation between dietary omega-3 FA and functional status. Among various 

erythrocyte membrane omega-3 FA concentrations, the EPA associated positively, 

whereas omega-6/omega-3 FA ratio are inversely associated with functional 

improvement. Further, the combined concentrations of all baseline erythrocyte 

membrane FA successfully predicted functional enhancement.  

2.6. Limitations and future directions 

At the review level, the following limitations should be noticed. In the interest of asking 

a single focused research question, this review focused only on one clinical 

assessment (functional status) in a relatively rare population group (UHR). This 
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reduced the total number of available articles and substantially made it impossible to 

perform a meta-analysis.  

At the individual study level, even though adequate sample sizes were reported for the 

analysis, the following limitations were noticed. Firstly, the co-interventions provided 

in clinical trials such as vitamin supplements and the frequency of CBCM which can 

influence the study outcomes were not controlled carefully in the analysis. The lack of 

uniform inclusion criteria across different trials, lack of standardized clinical 

assessments and low adherence to the study intervention make it difficult to compare 

the results to reach an informed conclusion.  

In the future, we suggest the following strategies to enhance the retention and 

compliance of the clinical trials: i) explaining the expectations of the study at an early 

stage to the participants, ii) using digital options to motivate the participants to take 

their medication, iii) using a digital option to provide real-time feedback regarding 

adherence to the treatment, and iv) considering remote data collection procedures for 

data such as pills taken every day (106, 107). In addition, considering a unified study 

protocol for UHR subjects with standardized outcome assessments would increase 

the clinical validity of the data for understanding the role of omega-3 FA in psychosis.  

Since the number of available studies are insufficient and provided inconsistent 

results, it is too early to comment with confidence on the clinical effectiveness of 

omega-3 FA on functioning in the UHR population. However, our review stresses the 

need of more randomized controlled trials with additional measures to obtain 

meaningful results in terms of therapeutic role of omega-3 FA in UHR status.  
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Abstract 

There is increasing evidence that dysregulation of polyunsaturated fatty acids (FAs) 

mediated membrane function plays a role in the pathophysiology of schizophrenia. 

Even though preclinical findings have supported the anti-inflammatory properties of 

omega-3 FAs on brain health, their biological roles as anti-inflammatory agents and 

their therapeutic role on clinical symptoms of psychosis risk are not well understood. 

In the current study, we investigated the relationship of erythrocyte omega-3 FAs with 

plasma immune markers in a clinical high risk for psychosis (CHR) sample. In addition, 

a mediation analysis was performed to examine whether previously reported 

associations between omega-3 FAs and clinical outcomes were mediated via plasma 

immune markers. Clinical outcomes for CHR participants in the NEURAPRO clinical 

trial were measured using the Brief Psychiatric Rating Scale (BPRS), Schedule for the 

Scale of Assessment of Negative Symptoms (SANS) and Social and Occupational 

Functioning Assessment Scale (SOFAS) scales. The erythrocyte omega-3 index 

[eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA)] and plasma 

concentrations of inflammatory markers were quantified at baseline (n=268) and 6 

month follow-up (n=146) by gas chromatography and multiplex immunoassay, 

respectively. In linear regression models, the baseline plasma concentrations of 

Interleukin (IL)-15, Intercellular adhesion molecule (ICAM)-1 and Vascular cell 

adhesion molecule (VCAM)-1 were negatively associated with baseline omega-3 

index. In addition, 6-month change in IL-12p40 and TNF-α showed a negative 

association with change in omega-3 index. In longitudinal analyses, the baseline and 

6 month change in omega-3 index was negatively associated with VCAM-1 and TNF-

α respectively at follow-up. Mediation analyses provided little evidence for mediating 

effects of plasma immune markers on the relationship between omega-3 FAs and 

clinical outcomes (psychotic symptoms and functioning) in CHR participants. Our 

results indicate a predominantly anti-inflammatory relationship of omega-3 FAs on 

plasma inflammatory status in CHR individuals, but this did not appear to convey 

clinical benefits at 6 month and 12-month follow-up. Both immune and non-immune 

biological effects of omega-3 FAs would be resourceful in understanding the clinical 

benefits of omega-3 FAs in CHR papulation. Key words: Omega 3 Fatty Acid, n-3 Poly 

Unsaturated Fatty Acid, biological marker, immune markers and clinically high-risk. 
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3.1. Introduction 

Schizophrenia is a mental disorder with a multifactorial etiology. Most patients 

with schizophrenia experience a prodromal phase of nonspecific psychiatric and 

subthreshold psychotic symptoms (1). The clinical high-risk (CHR) paradigm provides 

operational criteria to define a subpopulation at high risk of psychosis and offers the 

opportunity to intervene early to improve prognosis or even prevent transition to a 

psychotic disorder. CHR individuals have a 22% risk of developing psychosis in the 

first year after ascertainment and increases at least 38% after 16 years (2-6). A 

growing body of evidence has indicated the involvement of inflammation and oxidative 

stress from an early stage in psychotic disorders such as schizophrenia (7-15). 

Several inflammatory mediators that participate in neuronal development and synaptic 

pruning are consistently found to be involved in the early stages of psychosis, including 

Interleukin (IL)-1β, IL-6, IL-8, IL-12p40 and Tumor Necrosis Factor-α (TNF-α) (7, 8, 

10, 16-19). Currently available antipsychotic medications still broadly target 

dopaminergic neurotransmission and are inadequate in treating negative and 

cognitive symptoms and can cause serious adverse events (20). Hence, there is a 

need for investigation of further interventions targeting alternative mechanistic 

pathways to delay or prevent the development of psychosis. In fact, neuroinflammation 

and antioxidative defense seem to represent potential candidates for those pathways.  

Studies have identified several molecular mechanisms through which omega-

3 fatty acids (FAs) produce health benefits in healthy and diseased states (21). The 

long chain omega-3 FAs docosahexaenoic acid (DHA) and eicosapentaenoic acid 

(EPA) are structurally and functionally vital for neuronal health (22). Both EPA and 

DHA are integral components of the neuronal membrane, which is necessary for 

maintaining membrane integrity and signal transduction in neurons (23). In addition, 

omega-3 FAs derived metabolites also known as specialized pro-resolving mediators 

(SPM), participate in the orchestration of the inflammatory response (24). SPM include 

compounds such as prostaglandins, thromboxanes, resolvins, protectins and 

maresins and are synthesized mainly from EPA and DHA (21, 24, 25). Serhan et al. 

first reported the anti-inflammatory and pro-resolutive properties of SPM in the 

peripheral endothelial cells and polymorphonuclear macrophages (26). Later, the 

receptors of SPM were identified in cells of both peripheral circulation and in the central 
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nervous system (16, 25, 27-38). Through these receptors, SPM fine-tune the intensity 

and duration of inflammation without compromising the quality of the immune 

response (24, 27, 29, 32, 34, 35, 37, 38). A common route by which omega-3 FAs 

achieve these pro-resolving activities is through concomitant regulation of 

inflammatory cytokines such as IL-6, TNF-α and IL-1β (39, 40). 

In humans, the anti-inflammatory effects of omega-3 FAs have been observed 

in neurodegenerative disorders, cerebrovascular ischemic disorders, and psychiatric 

disorders such as depression and bipolar disorder (21, 41-43). However, in patients 

with established schizophrenia, clinical trials of omega-3 FA supplementation have not 

produced consistent results. For instance, five studies showed improved prognoses 

with greater efficacy in omega-3 group than the placebo whereas two studies found 

no difference and one study reported poor prognosis following omega-3 

supplementation (44, 45). This may be due to factors such as late onset of omega-3 

FA supplementation, confounding effects of age-related metabolic changes and 

varying regimens of anti-psychotics (44, 45). Since inflammation and disruption of 

membrane architecture (especially in neurons) have been noticed from an early stage 

of psychosis, intervening at an earlier phase with omega-3 FA has been suggested as 

an option for preventing or delaying the development of psychosis (7, 8, 44, 46, 47). 

A previous clinical trial, the Vienna High Risk (VHR) study, found that omega-3 

FA supplementation reduced the risk of transition to psychosis in CHR participants 

(48). The potential role of omega-3 FAs in modulating inflammation was investigated 

in a subsequent analysis (49). The authors analyzed the relationship of baseline 

erythrocyte omega-3 FA levels with three immune mediators including interleukin 6 

(IL-6), the soluble alpha (Tac) subunit of the interleukin 2 receptor (sIL-2r), and the 

circulating soluble form of the intercellular adhesion molecule one (sICAM-1) and 

found no significant association with membrane omega-3 FAs at baseline (49). While 

previous animal and human studies have identified various molecular pathways of 

inflammatory reactions through which omega-3 FAs influence inflammatory cytokines, 

the clinical benefit in early psychosis is not yet clearly established (50-52).  

The aims of the current study were to investigate the relationship of omega-3 

FAs on plasma immune markers in CHR participants and to evaluate whether 

inflammatory cytokines mediated previously described relationships between omega-
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3 FAs and clinical outcomes in CHR patients. We used plasma and erythrocyte 

samples from the NEURAPRO trial which is an omega-3 FA based randomized 

controlled trial aimed to prevent the onset of psychosis in CHR participants. The 

participants had little or no exposure to antipsychotic medication that can potentially 

influence inflammatory cytokines (53, 54). In this study we intend to answer the two 

questions: i) whether Omga-3 FAs exert any relationship with plasma inflammatory 

markers in CHR individuals measured at baseline and 6 month follow-up, and ii) 

whether plasma immune markers mediate the relationship between omega-3 FAs and 

clinical outcomes in particular psychotic symptoms and social functioning. Considering 

that in the NEURAPRO clinical trial no direct clinical association was observed with 

omega-3 FA supplementation (55), we mainly focus on the indirect effect through 

omega-3 FAs and the overall effect (Figure 1) of erythrocyte membrane omega-3 FAs 

level on psychopathology in CHR participants. Based on evidence from preclinical 

studies, we hypothesized that omega-3 FAs would be negatively associated with 

plasma inflammatory biomarkers in CHR participants and would mediate associations 

between omega-3 FAs and clinical outcomes. 

3.2. Materials and Methods 

3.2.1. The NEURAPRO clinical trial 

The primary outcome of the NEURAPRO clinical trial was to assess the efficacy 

of omega-3 FA supplementation preventing transition to psychosis in CHR 

participants.  The NEURAPRO clinical trial was registered with the Australian New 

Zealand Clinical Trial Registry as ACTRN 12608000475347. The study was conducted 

between March 2010 and the end of September 2014, in accordance with the 

Declaration of Helsinki and consistent with the International Council for Harmonization 

of Good Clinical Practice with appropriate ethical approval obtained from each site 

before the trial commenced. Ethical approval for the biomarker analysis presented in 

this study was obtained from the research ethics committee of the Royal College of 

Surgeons in Ireland [REC-No. 1699].  

3.2.2. Study participants 

A total of 285 out of 304 participants aged 18.97 ± 4.49 years (mean ± SD) who 

met CHR criteria and who had valid baseline and follow-up clinical data were 
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considered for the plasma biomarkers analysis study. The exclusion criteria were: 

history of psychotic episodes of seven days or longer; any current symptoms of 

intoxication, organic brain disease or developmental disorder; abnormal coagulation 

profile; thyroid abnormalities; physical illness with psychotropic effect, if not stabilized; 

current treatment with any mood stabilizers or recreational use of ketamine; past 

antipsychotic exposure equivalent to a total lifetime haloperidol dose of >50 mg; a 

diagnosis of a serious developmental disorder; premorbid IQ less than 70; current 

acute suicidality/self-harm or aggression/dangerous behavior; pregnancy; or intake of 

more than 4 weeks of supplementation with omega-3 FAs (57, 58). 

3.2.3. Exposure: Erythrocyte omega-3 FAs measures 

The study participants in the clinical trial were randomized to receive either 

omega-3 FA supplementation or placebo. The study medication contains a dose of 

four gelatin capsules taken daily throughout the 6-month treatment period. Participants 

were provided with dispensed bottles of capsules containing either omega-3 FAs or 

placebo and participants were instructed to take two capsules in the morning and two 

at night. The omega-3 group received ~2.8 g of marine fish oil containing 

approximately 840 mg of EPA and 560 mg of DHA per day, whereas the placebo group 

received an equivalent dose of paraffin oil per day for 6 months. In addition, all 

participants could receive up to 20 sessions of cognitive behavioral case management 

(CBCM) as a co-intervention. The full description of treatments participants received 

during the trail is provided by McGorry et al (59). Assessing adherence, McGorry et 

al., reported that nearly 58% of the participants were non-adherent to the study 

intervention in the NEURAPRO trial (60). To address this, we considered the 

erythrocyte omega-3 FA levels as a measure of exposure irrespective of the study 

arms (omega-3/placebo) as this is accepted to be an accurate biological marker for 

dietary intake of omega-3 FAs and closely reflects the omega-3 FA content of neuronal 

membranes (61-64). Fasting plasma samples were collected at baseline and 6 months 

following the intervention. The molecular percentage of total fatty acid levels of EPA, 

DHA and n3-index (EPA+DHA) were measured using gas chromatography (66). The 

Phosphatidyl-ethanolamine (PE) fraction was used to determine the omega-3 FA 

content, because of their high abundancy in the lipid raft (67, 68). 
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3.2.4. Plasma immune marker concentration 

Peripheral blood samples were obtained from the participants at baseline and 

6-month follow-up. Plasma levels of Granulocyte-macrophage colony-stimulating 

factor (GM-CSF), Interleukin (IL) -1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p40, IL-

12p70, IL-15, Tumor necrosis factor-α (TNF-α), Interferon gamma (INF-γ), Inter-

cellular Adhesion Molecule (ICAM)-1 and Vascular cell adhesion molecule (VCAM)-1 

were measured using the Pro-inflammatory Panel 1, Cytokine Panel 1 and Vascular 

Injury Panel 2 v-PLEX® multiplex immunoassay kits (Mesoscale Discovery Systems) 

according to the manufacturer’s instructions. A Sector Imager 2400 plate reader was 

used to quantify concentrations of each marker (Meso Scale Diagnostics).  

3.2.5 Clinical outcome: psychotic symptoms and functioning 

Positive psychotic symptoms of participants were measured the Brief 

Psychiatric Rating scale-psychotic score (BPRS-Psychotic) which comprises 

combined scores of suspiciousness, hallucination, bizarre thoughts & unusual 

thoughts. Negative symptoms were assessed using the Scale for the Assessment of 

Negative Symptoms (SANS). Functional status was measured using the Social and 

Occupational Functional Assessment Score (SOFAS) recorded at baseline, 6 month 

and 12 month follow-up.  

3.2.6 Statistical Analysis 

The erythrocyte membrane levels of EPA, DHA and the omega-3 index were 

calculated as percentage of total erythrocyte membrane fatty acid content. The plasma 

concentrations of inflammatory markers that were within the detection limits of the 

assay with a coefficient of variance (CV) of at most 20% were taken forward for 

analysis. Missing concentration of inflammatory markers were imputed with average 

values and converted to Z scores for the analysis.  

Statistical analysis was performed using IBM® SPSS® statistics version 26 and 

STATA IC ® version 16. The association between erythrocyte omega-3 levels and 

plasma biomarkers were evaluated using linear regression models. The cross-

sectional and longitudinal analyses were conducted for baseline, follow-up and for 

change of omega-3 values with corresponding inflammatory marker concentrations. 
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For cross-sectional models, the results were adjusted for age, sex, and body mass 

index (BMI) and for the longitudinal analysis the results were also adjusted for the 

baseline omega-3 FA levels. The inflammatory markers that showed significant 

association with change in omega-3 FA level were considered for the mediation 

analysis.  

The mediation analysis was carried out to evaluate the direct effect of change 

in omega-3 index (exposure) on clinical outcome and the possible mediating role of 

plasma immune markers on an association between omega-3 index and clinical 

outcomes (indirect effect) at 6 and 12-month follow-up (69). Mediation analysis was 

performed in IBM® SPSS® using the PROCESS platform. Regression coefficients 

were constructed using conventional mediation analysis model (model 4) with a 

bootstrap sample size of 5000 and with 95% confidence interval (Figure 3.2.1). The 

mediation analysis was adjusted for age, sex, BMI and baseline omega-3 index levels. 

The results were corrected using a false discovery rate (FDR) of 5%, as described by 

Benjamini-Hochberg (70).  

 

Figure 3.2.1. Mediation analysis model used for investigating the effect of 

omega-3 FAs on psychotic and functional outcome in CHR participants.  
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3.3. Results 

3.3.1. Participant characteristics 

Erythrocyte membrane FA and plasma immune marker concentrations were 

available for 268 participants at baseline and for 146 participants at both time-points 

(baseline and 6-month follow-up) (Table 3.3.1). Plasma levels of IL-6, IL-8, IL-10, IL-

12p40, IL-15, TNF-α, ICAM-1 and VCAM-1 were selected as they were described in 

the literature to be associated with omega-3 FAs in animal and human studies (50, 

51). The details of clinical symptoms of psychosis include BPRS-psychotic and SANS 

score with functional scores at baseline, 6- and 12-month follow-up are presented in 

Table 3.3.2. 

Table 3.3.1. Demographic and biological details of the participants at baseline 
and 6-month follow-up. SD-Standard deviation, BMI-Body Mass Index, EPA-eicosapentaenoic 

acid, DHA-docosahexaenoic acid, IL-Interleukin, TNF-Tumour necrosis factor, ICAM-intercellular 
adhesion molecule and VCAM-Vascular cell adhesion molecule. 

 
Baseline 

(n=268) 

Follow-up 

(n=146) 

Gender 

 

Male, n (%) 118 (44%) 57 (39%) 

Female, n (%) 150 (56%) 89 (61%) 

Age in years (mean ± SD) 18.9 ± 4.4 18.22 ± 4.03 

BMI in kg/m2 (mean ± SD) 23.95 ± 5.46 24.39 ± 5.95 

Erythrocyte membrane omega-3 percentage compositions 

EPA (%), (mean ± SD) 0.98 ± 0.34 1.76 ± 1.33 

Erythrocyte DHA (%), (mean ± SD) 6.43 ± 1.62 7.10 ± 2.34 

Omega-3 Index (%), (mean ± SD) 7.41 ± 1.78 8.86 ± 3.49 

Concentrations of plasma immune marker 

IL-6 (pg/mL), (mean ± SD) 0.85 ± 2.17 0.97 ± 2.68 

IL-8 (pg/mL), (mean ± SD) 4.41 ± 3.56 4.53 ± 3.75 

IL-10 (pg/mL), (mean ± SD) 0.35 ± 0.27 0.37 ± 0.44 

IL-12p40 (pg/mL), (mean ± SD) 164.01 ± 72.90 151.01 ± 69.13 

IL-15 (pg/mL), (mean ± SD) 2.91 ± 0.69 2.55 ± 0.63 

TNF-α (pg/mL), (mean ± SD) 2.30 ± 0.68 2.42 ± 0.81 

ICAM-1 (pg/mL), (mean ± SD) 487544.35 ± 168040.96 534802.64 ± 191628.11 

VCAM-1 (pg/mL), (mean ± SD) 496297.63 ± 149586.57 487405.13 ± 144755.91 
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Table 3.3.2. Symptomology and functional outcome of CHR participants at 
baseline, 6-month and 12-month follow-up. BPRS- Brief Psychiatric Rating Scale, SANS- 

Scale for the Assessment of Negative Symptoms, SOFAS- Social and Occupational Functioning 
Assessment Scale, SD-standard deviation.  

Clinical outcome 
Baseline 

(n=268) 

6 month  

follow-up 

(n=146) 

12 month  

follow-up 

(n=127) 

BPRS-psychotic, (mean ± SD) 8.25 ± 2.80 5.92 ± 2.54 5.41 ± 2.08 

SANS Total (mean ± SD) 18.23 ± 13.05 13.23 ± 13.00 10.69 ± 11.89 

SOFAS Total (mean ± SD) 53.81 ± 12.23 66.86 ± 14.27 70.74 ± 16.09 

3.3.2. Cross-sectional relationship between omega-3 FAs and analyses at 

baseline and at follow-up (adjusted for age, sex and BMI) 

In a cross-sectional analysis at baseline, the omega-3 index was negatively 

associated with IL-15, ICAM-1 and VCAM-1 (β-coef = -0.31, -0.29 & -0.35; FDR-

corrected p= 0.04, 0.04 & 0.02, respectively), whereas DHA was negatively associated 

with VCAM-1 (β-coef = -0.32; FDR-corrected p=0.03). At follow-up, no significant 

cross-sectional association was observed between omega-3 FAs and inflammatory 

cytokines (Table 3.3.3 & 3.3.4). 

3.3.3. Relationship between 6-month change in omega-3 FAs and 6-month 

change in cytokine levels 

In a linear regression model, omega-3 index changed inversely with changes 

in plasma levels of TNF-α such that those with increasing levels of TNF-α had 

decreasing levels of Omega-3 with a beta coefficient of 0.06 (FDR-corrected p= 

0.032).  A similar inverse association was noticed for EPA and DHA levels individually 

with plasma cytokines. An increase in DHA levels associated with decrease in plasma 

TNF-α and ICAM-1 (β-coef=-0.09 & 0.09; FDR-corrected p=0.02 & 0.02, respectively) 

at 6 months follow-up. Similarly, change in EPA showed an inverse association with 

change in plasma levels of IL-12p40, IL-15 and TNF-α (β-coef=-0.16, -0.12 & -0.14; 

FDR-corrected p= 0.048, 0.048 & 0.048, respectively) such that increasing EPA score 

was associated with decreasing plasma immune marker levels (Table 3.3.5).  
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3.3.4. Relationship of baseline omega-3 FAs and change in omega-3 measures 

with cytokine levels at follow-up (adjusted for age, sex, BMI, baseline omega-3 

and baseline cytokine levels) 

In the linear regression models, higher baseline omega-3 index and DHA levels 

in erythrocyte membrane was significantly associated with lower plasma VCAM-1 

levels at 6 months follow-up (β-coef =-0.38 & -0.33; FDR-corrected p= 0.036 & 0.036, 

respectively) (Table 3.3.6). Moreover, 6 month increase in omega-3 index and DHA 

levels was significantly related with lower plasma levels of TNF-α at follow-up (β-coef 

=-0.06 & -0.09; FDR-corrected p= 0.036 & 0.023, respectively), whereas 6-month 

change in DHA was positively associated with ICAM-1 at follow-up after correction for 

multiple testing (β-coef =0.1; FDR-corrected p= 0.023) (Table 3.3.7). 
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Table 3.3.3. Cross sectional association between erythrocyte omega-3 FA and inflammatory markers at baseline. Results are 

presented from models adjusting for age, sex and BMI. B-H- Benjamini Hochberg correction (FDR <0.05%), EPA-eicosapentaenoic acid, DHA-docosahexaenoic 
acid, IL-Interleukin, TNF-Tumour necrosis factor, ICAM-intercellular adhesion molecule, VCAM-Vascular cell adhesion molecule.
 

Omega-3 index DHA EPA 

Immune  

markers 

β-Coef. 95% Conf.  

Interval 

B-H 

p value 

β-Coef. 95% Conf.  

Interval 

B-H 

p value 

β-Coef. 95% Conf.  

Interval 

B-H 

p value 

Upper Lower  Upper Lower  Upper Lower 

IL 6 -0.003 -0.21 -0.20 0.980 0.001 -0.19 0.19 0.988 -0.004 -0.04 0.03 0.841 

IL 8 -0.029 -0.24 -0.18 0.891 -0.022 -0.21 0.17 0.988 -0.007 -0.04 0.03 0.829 

IL 10 0.036 -0.18 -0.25 0.891 0.018 -0.18 0.21 0.988 0.018 -0.02 0.06 0.578 

IL 12p40 -0.051 -0.27 0.17 0.891 -0.014 -0.21 0.18 0.988 -0.037 -0.07 0.00 0.259 

IL 15 -0.308 -0.53 -0.07 0.039 -0.248 -0.45 -0.03 0.063 -0.061 -0.10 -0.01 0.054 

TNF α -0.090 -0.30 0.12 0.891 -0.077 -0.27 0.12 0.988 -0.013 -0.05 0.02 0.702 

ICAM 1 -0.287 -0.51 -0.06 0.039 -0.256 -0.46 -0.05 0.063 -0.031 -0.07 0.01 0.286 

VCAM 1 -0.354 -0.58 -0.12 0.018 -0.319 -0.52 -0.11 0.027 -0.035 -0.07 0.00 0.259 
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Table 3.3.4. Cross-sectional relationship between erythrocyte omega-3 FAs and inflammatory cytokines at follow-up. Results 

are presented from models adjusting for age, sex and BMI. B-H- Benjamini Hochberg correction (FDR =0.05%), EPA-eicosapentaenoic acid, DHA-
docosahexaenoic acid, IL-Interleukin, TNF-Tumour necrosis factor, ICAM-intercellular adhesion molecule, VCAM-Vascular cell adhesion molecule.   

 Omega-3 index DHA EPA 

Immune  

markers 
β-Coef. 

95% Conf.  

Interval 

B-H  

p value 
β-Coef. 

95% Conf.  

Interval 

B-H  

p value 
β-Coef. 

95% Conf.  

Interval 

B-H  

p value 

Upper Lower   Upper Lower   Upper Lower  

IL 6 0.267 -0.322 0.856 0.477 0.112 -0.284 0.508 0.649 0.155 -0.068 0.378 0.287 

IL 8 0.729 0.125 1.333 0.086 0.553 0.150 0.956 0.068 0.176 -0.057 0.409 0.287 

IL 10 -0.332 -0.930 0.265 0.477 -0.192 -0.594 0.209 0.621 -0.140 -0.367 0.088 0.291 

IL 12p40 -0.299 -0.906 0.308 0.477 -0.146 -0.555 0.262 0.649 -0.153 -0.383 0.077 0.287 

IL 15 -0.423 -1.106 0.260 0.477 -0.224 -0.684 0.236 0.621 -0.199 -0.458 0.060 0.287 

TNF α -0.861 -1.530 -0.191 0.086 -0.563 -1.013 -0.114 0.068 -0.297 -0.553 -0.041 0.207 

ICAM 1 0.304 -0.307 0.914 0.477 0.319 -0.088 0.727 0.372 -0.015 -0.249 0.218 0.973 

VCAM 1 -0.192 -0.819 0.436 0.615 0.022 -0.400 0.444 0.917 -0.214 -0.450 0.022 0.287 
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Table 3.3.5. Cross-sectional relationship between change in erythrocyte omega-3 FAs and change in inflammatory 
cytokines. Results are presented from models adjusting for age, sex, BMI and baseline omega-3 measures. The underlined markers were used for mediation 

analysis. B-H- Benjamini Hochberg correction (FDR =0.05%), EPA-eicosapentaenoic acid, DHA-docosahexaenoic acid, IL-Interleukin, TNF-Tumour necrosis 
factor, ICAM-intercellular adhesion molecule, VCAM-Vascular cell adhesion molecule.   

 Omega-3 index DHA EPA 

Immune  

markers 
β-Coef. 

95% Conf. Interval B-H 

p value 

β-Coef. 95% Conf. Interval B-H 

p value 

β-Coef. 95% Conf. Interval 
B-H 

p value 

Upper Lower  Upper Lower  Upper Lower  

IL 6 -0.026 -0.075 0.023 0.395 -0.048 -0.120 0.024 0.252 -0.025 -0.155 0.104 0.702 

IL 8 0.039 -0.002 0.080 0.122 0.061 0.001 0.121 0.106 0.072 -0.035 0.179 0.298 

IL 10 -0.022 -0.072 0.029 0.456 -0.022 -0.097 0.052 0.557 -0.078 -0.210 0.055 0.329 

IL 12p40 -0.052 -0.094 -0.009 0.072 -0.062 -0.125 0.001 0.106 -0.155 -0.266 -0.045 0.048 

IL 15 -0.034 -0.074 0.005 0.142 -0.034 -0.093 0.024 0.281 -0.123 -0.224 -0.021 0.048 

TNF α -0.062 -0.103 -0.021 0.032 -0.091 -0.152 -0.030 0.020 -0.135 -0.244 -0.027 0.048 

ICAM 1 0.047 0.002 0.092 0.112 0.094 0.028 0.159 0.020 0.024 -0.097 0.144 0.702 

VCAM 1 0.015 -0.030 0.059 0.517 0.059 -0.005 0.123 0.114 -0.088 -0.203 0.026 0.260 
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Table 3.3.6. Longitudinal relationship between baseline erythrocyte omega-3 FAs and inflammatory cytokines at follow-up. 
Results are presented from models adjusting for age, sex and BMI. B-H- Benjamini Hochberg correction (FDR =0.05%), EPA-eicosapentaenoic acid, DHA-
docosahexaenoic acid, IL-Interleukin, TNF-Tumour necrosis factor, ICAM-intercellular adhesion molecule, VCAM-Vascular cell adhesion molecule.   

 Omega-3 index DHA EPA 

Immune  

markers 

β-

Coef. 

95% Conf. Interval B-H 

p value 
β-Coef. 

95% Conf. Interval B-H 

p value 
β-Coef. 

95% Conf. Interval B-H 

p value 
Upper Lower Upper Lower Upper Lower 

IL 6 0.054 -0.200 0.307 0.868 0.040 -0.184 0.265 0.811 0.013 -0.041 0.068 0.910 

IL 8 0.029 -0.235 0.294 0.890 0.057 -0.176 0.291 0.811 -0.028 -0.085 0.029 0.893 

IL 10 -0.094 -0.351 0.163 0.868 -0.085 -0.312 0.143 0.811 -0.010 -0.065 0.046 0.910 

IL 12p40 -0.018 -0.279 0.243 0.890 -0.015 -0.246 0.216 0.897 -0.003 -0.060 0.053 0.910 

IL 15 -0.119 -0.413 0.176 0.868 -0.140 -0.400 0.119 0.811 0.022 -0.042 0.086 0.893 

TNF α -0.064 -0.341 0.213 0.868 -0.059 -0.304 0.186 0.811 -0.005 -0.065 0.054 0.910 

ICAM 1 -0.296 -0.553 -0.038 0.113 -0.247 -0.475 -0.019 0.153 -0.049 -0.105 0.007 0.486 

VCAM 1 -0.381 -0.639 -0.122 0.036 -0.334 -0.563 -0.106 0.036 -0.047 -0.104 0.010 0.486 
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Table 3.3.7. Longitudinal relationship between 6 month change in erythrocyte omega-3 FAs and inflammatory cytokines at 

follow-up. Results are presented from models adjusting for age, sex and BMI. B-H- Benjamini Hochberg correction (FDR =0.05%), EPA-eicosapentaenoic 

acid, DHA-docosahexaenoic acid, IL-Interleukin, TNF-Tumour necrosis factor, ICAM-intercellular adhesion molecule, VCAM-Vascular cell adhesion molecule.    

 Omega-3 index DHA EPA 

Immune  

markers 
β-Coef. 

95% Conf.  

Interval 

B-H 

p 

value 

β-Coef. 

95% Conf.  

Interval 

B-H 

p 

value 

β-Coef. 
95% Conf.  

Interval 

B-H 

p value 

Upper Lower Upper Lower   Upper Lower  

IL 6 -0.008 -0.024 0.007 0.444 -0.015 -0.038 0.008 0.284 -0.008 -0.049 0.033 0.790 

IL 8 0.022 -0.001 0.044 0.137 0.034 0.001 0.067 0.119 0.040 -0.019 0.099 0.335 

IL 10 -0.022 -0.075 0.030 0.513 -0.023 -0.100 0.054 0.557 -0.081 -0.218 0.057 0.371 

IL 12p40 -0.046 -0.084 -0.008 0.081 -0.055 -0.111 0.001 0.119 -0.138 -0.237 -0.040 0.054 

IL 15 -0.038 -0.082 0.006 0.160 -0.038 -0.103 0.027 0.316 -0.136 -0.249 -0.024 0.054 

TNF α -0.064 -0.107 -0.021 0.036 -0.094 -0.156 -0.031 0.023 -0.139 -0.251 -0.028 0.054 

ICAM 1 0.051 0.002 0.100 0.126 0.102 0.030 0.173 0.023 0.026 -0.105 0.156 0.790 

VCAM 1 0.016 -0.032 0.063 0.582 0.064 -0.005 0.133 0.128 -0.095 -0.219 0.028 0.293 
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3.3.5. Direct and indirect effects of omega-3 FAs on clinical outcome (mediation 

analysis) 

Changes in the plasma inflammatory markers IL-12p40 and TNF-α were 

considered for the mediation analysis, as they were significantly associated with 

change in omega-3 index. However, mediation analyses did not provide evidence of 

significant direct or indirect effects (via plasma immune markers) on psychotic 

symptoms (BPRS-psychotic and SANS) or functional outcome (SOFAS) at 6-month 

(Table 3.3.8) or at 12-month (Table 3.3.9) follow-up. 

Table 3.3.8. Mediating role of change in cytokines (IL-15, IL-12p40 and TNF-α) on 
the association between change omega-3 index and clinical outcome at 6th 
month (Covariates: Age, Sex, BMI and Baseline n-3 Index). Mediation analysis with 

regression co-efficient (95% confidence interval). EPA-eicosapentaenoic acid, DHA-docosahexaenoic 
acid, IL-Interleukin, TNF-Tumour necrosis factor, BPRS- Brief Psychiatric Rating Scale, SANS- Scale 
for the Assessment of Negative Symptoms, SOFAS- Social and Occupational Functioning Assessment 
Scale 

Mediators Outcome (6 month) Mediation effects Direct effect Total effect 

IL 12p40 

BPRS-psychotic 0.00 (-0.03 to 0.03) -0.9 (-0.23 to 0.04) -0.10 (-0.23 to 0.04) 

SANS -0.01 (-0.15 to 0.17) -0.28 (-0.94 to 0.39) -0.29 (-0.93 to 0.35) 

SOFAS -0.04 (-0.33 to 0.13) 0.27 (-0.47 to 1.02) 0.23 (-0.49 to 0.96) 

TNF-α 

BPRS-psychotic -0.12 (-0.06 to 0.01) -0.08 (-0.22 to 0.06) -0.10 (-0.23 to 0.04) 

SANS -0.04 (-0.21 to 0.21) -0.25 (-0.92 to 0.41) -0.29 (-0.93 to 0.35) 

SOFAS 0.09 (-0.19 to 0.28) 0.15 (0.60 to 0.90) 0.23 (-0.49 to 096) 

 

Table 3.3.9. Mediating role of change in cytokines (IL-15, IL-12p40 and TNF-α) on 
the association between change omega-3 index and clinical outcome at 12th 
month (Covariates: Age, Sex, BMI and Baseline n-3 Index). Mediation analysis with 

regression co-efficient (95% confidence interval). EPA-eicosapentaenoic acid, DHA-docosahexaenoic 
acid, IL-Interleukin, TNF-Tumour necrosis factor, BPRS- Brief Psychiatric Rating Scale, SANS- Scale 
for the Assessment of Negative Symptoms, SOFAS- Social and Occupational Functioning Assessment 
Scale. 

Mediators 
Outcome 

(12 month) 
Mediation effects Direct effect Total effect 

IL12p40 

BPRS-psychotic 0.01 (-0.04 to 0.05) -0.07 (-0.19 to 0.04) -0.06 (-0.18 to 0.05) 

SANS -0.06 (-0.27 to 0.10) -0.37 (-1.00 to 0.27) -0.43 (-1.04 to 0.18) 

SOFAS -0.10 (-0.44 to 0.13) 0.49 (-0.34 to 1.38) 0.40 (-0.45 to 1.24) 

TNF-α 

BPRS-psychotic -0.01(-0.07 to 0.02) -0.05 (-0.16 to 0.07) -0.06 (-0.18 to 0.05) 

SANS -0.12 (-0.41 t 0.05) -0.31 (-0.94 to 0.31) -0.43 (-1.04 to 0.18) 

SOFAS 0.10 (-0.15 to 0.35) 0.30 (-0.58 to 1.18) 0.40 (-0.45 to 1.24) 
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3.4. Discussion 

We examined the biological relationship of erythrocyte omega-3 FAs with 

plasma inflammation markers in a group of CHR participants from the NEURAPRO 

trial. We hypothesized that plasma inflammatory markers would be negatively 

associated with omega-3 FAs and at least partially mediate the association between 

omega-3 FAs and clinical outcomes. The results supported our first hypothesis as 

plasma inflammatory markers associated inversely with omega-3 index, but did not 

support our second hypothesis as they did not indicate any mediating effect on 

psychotic symptoms or functioning. The main results are as follows: Firstly, in a cross-

sectional analysis, the omega-3 index at baseline was inversely associated with IL-15 

and endothelial immune markers ICAM-1 and VCAM-1. Secondly, increase in omega-

3 measures was significantly associated with decrease in TNF-α over the 6-month 

interval. Thirdly, in the longitudinal assessments, higher baseline omega-3 index and 

DHA predicted lower plasma levels of VCAM-1 at follow-up. Finally, 6-month change 

in omega-3 index expressed similar inverse association with TNF-α at follow-up. In the 

mediation analysis, omega-3 FA associated changes in plasma inflammatory markers 

did not exert any significant mediation role on psychotic or functional outcome of CHR 

participants. 

At baseline, the vascular endothelial markers VCAM-1 displayed a strong negative 

association with omega-3 index and DHA levels both cross-sectionally and 

longitudinally. In addition, ICAM-1 showed a negative association with erythrocyte 

omega-3 index cross-sectionally among baseline samples. The vascular adhesion 

molecules ICAM-1 and VCAM-1 belong to the immunoglobulin super family that are 

synthesized chiefly by leukocytes and endothelial cells (71). Studies have found 

varying levels of endothelial immune markers in schizophrenia patients compared to 

healthy controls (72-77) . To understand the relative contribution of these endothelial 

markers in schizophrenia patients, Nguyen et al. developed a composite measure 

called “Vascular endothelial index” (VEI). The VEI was based on the linear 

combination of endothelial markers that differed most between the groups, and VEI 

was found to be increased in schizophrenia patients compared to healthy controls (72, 

78). Our findings of an inverse association between endothelial markers and omega-

3 FAs were supported by Baker et al (2018). In this review, the authors identified 
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cellular mechanisms through which EPA and DHA inhibit the synthesis of endothelial 

markers at various levels. At the molecular level, omega-3 FAs decrease the 

expression of messenger RNAs responsible for coding endothelial cytokine synthesis 

(but increase the level of arachidonic acid as the main precursor of cytokines such as 

prostaglandins). At the cellular level, omega-3 FAs inhibit the adhesion and migration 

of leukocytes across the endothelium (79). Apart from such immune roles, endothelial 

markers are also involved in mechanisms such as disruption of the blood brain barrier 

(BBB), neuronal apoptosis and age-related impairments in neuronal precursor cells 

(80, 81). Considering that these mechanisms have already been related to the 

pathophysiology of schizophrenia (82-84), our results of negative associations 

between omega-3 FAs and endothelial immune markers provide preliminary evidence 

of an immune modulating effect of omega-3 FAs in early psychosis (CHR). 

Our study also identified an inverse relationship between EPA and IL-12p40 

which is a common subunit of cytokines IL-12 and IL-23 and exerts a pivotal agonistic 

role in early inflammatory reaction (85-87). In psychosis, a meta-analysis showed 

elevated levels of the pro-inflammatory cytokine IL-12 in schizophrenia patients 

compared to healthy controls (88). Moreover, our group previously observed increased 

plasma levels of IL-12p40 distinguishing CHR subjects who transitioned to psychotic 

disorder from who did not (89). A similar strong negative association was found for 

omega-3 FAs with pro-inflammatory cytokines IL-15 and TNF-α. The biological 

evidence relating the acute phase inflammatory state cytokine TNF-α with omega-3 

FAs has been extensively reviewed and altered regulation of TNF-α and IL-15 have 

been consistently observed in psychosis (24, 90-93). Here, for the first time, we report 

an association of omega-3 FAs with TNF-α in those potentially in as early stage of a 

psychotic disorder. In a placebo-controlled randomized trial, a decrease in the omega-

3:omega-6 ratio showed a positive association with IL-6 and TNF-α production, 

suggesting an anti-inflammatory role of omega-3 FAs on peripheral cytokines (94). 

The same research group also observed anti-inflammatory properties of omega -3 FAs 

rich diet in an adult population (95). Moreover, an extensive interaction between TNF- 

α and IL-15 has been observed at the blood brain barrier (BBB) since TNF-α enhances 

IL-15 synthesis and IL-15 in turn regulates TNF-α signaling at the level of the BBB (96, 

97). Although the current study did not consider the interactions of these pro-
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inflammatory mediators, the findings of significant associations between omega-3 FAs 

and these cytokines indicate a possible anti-inflammatory role on BBB by omega-3 

FAs in CHR participants.  

In the NEURAPRO clinical trial, although omega-3 FA supplementation was not 

found to be effective in the prevention of transition to psychosis, baseline erythrocyte 

omega-3 FAs levels have been shown to be associated with improvement of clinical 

symptoms in CHR individuals. At baseline, the n-3 index (EPA+DHA) was negatively 

correlated with general psychopathology, psychotic, depressive and manic symptoms, 

while the n-6/3 PUFA ratio was positively correlated with general psychopathology and 

depressive symptoms (55). In addition, 6-month increase in omega-3 FAs levels 

predicted less severe psychopathology and better functioning at 6-month and 12-

month follow-up (98). While these results suggested possible therapeutic effects of 

omega-3 FAs in CHR, the current study, which investigates the mechanistic (rather 

than the predictive) role of omega-3 FAs, found no clinical effect. We suspect that the 

absence of an association found between omega-3 FAs and clinical outcome (directly 

or indirectly through inflammatory mediators) could be due to the following reasons: (i) 

sampling bias which occurred due to the drop in sample numbers at follow-up as 

comparison of baseline characteristics of samples with and without follow-up indicated 

significant difference in biological and clinical parameters (Appendix 3.8.1), (ii) 

consideration of a different biomarker for the omega-3 index which was derived from 

gas chromatography utilizing a specific phospholipid fraction, which has a 3-4 fold 

higher magnitude compared to the mass spectrometric measure of total membrane 

fatty acids used in the previous analysis, or (iii) it could be a real effect with no 

association between omega-3 FAs and clinical outcomes in UHR state as observed 

previously (99).   

The strengths of our study include well-characterized CHR participants and the 

availability of baseline and follow-up biological and clinical data. This enabled us to 

understand the long-term influence of omega-3 FAs on immune status of the CHR 

participants in a unique manner. The multiplex assay provided the opportunity to 

analyze the biological effects of omega-3 FAs on a broad array of plasma immune 

markers in CHR participants. 
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Our study also has limitations. Firstly, the participants of the clinical trial 

displayed a low adherence to study intervention, which limited our ability to evaluate 

group difference between the omega-3 FA and placebo study arms (60). We overcame 

this limitation by considering the erythrocyte omega-3 FA levels. Secondly, the number 

of follow-up samples was only 55% of the baseline sample size. This drop-out may 

have resulted in some attritional bias as this affected the statistical power. Thirdly, the 

interaction within different immune mediators was not considered in the mediation 

analysis. Finally, the multiplex assay performed to study a broad array of immune 

biomarkers simultaneously, comes with its own limitations of a possible cross-

reactivity within the assays (100). 

In conclusion, our results showed an inverse relationship between omega-3 FAs and 

plasma immune markers that are involved in the pathophysiology of schizophrenia in 

this CHR sample. In the cross-sectional analysis, erythrocyte membrane omega-3 FAs 

were inversely associated with pro-inflammatory cytokines IL-15, IL-12p40, TNF-α, 

endothelial markers ICAM-1 and VCAM-1 and in the longitudinal analysis a similar 

negative association was found with TNF-α and VCAM-1. The predominant negative 

associations observed with several pro-inflammatory mediators are in keeping with 

known immune actions of omega-3 FAs and suggest that omega-3 FAs may reduce 

inflammatory load in CHR individuals. While the existence of an inflammatory subtype 

of schizophrenia is still under investigation, we speculate that omega-3 FAs could be 

more clinically beneficial in those who have high inflammatory load at baseline. 

However, no overall clinical benefits of omega-3 FAs, related to cytokine measures, 

were observed after 6-month of follow-up in CHR individuals. This raises the possibility 

that non-immune function of omega-3 FAs, such as recovering synaptic membrane 

activity in the brain, modulation of microbiota-gut-brain axis or production 

neuroprotective metabolites may impact on clinical outcome in early psychosis (44, 

101) Future randomized control trials with multiple follow-up time points would be 

beneficial in understanding the possible long-term biological benefits of omega-3 in 

(those at risk for) psychosis (102). 
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Abstract 

Background: Functional outcomes are important measures in the overall clinical 

course of psychosis and individuals at clinical high-risk (CHR), however, prediction of 

functional outcome remains difficult based on clinical information alone. In the first part 

of this study, we evaluated whether a combination of biological and clinical variables 

could predict future functional outcome in CHR individuals. The complement and 

coagulation pathways have previously been identified as being of relevance to the 

pathophysiology of psychosis and have been found to contribute to the prediction of 

clinical outcome in CHR participants. Hence, in the second part we extended the 

analysis to evaluate specifically the relationship of complement and coagulation 

proteins with psychotic symptoms and functional outcome in CHR.  

Materials and methods: We carried out plasma proteomics and measured plasma 

cytokine levels, and erythrocyte membrane fatty acid levels in a sub-sample (n=158) 

from the NEURAPRO clinical trial at baseline and 6 months follow up. Firstly, we used 

support vector machine learning techniques to develop predictive models for functional 

outcome at 12 months.  Secondly, we developed linear regression models to 

understand the association between 6-month follow-up levels of complement and 

coagulation proteins with 6-month follow-up measures of positive symptoms summary 

(PSS) scores and functional outcome. 

Results and conclusion: A prediction model based on clinical and biological data 

including the plasma proteome, erythrocyte fatty acids and cytokines, poorly predicted 

functional outcome at 12 months follow-up in CHR participants. In linear regression 

models, four complement and coagulation proteins (coagulation protein X, 

Complement C1r subcomponent like protein, Complement C4A & Complement C5) 

indicated a significant association with functional outcome; and two proteins 

(coagulation factor IX and complement C5) positively associated with the PSS score. 

Our study does not provide support for the utility of cytokines, proteomic or fatty acid 

data for prediction of functional outcomes in individuals at high-risk for psychosis. 

However, the association of complement protein levels with clinical outcome suggests 

a role for the complement system and the activity of its related pathway in the 

functional impairment and positive symptom severity of CHR patients.  

Key words: clinical high risk, functional outcome, prediction models, schizophrenia, 

psychosis.   
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4.1. Introduction 

Psychosis research is increasingly focusing on those in the clinical high risk (CHR) 

population who experience early signs of emerging psychosis (1). The CHR criteria 

comprise of the attenuated psychotic symptom (APS) criterion, the brief limited 

intermittent psychotic symptom (BLIPS) criterion, and the genetic risk and functional 

decline criterion (2). The functional impairment of CHR participants substantially 

impacts personal, familial and social well-being (3-5) and responds poorly to currently 

available treatments (6-8). The association of early functional deterioration with the 

development of psychotic symptoms indicates that functional measures could be used 

to improve early intervention strategies in psychosis (9-17).  

Previous studies involving CHR participants have investigated baseline predictors of 

transition to psychosis and found that factors such as social dysfunction, 

neurocognitive measures, duration of untreated psychosis and severity of attenuated 

psychotic symptoms predict later transition to psychosis (18-37). The biological 

aspects of psychosis have been increasingly studied in relation to the clinical 

symptoms in the CHR state.  Thus far, biological parameters such as neuroimaging 

data and electrophysiological indicators have provided some valuable prediction of 

functional outcome and transition to psychosis in CHR populations (26, 38-42). 

Studies of immune markers (43, 44) and membrane phospholipids (45-47) have also 

been undertaken in CHR participants. Although some alterations have been found to 

be associated with the development of psychosis (43, 44, 48-57), the clinical 

implication of these findings in terms of prediction of functional outcome in CHR 

individuals has not been specifically studied (52, 58). 

Blood based biological marker studies have focused on predicting the development of 

psychosis in CHR participants (59, 60). Mongan et al. used mass spectrometry based 

proteomic data to predict clinical outcomes in a longitudinal CHR study (61). Combined 

clinical and proteomic data predicted the development of psychosis better than clinical 

data alone (61). In addition to the prediction of psychosis, the proteomic variables also 

predicted functional outcome with an AUC of 0.76 at two years follow-up in 133 CHR 

participants (61). In this prediction model the most abundant proteins that significantly 

predicted functional outcome were complement and coagulation proteins. (62). 
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Similarly, other studies have found clinical and demographic features such as duration 

of treatment or untreated psychosis and poor cognition to be the predictors of later 

functional decline in the CHR (10, 13, 14, 17, 39, 63-68). 

In the current study we attempted to investigate the combined predictive ability of 

blood based biological markers including inflammatory cytokines, erythrocyte 

membrane fatty acids and the plasma proteome on functional outcome.  Using 

machine learning we sought to develop two prediction models, one using baseline 

clinical data alone and another using both baseline clinical and biological data. We 

developed these models in a subsample of the NEURAPRO clinical trial, which tested 

the potential preventive role of omega-3 fatty acids in CHR participants (69). Our team 

has previously reported dysregulation of complement and coagulation pathway 

proteins in relation to development of psychotic symptoms and functional decline in 

high-risk population (49, 61). These results supported the findings of Sekar et al., 

suggesting that the complement related activity might be involved in the development 

of clinical symptoms in the early stage of schizophrenia (70, 71). Hence, in the current 

study we extended our analysis to explore the individual relationship of complement 

associated proteins with positive symptoms and functional status. Based on our 

previous findings, we hypothesized that baseline biological data along with clinical 

parameters would predict functional improvement in CHR participants better than the 

clinical model alone. In addition, we also hypothesised that higher complement and 

coagulation proteins would associate with poor clinical outcomes. 

4.2. Materials Methods 

4.2.1. The NEURAPRO clinical trial 

The NEURAPRO clinical trial was registered with the Australian New Zealand Clinical 

Trial Registry as ACTRN 12608000475347. The trial aimed to investigate the role of 

omega-3 fatty acids (FAs) on prevention of psychosis in CHR participants (72). The 

study was conducted between March 2010 and the end of September 2014, in 

accordance with the Declaration of Helsinki and consistent with the International 

Council for Harmonization of Good Clinical Practice with appropriate ethical approval 

obtained from each site before the trial commenced. Ethical approval for the plasma 
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biomarker analysis presented in this study was obtained from the research ethics 

committee of the Royal College of Surgeons in Ireland [REC-No. 1699].  

The inclusion criteria include participants aged between 13 and 40 years who fulfilled 

one of the criteria for at-risk state defined by the Comprehensive Assessment of At-

Risk Metal State (CAARMS)(2). The exclusion criteria were: history of psychotic 

episodes of seven days or longer; any current symptoms of organic brain disease or 

developmental disorder; abnormal coagulation profile; thyroid abnormalities; physical 

illness with psychotropic effect, if not stabilized; current treatment with any mood 

stabilizers or recreational use of ketamine; past neuroleptic exposure equivalent to a 

total lifetime haloperidol dose of >50 mg; a diagnosis of a serious developmental 

disorder; premorbid IQ less than 70; current acute suicidality /self-harm or 

aggression/dangerous behavior; pregnancy; or intake of more than 4 weeks of 

supplementation with omega-3 FAs (73). 

4.2.2. Participants 

A total of 170 CHR participants who provided baseline and 12-month follow-up plasma 

samples and who had clinical outcome data available at 12 months were considered 

for this plasma biomarker analysis study.  

4.2.3. Clinical measures 

Baseline psychopathological scores of CHR participants were measured using the 

Brief Psychiatric Rating scale (BPRS) (74), Scale for the Assessment of Negative 

Symptoms (SANS) (75), Youth Maniac Rating Scale (YMRS) (76), Montgomery-

Åsberg Depression Rating Scale (MADRS) (77), Social and Occupational Functional 

assessment Score (SOFAS) (78), Global functioning Social (GF:S) (79) and Global 

functioning Role (GF:R) (80) were used for machine learning.  

4.2.4. Gas-chromatography based Erythrocyte membrane fatty acid measures 

Fasting plasma samples were collected at baseline and 6 months follow-up. The 

erythrocytes were separated from the plasma using an automated high-throughput 

method described in (81). The molecular percentage of Total omega-3 FAs, total 

omega-6 FAs, docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), linoleic 
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acid (LA), arachidonic acid (ARA), omega-3 index (EPA+DHA), omega-6:omega-3 

ratio, Alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA) were measured using 

gas chromatography (73, 82). The Phosphatidyl-ethanolamine (PE) fraction was used 

to determine the omega-3 FA content, because of their high abundancy in the lipid raft 

(56, 83). 

4.2.5. Mass spectrometry based proteomic measures 

Plasma samples of baseline and follow-up time points were processed according to 

the manufacturer’s instructions (PreOmics iST kit, no.iST 96x). Briefly, 4 µl of individual 

samples were solubilized in 50 μL of “Lyse” buffer (containing Tris-HCl, sodium 

deoxycholate (SDC), 0.1% sodium dodecyl sulfate (SDS), tris (2-carboxyethyl) 

phosphine (TCEP), and 2-chloroacetamide and heated to 95 °C for 10 min. 50 μL of 

the resulting denatured, reduced, and alkylated solution was transferred to the reaction 

tube. Enzyme (LysC and trypsin) was added, and samples were hydrolysed at 37°C 

for 1.5 hours. The resulting peptide mixture was washed and eluted as per the 

manufacturer’s instructions. The eluted peptides were vacuum-dried and dissolved in 

100 µl of LC Load buffer. The reconstituted digested peptide mixture [200 ng/ µl] was 

then eluted using Evotips and injected using Evosep One (Evosep, Odense, Denmark 

(84). The digested samples were run on a Bruker timeTof Pro mass spectrometer 

connected to a Evosep One liquid chromatography system. The mass spectrometry 

was operated in positive ion mode with a capillary voltage of 1500 V, dry gas flow of 3 

l/min and a dry temperature of 180oC. Trapped ions were selected for ms/ms using 

parallel accumulation serial fragmentation (PASEF). A scan range of (100-1700 m/z) 

was performed at a rate of 10 PASEF MS/MS frames to 1 MS scan with a cycle time 

of 1.15s (85, 86). The MS raw files were then processed with MaxQuant (87) version 

1.6.17.0 as described in (86) and the peptide data were further annotated and 

interpreted using the Perseus platform (V 1.6.7, www.maxquant.net/perseus/) (88). 

FDR was set at 0.01 to global protein identification level. Proteins that were identified 

in less than 70% of the total samples were not taken forward for analysis. Log2 

transformed values of LFQ intensities were used for statistical analysis. Missing values 

of mass spectrometry based proteomic data (corresponding to values below the level 

of detection) were imputed with minimum values.   

http://www.maxquant.net/perseus/
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4.2.6. Multi-plex assay-based estimation of plasma immune markers 

Plasma levels of Granulocyte-macrophage colony-stimulating factor (GM-CSF), 

Interleukin (IL) -1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p40, IL-12p70, IL-15, Tumor 

necrosis factor-α (TNF-α), Interferon gamma (INF-γ), Inter-cellular Adhesion Molecule 

(ICAM)-1 and Vascular cell adhesion molecule (VCAM)-1 were measured at baseline 

using the Pro-inflammatory Panel 1, Cytokine Panel 1 and Vascular Injury Panel 2 v-

PLEX® multiplex immunoassay kits (Mesoscale Discovery Systems) according to the 

manufacturer’s instructions. A Sector Imager 2400 plate reader was used to quantify 

concentrations of each marker (Meso Scale Diagnostics). The concentrations of 

plasma markers that were expressed in at least 70% of all samples with a coefficient 

of variation of a maximum of 20% were taken forward. These included: IL12p40, IL15, 

IFN-gamma, IL6, IL8, IL10, TNF-alpha, CRP, sVCAM-1 and sICAM-1. Log2-

transformed concentrations for these cytokines were used for the statistical analysis. 

4.2.7. Clinical outcome measure 

Functional outcome was assessed using the SOFAS scale at baseline, 6-month and 

12-month follow-up. For the machine learning model, we investigated prediction of 

SOFAS score as a continuous variable with a minimum possible score of 0 points and 

a maximum possible score of 100 points. For the linear regression model a positive 

symptom summary (PSS) score was used along with the SOFAS score. The PSS 

score was derived from CAARMS symptom severity score by summing up the product 

of global rating scale score (0-6) and frequency (0-6) of the four subscales (89).  

4.2.8. Statistical analysis 

Machine learning models 

Samples with clinical and biological data available at baseline and SOFAS outcome 

data available at 12-month follow-up were used for the machine learning analysis. 

Missing values of mass spectrometry based proteomic data were imputed with 

minimum values. Missing values of the remaining data were imputed using k nearest 

neighbours’ imputation (k=7). All continuous measures were standardised to z scores 

and winsorised within +/- 4z. Models were developed using a support vector machine 
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(SVM) approach based on the LIBSVM algorithm. SVM is a computationally efficient 

form of supervised machine learning that has been used previously in multiple different 

contexts within psychiatry (90-92). SVM methods can integrate hyperparameter 

optimization to reduce propensity for over-fitting. Neurominer version 1.0 

(https://github.com/neurominer-git) for MatLab 2018a (Math Works Inc) was used to 

develop SVM models with nested cross-validation. For a detailed description of nested 

cross-validation, see (93). The data were first divided into 5 random folds in the ‘outer 

loop’. For each cycle of cross-validation, data from each fold were held out and the 

rest of the data moved into the ‘inner loop’. Within the inner loop, we used 5 non-

overlapping folds with iterative training-test cycles. Models were trained and tested 

with a range of values for the regularisation parameter and the best-performing models 

tested against the held-out data in the outer loop to derive the optimal model. 

Model 1: clinical predictors  

Firstly, we generated a model for prediction of 12-month SOFAS score based on data 

for the 11 clinical predictors. We used the LIBSVM algorithm with a linear kernel where 

mean squared error was used as the performance criterion. The regularisation 

parameter was applied across a range of 7 values (0.015625, 0.03125, 0.0625, 0.125, 

0.25, 0.5,1 1) and the epsilon parameter across a range of 6 values (0.05, 0.075, 0.1, 

0.125, 0.15, 0.2).  

Model 2: biomarker predictors 

Secondly, we generated a model for prediction of 12-month SOFAS score based on 

data for the 177 potential biomarkers. This model was also developed using the 

LIBSVM algorithm with linear kernel, mean squared error as the performance criterion, 

and regularisation parameter optimisation as for Model 1.  

Model 3: clinical and biomarker predictors 

Thirdly, we generated a model for prediction of 12-month SOFAS score based on data 

for the 11 clinical predictors plus data for the 177 potential biomarkers. This model 

was also developed using the LIBSVM algorithm with linear kernel, mean squared 

error as the performance criterion, and regularisation parameter optimisation as for 

https://github.com/neurominer-git
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Model 1. For all three models, random-label permutation analysis with 1000 

permutations was used to derive p-values for model significance and mean feature 

weights. Presented performance metrics include the mean squared error, Pearson’s 

r, coefficient of determination, mean absolute error and normalised root mean square 

deviation. We also present classification-based performance metrics (such as 

sensitivity and specificity) for each model based on a SOFAS threshold of 70 points 

(70 points and below reflects some, moderate or major functional impairment, whereas 

71 points and above reflects no more than slight functional impairment). 

Linear regression models: 

The participants who had proteomic data available at baseline and 6 month follow-up 

along with SOFAS and CAARMS score were considered for the secondary analysis. 

Linear regression models were developed to assess the relationship between protein 

levels at 6-month follow up with clinical scores (positive symptom summery score and 

functional score) at 6-month follow-up and the model was adjusted for age, sex, BMI 

along with corresponding baseline complement protein levels and baseline clinical 

scores. The level of significance was set to 0.05.  

4.3. Results 

4.3.1. Sample characteristics 

Out of 170 participants, 158 participants have baseline clinical and biological 

measures and functional outcome at 12 months follow-up. The mean age of the study 

sample participants was 18 years (SD 4) with an average BMI of 24 kg/m2 (SD 6). 58% 

of the study participants were females. The baseline demographic, clinical and 

biological characteristics of the study participants are given in Table 4.3.1. 
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Table 4.3.1. Baseline Characteristics of the participants 

 Individuals with baseline 

and follow-up data 

Individuals with only 

baseline data 

Total 

N 158 146 304 
 

Mean Std.  

Deviation 

Mean Std. 

Deviation 

Mean Std.  

Deviation 

Age in years  16.32 (±3.12) 19.67 (±4.5) 18.98 (±4.49) 

BMI in Kg/m2 24.33 (±4.77) 23.92 (±4.03) 23.97 (±5.46) 

Sex-Females (%) 80 (50.6 %) 76 (50 %) 156 (46.8%) 

Clinical Characteristics 

BPRS Total  41.95 (±10.32) 37.11 (±9.64) 41.07 (±9.72) 

SANS Total  19.53 (±15.33) 13.11 (±11.1) 17.98 (±12.8) 

YMRS Total 3.32 (±2.38) 1.89 (±2.47) 3.25 (±3.02) 

MADRS Total  19.63 (±10.42) 13.67 (±11.7) 19.27 (±8.97) 

SOFAS  53.53 (±10.72) 65.00 (±15.8) 53.51 (±11.9) 

Global Functioning - 

Social  

6.11 (±1.24) 7.33 (±1.22) 6.51 (±1.21) 

Global Functioning - 

Role  

5.58 (±1.83) 6.89 (±1.36) 5.96 (±1.54) 

Omega-3 Fatty acid levels 

EPA in % 0.98 (±0.31) 0.97 (±0.35) 0.98 (±0.33) 

DHA in % 6.23 (±1.25) 6.64 (±1.78) 6.44 (±1.61) 

Omega-3 INDEX in % 7.22 (±1.38) 7.62 (±1.97) 7.41 (±1.77) 

Total Omega-3 in % 12.01 (±1.66) 12.10 (±2.11) 12.03 (±2.01) 

 

4.3.2. Predictive models 

The clinical predictor pool comprised 11 features in total (4 demographic variables 

including sex, age, smoking status, BMI; and 7 symptom scale scores). The biomarker 

predictor pool comprised 177 features in total (10 cytokines; 157 proteomic markers; 

and 10 fatty acid markers). The full list of features is provided in Supplementary Table 

4.8.1.  

Model 1: Clinical predictors 

Model 1 demonstrated poor predictive performance with mean squared error of 239.00 

(p<0.001 on permutation analysis). Pearson’s r was 0. 30 (95% confidence interval 
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0.13 – 0.45), coefficient of determination 8.9%, mean absolute error 13.0 and 

normalised root mean square deviation 22.4. Further performance metrics, including 

classification performance based on a threshold of 70 points, are presented in Table 

4.3.2. Observed versus predicted SOFAS values are plotted in Figure 4.3.1. Features 

are ranked by mean feature weight in Table 4.3.3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.1. Observed vs. predicted SOFAS score for Model 1. SOFAS: Social and 

Occuptional Functioning Scale 

 

Model 2: Biomarker predictors 

Model 2 demonstrated poor predictive performance with mean squared error of 256.2 

(p<0.001 on permutation analysis). Pearson’s r was 0.25 (95% confidence interval 

0.08 – 0.40), coefficient of determination 6.2%, mean absolute error 13.4 and 

normalised root mean square deviation 23.2. Further performance metrics, including 

classification performance based on a threshold of 70 points, are presented in Table 

4.3.2. Observed versus predicted SOFAS values are plotted in Figure 4.3.2. The 

highest-weighted 10% of predictors ranked by mean feature weight are provided in 

Table 4.3.3. 
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Figure 4.3.2. Observed vs. predicted SOFAS score for Model 2 (biomarker 

predictors). SOFAS: Social and Occupational Functioning Scale 

 

Model 3: Clinical and biomarker predictors 

Model 3 demonstrated poor predictive performance with mean squared error of 250.0 

(p=0.023 on permutation analysis). Pearson’s r was 0.22 (95% confidence interval 

0.05 – 0.38), coefficient of determination 5.0%, mean absolute error 13.4 and 

normalised root mean square deviation 22.9. Further performance metrics, including 

classification performance based on a threshold of 70 points, are presented in Table 

4.3.2. Observed versus predicted SOFAS values are plotted in Figure 4.3.3. The 

highest-weighted 10% of predictors ranked by mean feature weight are provided in 

Table 4.3.3. 
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Figure 4.3.3. Class predictions based on mean algorithm score for Model 3 

(clinical and biomarker predictors). SOFAS: Social and Occupational Functioning Scale. 

 

Table 4.3.2. Performance metrics for Model 1 (clinical predictors), Model 2 

(biomarker predictors) and Model 3 (clinical and biomarker predictors) 

Model parameters Model 1 Model 2 Model 3 

Regression performance metrics 

Coefficient of determination (R2), % 8.9 6.2 5.0 

Pearson’s r 0.30 0.25  0.22 

Mean absolute error 13.0 13.4 13.4 

Mean squared error 239.0 256.2 250.0 

Normalised root mean square deviation 22.4 23.2 22.9 

Classification performance metrics (≤70 vs > 70 points) 

True positives, n 41 34 45 

True negatives, n 33 42 31 
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False positives, n 27 18 29 

False negatives, n 30 37 26 

Sensitivity, % 57.7 47.9 63.4 

Specificity, % 55.0 70.0 51.7 

Balanced accuracy, % 56.4 58.9 57.5 

Area under the curve 0.63 0.62 0.58 

Positive predictive value 60.3 65.4 60.8 

Negative predictive value 52.4 53.2 54.4 

Positive likelihood ratio 1.3 1.6 1.3 

Negative likelihood ratio 0.8 0.7 0.7 

 

Table 4.3.3. Mean feature weighting in each model (top 10% of features shown 

for Models 2 and 3) 

Model 1 Model 2 (top 10% features) Model 3 (top 10% features) 

Feature 
Mean 

weight 
Feature 

Mean 

weight 
Feature 

Mean 

weight 

Log BMI -0.53 

Immunoglobulin 

heavy constant 

delta 

0.20 GFS score -0.24 

Log Age 0.40 
Beta-Ala-His 

dipeptidase 
-0.17 SOFAS score -0.17 

MADRS score -0.38 Biotinidase -0.15 
Immunoglobulin heavy 

variable 2-26 
-0.17 

GFS score 0.36 
Actin, 

cytoplasmic 1 
0.15 

Monocyte differentiation 

antigen CD14 
0.16 

SANS score 0.21 
Platelet factor 4 

variant 
-0.14 Biotinidase 0.15 

YMRS score -0.18 

Monocyte 

differentiation 

antigen CD14 

-0.14 MADRS score 0.14 

Male sex -0.16 
Complement 

C4-A 
0.14 Linoelic acid -0.13 

SOFAS score 0.16 

Immunoglobulin 

heavy variable 

3-15 

-0.14 
Immunoglobulin lambda 

variable 3-21 
0.13 
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Model 1 Model 2 (top 10% features) Model 3 (top 10% features) 

BPRS score -0.07 Total Omega-6 0.13 

Serum 

paraoxonase/arylesterase 

1 

-0.12 

GFR score 0.07 TNF-alpha -0.13 

Complement C1r 

subcomponent-like 

protein 

-0.12 

Smoking  -0.07 

Secretoglobin 

family 3A 

member 1 

0.13 
Immunoglobulin heavy 

variable 3-9 
0.12 

 

Prothrombin -0.13 
Immunoglobulin lambda 

variable 1-36 
0.12 

Actin, alpha 

skeletal muscle 
0.12 Apolipoprotein E 0.12 

Filamin A-

interacting 

protein 1-like 

0.12 
Immunoglobulin heavy 

constant mu 
-0.12 

Immunoglobulin 

heavy constant 

alpha 1 

-0.12 
Immunoglobulin heavy 

variable 3-15 
0.12 

Alpha-2-

macroglobulin 
0.11 Log Age -0.11 

Complement 

C4-B 
0.11 Transthyretin 0.11 

  sICAM1 0.10 

4.3.3. Associations between complement proteins and clinical outcome 

A total of 114 participants had proteomic and functional data at baseline and 6 months 

follow-up. In a linear regression analysis using 6-month SOFAS score, Coagulation 

protein Factor X at 6-month follow-up showed a positive association with functional 

outcome [β coef (95% CI)= 2.6(0.1to5.2), p value= 0.04], whereas complement 

proteins Complement C1r subcomponent like protein, C4A and C5 expressed an 

inverse association with functional outcome [β coef (95% CI)= -2.7 (-5.3to-0.2), -3.1(-

5.8to-0.5) & -2.9(-5.6to-0.3), p value= 0.04, 0.02 & 0.03, respectively] (Table 4.3.4). 

The complement C5 and coagulation factor IX associated positively with the positive 

symptom score after adjusting for age, sex, BMI and baseline clinical score [β coef 
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(95% CI) =2.6(0.2to5.0) and 2.6(0.1to5.0); p value= 0.034 and 0.043, respectively] 

(Figure 4.3.5).  

 

 Figure 4.3.4. Scatter plot depicting the relationship of complement and 

coagulation proteins with clinical outcomes at follow-up (SOFAS and PSS). 

SOFAS- Social and Occupational Functioning Assessment Scale, PSS- positive symptom severity 

scale  

 

 

 

   

S
O

F
A

S

Coagulation factor X

SO
FA

S

Complement C5

SO
FA

S 
sc

o
re

Complement C1r subcomponenet like protein

SO
FA

S

Complement C4A

Po
si

ti
ve

 s
ym

pt
om

 s
ev

e
ri

ty

Complement C5

Po
si

ti
ve

 S
ym

p
to

m
 S

ev
er

it
y

Coagulation factor IX

1 2 

3 4 

5 6 



 

117 
 
 

Table 4.3.4. The results of linear regression analysis between follow-up 

complement and coagulation proteins and follow-up SOFAS score adjusting for 

age, sex, baseline protein levels and baseline SOFAS score 

Protein Names Coef. p value    [95% Conf.Interval] 

Clusterin 2.087 0.112 -0.493 4.668 

Coagulation factor IX -2.264 0.089 -4.879 0.351 

Coagulation factor V 1.624 0.230 -1.040 4.287 

Coagulation factor X 2.634 0.042 0.101 5.168 

Coagulation factor XII 0.598 0.682 -2.284 3.480 

Coagulation factor XIII A chain -1.348 0.311 -3.972 1.276 

Coagulation factor XIII B chain 1.873 0.169 -0.809 4.556 

Complement C1q subcomponent subunit B 0.997 0.468 -1.714 3.709 

Complement C1q subcomponent subunit C 1.326 0.321 -1.309 3.962 

Complement C1r subcomponent -1.283 0.334 -3.903 1.338 

Complement C1r subcomponent like protein -2.720 0.036 -5.263 -0.177 

Complement C1s subcomponent -0.299 0.824 -2.949 2.352 

Complement C2 0.038 0.977 -2.574 2.649 

Complement C3 -1.637 0.227 -4.307 1.034 

Complement C4A -3.132 0.020 -5.753 -0.511 

Complement C4B -1.251 0.404 -4.211 1.709 

Complement C5 -2.936 0.030 -5.580 -0.291 

Complement component C6 -0.522 0.693 -3.131 2.088 

Complement component C7 -0.344 0.806 -3.110 2.421 

Complement component C8 alpha chain 0.158 0.907 -2.521 2.837 

Complement component C8 beta chain -1.756 0.197 -4.437 0.924 

Complement component C8 gamma chain 0.521 0.694 -2.100 3.142 

Complement component C9 -0.715 0.600 -3.408 1.977 

Complement factor B -1.115 0.428 -3.893 1.663 

Complement factor H -1.086 0.429 -3.797 1.624 

Fibrinogen alpha chain -1.496 0.251 -4.065 1.073 

Fibrinogen beta chain B -1.942 0.138 -4.516 0.631 

Fibrinogen beta chain C -0.836 0.525 -3.437 1.764 

Fibrinogen gamma chain -2.030 0.119 -4.593 0.533 

Ficolin3 2.723 0.051 -0.014 5.460 

Heparin co factor 2 -1.597 0.232 -4.233 1.039 

Protein Z dependent protease inhibitor 0.051 0.970 -2.608 2.710 

Prothrombin 1.131 0.429 -1.695 3.957 

Vitronectin 1.304 0.379 -1.622 4.230 
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Table 4.3.5. The results of linear regression analysis between follow-up 

complement and coagulation proteins and follow-up Positive symptom 

summery score  

Protein Names Coef. P value [95% Conf.Interval] 

Clusterin -0.022 0.987 -2.646 2.603 

Coagulation factor IX 2.559 0.043 0.086 5.031 

Coagulation factor V -0.881 0.504 -3.489 1.727 

Coagulation factor X -0.426 0.741 -2.985 2.132 

Coagulation factor XII 0.424 0.761 -2.332 3.179 

Coagulation factor XIII A chain 0.632 0.608 -1.803 3.068 

Coagulation factor XIII B chain -0.609 0.642 -3.203 1.984 

Complement C1q subcomponent subunit B 1.011 0.421 -1.475 3.497 

Complement C1q subcomponent subunit C 0.067 0.955 -2.300 2.434 

Complement C1r subcomponent 0.165 0.894 -2.281 2.611 

Complement C1r subcomponent like protein -0.993 0.429 -3.476 1.490 

Complement C1s subcomponent 1.479 0.248 -1.047 4.004 

Complement C2 -0.576 0.623 -2.899 1.746 

Complement C3 0.354 0.782 -2.180 2.889 

Complement C4A -0.092 0.942 -2.615 2.431 

Complement C4B -0.654 0.649 -3.495 2.186 

Complement C5 2.610 0.034 0.199 5.020 

Complement component C6 0.406 0.736 -1.982 2.790 

Complement component C7 -0.319 0.806 -2.890 2.252 

Complement component C8 alpha chain 0.825 0.511 -1.655 3.305 

Complement component C8 beta chain 0.860 0.492 -1.614 3.333 

Complement component C8 gamma chain 0.593 0.635 -1.877 3.063 

Complement component C9 0.128 0.921 -2.428 2.684 

Complement factor B -1.182 0.427 -4.124 1.760 

Complement facto H -0.727 0.570 -3.255 1.801 

Fibrinogen alpha chain A -0.323 0.802 -2.873 2.227 

Fibrinogen beta chain B -0.479 0.706 -2.991 2.032 

Fibrinogen beta chain C -0.504 0.679 -2.915 1.907 

Fibrinogen gamma chain -0.088 0.946 -2.666 2.490 

Ficolin 3 -0.330 0.806 -2.995 2.335 

Heparin co factor 2 0.269 0.837 -2.310 2.847 

Protein Z dependent protease inhibitor 2.139 0.092 -0.352 4.630 

Prothrombin 1.399 0.302 -1.278 4.075 

Vitronectin -0.147 0.914 -2.845 2.550 
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4.4. Discussion 

In this study, we attempted to develop a machine learning model to predict 12-month 

functional outcome in a CHR population using baseline clinical data (symptom and 

sociodemographic measures) and baseline levels of plasma biomarkers (fatty acids, 

immune markers and proteomic measures). We hypothesized that baseline biological 

and clinical measures would collectively show better prediction of functional outcome 

than clinical measures alone. The clinical model (Model 1) had poor predictive 

performance in relation to functional outcome at 12 months follow-up with mean 

squared error of 239.0 (Area Under the receiver-operating characteristic Curve [AUC] 

0.63). A model based on biomarker data from several modalities (Model 2) showed 

poor predictive performance with mean squared error of 256.2 (AUC 0.62).  A model 

based on combined clinical and biomarker data (Model 3) also showed poor predictive 

performance (mean squared error 250.0, AUC 0.58). Hence our results did not support 

the hypothesis that biomarkers would improve prediction of functional outcome at 12-

month follow-up. However, in regression analysis, several complement and 

coagulation proteins at 6-month follow-up associated with psychotic symptoms and 

functional outcome at follow-up. In particular, an increased level of complement C5 

and coagulation protein factor IX at 6-month follow-up associated with high positive 

symptoms at 6-month follow-up after adjusting for their corresponding baseline clinical 

and proteomic measures. Similarly, an increase in complement proteins C1r 

subcomponent like protein, C4A and C5 associated with decrease in functional 

outcome, while coagulation protein Factor X associated inversely with functional 

outcome.  

Previous studies of CHR individuals have investigated the role of plasma-based 

biological markers in the prediction of transition to psychosis in the CHR population. 

In the North American Prodrome Longitudinal Study, 15 selected plasma analytes not 

only distinguished the CHR participants from healthy controls, but also successfully 

differentiated CHR participants who developed psychosis from those who did not (59). 

Similarly, a combination of 26 plasma biomarkers which were found to be differentially 

expressed in schizophrenia patients compared to controls, predicted the development 

of psychosis within two years follow-up. In this model, addition of clinical parameters 
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increased the performance of this prediction model (60). However, the ability of these 

models to predict functional outcome in CHR was not evaluated.  

A recent study from our team investigated the predictive ability of plasma proteome on 

the development of psychotic disorder among the CHR (61). The proteomic data 

successfully predicted the development of psychosis with and without clinical 

parameters. Moreover the baseline proteomic data along with clinical variables also 

predicted functional outcome at 2 years follow-up in CHR participants, albeit more 

weakly than models predicting transition outcome (61). In contrast, the current study 

did not predict the functional outcome at short term follow-up (12 months) using 

biological and clinical markers together. The current study investigated a wider array 

of biological predictors including plasma inflammatory markers measured using 

multiplex assays and erythrocyte membrane fatty acid assessed by gas 

chromatography levels but found no evidence of significant predictive performance. 

This finding could be due to the presence of masking effects of multiple biological 

variables such as plasma proteins that are not directly related to the functional 

outcome.  

The membrane phospholipid hypothesis has specified the potential involvement of 

fatty acid imbalance in the development of psychosis (43, 44, 50, 51, 53, 94-97). 

However, very few clinical studies have investigated the biological relationship of 

omega-3 FAs with functional outcomes such as social, role functioning and 

occupational functioning in CHR participants (58, 98-101). These studies suggest that 

there is a weak cross-sectional association between omega-3 FAs and functional 

outcome, and longitudinal analyses in the same samples have not shown evidence for 

strong relationships (58). Considering the limited knowledge of omega-3 FAs and 

plasma immune markers with functional outcome, the negative results of our study 

may suggest that more investigations are required to understand the therapeutic and 

prognostic ability of these fatty acid biomarkers in terms of functional status to consider 

them in the prediction models. For instance, a recent study has indicated that plasma 

levels of docosahexaenoic acid were associated cross-sectionally and longitudinally 

with psychotic disorder in early adulthood in the general population (54) but whether 

this extends to general functioning in the wider population is not yet known.  
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Apart from biological markers, previous studies have identified demographic, clinical 

and neuro-anatomical markers as reliable predictors of functional outcome in CHR 

psychosis. Another combined machine learning approach in CHR participants by 

Koutsouleris et al., revealed that social functioning impairment can be predicted using 

both clinical and neuro-anatomical measures (38). In this latter study, the authors also 

showed that the combination of neuroimaging models with clinical prediction models 

increased the performance by 1.9 fold compared to models based on the clinical 

measures alone (38). Moreover, among the clinical measures, neurocognition and 

functioning at baseline provided a strong link with functional outcome and provided a 

basis for domain-wise prediction in functional outcome (10, 13, 14, 17, 63-68). For 

instance, baseline processing speed and social functioning predicted social 

functioning at follow-up whereas baseline verbal memory and role functioning 

predicted role functioning at follow-up (102). In contrast, in our current study, blood-

based biomarkers were not able to match the predictive ability of neuroanatomical 

parameters and domain specific cognitive measures (38). 

The results of linear regression analyses revealed an important relationship between 

complement and coagulation proteins and functional outcome. Increased complement 

proteins at follow-up were associated cross-sectionally with increased positive 

symptoms and decreased functional symptoms at follow-up in CHR participants. 

Several complement pathway proteins are involved in synaptic pruning at early 

developmental stages and previous genetic and preclinical investigations have 

revealed the importance of complement related activity in relation to schizophrenia 

(51, 52, 71, 103, 104). In a population-based study, Föcking et al, (2021) reported an 

increase in complement and related proteins significantly associated with future 

development of psychotic symptoms. In this study the authors reported an 

upregulation of six proteins including C1r subcomponent like protein, and C5 

associated with future psychotic symptoms (50). Furthermore, Mongan et al. also 

observed that the complement proteins were among the top weighted predictive 

features of functional outcome and transition to psychosis in machine learning models 

(105). In line with our previous findings in the current study we evaluated the 

association of individual complement proteins with functional status and found that 

higher C1r subcomponent like protein, C4A and C5 complement proteins at follow-up 
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were cross sectionally associated with poor clinical outcomes such as high positive 

symptoms and poor functional outcome. This supports an inflammatory association 

with clinical outcome among participants with early psychosis and adds further support 

to the importance of complement associated changes in the pathophysiology of 

schizophrenia. Our proteomic findings are in line with genetic results of GWAS study 

which found that an association of increased risk of schizophrenia with an increased 

expression C4A gene (70, 71). These findings together suggest that an increase in 

baseline complement pathway protein levels predispose towards pathological 

changes on functioning at follow-up during the early stage of psychosis. The results 

also indicate a group level association of a few complement proteins with functional 

status even though individualized prediction was not achieved in machine learning 

based approach. The findings open up new avenues for understanding the molecular 

mechanisms through which complement and coagulation proteins might influence 

functional outcome among subjects in the CHR. Furthermore, it is possible that a 

subgroup of individuals vulnerable to psychosis with dysregulated complement activity 

may benefit from modulation of the complement pathway (for example through 

pharmacological interventions targeting complement activity) but this hypothesis 

would require extensive preclinical testing before human trials. 

4.5. Strengths and limitations 

Our study has several strengths. First our study utilised unique and in-depth biological 

data which included proteomic, inflammatory cytokine, membrane FA measures and 

in-depth clinical measures from a valuable CHR population. Secondly, the analysis 

focused on functional outcome among the CHR. This is an area that has been under 

investigated in the past. Thirdly our study is unique in quantifying erythrocyte omega-

3 markers and plasma complement protein levels at both baseline and follow-up time 

points in CHR trajectory. Furthermore, we were able to adjust the linear models for 

potential confounders. This statistical approach allowed us to take inter-individual 

heterogeneity into account. The limitations of our study include: i) use of relative 

quantification methods such as discovery proteomics and semi-quantitative biological 

assays such as multi-plex ELISA assays; ii) absence of some potentially relevant 

measures such as neuro-imaging data that has successfully predicted the functional 

outcome in CHR participants in the past; iii) a relatively small number of samples 
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(n=158) compared to those who contributed to the NEURAPRO clinical trial as a whole 

(n=304), due to non-participation in some aspects of the study; iv) the large number of 

predictors relative to the sample size may give rise to concern regarding overfitting 

and v) in linear regression analyses, considering the use of discovery based proteomic 

data and clinically homogenous samples, we did not adjust the results for multiple 

correction.  

4.6. Conclusion 

Our study suggests that in CHR participants, addition of baseline plasma biomarker 

data involving proteomic markers, erythrocyte membrane FA levels and plasma 

cytokine levels did not improve prediction of 12-month functional outcome beyond 

baseline clinical data alone. However statistical analysis found an association between 

increased complement pathway proteins and worsening of clinical outcome such as 

increased positive symptoms and poor functional outcome in CHR participants. These 

findings point to a need of further studies exploring and validating the association of 

complement and related pathway activity with clinical outcome in psychosis. 

Furthermore, the machine learning models point to a need for a deeper understanding 

contribution of other types of biological and clinical markers to improve prognostication 

in CHR individuals. 
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Abstract 

Preliminary evidence indicates beneficial effects of omega-3 polyunsaturated fatty 

acids (PUFAs) in early psychosis. The present study investigates the molecular 

mechanism of omega-3 associated therapeutic effects in clinically high-risk (CHR) 

participants. Plasma samples of 126 CHR psychosis participants at baseline and 6-

months follow-up were included. Plasma protein levels were quantified using mass 

spectrometry and erythrocyte omega-3 PUFA levels were quantified using gas 

chromatography. We examined the relationship between change in polyunsaturated 

PUFAs and plasma proteins and using mediation analysis, we investigated whether 

plasma proteins mediated the relationship between change in omega-3 PUFAs and 

clinical outcome. A 6-months change in omega-3 PUFAs was associated with 24 

plasma proteins at follow-up. Pathway analysis revealed the complement and 

coagulation pathway to be the main biological pathway to be associated with change 

in omega-3 PUFAs and mediated the relationship between change in omega-3 PUFAs 

and the clinical outcomes at follow-up. The inflammatory protein complement C5 and 

protein S100A9 negatively mediated the relationship between change in omega-3 

PUFAs and positive symptom severity, while C5 positively mediated the relationship 

between change in omega-3 and functional outcome. The relationship between 

change in omega-3 PUFAs and cognition was positively mediated through coagulation 

factor V and complement C1QB. Our findings provide first evidence for a longitudinal 

association of omega-3 PUFAs with complement and coagulation protein changes in 

the blood. Further, the results suggest that increase in omega-3 PUFAs decrease 

symptom severity and improve cognition in the CHR state through modulating effects 

of complement and coagulation proteins. 
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5.1. Introduction  

The brain is a lipid rich organ and 60% of its total membrane is composed of 

phospholipids (1). Polyunsaturated Fatty acids (PUFAs) are a vital component of 

neuronal membrane phospholipids. Omega-3 and omega-6 fatty acids are two major 

classes of PUFAs present in the brain, among which omega-3 PUFAs have superior 

health benefits in humans (2-6). Pre-clinical investigations have identified several 

mechanisms in which omega-3 PUFAs play an important role, such as maintenance 

of cell membrane integrity (7, 8), release of specialized pro-resolving mediators (9-

12), and modification of gut microbiome (13) and regulation of synaptic pruning activity 

in the brain (14-16).  

In psychotic disorder, insufficient consumption of omega-3 PUFAs (17-19) or 

abnormal fat metabolism (20-27) were found to be associated with disease pathology. 

The membrane phospholipid hypothesis of schizophrenia proposes a possible link 

between PUFA abnormalities and psychosis and proposed a potential therapeutic role 

of omega-3 PUFAs in the treatment of schizophrenia and related disorder at an early 

stage(20, 28-40). To date, the evidence regarding the therapeutic role of omega-3 

PUFAs in Clinically High Risk (CHR) population appears inconclusive. The first 

omega-3 fatty acid placebo-controlled randomized UHR trial [the Vienna High Risk 

(VHR) study] found a large preventive effect on transition rate(41) while consecutive 

multicentre replication study (the NEURAPRO trial) was not able to confirm the latter 

finding(42),(43). However, both studies have provided preliminary biological evidence 

for altered PUFA metabolism in emerging psychiatric population. The VHR trial found 

a reduction in phospholipase A2 (PLA2) activity in relation to omega-3 PUFAs after 12 

weeks follow-up (44). The PLA2 enzymes are vital for regulation of phospholipid 

metabolism, membrane integrity, synaptic integrity and neurotransmission and in 

schizophrenia the calcium dependant PLA2 activity found to be increased (45). 

Furthermore, the VHR study indicates an omega-3 PUFA related increase in soluble 

intercellular adhesion molecule-1 (sICAM-1), whilst no such association was found 

with plasma cytokines such as Interleukin (IL)-6 and IL-2 (46). The NEURAPRO study 

found an inverse relationship between omega-3 PUFAs and plasma pro-inflammatory 

cytokines, although the results did not indicate any association with clinical symptoms 

in CHR state (47). Knowledge of the underlying mechanism of omega-3 PUFAs will 
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provide an insight into the biological role of omega-3 PUFAs in the pathophysiology of 

psychosis and help in designing early intervention strategies (41, 48, 49). 

The current study investigates the relationship of PUFAs (omega-3 and omega-

6) with plasma proteomic pathways in a clinical CHR population. We performed mass 

spectrometry-based analysis in plasma samples at baseline and follow-up, to 

investigate the longitudinal association between PUFAs and the plasma proteome. 

Furthermore, we evaluated the proteomic pathways through which omega-3 PUFAs 

may influence psychopathology in CHR participants. We addressed the following 

research questions: 

i) Is there any association between changes in omega-3 PUFAs with plasma 

proteins at follow-up in CHR participants? 

ii) Which biological pathways are most substantially influenced by change in 

PUFAs (both omega-3 and omega-6 PUFAs)? 

iii) Do the identified plasma proteins mediate the relationship between change 

in omega-3 PUFAs and clinical outcomes? 

5.2. Materials and Methods 

5.2.1. Study participants 

The NEURAPRO study is a multicentre randomized placebo-controlled clinical trial 

registered with the Australian New Zealand Clinical Trial Registry as ACTRN 

12608000475347. The study was performed abiding with the Declaration of Helsinki 

(50) and adhering to the National Health and Medical Research Council of the 

Australia National Statement on Human Research. The trial aimed to evaluate the 

therapeutic role of omega-3 PUFAs in preventing the development of psychosis in 

CHR patients. Informed consent was obtained from all the participants or from their 

parents/guardians if they were younger than 17 years. The inclusion and exclusion 

criteria of the participants of the study are provided in (51).  

The participants received either omega-3 PUFAs (840 mg eicosapentaenoic acid 

[EPA] and 560 mg docosahexaenoic acid [DHA] per day) or placebo (equivalent dose 
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of paraffin oil) for 6 months (43). The adherence to the study interventions was 

assessed monthly. At the end of 6 months a low adherence of 43% to the omega-3 

intervention and a 41% to the placebo was reported (52). 

5.2.2. Measurement of omega-3 PUFAs 

Fasting blood samples were collected at baseline and 6-month follow-up. The 

molecular percentage of the total sum of the omega-3 and omega-6 fatty acid series 

in erythrocyte membrane rafts were measured based on the phosphatidyl-

ethanolamine fraction using gas chromatography (53). Total omega-3 PUFAs 

comprise of alpha linolenic acid (18:3), eicosapentaenoic acid (20:5), 

docosapentaenoic acid (22:5) and docosahexaenoic acid (22:6). Total omega-6 

PUFAs include linoleic acid (18:2), gamma-linoleic acid (18:3), eicosadienoic acid 

(20:2), dihomo gamma-linoleic acid (20:3), arachidonic acid (20:4) and adrenic acid 

(22:4). Since a poor adherence to the study intervention was observed in both study 

arms, the erythrocyte membrane levels were used as objective measure of dietary 

intake of PUFAs (exposure variable)(54, 55). 

5.2.3. Quantification of plasma proteome 

Plasma samples of baseline and follow-up time points were used for discovery-based 

data-dependant acquisition mass spectrometry. For sample preparation steps and 

mass spectrometry data acquisition protocols refer to supplementary methods.  

5.2.4. Clinical outcome measures 

The clinical outcomes of psychotic symptom severity (PSS), functional status and 

cognitive status at 6-months follow-up were considered for the analyses. The PSS was 

assessed using the Comprehensive Assessment of At-Risk Mental State (CAARMS) 

scale (56). The subscales of positive symptoms from the CAARMS assessment 

(unusual thought content, non-bizarre ideas, perceptual abnormalities and 

disorganized speech) were used for the calculation of the PSS score. The summed 

scores of the product of global rating scale score (0-6) and frequency (0-6) of these 

subscales were calculated, as per previous research (57, 58). Functional outcome was 

measured using the Social and Occupational Functional assessment Scale (SOFAS) 
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and cognitive outcome using the Brief Assessment of Cognition in Schizophrenia 

(BACS), both at 6-months follow-up (59, 60).  

5.2.5. Statistical analysis 

Statistical analysis was performed using IBM® SPSS® statistics version 26 and STATA 

IC® version 16. 

Analysis 1- Identification of proteins and pathways associated with change in PUFAs 

Linear regression models were used to assess longitudinal associations between 6-

month change in erythrocyte PUFAs (total omega-3 or total omega-6 PUFAs) and 

plasma proteins at follow-up. Models were adjusted for age and sex. Proteins that 

were significantly associated (p<0.05) with change in total omega-3 and omega-6 

PUFAs were then taken forward for pathway analysis. Pathway analysis was 

conducted using the Reactome Pathway Knowledgebase Enrichment Analysis and a 

probability factor (p-value) was generated for each pathway based on the protein 

representations (61). A list of biological pathways based on the p-values after 

Benjamini-Hochberg correction for multiple tests (FDR 5%) was generated. The 

UNIPROT entities that were associated with total omega-3 PUFAs were considered 

for further analysis. 

Analysis 2- Relationship of total omega-3 associated proteins and clinical outcome  

The relationship of total omega-3 PUFAs associated proteins (from analysis 1) with 

clinical outcomes at 6-month follow-up were assessed using a linear regression model. 

The PSS, SOFAS and BACS scores were used for the analysis. The models were 

adjusted for age, sex and corresponding baseline protein levels. 

Analysis 3: Univariate mediation model 

Mediation analysis was performed to evaluate the potential mediating role of plasma 

proteins in the relationship between total omega-3 PUFAs and clinical outcomes (62). 

Regression-based mediation analysis was performed in IBM® SPSS® using the 

PROCESS platform. Regression beta coefficients were constructed using a 

conventional mediation analysis model with a bootstrap sample size of 5000 and with 
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95% confidence interval. In the mediation model the change in total omega-3 levels 

were used as exposure variable, the protein measures at follow-up were used as 

mediators and the clinical and neurocognitive outcomes (PSS/SOFAS and BACS) at 

follow-up were used as the outcome measures. The mediation analysis was adjusted 

for age, sex and corresponding baseline plasma protein levels (Figure 5.3.1). The role 

of baseline total omega-3 PUFAs on the mediation model was then assessed by 

repeating the model with baseline total omega-3 PUFAs levels as an additional 

covariate. 

5.3. Results 

From a total of 285 CHR participants in the NEURAPRO trial, 146 participants 

provided plasma samples at both time-points, baseline and 6-month follow-up. Out of 

these, 128 participants had erythrocyte omega-3 PUFA levels and proteomic 

measurements at both time-points.  These 128 participants were considered for the 

statistical analysis and the baseline characteristics of these participants are given in 

Table 5.3.1. A total of 165 proteins from discovery proteomics that passed quality 

control were eligible for analysis (Table 5.3.1.). 

Table 5.3.1. Participants’ demographic, anthropometric, PUFA and clinical 

characteristics at baseline and follow-up. SD- Standard deviation 

Variable names Baseline 6-month  

follow-up 

Demographic details 

Age in years, mean ± SD 18 ± 4 - 

BMI in kg/m2, mean ± SD 24.20 ± 

5.43 

- 

Gender, n (%) Female 81 (63%) - 
 

Male 47 (37%) - 

Biological and clinical measures 

Erythrocyte membrane fatty acid levels in %,  

mean ± SD 

Total omega-3 fatty 

acids 

11.94 ± 

1.68 

13.34 ± 

4.40 

Total omega-6 fatty 

acids 

35.56 ± 

1.73 

31.47 ± 

4.12 

Positive symptom severity (PSS) score, mean ± SD 25 ± 22 14 ± 15 

Social and Occupational Functional Assessment Scale score,  55 ± 10 67 ± 15 
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Variable names Baseline 6-month  

follow-up 

mean ± SD 

Brief Assessment of Cognition in Schizophrenia- composite score,  

mean ± SD 

25 ± 22 51 ± 13 

5.3.1. Results from analysis 1: The longitudinal association between change in 

PUFAs and plasma proteins 

In a linear regression model, 6-month change in total omega-3 PUFAs was associated 

with 24 plasma proteins at follow-up after adjusting for age, sex, and baseline total 

omega-3 levels. Using pathway analysis, these 24 proteins represented three major 

biological pathways, namely i) the immune system, ii) hemostasis (coagulation), and 

iii) vesicle mediated transport. The complement system and sub-pathways were the 

top pathways denoted by the change in total omega-3 PUFAs associated proteins 

(Table 5.3.2, Appendix 5.8.2 and Figure 5.3.2). Under the coagulation cascade, the 

plasma proteins associated with change in omega-3 PUFAs (hereafter omega-3 

related proteins) associated with platelet activation and clotting cascade related 

mechanisms (Appendix 5.8.2 and Table 5.3.4). Change in omega-6 PUFAs associated 

with six plasma proteins (out of 165 proteins) and did not associate with any major 

pathways (Appendix 5.8.2) (Appendix 5.8.3). 

Table 5.3.2. Pathways significantly associated with 6-month change in total 
omega-3 PUFAs. The table shows the lists of pathways that were significantly represented by total 

omega-3 associated plasma proteins. The names of pathways are given in the order of p values from 
low to high.   

Pathway name 
Entities  

found 

Reactions  

found 

Interactors  

found 

Entities  

FDR 

Regulation of Complement cascade 10 31 6 <0.001 

Complement cascade 10 49 6 <0.001 

Initial triggering of complement 6 11 0 <0.001 

Classical antibody-mediated complement activation 5 2 0 <0.001 

Creation of C4 and C2 activators 5 2 0 <0.001 

Platelet degranulation 5 2 0 <0.001 

Innate Immune System 14 114 8 <0.001 

Binding and Uptake of Ligands by Scavenger Receptors 5 9 1 <0.001 

Post-translational protein phosphorylation 4 1 0 <0.001 

Response to elevated platelet cytosolic Ca2+ 5 2 0 <0.001 
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Pathway name 
Entities  

found 

Reactions  

found 

Interactors  

found 

Entities  

FDR 

Scavenging of heme from plasma 4 6 1 <0.001 

FCGR activation 4 6 0 <0.001 

Terminal pathway of complement 2 5 1 0.002 

Regulation of Insulin-like Growth Factor (IGF) transport 

and uptake by Insulin-like Growth Factor Binding Proteins 

(IGFBPs) 

4 1 0 0.009 

Role of phospholipids in phagocytosis 4 6 1 0.012 

Plasma lipoprotein assembly 3 6 1 0.013 

Transport of gamma-carboxylated protein precursors 

from the endoplasmic reticulum to the Golgi apparatus 
2 2 0 0.013 

FCGR3A-mediated IL10 synthesis 4 10 1 0.013 

Parasite infection 4 14 1 0.013 

FCGR3A-mediated phagocytosis 4 14 1 0.013 

Leishmania phagocytosis 4 14 1 0.013 

Gamma-carboxylation of protein precursors 2 2 0 0.016 

Formation of Fibrin Clot (Clotting Cascade) 3 14 0 0.016 

Removal of aminoterminal propeptides from gamma-

carboxylated proteins 
2 2 0 0.017 

Defective F9 secretion 1 1 0 0.021 

Activation of C3 and C5 2 2 1 0.021 

Gamma-carboxylation, transport, and amino-terminal 

cleavage of proteins 
2 6 0 0.021 

Regulation of actin dynamics for phagocytic cup 

formation 
4 7 1 0.025 

Chylomicron assembly 2 2 1 0.039 

Intrinsic Pathway of Fibrin Clot Formation 2 5 0 0.039 

Neutrophil degranulation 4 4 0 0.044 

Leishmania parasite growth and survival 4 10 1 0.044 

Anti-inflammatory response favouring Leishmania 

parasite infection 
4 10 1 0.044 

Fcgamma receptor (FCGR) dependent phagocytosis 4 19 1 0.048 
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Figure 5.3.1. Results of pathway analysis using reactome.org (https://reactome.org/) depicting the protein pathways 

associated with 6-months change in total omega-3 PUFA 
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5.3.2. Results from analysis 2: The association between omega-3 related plasma 

proteins and clinical outcome at 6-month follow-up 

i) Association with positive symptom severity 

In linear regression models, three plasma proteins at follow-up associated cross-

sectionally with PSS score at follow-up: Complement component 5 (C5), and protein 

S100A-9 showed a positive association (β coef = 3.54, CI 95ile: 0.79 to 6.30, p-value= 

0.01* & 3.40, CI 95ile:0.27 to 6.52; p-value= 0.03*, respectively), while 

Immunoglobulin heavy constant gamma chain-4 (IGHG-4) showed an inverse 

association with the PSS score (β coef = -3.13, CI95%ile: -5.79 to -0.47 & p-value= 

0.02*) (Table 5.3.3).  

ii)Association with functional outcome 

Complement C5 associated inversely with SOFAS score at follow-up (β coef = -3.23, 

CI95%ile= -5.87 to -0.59 & p-value= 0.02*). Apolipoprotein D (Apo D) at follow-up 

indicated a positive association with SOFAS score with a β coefficient of 2.77 (CI 

955ile: 0.13 to 5.41, p-value= 0.04*) (Table 5.3.3). 

iii)Association with cognition 

In linear regression models, six proteins that are involved with the complement - 

coagulation cascade and lipid transport pathways expressed association with 

cognition. Among these Complement Factor B (CFB) inversely associated with BACS 

score at follow-up (β coef = -3.18, CI 95%ile: 5.72 to -0.63 & p value= 0.02) whereas 

Complement C1q subcomponent-B (C1QB) and coagulation factor V (F5) were 

positively associated with BACS score at follow-up (β coef = 3.93, CI95%ile: 1.58 to 

6.28, p-value=0.001* & β coef= 3.67, CI95%ile= 1.22 to 6.11; p-value= 0.004*). From 

the proteins involved in lipid transport mechanism, Apolipoprotein E, C-III and D were 

positively associated with BACS score (β coef = 3.09, 2.85 & 3.87; CI95%ile= (0.71 to 

5.48), (0.36 to 5.34) & (1.25 to 6.50), p value= 0.01*, 0.03* & 0.004*) (Table 5.3.3). 
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Table 5.3.3. Results of linear regression model II, showing association between total omega-3 related proteins with clinical 
outcomes at 6 months follow-up. The table shows the results of linear regression models between plasma proteins at follow-up with clinical outcomes 

at follow-up. The models were adjusted for age, sex, and corresponding baseline protein levels. PSS- Positive Symptom Severity score (based on the CAARMS 
assessment), SOFAS- Social and Occupational Functional Assessment scale, BACS- composite score of Brief Assessment of Cognitive Function & *significant 
findings.  

Clinical outcomes PSS SOFAS BACS 

Protein Names Coef. P value 95%  

Conf. Interval 

Coef. P value 95%  

Conf. Interval 

Coef. P value 95%  

Conf. Interval 

Alpha-1-antitrypsin 0.41 0.78 -2.44 to 3.27 0.02 0.99 -2.73 to 2.77 -0.77 0.55 -3.32 to 1.77 

Alpha-1B-glycoprotein 0.79 0.57 -1.94 to 3.53 0.05 0.97 -2.59 to 2.69 -0.50 0.7 -3.08 to 2.08 

Apolipoprotein C-I 1.03 0.47 -1.80 to 3.86 -1.22 0.37 -3.94 to 1.49 -1.16 0.36 -3.68 to 1.35 

Apolipoprotein C-III -0.98 0.5 -3.82 to 1.87 1.30 0.34 -1.40 to 4.01 2.85 0.03* 0.36 to 5.34 

Apolipoprotein D 1.17 0.41 -1.62 to 3.96 2.77 0.04* 0.13 to 5.41 3.87 0.00* 1.25 to 6.50 

Apolipoprotein E -2.15 0.12 -4.87 to 0.58 1.37 0.3 -1.24 to 3.97 3.09 0.01* 0.71 to 5.48 

Apolipoprotein L1 1.23 0.38 -1.52 to 3.99 1.13 0.4 -1.51 to 3.78 1.96 0.12 -0.49 to 4.42 

Caspase-14 1.84 0.19 -0.95 to 4.62 1.08 0.43 -1.60 to 3.75 -1.29 0.31 -3.81 to 1.24 

Coagulation factor V -0.05 0.97 -2.86 to 2.76 1.48 0.28 -1.20 to 4.16 3.67 0.00* 1.22 to 6.11 

Complement C1q subcomponent subunit B -0.01 0.99 -2.83 to 2.80 0.95 0.49 -1.75 to 3.64 3.93 0.00* 1.58 to 6.28 

Complement C5 3.54 0.01* 0.79 to 6.30 -3.23 0.02* -5.87 to -0.59 -0.88 0.49 -3.38 to 1.63 

Complement component C7 0.16 0.91 -2.66 to 2.98 0.06 0.97 -2.62 to 2.74 2.06 0.1 -0.39 to 4.51 

Complement factor B 0.78 0.58 -2.01 to 3.58 -1.98 0.15 -4.66 to 0.71 -3.18 0.02* -5.72 to -0.63 

Complement factor I 2.49 0.07 -0.22 to 5.21 -2.36 0.08 -4.97 to 0.25 -0.30 0.81 -2.77 to 2.16 

Filamin A-interacting protein 1-like protein 0.18 0.9 -2.56 to 2.92 0.84 0.54 -1.84 to 3.53 1.20 0.34 -1.28 to 3.67 

Galectin-3-binding protein 0.24 0.87 -2.67 to 3.16 -0.89 0.53 -3.68 to 1.91 0.27 0.85 -2.46 to 2.99 

Haptoglobin 1.07 0.45 -1.72 to 3.85 -1.34 0.32 -4.01 to 1.33 -0.58 0.65 -3.11 to 1.95 

Immunoglobulin heavy constant gamma 2 -1.83 0.19 -4.56 to 0.89 0.81 0.54 -1.80 to 3.42 -0.85 0.5 -3.32 to 1.62 



 

145 
 

Clinical outcomes PSS SOFAS BACS 

Immunoglobulin heavy constant gamma 4 -3.13 0.02* -5.79 to -0.47 -0.22 0.87 -2.80 to 2.36 1.98 0.11 -0.46 to 4.42 

Immunoglobulin heavy variable 1-18 0.2 0.89 -2.59 to 3.00 -0.05 0.97 -2.74 to 2.65 0.75 0.56 -1.79 to 3.29 

Immunoglobulin heavy variable 3-7 -0.29 0.84 -3.05 to 2.48 0.27 0.84 -2.38 to 2.91 1.57 0.21 -0.87 to 4.01 

Immunoglobulin kappa variable 3-20 -0.25 0.86 -3.08 to 2.57 0.28 0.84 -2.41 to 2.97 2.27 0.08 -0.24 to 4.79 

Protein S100-A9 3.4 0.03* 0.27 to 6.52 -1.48 0.34 -4.56 to 1.60 -0.63 0.66 -3.50 to 2.23 

Talin-1 1.02 0.47 -1.74 to 3.78 -1.95 0.14 -4.58 to 0.68 0.40 0.75 -2.04 to 2.83 

 

 

Figure 5.3.2: Mediation model. The picture depicts the structure of mediation model used for the analysis. The model was adjusted for covariates which 

include age, sex and baseline protein levels.
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5.3.3. Results of analysis 3: Univariate mediation analysis 

i) Positive symptom severity 

In the uni-variate mediation model of C5, IGHG-4 and S100A49, total omega-3 did not 

exert any direct or total effect on PSS score at follow-up. However, C5 and S100A49 

exerted a significant negative indirect effect (mediation effect) on the relationship 

between change in total omega-3 PUFAs and PSS score at follow-up [β coef= -0.21 

& -0.18; 95%ile CI= (-0.46 to -0.03) & (-0.42 to -0.01)] (Table 5.3.4) (Figure 5.3.3). 

ii) Functional outcome  

For SOFAS score at follow-up, no direct or total effect was observed for total omega-

3 PUFAs. However, complement C5 showed a significant positive mediation effect on 

the relationship of change in total omega-3 PUFAs on SOFAS score at follow-up [β 

coef=0.19; 95%CI= (0.01 to 0.42)] (Table 5.3.4) (Figure 5.3.3). 

iii) Cognitive outcome 

Univariate mediation analysis was developed for six plasma proteins (FB, C1QB, F5, 

Apo E, Apo CIII & Apo D). A significant positive total effect was observed for total 

omega-3 PUFAs associated with cognitive outcome. C1QB and F5 exerted a 

significant positive mediation effect on total omega-3 PUFAs related cognitive 

improvement [β coef=0.24 & 0.18; 95%CI= (0.05 to 0.54) & (0.02 to 0.38)] (Table 

5.3.4). This mediation effect of C1QB and F5 was found to be 39% and 27% of the 

total effect of total omega-3 PUFAs on cognition, respectively (Figure 5.3.3). 

iv) Role of baseline total omega-3 PUFAs on the mediation effect 

In this model, no total effect was observed for change in total omega-3 PUFAs on any 

of the clinical outcomes. However, the mediation effect of complement and coagulation 

proteins on total omega-3 associated clinical outcome remained significant after 

adjusting the models for baseline total omega-3 PUFAs.  (Appendix 5.8.4) (Figure 3). 
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Figure 5.3.3: Schematic representation of key results depicting the relationship 
of total omega-3 PUFAs, key plasma proteins/pathways and clinical outcome in 
clinically high-risk population.  
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Table 5.3.4. Results of univariate mediation analysis of omega-3 fatty acid 
associated plasma proteins on clinical outcome at follow-up. The table shows the 

results of mediation analysis using change in omega-3 PUFAs, plasma proteins and clinical outcomes 
as exposure, mediator and outcome variables, respectively. The model is adjusted for age, sex and 
baseline total omega-3 levels.CI- confidence interval, PSS- Positive Symptom Severity score, SOFAS- 
Social and Occupational Functional Assessment scale, BACS- Brief Assessment of Cognitive Function 
& *significant findings 
 

Outcome Mediator 

Mediation effect 

β coef 

(95%ile CI) 

Direct effect 

β coef 

(95%ile CI) 

Total effect 

β coef 

(95%ile CI) 

PSS 

 

Complement C5 
-0.21* 

(-0.46 to -0.03) 

-0.06 

(0.85 to -0.70) 

-0.27 

(0.39 to -0.90) 

Protein S100-A9 
-0.18* 

(-0.42 to -0.01) 

-0.09 

(-0.78 to 0.73) 

-0.27 

(0.38 to -0.90) 

Immunoglobulin heavy 

constant gamma 4 

-0.17 

(-0.46 to 0.029) 

-0.09 

(-0.72 to 0.54) 

-0.26 

(-0.88 to0.37) 

SOFAS 

 

Complement C5 
0.19* 

(0.006 to 0.42) 

0.11 

(-0.51 to 0.73) 

0.30 

(-0.30 to 0.90) 

Apolipoprotein D 
0.15 

(-0.004 to 0.34) 

0.20 

(-0.42 to 0.82) 

0.34 

(-0.25 to 0.95) 

BACS 

Complement factor B 
0.11 

(-0.02 to 0.31) 

0.54 

(-0.04 to 1.13) 

0.65* 

(-0.07 to 1.24) 

Complement C1q 

subcomponent subunit B 

0.24* 

(0.05 to 0.54) 

0.38 

(-0.19 to 0.95) 

0.62* 

(0.06 to 1.18) 

Coagulation factor V 
0.18* 

(0.02 to 0.38) 

0.47 

(-0.10 to 1.05) 

0.66* 

(0.09 to 1.23) 

Apolipoprotein E 
0.16 

(-0.01 to 0.43) 

0.46 

(-0.11 to 1.03) 

0.62* 

(0.06 to 1.18) 

Apolipoprotein C-III 
0.14 

(-0.02 to 0.39) 

0.52 

(-0.06 to 1.10) 

0.66 

(-0.10 to 1.23) 

Apolipoprotein D 
0.15 

(-0.02 to 0.33) 

0.51 

(0.08 to -0.06) 

0.67 

(0.10 to 1.24) 
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5.4. Discussion 

The current study investigated both the biological and clinical effect of PUFAs in a 

clinical high-risk population for a first psychotic episode. The mass-spectrometry 

based exploration of the plasma proteome at baseline and follow-on time points 

enabled us to study the longitudinal relationship of total omega-3 PUFAs on various 

biological mechanisms associated with psychopathology of CHR participants. First, 

change in total omega-3 PUFAs was associated with plasma proteins that represent 

immune, clotting and vesicle mediated transport mechanisms in CHR participants. 

Secondly, among the omega-3 PUFA associated proteins, those participating in 

immune pathways of the complement system (C5, CFB, C1QB & S100A9), the 

coagulation pathway (F5) and lipid transport pathways (Apo E, Apo CIII and Apo D) 

were significantly associated with clinical outcomes. Thirdly, the results of the 

mediation analysis demonstrated that omega-3 PUFAs may exert a beneficial clinical 

response through immune pathway proteins (mainly the complement and coagulation 

cascade). There was evidence that C5 and S100A9 mediated the association of 

change in total omega-3 PUFAs with reduction in positive symptom severity and 

improvement in functioning. Furthermore, the association between change in total 

omega-3 PUFAs and cognitive improvement at follow-up was mediated by the proteins 

F5 and C1QB.  

The current study is the first to observe that the complement cascade as the top 

biological pathway to be related with change in omega-3 PUFAs in CHR population. 

These observations provide vital evidence in omega-3 based treatment response in 

psychosis for the following reasons: i) Imbalances in PUFAs in individuals with 

psychosis have previously been suspected as genetic studies have reported evidence 

of a potentially causal relationship between increased long chain PUFA concentrations 

and lowered risk of psychosis (63, 64); ii) On the other hand, complement related 

immune activity has been found to be involved in the pathophysiology of 

schizophrenia(65-69); and iii) whereas in rodents, Madore. et al observed that 

maternal omega-3 PUFA deficiency drives microglia associated synaptic pruning and 

associated cognitive impairment in off-spring (15). Previous studies have observed 

beneficial effects of omega-3 PUFAs including anti-thrombotic, anti-inflammatory and 

lipid lowering properties in various inflammatory and metabolic conditions (14, 15, 70-
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73). A recent study investigated the role of dietary intake of marine omega-3 on the 

plasma proteome in patients with fatty liver disease. This study has reported the 

influence of marine omega-3 PUFAs supplements on the coagulation pathway in 

pooled plasma samples (74). Unlike the previous study, in the current study the inter-

individual heterogeneity was taken into account by quantifying the proteins in each 

sample and by using erythrocyte omega-3 PUFAs, which is a more reliable marker for 

dietary omega-3 PUFAs and neuronal membrane omega-3 PUFAs (54, 55, 75, 76).  

The second important finding of the present study is the association between the 

omega-3 related proteins and clinical outcomes. Complement and coagulation 

pathway proteins (that were associated with omega-3 PUFAs) indicated a relationship 

with psychotic symptoms (PSS), functioning status (SOFAS) and cognitive symptoms 

(BACS), whereas proteins from lipoprotein assembly associated with cognition and 

functional outcome. In line with our findings, existing evidence indicates consistent 

associations of complement dysregulation with psychotic symptoms in early psychosis 

although not in established schizophrenia (77-83). For instance, the upregulation of 

complement proteins and apolipoprotein-E were found to be associated with future 

development and persistence of psychotic symptoms in adolescence (80, 81). 

Finally, the mediation analysis revealed a potential molecular mechanism through 

which total omega-3 PUFAs could influence clinical outcomes as measured by PSS 

(positive symptom score calculated based on CAARMS score), SOFAS (functioning) 

and BACS scales (cognition) (Figure 5.3.3). Complement protein (C5) mediated the 

association between change in total omega-3 PUFAs with reduction in positive 

symptoms and improvement in functional outcome in CHR. S100A9 which can 

regulate the expression of C3 (84, 85) mediated the omega-3 PUFA associated 

reduction in PSS. In the mediation models no direct association (no direct effect) was 

noticed for change in total omega-3 PUFAs (exposure) with clinical outcomes which 

include functional outcome and PSS score. However, a significant indirect association 

(indirect effect) was observed for change-in omega-3 PUFAs with clinical outcome 

through the mediators (C5 and S100A9 for PSS; C5 for SOFAS score). Such type of 

mediation without direct effect is called as indirect-only mediation (86). In contrast, in 

mediation models of cognitive outcome, a significant direct and indirect effect was 

observed. Importantly, an increase in omega-3 PUFAs significantly associated with a 
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high cognitive score at follow-up in which complement and coagulation proteins (C1QB 

and F5) exerted a partial mediation effect. Such mediation is termed ‘complementary 

mediation’, where the mediators (plasma proteins) complement the association of 

omega-3 PUFA on cognitive outcome (86).  This partial mediation of C1QB and F5 

contributed approximately 33% and 27% of the total effect of change in total omega-3 

PUFAs on cognition. Latter mediation effect did not change even after adjusting the 

model for baseline omega-3 FAs. Previous investigations in the same cohort have 

reported significant cross-sectional and longitudinal associations of omega-3 PUFAs 

(EPA and DHA) on plasma immune markers, although these associations did not 

indicate any clinical significance (47). Hence the results from the mediation analysis 

suggest that omega-3 PUFAs associated changes in complement and coagulation 

proteins (F5, C1QB, C5 and S100A9) partially mediate clinical response in CHR state. 

The key proteins that indicated a mediation effect were previously found to be 

involved with neuronal development and functioning (87, 88). The activated product of 

C5, namely C5a, and S100A9, are pro-inflammatory in nature and play crucial roles in 

neuronal progenitor cell proliferation (89-91). In our study total omega-3 PUFAs 

demonstrated inverse association with C5 and S100A9 and in turn, the high levels of 

these proteins showed a positive relationship with positive symptom severity. Overall, 

the mediation analysis suggests that an increase in total omega-3 PUFAs leads to 

symptomatic improvement by reducing the potentially pro-inflammatory components 

(C5 & S100A9). Similarly, members of the C1Q protein family are involved in the 

synaptic pruning process, which is responsible for systematic elimination of unwanted 

synapses during development and aging (92, 93). A positive association was observed 

between total omega-3 PUFAs with C1QB and between C1QB and cognition. The 

mediation analysis hence suggested that total omega-3 PUFAs improve cognition by 

increasing proteins that are involved in synaptic pruning processes (C1QB).  The 

animal study by Madore et al. provided a similar relationship of omega-3 PUFAs-C1Q-

cognition axis. Madore et al.’s study reported that C1Q-receptor level was reduced in 

omega-3 deficient animals resulting in cognitive impairment (15). Such symptom-

specific complement alterations in a psychiatric population unfolds novel therapeutic 

opportunities to consider complement targeted medicine in the early intervention of 

psychosis. These findings provide further evidence for the possible influence of 

peripheral (plasma) complement proteins on the central nervous system. 
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5.5. Strengths and limitations 

Our study has several strengths: i) a state-of-the-art discovery proteomic 

approach allowed us to investigate a wide range of molecular mechanisms from 

plasma samples, ii) the availability of biological and clinical data of the NEURPRO 

clinical trial enabled us to look at both the biological and clinical relationship of omega-

3 PUFAs at the same time, iii) the exposure variable erythrocyte membrane total 

omega-3 PUFA levels provided a reliable measure of dietary omega-3 PUFAs and 

neuronal membrane omega-3 PUFAs(94), iv) the use of a unique study population 

(CHR) with mild psychotic symptoms, functional decline and cognitive impairment with 

no exposure to anti-psychotic medication(51), v) the availability of both erythrocyte 

total omega-3 PUFAs and plasma proteome data at two time points provided the 

possibility of analysing the longitudinal biological effects in the study population and 

vi) the findings have important clinical implications to early intervention strategies in 

psychosis. Our study is not without limitations. Firstly, in the statistical analysis, the 

results were not adjusted for multiple correction mainly due to the exploratory nature 

of the analysis and the nature of the mass spectrometry which is data-dependant 

acquisition (DDA) based discovery approach. Secondly, in the statistical analysis we 

adjusted the models for age and sex. The association of other covariates such as BMI 

and exposure to anti-depressants on both biological and clinical variables is not clearly 

understood and hence did not consider in the analysis. Finally, the absence of a direct 

effect in the mediation analysis limited us from understanding the percentage 

contribution of mediation in the overall effect (86, 95). 

5.6. Conclusion 

In conclusion, our findings provide novel insights into omega-3 PUFA related 

protein mechanisms in the psychopathology of CHR participants. Pathway analysis 

indicated that the complement cascade showed the strongest association with change 

in omega-3 PUFAs. Furthermore, current findings suggest that the impact of omega-

3 PUFA on clinical symptoms in psychosis is mediated, at least in part, through 

complement and coagulation pathway proteins. For positive symptom and functional 

outcome, the complement cascade proteins (C5 and S100A9) exerted an ‘indirect-

only mediation’ effect. Whereas for cognitive outcome complement pathway and 

coagulation pathway proteins (C1QB and F5) expressed a ‘complementary mediation’ 
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effect. We speculate that omega-3 PUFAs may improve psychotic symptom severity 

and functional status through anti-inflammatory property and enhances cognition by 

modifying C1Q mediated synaptic pruning. Our study opens future opportunities to 

investigate the immune associated intervention strategies in psychosis mainly 

targeting complement pathway proteins. 
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Chapter 6: General discussion 

  

Chapter overview 

This chapter summarizes and discusses the important findings, related literature 

evidence and their clinical implications of the findings. In addition, the implications of 

the results in future studies along with the overall strengths and limitation of the 

methodological approach of the thesis are discussed. 

The aim of the thesis was to improve the understanding of the therapeutical effects of 

omega-3 supplementation in the clinically high-risk (CHR) population. Initially a 

systematic review was performed to summarize and analyze the evidence from the 

existing literature related to omega-3 based functional improvement in CHR 

participants. Then we investigated the biological and clinical effects of omega-3 

supplementation in a cohort of CHR subjects from the NEURAPRO clinical trial. In 

addition, the effect of omega-3 FAs on complement and coagulation pathway proteins 

and their mediating effect on clinical outcome were studied in the same cohort (Table 

6.1).  
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Table 6.1: Overview of studies included in the thesis with their main findings 

Studies included 
Study 

population 

Investigations 

performed 
Main findings 

Chaper 2: Omega-3 fatty 

acid in ultra-high-risk 

psychosis: A systematic 

review based on functional 

outcome. 

CHR subjects 

from the NAPLS, 

the PORT, the 

VHR and the 

NEURAPRO 

studies 

N/A 

Cross sectional relationships: 

 In the NAPLS study, a weak 

positive correlation of the weekly 

intake of omega-3 consumption 

and erythrocyte EPA levels with 

functional scores at baseline was 

found 

 In the NEURAPRO study, no 

association was found 

Longitudinal relationship: 

 In the VHR study, the omega-3 

treatment group showed short 

term and long-term improvement 

in functioning compared to 

placebo 

 In the NEURAPRO study, no 

such association was found 

Chaper 3: The 

association of plasma 

inflammatory markers with 

omega-3 fatty acids and 

their mediating role in 

psychotic symptoms and 

functioning: An analysis of 

the NEURAPRO clinical 

trial. 

CHR subjects 

from the 

NEURAPRO 

clinical trial 

Multi-plex 

ELISA 

 Omega-3 FAs expressed an 

inverse association with plasma 

immune markers 

 The immune association of 

omega-3 did not indicate any 

mediating effect on clinical 

outcome. 

Chaper 4: Machine 

learning based prediction 

and the influence of 

complement - coagulation 

pathway proteins on 

clinical outcome: results 

from the NEURAPRO trial. 

Multi-plex 

ELISA and 

mass 

spectrometry 

 Biological and clinical markers 

separately did not predict the 

functional improvement of 

machine learning based 

prediction model.  

 Addition of biomarkers did 

improve the performance of the 

prediction model of clinical 

parameters 
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Studies included 
Study 

population 

Investigations 

performed 
Main findings 

 Complement and coagulation 

pathway proteins indicated a 

cross-sectional association with 

psychotic symptoms and 

functional outcome at follow-up. 

Chaper 5: Evidence that 

complement and 

coagulation proteins 

mediating the clinical 

response to omega-3 fatty 

acids: A longitudinal mass 

spectrometry-based 

investigation in subjects at 

clinical high-risk 

psychosis. 

Multi-plex 

ELISA and 

mass 

spectrometry 

 6 months change in omega-3 FAs 

associated with levels of 

complement and coagulation 

pathway proteins  

 Complement and coagulation 

pathway proteins mediated 

omega-3 associated 

improvement of psychotic 

symptoms, functioning and 

cognition 

6.1 Overview of findings   

This thesis describes four different investigations focusing on the immunological and 

clinical role of omega-3 FAs on functional outcome of CHR of psychosis subjects.  

6.1.1. Results of a systematic review focussing on the effects of omega-3 FAs 

supplementation on functional outcome in the CHR state 

The review (Chapter 2) evaluated evidence from the literature concerning the 

association between omega-3 FAs and functional outcome in a CHR population. Of 

the four studies included in the review, the NAPLS study reported a weak positive 

correlation between the incidence of weekly consumption of an omega-3 enriched diet 

with functional outcome in CHR participants. A similar weak positive correlation 

between fasting erythrocyte omega-3 levels and functional status was observed in the 

same participants. Whereas no similar cross-sectional association was observed 

between omega-3 FAs with functioning in the NEURAPRO and the PORT study. 

Among the clinical trials that have follow up omega-3 levels, the VHR study reported 

a significant improvement in functioning in the omega-3 group compared to controls. 

Furthermore, the omega-6 to omega-3 ratio after 12 weeks also significantly 

associated with functional improvement in CHR state. No such longitudinal association 



 

163 
 

was noticed in the NEURAPRO study. Overall, the systematic review revealed an 

inconclusive result regarding the relationship of omega-3 FAs and their effect on 

functional status in CHR subjects.  

6.1.2. Role of plasma immune markers on omega-3 FAs associated changes in 

the functional outcome in CHR participants 

Chapter 3 aimed to investigate the relationship of the omega-3 index (EPA+DHA) with 

plasma immune markers and further evaluated the mediating role of immune markers 

on omega-3 associated functional outcome in CHR participants of the NEURAPRO 

clinical trial. We hypothesised that omega-3 FAs will be negatively associated with 

plasma immune markers and that this immune association would at least partially 

mediate the omega-3 associated improvement in clinical outcome in CHR subjects. In 

a cross-sectional analysis, a high omega-3 index at baseline was associated with low 

baseline levels of IL-15, ICAM-1 and VCAM-1. Similarly, an increase in the omega-3 

index was associated with a decrease in TNF-α over the 6-month interval. In the 

longitudinal assessments, a higher baseline omega-3 index and DHA predicted lower 

plasma levels of VCAM-1 at follow-up. Finally, 6-month increase in omega-3 index 

associated with lower TNF-α at follow-up. In the mediation analysis, omega-3 FA 

associated changes in plasma inflammatory markers did not exert any significant 

mediation role on psychotic or functional outcome of CHR participants.  Overall, the 

results supported our initial hypothesis as plasma inflammatory markers associated 

inversely with the omega-3 index but did not support our second hypothesis as no 

mediating effect of plasma immune markers was found on omega-3 related changes 

in psychotic symptoms or functioning.  

6.1.3. Biological and clinical predictors of functional outcome in CHR state  

The main objective of the study presented in Chapter 4 was to use machine learning 

algorithms to evaluate the predictive role of biological as well as clinical parameters at 

baseline. We hypothesized that baseline biological and clinical measures would 

collectively show better prediction of functional outcome than clinical measures alone. 

However, all three models of clinical data (Model 1), biomarker data (Model 2) and 

combined data (Model 3) did not provide a clinically sufficient performance of 

prediction of functional outcome at 12 months in the CHR state. The mean squared 
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error of Models 1, 2 and 3 were 239.0 (AUC 0.63), 256.2 (AUC 0.62) and 250.0 (AUC 

0.58), respectively. Hence, our results could not support the hypothesis that 

biomarkers would improve prediction of functional outcome at 12-month follow-up.  

6.1.4. Omega-3 FA associated changes in plasma proteome and their influence 

in improvement in psychopathology and cognition in CHR 

The study in Chapter 5 investigated proteomic changes associated with PUFAs and 

evaluated the mediating role of the plasma proteome in omega-3 associated 

improvement in clinical outcome of CHR subjects. The mass-spectrometry based 

exploration of the plasma proteome at baseline and follow-up time points enabled us 

to study the longitudinal relationship of total omega-3 PUFAs on various proteomic 

mechanisms in CHR participants. The results showed that change in total omega-3 

PUFAs was associated with plasma proteins that represent immune, clotting and 

vesicle mediated transport mechanisms in CHR participants. Among the omega-3 

PUFA associated proteins, those participating in immune pathways of the complement 

system, the coagulation pathway and lipid transport pathways were significantly 

associated with clinical outcomes. The results of the mediation analysis demonstrated 

that omega-3 PUFAs may exert a beneficial clinical response through immune 

pathway proteins (mainly the complement and coagulation cascades). There was 

evidence that C5 and S100A9 mediated the association of change in total omega-3 

PUFAs with reduction in positive symptom severity and improvement in functioning. 

Furthermore, the association between change in total omega-3 PUFAs and cognitive 

improvement at follow-up was mediated by the proteins F5 and C1QB.  

6.2 Literature evidence and implications related to findings 

In the following sections, the evidence and associated implication of the results of four 

major themes that evolved from the studies are discussed. 
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6.2.1. Chapter 2: The association of omega-3 FAs and functional outcome 

The systematic review we undertook noticed preliminary evidence linking omega-3 

FAs with functional outcome. However, the results were not consistent in all clinical 

studies. For example, in the VHR study, none of the baseline erythrocyte membrane 

omega-3 FA individually associated with functional improvement at 12 weeks follow-

up. Nevertheless, in a multivariate analysis, all poly-unsaturated FAs of erythrocyte 

membrane together predicted an improvement of functional status after 12-weeks in 

both, the intervention and placebo group. This further supports a synergistic role of 

EPA and DHA acting in concert with other PUFAs to produce clinical improvement in 

UHR status(1). In the NEURAPRO study the functional scores of the participants 

improved irrespective of the study arms after 6 months and no statistical difference 

was noticed between the groups (2). We speculate that such findings could be due to 

the relatively low levels of omega-3 FA in the erythrocyte membrane and a narrow 

range of variation before and after the intervention. For instance, the total omega-3 FA 

level, which was about 3% of fatty acid content at baseline, increased by only 1% after 

omega-3 FA supplementation (2, 3). In addition to the low baseline omega-3 FA levels, 

the lack of compliance to omega-3 FA supplementation and the overshadowing effects 

of an effective co-intervention (cognitive behavioural therapy) were reported to have 

an impact on the clinical outcome of omega-3 FA. From the assessment compliance, 

Schlögelhofer et al. estimated that 57.9% of the participants of the omega-3 FA group 

were non-adherent to study medication(4).  

In the NEURAPRO clinical trial, omega-3 FA supplementation was not found to be 

effective in the prevention of transition to psychosis. At baseline, the n-3 index (EPA 

+ DHA) was negatively correlated with general psychopathology, psychotic, 

depressive and manic symptoms, while the n-6/3 PUFA ratio was positively correlated 

with general psychopathology and depressive symptoms (5). In addition, a 6-month 

increase in omega-3 FAs levels predicted less severe psychopathology and better 

functioning at 6-month and 12-month follow-up (6). While these results suggested 

possible therapeutic effects of omega-3 FAs in CHR, the current study, which 

investigates the mechanistic (rather than the predictive) role of omega-3 FAs, found 

no mediating role of plasma immune markers on positive symptoms and functioning 

in CHR subjects.  
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Previous studies on animals have investigated the effects of various omega-3 FAs on 

biological and behavioural outcomes. Intra-hippocampal infusion of DHA enhanced 5-

HT levels and enrichment of rat brain with DHA caused an increase in synaptic 

dopamine and serotonin resulting in anti-depressant like behavioural changes (7),(8). 

Similarly, diet induced antidepressant effects of omega-3 FA were noticed in 

experimental animals (9-11). However, the results from clinical studies are not as 

convincing as the animal counterparts. In humans, the functional outcome was 

estimated by various measures such as cognitive functioning, physiological and 

clinical symptoms. A recent meta-analysis on a young healthy population by Emery et 

al. did not find any beneficial effects of overall cognitive performances after 

supplementation with omega-3 FAs. Nevertheless, their meta-analysis indicated 

beneficial effects of EPA supplementation on some cognitive domains such as long-

term memory, working memory and problem solving (12). A recent systematic review 

pointed out that an omega-3 related positive effect on cognitive function was more 

likely when there is daily supplementation of >450 mg/day of EPA+DHA and >6% 

increase in the omega-3 index (13). In addition, studies in healthy subjects indicated 

an association of omega-3 intake with neuronal functional connectivity within the brain 

(14),(15). However, studies failed to provide consistent results about the therapeutic 

effects of omega-3 FA levels in other psychiatric patients such as depression and other 

mood disorders (13, 16-28). Similar inconsistencies with clinical results are evident in 

other studies discussed in our review. The influence of erythrocyte membrane omega-

3 FA levels on the local environment in the brain is still not clearly understood. Hence 

it is important to investigate the underlying biological connection between erythrocyte 

omega-3 FAs and the brain to understand the long-term effects of erythrocyte omega-

3 FA levels on functional status in general(29, 30). Overall, although beneficial effects 

of an omega-3 FA diet on functional status were observed by cross-sectional and 

intervention studies (the NAPLS and the VHR studies, respectively), further 

investigations are required to validate these results in UHR subjects to reach a definite 

conclusion. 
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6.2.2. Chapter 3: Role of plasma immune markers on omega-3 associated 

clinical outcome 

The study described in Chapter 3 investigated the biological and clinical effects of 

omega-3 FAs supplementation on the participants of the NEURAPRO clinical trial and 

found an inverse association between omega-3 FAs and plasma immune markers. 

The results of this study add to the existing literature regarding the role of omega-3 

based therapeutic effects in several ways. At baseline, the vascular endothelial 

markers VCAM-1 displayed a strong negative association with omega-3 index and 

DHA levels, both cross-sectionally and longitudinally. In addition, ICAM-1 showed a 

negative association with the erythrocyte omega-3 index cross-sectionally among 

baseline samples. Previous studies have found varying levels of endothelial immune 

markers in schizophrenia patients compared to healthy controls (31),(32-35). The 

vascular adhesion molecules ICAM-1 and VCAM-1 belong to the immunoglobulin 

super family that are synthesized mainly by leukocytes and endothelial cells (36). To 

understand the relative contribution of these endothelial markers in schizophrenia 

patients, Nguyen et al. developed a composite measure called “Vascular endothelial 

index” (VEI). The VEI was based on the linear combination of endothelial markers that 

differed most between the groups, and the VEI was found to be increased in 

schizophrenia patients compared to healthy controls (31). Our findings of an inverse 

association between endothelial markers and omega-3 FAs were supported by Baker 

et al (37), in which the authors have identified a molecular level relationship between 

omega-3 and endothelial markers.  

Our study also identified an inverse relationship between EPA and IL-12p40, a 

common subunit of cytokines IL-12 and IL-23 that exerts a pivotal agonistic role in 

early inflammatory reactions (38-40). In psychosis, a meta-analysis showed elevated 

levels of the pro-inflammatory cytokine IL-12 in schizophrenia patients compared to 

healthy controls (41). Moreover, our group previously observed increased plasma 

levels of IL-12p40 distinguishing CHR subjects who transitioned to psychotic disorder 

from those who did not (42).  The biological evidence relating the acute phase 

inflammatory cytokine TNF-α with omega-3 FAs has been extensively reviewed and 

an altered regulation of TNF-α and IL-15 has been consistently observed in psychosis 

(43-47). Here, for the first time, we report an association of omega-3 FAs with TNF-α 
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in the CHR. In a placebo-controlled randomized trial, a decrease in the omega-

3:omega-6 ratio showed a positive association with IL-6 and TNF-α production, 

suggesting an anti-inflammatory role of omega-3 FAs on peripheral cytokines (48). 

The same research group also observed anti-inflammatory properties of an omega−3 

FAs rich diet in an adult population (49). Moreover, an extensive interaction between 

TNF- α and IL-15 has been observed at the blood brain barrier (BBB) since TNF-α 

enhances IL-15 synthesis and IL-15 in turn regulates TNF-α signalling at the level of 

the BBB (50, 51). Overall, our findings provided vital evidence that in the CHR state 

omega-3 FAs could decrease the immune markers that are known to be associated 

with the pathophysiology of psychosis. Nevertheless, the results did not indicate any 

related clinical benefits in the CHR participants. This needs to be investigated in future 

studies.  

6.2.3. Chapter 4: Predictive role of biological and clinical markers on functional 

outcome in omega-3 based interventions in CHR subjects 

Chapter 4 investigated a machine learning-based predictive role of biological and 

clinical parameters on functional outcome in the NEURAPRO clinical trial. The results 

did not find any improvement in prediction of functional outcome at 12 months follow-

up after adding the baseline biological predictors to the existing model of baseline 

clinical predictors. Previous studies of CHR individuals have investigated the role of 

plasma-based biological markers in the prediction of transition to psychosis in the CHR 

population. In the North American Prodrome Longitudinal Study (NAPLS), 15 plasma 

analytes distinguished the CHR participants from healthy controls and successfully 

predicted transition to psychosis at baseline(52). In this latter model, the addition of 

clinical parameters increased the performance of this prediction model (53). Unlike in 

Chapter 4, the ability of these models to predict functional outcome in CHR was not 

evaluated in the NAPLS study(52, 53). Our team investigated the predictive ability of 

the plasma proteome on the development of psychotic disorder among the CHR in the 

European Network of National Schizophrenia Networks Studying Gene-Environment 

Interactions (EU-GEI) study (54). The proteomic data successfully predicted the 

development of psychotic symptoms with and without clinical parameters. Moreover 

the baseline proteomic data along with clinical variables also predicted functional 

outcome at 2 years follow-up in CHR participants, albeit more weakly than models 
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predicting transition outcome (54). The current study investigated a wider array of 

biological predictors including plasma inflammatory markers measured using multiplex 

assays and erythrocyte membrane fatty acids assessed by gas chromatography levels 

but found no evidence of a significant predictive performance. This could possibly be 

due to the masking effects of multiple biological variables including plasma proteins 

and erythrocyte membrane omega-3 levels that are not directly related to the 

functional outcome. Furthermore, we suspect factors such as the relatively small 

number of participants and lower incidence of transition among the participants after 

12 months compared to the EU-GEI study might have influenced the results.  

The membrane phospholipid hypothesis has specified the potential involvement of 

fatty acid imbalance in the development of psychosis (55-63). However, only a few 

clinical studies have investigated the biological relationship of omega-3 FAs with 

functional outcomes such as social, role functioning and occupational functioning in 

CHR participants (64-68). These studies suggest that there is a weak cross-sectional 

association between omega-3 FAs and functional outcome, and longitudinal analyses 

in the same samples have not been able to show evidence for strong relationships 

(68). The negative results of prediction models suggest the need for a deeper 

understanding of the role of omega-3 FAs and plasma immune markers in relation to 

functional outcome in psychosis.   

Apart from biological markers, the predictive role of demographic, clinical and neuro-

anatomical markers on functional outcome in CHR psychosis has been investigated 

by other studies. A combined machine learning approach in CHR participants by 

Koutsouleris et al., revealed that an impairment in social functioning can be predicted 

using both clinical and neuro-anatomical measures(69). In this study, the authors 

showed that the combination of neuroimaging models with clinical prediction models 

increased the performance by 1.9-fold compared to models based on the clinical 

measures alone(69). Among the clinical measures, neurocognition and functioning at 

baseline provided a strong link with functional outcome and provided a basis for 

domain-wise prediction of functional outcome(70-79). For instance, baseline 

processing speed and social functioning predicted social functioning at follow-up 

whereas baseline verbal memory and role functioning predicted role functioning at 

follow-up (80). In contrast, in Chapter 4, blood-based biomarkers were not able to be 
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matched with the predictive ability of neuroanatomical parameters and domain specific 

cognitive measures (69). 

6.2.4. Chapter 5: The association of change in omega-3 FAs with plasma 

proteomic pathways at follow-up and related influence on improvement in 

psychopathology in CHR participants 

The results from Chapter 5 demonstrated the importance of complement and 

coagulation pathway proteins in omega-3 FA associated clinical improvement in early 

psychosis. The current study is the first to observe that the complement cascade as 

the top biological pathway is related to a change in omega-3 PUFAs in a CHR 

population. Imbalances in PUFAs in individuals with psychosis have previously been 

suspected after genetic studies have reported evidence of a potentially causal 

relationship between increased long chain PUFA concentrations and lowered risk of 

psychosis(81, 82). In rodents, Madore et al. observed that maternal omega-3 PUFA 

deficiency drives microglia associated synaptic pruning and this associated with 

cognitive impairment in the off-spring(83). These findings along with the known 

complement associated immune activity in psychosis increases the possibilities of 

using omega-3 FAs as a potential therapeutic agent in psychosis. They also raise the 

possibility that one mechanism of action of omega-3 FAs is through modulation of 

complement pathway activity, in addition to proposed direct effects on membrane 

integrity and plasticity (83).  

The second important finding of the present study is the presence of a mediation effect 

for complement and coagulation pathway proteins on omega-3 associated clinical 

outcome. The clinical outcomes include the positive symptom score (PSS, calculated 

based on CAARMS score), functioning (measured using SOFAS) and cognition (by 

BACS scales). Complement protein 5 (C5) mediated the association between change 

in total omega-3 PUFAs with reduction in positive symptoms and improvement in 

functional outcome in CHR. S100A9, which can regulate the expression of C3(84, 85), 

mediated the omega-3 PUFA associated reduction in PSS. In the mediation models, 

no direct association (no direct effect) was noticed for change in total omega-3 PUFAs 

(exposure) with clinical outcomes which include functional outcome and PSS score. 

However, a significant indirect association (indirect effect) was observed for change-

in omega-3 PUFAs with clinical outcome through the mediators (C5 and S100A9 for 
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PSS; C5 for SOFAS score)(86). In contrast, in mediation models of cognitive outcome, 

a significant direct and indirect effect was observed. Importantly, an increase in 

omega-3 PUFAs significantly associated with a high cognitive score at follow-up in 

which complement and coagulation proteins (C1QB and F5) exerted a partial 

mediation effect(86).  This partial mediation of C1QB and F5 contributed to 

approximately 33% and 27% of the total effect of change in total omega-3 PUFAs on 

cognition. Overall, the results from the mediation analysis suggest that omega-3 

PUFAs associated changes in complement and coagulation proteins (F5, C1QB, C5 

and S100A9) partially mediate clinical response in CHR state. 

The key proteins that indicated a mediation effect were previously found to be 

involved with neuronal development and functioning(61, 87). The activated product of 

C5, namely C5a, and S100A9, are pro-inflammatory in nature and play crucial roles in 

neuronal progenitor cell proliferation(88-90). In our study total omega-3 PUFAs 

demonstrated an inverse association with C5 and S100A9 and in turn, the high levels 

of these proteins showed a positive relationship with positive symptom severity. 

Overall, the mediation analysis suggests that an increase in total omega-3 PUFAs 

leads to symptomatic improvement by reducing the potentially pro-inflammatory 

components (C5 & S100A9). Similarly, members of the C1Q protein family are 

involved in the synaptic pruning process, which is responsible for systematic 

elimination of unwanted synapses during development and aging(91, 92). A positive 

association was observed between total omega-3 PUFAs with C1QB and between 

C1QB and cognition. The mediation analysis hence suggested that total omega-3 

PUFAs improve cognition by increasing proteins that are involved in synaptic pruning 

processes (C1QB).  The animal study by Madore et al. provided a similar relationship 

of omega-3 PUFAs-C1Q-cognition axis. Madore et al.’s study reported that C1Q-

receptor level was reduced in omega-3 deficient animals resulting in cognitive 

impairment(83). Such symptom-specific complement alterations in a psychiatric 

population unfolds novel therapeutic opportunities to consider complement protein 

targeted medication development in the early intervention of psychosis. These findings 

provide further evidence for the possible influence of peripheral (plasma) complement 

proteins on the central nervous system. 
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Figure 6.1: The schematic representation of relationship of plasma cytokines, complement and coagulation proteins with 
omega-3 FAs and clinical outcome in CHR participants. Figure represents the mediating role of plasma cytokines and proteins of complement 

and coagulation pathway proteins on clinical outcome in CHR subjects. FAs-fatty acids, IL-Interleukin, TNF-Tumour necrosis factor, VCAM- vascular endothelial 
adhesion molecule, CFI-Complement factor I, CFB-Complement factor B, C-Complement, and Factor V- coagulation factor V. 
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6.3. Strengths and limitations of the thesis 

The following strengths and limitations were observed in the studies  

6.3.1. Strengths 

All four studies of the thesis used data from well-characterized CHR participants at 

baseline and follow-up (single or multiple) time points. This enabled us to understand 

the cross-sectional and longitudinal relationship of biological and clinical parameters 

in the CHR state. In addition, the following strengths were noticed in the individual 

studies. 

The systematic review in Chapter 2 followed the recommended methodological steps 

to analyse the association between omega-3 FAs and functional outcome in CHR 

participants. This is the first systematic review of its kind that included all different 

forms of omega-3 fatty acids (such as dietary, plasma levels, erythrocyte membrane 

levels of omega-3 FAs).  

In Chapter 3, the use of a multiplex ELISA assay provided the opportunity to analyse 

the biological effects of omega-3 FAs on a broad array of plasma immune markers in 

CHR participants simultaneously. 

In Chapter 4 our study utilised unique and in-depth biological data which included 

proteomic, inflammatory cytokine, membrane FA measures as well as multiple clinical 

measures from a valuable CHR population. In addition, a machine learning based 

statistical approach allowed us to investigate the group level associations within 

different parameters for clinical use. 

Chapter 5 has several strengths: As in Chapter 4, the availability of biological and 

clinical data from the NEURAPRO clinical trial enabled us to look at both the biological 

and clinical relationship of omega-3 PUFAs at the same time.  The findings of chapter 

5 provided key evidence for clinical implications of omega-3 FAs in early intervention 

strategies in psychosis. 
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6.3.2. Limitations 

Chapter 2 has the following limitations. First, in the interest of asking a single research 

question, my systematic review focused only on one clinical assessment (functional 

status) in a relatively rare population group (CHR). This reduced the total number of 

available articles and made it impossible to perform a meta-analysis. Secondly, the 

individual studies included in the systematic review had weaknesses. For example, 

the co-interventions provided in clinical trials such as vitamin supplements and the 

frequency of CBCM, which can influence the study outcomes, were not carefully 

controlled for in the analysis. Further, the lack of uniform inclusion criteria across 

different trials, lack of standardized clinical assessments and low adherence to the 

study intervention made it challenging to compare the results.  

In Chapter 3, the participants of the clinical trial displayed a low adherence to study 

intervention, which limited our ability to evaluate group difference between the omega-

3 FA and placebo study arms(4). We overcame this limitation by considering the 

erythrocyte omega-3 FA levels. In addition, the number of follow-up samples was only 

55% of the baseline sample size. This drop-out may have resulted in some attrition 

bias as this affected the statistical power. Thirdly, the interaction within different 

immune mediators was not considered in the mediation analysis. Finally, the multiplex 

assay performed to study a broad array of immune biomarkers simultaneously, comes 

with its own limitations of a possible cross reactivity within the assays.    

Chapter 4 also has limitations and these are as follow; Firstly, the use of relative 

quantification methods such as discovery proteomics and semi-quantitative biological 

assays such as multi-plex ELISA assays; Secondly, the absence of some potentially 

relevant measures such as neuro-imaging data that has successfully predicted the 

functional outcome in CHR participants in the past; Thirdly, a relatively small number 

of samples (n=158) compared to those who contributed to the NEURAPRO clinical 

trial (n=304) at follow-up. Fourthly, the large number of predictors relative to the 

sample size may give rise to concern regarding overfitting. 

Our study in Chapter 5 observed the following limitations: In the statistical analysis, 

the results were not adjusted for multiple corrections mainly due to the exploratory 

nature of the analysis and the nature of the mass spectrometry, which is data-
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dependant acquisition (DDA), a discovery based approach. The association of other 

covariates such as BMI and exposure to anti-depressants on both biological and 

clinical variables is not clearly understood and hence, we did not consider this in the 

analysis. Finally, the absence of a direct effect in the mediation analysis limited us 

from understanding the percentage contribution of mediation in the overall effect(86, 

93). 

6.4. Conclusion 

Overall, the thesis provided valuable insights into the biological and clinical role of 

omega-3 fatty acids in the early intervention of psychosis. Chapter 2 (systematic 

review) found mixed evidence regarding the relationship between omega-3 FAs and 

functional outcome in CHR from the available studies. Cross-sectional data from the 

literature indicated a positive correlation between dietary omega-3 FA and functional 

status. Among various erythrocyte membrane omega-3 FA concentrations, the EPA 

associated positively, whereas the omega-6/omega-3 FA ratio was inversely 

associated with functional improvement. Further, the combined concentrations of all 

baseline erythrocyte membrane FA successfully predicted functional enhancement. 

However, these associations were not consistent in all studies. In Chapter 3 the results 

from the NEURAPRO clinical study showed an inverse relationship between omega-

3 FAs and plasma immune markers that are involved in the pathophysiology of 

schizophrenia in this CHR cohort. In the cross-sectional analysis, erythrocyte 

membrane omega-3 FAs were inversely associated with the pro-inflammatory 

cytokines IL-15, IL-12p40, TNF-α, endothelial markers ICAM-1 and VCAM-1 and in 

the longitudinal analysis a similar negative association was found with TNF-α and 

VCAM-1. The predominant negative associations observed with several pro-

inflammatory mediators are in keeping with known immune actions of omega-3 FAs, 

suggesting that omega-3 FAs may reduce the inflammatory load in CHR individuals. 

However, the immune relationship of omega-3 FAs was found to be clinically 

ineffective as no mediation effect of immune markers was noticed between omega-3 

FAs and functional outcome. In Chapter 4, the results of the machine learning based 

prediction models of the NEURAPRO study suggested that in CHR participants, 

baseline plasma biomarker data involving proteomic markers, erythrocyte membrane 

FA levels and plasma cytokine levels did not improve prediction of 12-month functional 



 

176 
 

outcome beyond baseline clinical data alone. Finally in chapter 5, the complement and 

coagulation pathway proteins not only showed an association with change in omega-

3 FAs but also provided evidence of mediating the omega-3 related improvement in 

psychopathology and cognition in CHR individuals. These findings provide novel 

insights into omega-3 PUFA related protein mechanisms in the psychopathology of 

CHR participants.  

In summary, the thesis has investigated the therapeutic role of omega-3 

supplementation in preclinical psychosis and identified novel molecular mechanisms 

involving plasma complement and coagulation pathway proteins that are involved with 

omega-3 related clinical recovery in CHR subjects. These findings open future 

opportunities to investigate the immune associated intervention strategies in 

psychosis mainly targeting complement pathway proteins. 

6.5. Future directions 

The results of my thesis have raised further research questions which will be the basis 

for future investigations.  

6.5.1. Biological perspective 

 In the NEURAPRO clinical trial (Chapter 3), the immune association of omega-

3 FAs did not indicate any beneficial clinical effect of the supplementation after 

6 months follow-up of participants (6). This raises the possibility that a potential 

non-immune function of omega-3 FAs, such as recovering synaptic membrane 

activity in the brain, modulation of the microbiota-gut-brain axis or production of 

neuroprotective metabolites may impact on the clinical outcome in early 

psychosis (94). Future randomized controlled trials with more biological 

markers measured at multiple time points would be beneficial in understanding 

the possible long-term biological effects of omega-3 in psychosis. 

 In the machine learning prediction model (chapter 4), incorporation of biological 

parameters such as plasma proteome, erythrocyte omega-3 FA levels did not 

improve the performance of the algorithm. The overfitting of data due to the 

large number of predictor variables relative to the sample size was suspected 

to be one of the reasons for the underperformance of this model. This suggests 

a need for a deeper understanding regarding the contribution of different types 
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of biological markers to be considered for the use of the algorithm in order to 

improve prediction in CHR individuals. Furthermore, future studies with higher 

numbers of participants and a greater number of subjects that transition to 

psychosis will be helpful in developing a more reliable prediction algorithm for 

clinical improvement.   

6.5.2. Clinical perspective 

 In Chapter 2, we found very few omega-3 related clinical trials in CHR subjects 

and we reported a lack of a uniform protocol across the clinical trials which 

limited us from reaching an informed conclusion. Hence, in the future, we 

suggest that more clinical trials are required with a uniform selection protocol 

and with standardised clinical assessments in CHR. Moreover, we suggest the 

following strategies to improve the adherence to study medication, which has 

been reported to be a common issue in clinical trials with nutritional 

supplements. This includes; i) strategies such as explaining the expectations of 

the study at an early stage to the participants, ii) using digital options to motivate 

the participants to take their medication, iii) using a digital option to provide real-

time feedback regarding adherence to the treatment, and iv) considering 

remote data collection procedures for data such as pills taken every day. In 

addition, considering a unified study protocol for CHR subjects with 

standardized outcome assessments would increase the clinical validity of the 

data for understanding the role of omega-3 FA in psychosis. 

 The mediating role of complement and coagulation pathway proteins in 

association with omega-3 related clinical improvement provides novel insight 

into omega-3 PUFA related protein mechanisms in the psychopathology of 

CHR. From our findings, we suggest that further proteomic investigations using 

data independent acquisition would provide deeper understanding about the 

absolute distribution of complement and coagulation proteins in psychosis. 

These investigations not only will validate the current findings but will also 

provide a vital platform for immune targeted intervention strategies in 

psychosis.  
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Chapter 7: Appendix 

 

7.1. Appendix Chapter 2 

7.1.1. Search terms used for each database 

MEDLINE   PubMed  

1 "Fatty Acids, Omega-3"[Mesh] OR "Fatty Acids, Unsaturated"[Mesh] OR "polyunsaturated fatty 

acids"[Title/Abstract] OR "unsaturated fatty acids"[Title/Abstract] OR "omega 3"[Title/Abstract] OR 

"omega 6"[Title/Abstract] 

233,940 

2 "Schizophrenia"[Mesh] OR "Schizophrenia Spectrum and Other Psychotic Disorders"[Mesh] OR 

schizophrenia[Title/Abstract] OR first episode psychosis[Title/Abstract] OR "Psychotic 

Disorders"[Mesh] OR psychosis[Title/Abstract] OR psychotic[Title/Abstract]  

189,673 

3  "at risk"[Title/Abstract] OR "high risk"[Title/Abstract] OR "ultra high"[Title/Abstract] 400,747 

4   "Fatty Acids, Omega-3"[Mesh] OR "Fatty Acids, Unsaturated"[Mesh] OR "polyunsaturated fatty 

acids"[Title/Abstract] OR "unsaturated fatty acids"[Title/Abstract] OR "omega 3"[Title/Abstract] OR 

"omega 6"[Title/Abstract] AND "Schizophrenia"[Mesh] OR "Schizophrenia Spectrum and Other 

Psychotic Disorders"[Mesh] OR schizophrenia[Title/Abstract] OR first episode 

psychosis[Title/Abstract] OR "Psychotic Disorders"[Mesh] OR psychosis[Title/Abstract] OR 

psychotic[Title/Abstract] AND "at risk"[Title/Abstract] OR "high risk"[Title/Abstract] OR "ultra 

high"[Title/Abstract]  

 

80 

EMBASE    Elsevier    31/1/2019 

1 'polyunsaturated fatty acid'/exp OR 'unsaturated fatty acid'/exp OR 'omega 3 fatty acid'/exp OR 

'omega 6 fatty acid'/exp OR ((unsaturated NEXT/1 fatty NEXT/1 acid):ti,ab) OR ((saturated 

NEXT/1 fatty NEXT/1 acid):ti,ab) OR ((omega NEXT/1 3):ti,ab) OR ((omega NEXT/1 6):ti,ab) 

147,668  

2 'psychosis'/exp OR psychosis:ti,ab OR psychotic:ti,ab OR 'schizophrenia'/exp OR 

schizophrenia:ti,ab,de OR (first NEAR/2 episode NEAR/2 psychosis) 

311,530  
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3 ((at NEXT/1 risk):de,ti,ab) OR ((high NEXT/1 risk):de,ti,ab) OR ((ultra NEXT/1 high):de,ti,ab)  23,449 

4 1 AND 2 AND 3  244 

EMBASE    Elsevier    31/1/2019 

1 'polyunsaturated fatty acid'/exp OR 'unsaturated fatty acid'/exp OR 'omega 3 fatty acid'/exp OR 

'omega 6 fatty acid'/exp OR ((unsaturated NEXT/1 fatty NEXT/1 acid):ti,ab) OR ((saturated 

NEXT/1 fatty NEXT/1 acid):ti,ab) OR ((omega NEXT/1 3):ti,ab) OR ((omega NEXT/1 6):ti,ab) 

147,668  

2 'psychosis'/exp OR psychosis:ti,ab OR psychotic:ti,ab OR 'schizophrenia'/exp OR 

schizophrenia:ti,ab,de OR (first NEAR/2 episode NEAR/2 psychosis) 

311,530  

3 ((at NEXT/1 risk):de,ti,ab) OR ((high NEXT/1 risk):de,ti,ab) OR ((ultra NEXT/1 high):de,ti,ab) 723,449 

4 1 AND 2 AND 3  244 

COCHRANE LIBRARY & CENTRAL REGISTER OF CLINCAL TRIALS    Wiley 

1 MeSH descriptor: [Fatty Acids, Unsaturated] explode all trees OR unsaturated near/1 fatty OR 

polyunsaturated near/1 fatty OR omega near/1 3 OR omega near/1 6  

24,534  

2 MeSH descriptor: [Schizophrenia] explode all trees OR  

(schizophrenia):ti,ab,kw OR "first episode psychosis" OR (psychotic OR psychosis):ti,ab,kw OR 

MeSH descriptor: [Psychotic Disorders] explode all trees 

16,987 

 

3 risk:ti,ab,kw OR at NEAR/1 risk OR high NEAR/1 risk OR ultra NEAR/1 high 177,022 

4 1 AND 2 AND 3 (Protocols = 1; Trials = 81; Reviews = 15) 97 
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7.1.2. PRISMA checklist for systematic review 

Section/topic  # Checklist item  
Reported on 

page #  

TITLE   

Title  1 Identify the report as a systematic review, meta-analysis, or both.  1 

ABSTRACT   

Structured summary  2 Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility 

criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions 

and implications of key findings; systematic review registration number.  

1 

INTRODUCTION   

Rationale  3 Describe the rationale for the review in the context of what is already known.  3 

Objectives  4 Provide an explicit statement of questions being addressed with reference to participants, interventions, 

comparisons, outcomes, and study design (PICOS).  

4 

METHODS   

Protocol and 

registration  

5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, 

provide registration information including registration number.  

5 

Eligibility criteria  6 Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years 

considered, language, publication status) used as criteria for eligibility, giving rationale.  

5 

Information sources  7 Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify 

additional studies) in the search and date last searched.  

5 
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Section/topic  # Checklist item  
Reported on 

page #  

Search  8 Present full electronic search strategy for at least one database, including any limits used, such that it could be 

repeated.  

23-24 

Study selection  9 State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if 

applicable, included in the meta-analysis).  

5 

Data collection 

process  

10 Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any 

processes for obtaining and confirming data from investigators.  

5 

Data items  11 List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions 

and simplifications made.  

5 

Risk of bias in 

individual studies  

12 Describe methods used for assessing risk of bias of individual studies (including specification of whether this 

was done at the study or outcome level), and how this information is to be used in any data synthesis.  

N/A 

Summary measures  13 State the principal summary measures (e.g., risk ratio, difference in means).  N/A 

Synthesis of results  14 Describe the methods of handling data and combining results of studies, if done, including measures of 

consistency (e.g., I2) for each meta-analysis.  

N/A 

Section/topic  # Checklist item  
Reported on 

page #  

Risk of bias across 

studies  

15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective 

reporting within studies).  

24 

Additional analyses  16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, 

indicating which were pre-specified.  

24 
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Section/topic  # Checklist item  
Reported on 

page #  

RESULTS   

Study selection  17 Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for 

exclusions at each stage, ideally with a flow diagram.  

6 & 16 

Study 

characteristics  

18 For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up 

period) and provide the citations.  

7-8, 17,18 & 

19 

Risk of bias within 

studies  

19 Present data on risk of bias of each study and, if available, any outcome level assessment.  24 

Results of individual 

studies  

20 For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each 

intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.  

20-22 

Synthesis of results  21 Present results of each meta-analysis done, including confidence intervals and measures of consistency.  N/A 

Risk of bias across 

studies  

22 Present results of any assessment of risk of bias across studies.  N/A 

Additional analysis  23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 

16]).  

N/A 

DISCUSSION   

Summary of 

evidence  

24 Summarize the main findings including the strength of evidence for each main outcome; consider their 

relevance to key groups (e.g., healthcare providers, users, and policy makers).  

14 

Limitations  25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval 

of identified research, reporting bias).  

13 
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Section/topic  # Checklist item  
Reported on 

page #  

Conclusions  26 Provide a general interpretation of the results in the context of other evidence, and implications for future 

research.  

14 

FUNDING   

Funding  27 Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders 

for the systematic review.  

N/A 

From:  Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The 

PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097  

For more information, visit: www.prisma-statement.org 
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7.2. Appendix- Chapter 3 

7.2.1. Comparison of baseline details of participants with and without 6-month 
follow-up data. SD-Standard deviation, BMI-Body Mass Index, EPA-eicosapentaenoic acid, DHA-

docosahexaenoic acid, IL-Interleukin, TNF-Tumour necrosis factor, ICAM-intercellular adhesion 
molecule, VCAM-Vascular cell adhesion molecule, BPRS- Brief Psychiatric Rating Scale, SANS- 
Scale for the Assessment of Negative Symptoms, SOFAS- Social and Occupational Functioning 
Assessment Scale, SD-standard deviation.  

Variable names 
Samples with follow 

up measures 

Samples without 

follow up measures 

P 

value 

N 146 122  

Gender 

Male, n (%) 

Female, n (%) 

 

57 (39 %) 

 

61 (50 %) .071 

89 (61 %) 61 (50 %) 

Age in years (mean ± SD) 18.2 ± 4.0 19.8 ± 4.7 .004 

BMI in kg/m2 (mean ± SD) 24.4 ± 6 23.4 ± 4.8 .163 

EPA (%), (mean ± SD) 0.98 ±0.34 0.96 ± 0.34 .709 

Erythrocyte DHA (%), (mean 

± SD) 
6.3 ± 1.3 6.6 ± 1.9 .085 

Omega-3 Index (%), (mean ± 

SD) 
7.3 ± 1.5 7.6 ± 2.1 .136 

IL-6 (pg/mL), (mean ± SD) 1.04 ± 2.9 0.64 ± 0.46 .137 

IL-8 (pg/mL), (mean ± SD) 4.66 ± 4.45 4.11 ± 2.00 .202 

IL-10 (pg/mL), (mean ± SD) 0.35 ± 0.21 0.36 ± 0.33 .635 

IL-12p40 (pg/mL), (mean ± 

SD) 
169.87 ± 80.29 156.99 ± 62.53 .150 

IL-15 (pg/mL), (mean ± SD) 2.94 ± 0.69 2.88 ± 0.69 .473 

TNF-α (pg/mL), (mean ± SD) 2.39 ± 0.73 2.19 ± 0.60 .014 

ICAM-1 (pg/mL), (mean ± 

SD) 

516922.24 ± 

162657.39 

452387.20 ± 

168276.49 
.002 

VCAM-1 (pg/mL), (mean ± 

SD) 

510857.34 ± 

139979.34 

478873.71 ± 

159163.10 
.081 

BPRS-Psychotic (mean ± 

SD) 
8.6 ± 2.78 7.81 ± 2.06 .023 

SANS (mean ± SD) 19.68 ± 13.48 19.39 ± 12.30 .042 

SOFAS (mean ± SD) 54.02 ± 10.86 53.55 ± 13.80 .757 
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7.3. Appendix- Chapter 4 

7.3.1. list of 187 predictors  

Sex log2_B_O147912 log2_B_P01859 log2_B_P51884 

Smoking_Status log2_B_O95445 log2_B_P01860 log2_B_P02753 

log_age log2_B_P25311 log2_B_P01861 log2_B_O75460 

log_BMI log2_B_P00736 log2_B_P01871 log2_B_Q08380 

B_bprst log2_B_P09871 log2_B_P01834 log2_B_P07225 

B_sanst log2_B_P06681 log2_B_P01615 log2_B_P35542 

B_ymrst log2_B_P01024 log2_B_P0DOY3 log2_B_P51451 

B_madrst log2_B_P0C0L5 log2_B_B9A064 log2_B_P07360 

B_sofas log2_B_P01031 log2_B_P19827 log2_B_Q14520 

B_gf_s log2_B_P13671 log2_B_P19823 log2_B_A0A0B4J1V

2 

B_gf_r log2_B_P07357 log2_B_Q14624 log2_B_Q06033 

logIL12p40_bl_nooutliersCV2

0 

log2_B_P07358 log2_B_P03952 log2_B_P0C0L4 

logIL15_bl_nooutliersCV20 log2_B_P00751 log2_B_P01042 log2_B_P02746 

logIFNy_bl_nooutliersCV20 log2_B_P08603 log2_B_P02750 log2_B_O75636 

logIL6_bl_nooutliersCV20 log2_B_P05156 log2_B_P02763 log2_B_P02748 

logIL8_bl_nooutliersCV20 log2_B_P10909 log2_B_P19652 log2_B_Q9Y490 

logIL10_bl_nooutliersCV20 log2_B_P00450 log2_B_P00747 log2_B_P06702 

logTNFa_bl_nooutliersCV20 log2_B_P00748 log2_B_P27169 log2_B_P01764 

logCRP_bl_nooutliersCV20 log2_B_P00488 log2_B_P01009 log2_B_P23142 

logsVCAM1_bl_nooutliersCV

20 

log2_B_P00734 log2_B_P01011 log2_B_P06312 

logsICAM1_bl_nooutliersCV2

0 

log2_B_P02671 log2_B_P29622 log2_B_Q96PD5 

log2_B_P04217 log2_B_P02675 log2_B_P08185 log2_B_Q92820 

log2_B_P01023 log2_B_P02679 log2_B_P05543 log2_B_P02749 

log2_B_P43652 log2_B_Q4L180 log2_B_P01008 log2_B_P01619 

log2_B_P01019 log2_B_P0275114 log2_B_P05546 log2_B_P01782 

log2_B_P02765 log2_B_P02774 log2_B_P36955 log2_B_Q96QR1 

log2_B_P02768 log2_B_P06396 log2_B_P08697 log2_B_Q15582 

log2_B_P02760 log2_B_P69905 log2_B_P05155 log2_B_P08571 

log2_B_P02743 log2_B_P68871 log2_B_P02787 log2_B_P18428 

log2_B_P02647 log2_B_P00738 log2_B_P02766 log2_B_Q04756 

log2_B_P02652 log2_B_P00739 log2_B_P04004 log2_B_Q15848 

log2_B_P06727 log2_B_P02790 log2_B_P60709 log2_B_P01591 
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log2_B_P04114 log2_B_P04196 log2_B_P02654 log2_B_P31944 

log2_B_P02655 log2_B_P35858 log2_B_P05090 log2_B_P01880 

log2_B_P02656 log2_B_P01876 log2_B_P10643 log2_B_P01817 

log2_B_P02649 log2_B_P01857 log2_B_P15169 log2_B_Q16610 

log2_B_P80748 log2_B_A0A0B4J1U

3 

log2_B_P43251 log2_B_P00742 

log2_B_P01614 log2_B_P02747 log2_B_P26927 log2_B_A0A0C4DH3

8 

log2_B_Q6EMK4 log2_B_A0A0B4J1V

0 

log2_B_Q96KN2 log2_B_P01780 

log2_B_P02775 log2_B_P04003 log2_B_P12259 log2_B_A0A0C4DH3

3 

log2_B_A0A0B4J1X5 log2_B_P10720 log2_B_P231424 log2_B_Q9NZP8 

log2_B_P20742 log2_B_P22792 log2_B_Q9UK55 ARA_t1 

log2_B_P04406 log2_B_A0A0C4DH3

1 

log2_B_P0DJI8 Omega_3_index_t1 

log2_B_P68133 log2_B_P00740 Total_Omega_3_t

1 

Omega_6_3_ratio_t1 

log2_B_A0A0B4J1Y9 log2_B_Q9H4B7 DPA_t1 logALA_t1 

log2_B_P21333 log2_B_P16070 DHA_t1 logEPA_t1 

log2_B_P05160 log2_B_P35579 Total_Omega_6_t

1 

LA_t1 

 

7.3.2. Mean and standard deviation of biological predictors at baseline 

Biological Measures 

C Reactive Protein in pg/ml (Mean±SD) 9223.4 ± 10146861.6 

Iterferon γ in pg/ml (Mean±SD) 6.0 ± 18.3 

Inter leukin-10 in pg/ml (Mean±SD) 0.4 ± 0.2 

Inter leukin-12p40 in pg/ml (Mean±SD) 166.2 ± 75.3 

Inter leukin-6 in pg/ml (Mean±SD) 1.0 ± 2.8 

Inter leukin-8 in pg/ml (Mean±SD) 4.5 ± 4.3 

Intercellular adhasion molecule-1 in pg/ml (Mean±SD) 9223.4 ± 9223.4 

Vascular cell adhesion molecue-1 in pg/ml (Mean±SD) 9223.4 ± 9223.4 

Tumor necrosis factor-α in pg/ml (Mean±SD) 2.3 ± 0.7 

Eicosapentaenoic acid (20:5) in % 1.0 ± 0.3 

Docosahexaenoic acid (22:5) in % 6.3 ± 1.3 

Total Omega-3 fatty acids in % 11.9 ± 1.7 

Palmitic acid (16:0) in % 32.6 ± 2.4 
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Margeric acid (17:0) in % 1.3 ± 0.2 

Stearic acid (18:0) in % 12.9 ± 1.5 

Oleic acid (18:1) in % 16.6 ± 2.1 

Linoleic acid (18:2) in % 12.0 ± 2.1 

Dihomo-γ-linolenic acid (20:3) in % 0.8 ± 0.3 

Arachidonic acid (20:4) in % 8.4 ± 2.6 

Eicosapentaenoic acid (20:5) in % 1.0 ± 0.3 

Docosatetraenoic acid (22:4) in % 0.4 ± 0.3 

Docosahexaenoic acid (22:5) in % 6.3 ± 1.3 

Cervonic acid (22:6) in % 2.3 ± 1.0 

Lignoceric acid (24:0) in % 4.5 ± 2.2 

Nervonic acid (24:1) in % 6.4 ± 3.3 

P04217, LFQ (Mean ± SD) 926379.2 ± 211751.5 

P01023, LFQ (Mean ± SD) 5180773.4 ± 1556636.7 

P43652, LFQ (Mean ± SD) 69980.1 ± 27880.8 

P01019, LFQ (Mean ± SD) 422425.4 ± 210805.5 

P02765, LFQ (Mean ± SD) 3290935.6 ± 1367534.3 

P02768, LFQ (Mean ± SD) 50363651.9 ± 9957066.2 

P02760, LFQ (Mean ± SD) 484019.4 ± 300487.7 

P02743, LFQ (Mean ± SD) 240745.6 ± 105269.4 

P02647, LFQ (Mean ± SD) 5971527.8 ± 1420031.2 

P02652, LFQ (Mean ± SD) 501833.8 ± 694358.5 

P06727, LFQ (Mean ± SD) 874553.5 ± 307956.5 

P04114, LFQ (Mean ± SD) 1200241.3 ± 333413.4 

P02655, LFQ (Mean ± SD) 505803.3 ± 237060.2 

P02656, LFQ (Mean ± SD) 967881.2 ± 550408.9 

P02649, LFQ (Mean ± SD) 111951.5 ± 44456.8 

O14791, LFQ (Mean ± SD) 246066.4 ± 108181.4 

O95445, LFQ (Mean ± SD) 272500.1 ± 126474.8 

P25311, LFQ (Mean ± SD) 286765.8 ± 129124.0 

P00736, LFQ (Mean ± SD) 138054.1 ± 48333.9 

P09871, LFQ (Mean ± SD) 133487.7 ± 43612.9 

P06681, LFQ (Mean ± SD) 86331.4 ± 20472.8 

P01024, LFQ (Mean ± SD) 3126393.0 ± 736850.6 

P0C0L5, LFQ (Mean ± SD) 1674898.2 ± 473435.8 

P01031, LFQ (Mean ± SD) 611807.3 ± 159410.2 

P13671, LFQ (Mean ± SD) 229613.6 ± 70526.4 

P07357, LFQ (Mean ± SD) 312692.5 ± 92151.8 

P07358, LFQ (Mean ± SD) 92111.0 ± 30765.1 



 

195 
 

P00751, LFQ (Mean ± SD) 698053.2 ± 203160.8 

P08603, LFQ (Mean ± SD) 828811.1 ± 179926.5 

P05156, LFQ (Mean ± SD) 156576.4 ± 53584.8 

P10909, LFQ (Mean ± SD) 790484.4 ± 215506.2 

P00450, LFQ (Mean ± SD) 2260714.4 ± 593770.3 

P00748, LFQ (Mean ± SD) 255915.9 ± 104593.8 

P00488, LFQ (Mean ± SD) 99887.5 ± 127954.9 

P00734, LFQ (Mean ± SD) 218670.1 ± 106638.9 

P02671, LFQ (Mean ± SD) 7868638.0 ± 4554649.4 

P02675, LFQ (Mean ± SD) 6377647.5 ± 3641791.0 

P02679, LFQ (Mean ± SD) 5895613.3 ± 3165533.7 

Q4L180, LFQ (Mean ± SD) 107156.0 ± 52011.2 

P027511, LFQ (Mean ± SD) 757063.8 ± 1125560.6 

P02774, LFQ (Mean ± SD) 759986.5 ± 346360.4 

P06396, LFQ (Mean ± SD) 612246.4 ± 194166.0 

P69905, LFQ (Mean ± SD) 2996032.7 ± 1534224.3 

P68871, LFQ (Mean ± SD) 2346903.7 ± 1182810.7 

P00738, LFQ (Mean ± SD) 4505029.4 ± 1791915.5 

P00739, LFQ (Mean ± SD) 364916.9 ± 235317.1 

P02790, LFQ (Mean ± SD) 2140823.4 ± 553552.2 

P04196, LFQ (Mean ± SD) 351694.1 ± 137271.4 

P35858, LFQ (Mean ± SD) 207829.0 ± 56511.6 

P01876, LFQ (Mean ± SD) 609347.8 ± 437131.3 

P01857, LFQ (Mean ± SD) 25562246.8 ± 9716938.8 

P01859, LFQ (Mean ± SD) 13778848.1 ± 7978493.8 

P01860, LFQ (Mean ± SD) 8118640.5 ± 3032653.0 

P01861, LFQ (Mean ± SD) 452901.9 ± 397949.0 

P01871, LFQ (Mean ± SD) 2588777.5 ± 1387710.2 

P01834, LFQ (Mean ± SD) 12143191.1 ± 3168508.4 

P01615, LFQ (Mean ± SD) 440919.1 ± 260914.2 

P0DOY3, LFQ (Mean ± SD) 1111800.3 ± 1744134.9 

B9A064, LFQ (Mean ± SD) 613847.3 ± 290571.4 

P19827, LFQ (Mean ± SD) 646335.3 ± 258491.7 

P19823, LFQ (Mean ± SD) 1278065.5 ± 284617.1 

Q14624, LFQ (Mean ± SD) 827661.2 ± 170778.7 

P03952, LFQ (Mean ± SD) 112914.3 ± 34709.4 

P01042, LFQ (Mean ± SD) 1365858.1 ± 272388.5 

P02750, LFQ (Mean ± SD) 502177.8 ± 211514.2 

P02763, LFQ (Mean ± SD) 7349527.2 ± 2174441.9 



 

196 
 

P19652, LFQ (Mean ± SD) 887286.0 ± 258657.5 

P00747, LFQ (Mean ± SD) 774582.7 ± 169004.5 

P27169, LFQ (Mean ± SD) 627053.2 ± 210113.2 

P01009, LFQ (Mean ± SD) 9887256.3 ± 1951893.3 

P01011, LFQ (Mean ± SD) 1019439.2 ± 259491.4 

P29622, LFQ (Mean ± SD) 82565.4 ± 32204.3 

P08185, LFQ (Mean ± SD) 369387.5 ± 125087.6 

P05543, LFQ (Mean ± SD) 58999.0 ± 47301.5 

P01008, LFQ (Mean ± SD) 1076794.7 ± 191550.8 

P05546, LFQ (Mean ± SD) 228000.2 ± 82784.6 

P36955, LFQ (Mean ± SD) 292096.0 ± 91292.7 

P08697, LFQ (Mean ± SD) 1205121.2 ± 256794.4 

P05155, LFQ (Mean ± SD) 1859243.5 ± 834119.1 

P02787, LFQ (Mean ± SD) 4636338.6 ± 869870.0 

P02766, LFQ (Mean ± SD) 4429880.1 ± 1105753.7 

P04004, LFQ (Mean ± SD) 552299.9 ± 116630.4 

P15636, LFQ (Mean ± SD) 2803067.6 ± 2575238.4 

P60709, LFQ (Mean ± SD) 355878.7 ± 442117.2 

P02654, LFQ (Mean ± SD) 95730.0 ± 91909.7 

P05090, LFQ (Mean ± SD) 146637.1 ± 79555.4 

P10643, LFQ (Mean ± SD) 226166.3 ± 128551.1 

P15169, LFQ (Mean ± SD) 64560.3 ± 31863.4 

P51884, LFQ (Mean ± SD) 86791.9 ± 39340.8 

P02753, LFQ (Mean ± SD) 121092.5 ± 65430.3 

O75460, LFQ (Mean ± SD) 487720.3 ± 241985.1 

Q08380, LFQ (Mean ± SD) 153232.9 ± 69192.8 

P07225, LFQ (Mean ± SD) 133708.0 ± 66554.4 

P35542, LFQ (Mean ± SD) 152378.2 ± 96834.2 

P51451, LFQ (Mean ± SD) 1246495.6 ± 719864.7 

P07360, LFQ (Mean ± SD) 201121.3 ± 108212.7 

Q14520, LFQ (Mean ± SD) 49573.6 ± 15528.6 

A0A0B4J1V2, LFQ (Mean ± SD) 92695.8 ± 53465.4 

Q06033, LFQ (Mean ± SD) 69707.0 ± 36693.6 

P0C0L4, LFQ (Mean ± SD) 259380.0 ± 213745.6 

P02746, LFQ (Mean ± SD) 753308.6 ± 1347829.9 

O75636, LFQ (Mean ± SD) 46782.9 ± 22892.4 

P02748, LFQ (Mean ± SD) 112312.2 ± 142523.7 

Q9Y490, LFQ (Mean ± SD) 21745.6 ± 11162.7 

P06702, LFQ (Mean ± SD) 88699.3 ± 644187.6 
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P01764, LFQ (Mean ± SD) 120193.9 ± 118078.1 

P23142, LFQ (Mean ± SD) 28387.2 ± 20581.2 

P06312, LFQ (Mean ± SD) 112357.3 ± 165125.5 

Q96PD5, LFQ (Mean ± SD) 44333.3 ± 27338.2 

Q92820, LFQ (Mean ± SD) 105851.0 ± 76675.7 

P02749, LFQ (Mean ± SD) 97265.9 ± 91479.2 

P01619, LFQ (Mean ± SD) 264531.3 ± 304933.2 

P01782, LFQ (Mean ± SD) 68173.7 ± 74239.0 

Q96QR1, LFQ (Mean ± SD) 41220.2 ± 32644.5 

Q15582, LFQ (Mean ± SD) 20837.2 ± 14092.2 

P08571, LFQ (Mean ± SD) 17145.2 ± 11300.2 

P18428, LFQ (Mean ± SD) 17218.5 ± 16056.4 

Q04756, LFQ (Mean ± SD) 47221.5 ± 35456.9 

Q15848, LFQ (Mean ± SD) 33871.3 ± 23503.3 

P01591, LFQ (Mean ± SD) 106243.8 ± 133385.4 

P31944, LFQ (Mean ± SD) 50632.3 ± 71177.8 

P01880, LFQ (Mean ± SD) 93563.3 ± 135165.9 

P02676, LFQ (Mean ± SD) 77939.0 ± 120292.0 

P01817, LFQ (Mean ± SD) 83955.1 ± 71659.8 

Q16610, LFQ (Mean ± SD) 41353.9 ± 84882.6 

P00742, LFQ (Mean ± SD) 28964.0 ± 24339.7 

P80748, LFQ (Mean ± SD) 153427.4 ± 156940.0 

P01614, LFQ (Mean ± SD) 53768.5 ± 50380.3 

Q6EMK4, LFQ (Mean ± SD) 16083.3 ± 11734.5 

P02775, LFQ (Mean ± SD) 66113.3 ± 63716.3 

A0A0B4J1X5, LFQ (Mean ± SD) 19783.8 ± 24511.9 

P20742, LFQ (Mean ± SD) 193488.8 ± 507297.4 

A0A0B4J1U3, LFQ (Mean ± SD) 48484.2 ± 50882.7 

P02747, LFQ (Mean ± SD) 36434.6 ± 30286.5 

A0A0B4J1V0, LFQ (Mean ± SD) 40782.7 ± 34775.1 

P04003, LFQ (Mean ± SD) 42664.8 ± 41170.1 

P10720, LFQ (Mean ± SD) 32531.7 ± 34941.1 

P22792, LFQ (Mean ± SD) 42792.0 ± 60629.0 

P43251, LFQ (Mean ± SD) 14252.0 ± 14373.0 

P26927, LFQ (Mean ± SD) 9320.5 ± 7766.1 

Q96KN2, LFQ (Mean ± SD) 16516.7 ± 14285.7 

P12259, LFQ (Mean ± SD) 50112.7 ± 42420.0 

P231424, LFQ (Mean ± SD) 23006.2 ± 18314.4 

Q9UK55, LFQ (Mean ± SD) 13918.7 ± 16722.8 
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A0A0C4DH38, LFQ (Mean ± SD) 34472.4 ± 39744.1 

P01780, LFQ (Mean ± SD) 151323.9 ± 134699.9 

A0A0C4DH33, LFQ (Mean ± SD) 14261.1 ± 27913.7 

Q9NZP8, LFQ (Mean ± SD) 35350.7 ± 43068.8 

P04406, LFQ (Mean ± SD) 14004.1 ± 24652.0 

P68133, LFQ (Mean ± SD) 70577.0 ± 98559.6 

A0A0B4J1Y9, LFQ (Mean ± SD) 13187.2 ± 15818.0 

P21333, LFQ (Mean ± SD) 27941.8 ± 65925.6 

P05160, LFQ (Mean ± SD) 27430.3 ± 58784.5 

A0A0C4DH31, LFQ (Mean ± SD) 34929.5 ± 36954.7 

P00740, LFQ (Mean ± SD) 10425.1 ± 16104.1 

Q9H4B7, LFQ (Mean ± SD) 2758543.1 ± 2776277.6 

P16070, LFQ (Mean ± SD) 5348.0 ± 4828.8 

P35579, LFQ (Mean ± SD) 25449.8 ± 50149.2 

P0DJI8, LFQ (Mean ± SD) 32355.5 ± 86921.2 
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7.3.3: Details of percentage of missing values 

Variable n missing % missing 

M12_sofas 0 0.0 

male 0 0.0 

Smoking_Status 0 0.0 

log_age 0 0.0 

log_BMI 9 6.9 

B_bprst 0 0.0 

B_sanst 0 0.0 

B_ymrst 0 0.0 

B_madrst 0 0.0 

B_sofas 0 0.0 

B_gf_s 0 0.0 

B_gf_r 0 0.0 

logIL12p40_bl_nooutliersCV20 3 2.3 

logIL15_bl_nooutliersCV20 3 2.3 

logIFNy_bl_nooutliersCV20 3 2.3 

logIL6_bl_nooutliersCV20 2 1.5 

logIL8_bl_nooutliersCV20 2 1.5 

logIL10_bl_nooutliersCV20 0 0.0 

logTNFa_bl_nooutliersCV20 3 2.3 

logCRP_bl_nooutliersCV20 0 0.0 

logsVCAM1_bl_nooutliersCV20 1 0.8 

logsICAM1_bl_nooutliersCV20 2 1.5 

Total_Omega_3_t1 2 1.5 

DPA_t1 2 1.5 

DHA_t1 2 1.5 

Total_Omega_6_t1 2 1.5 

LA_t1 2 1.5 

ARA_t1 2 1.5 

Omega_3_index_t1 2 1.5 

Omega_6_3_ratio_t1 2 1.5 

logALA_t1 5 3.8 

logEPA_t1 2 1.5 
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7.4. Appendix- Chapter 5 

7.4.1. Results showing the list of plasma proteins associated significantly with 

change in omeha-3 PUFAs (adjusted for age, sex and baseline total omega-3 

levels). The table shows the results of linear regression models between change in total omega-3 

PUFAs and plasma proteins at follow-up. The models were adjusted for age, sex and baseline total 

omega-3 levels.  

Protein Names Coef. P value [95% Conf. Interval] 

Alpha-1-antitrypsin  -1.05 0.01 -1.82 -0.27 

Alpha-1B-glycoprotein  -1.06 0.01 -1.83 -0.3 

Apolipoprotein C-I  -0.88 0.02 -1.64 -0.12 

Apolipoprotein C-III  1.36  0 0.61 2.12 

Apolipoprotein D  0.9 0.03 0.1 1.7 

Apolipoprotein E 1.03 0.01 0.28 1.77 

Apolipoprotein L1  -1.45 0 -2.18 -0.72 

Caspase-14  -0.89 0.02 -1.65 -0.12 

Coagulation factor V  0.9 0.02 0.14 1.66 

Complement C1q subcomponent subunit B 1.18 0 0.44 1.91 

Complement C5  -1.13 0 -1.88 -0.37 

Complement component C7 0.83 0.03 0.07 1.6 

Complement factor B -0.87 0.02 -1.62 -0.12 

Complement factor I  -0.78 0.04 -1.54 -0.03 

Filamin A-interacting protein 1-like  -0.96 0.01 -1.73 -0.2 

Galectin-3-binding protein  -1.28 0 -2.05 -0.52 

Haptoglobin  -0.97 0.01 -1.72 -0.22 

Immunoglobulin heavy constant gamma 2  0.93 0.02 0.17 1.7 

Immunoglobulin heavy constant gamma 4  0.98 0.01 0.23 1.72 

Immunoglobulin heavy variable 1-18 0.82 0.03 0.07 1.58 

Immunoglobulin heavy variable 3-7  -0.8 0.04 -1.55 -0.05 

Immunoglobulin kappa variable 3-20  1.05 0.01 0.3 1.81 

Protein S100-A9  -1.03 0.01 -1.78 -0.29 

Talin-1 -0.92 0.02 -1.68 -0.17 
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7.4.2. Results of linear regression model showing the list of plasma proteins 
associated significantly with change in omeha-6 PUFAs (adjusted for age, sex 
and baseline omega-6 levels). The table shows the results of linear regression models 

between change in omega-6 PUFAs and plasma proteins at follow-up. The models were adjusted for 
age, sex and baseline omega-6 levels 

Protein names Coef. P value [95% Conf.Interval] 

Apolipoprotein C-I 0.8 0.02 0.12 1.48 

Apolipoprotein L1 1.05 0.00 0.39 1.72 

Hemoglobin subunit beta 0.79 0.03 0.08 1.49 

Immunoglobulin lambda variable 1-36 -0.82 0.02 -1.5 -0.14 

Protein S100-A9 0.78 0.02 0.1 1.46 

Vitamin D-binding protein -0.84 0.02 -1.53 -0.15 

7.4.3. Pathways significantly associated with 6-month change in omega-6 

PUFAs 

Pathway name #Entitie

s found 

#Interacto

rs found 

#Reactio

ns found 

Entities 

pValue 

Entitie

s FDR 

Scavenging of heme from plasma 2 0 5 0.00 0.06 

Binding and Uptake of Ligands by 

Scavenger Receptors 
2 0 5 0.00 0.06 

Inhibition of nitric oxide production 0 1 1 0.00 0.06 

VLDL clearance 1 0 3 0.00 0.06 

Metal sequestration by antimicrobial 

proteins 
1 0 2 0.00 0.06 

Erythrocytes take up oxygen and 

release carbon dioxide 
1 0 1 0.00 0.06 

Erythrocytes take up carbon dioxide 

and release oxygen 
1 0 2 0.01 0.06 

O2/CO2 exchange in erythrocytes 1 0 3 0.01 0.06 

IRAK4 deficiency (TLR2/4) 1 0 2 0.01 0.09 

Neutrophil degranulation 2 0 3 0.01 0.09 

MyD88 deficiency (TLR2/4) 1 0 2 0.01 0.10 

Transport of small molecules 2 1 11 0.01 0.10 

Regulation of TLR by endogenous 

ligand 
1 0 1 0.01 0.10 

VLDL assembly 1 0 1 0.02 0.10 

Vesicle-mediated transport 2 1 9 0.02 0.12 

Plasma lipoprotein clearance 1 0 3 0.03 0.12 
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Pathway name #Entitie

s found 

#Interacto

rs found 

#Reactio

ns found 

Entities 

pValue 

Entitie

s FDR 

Thrombin signalling through 

proteinase activated receptors 

(PARs) 

0 1 2 0.03 0.12 

Autophagy 1 1 13 0.03 0.12 

Late endosomal microautophagy 1 0 3 0.03 0.12 

Plasma lipoprotein assembly 1 0 1 0.03 0.12 

Post-translational protein 

phosphorylation 
1 0 1 0.03 0.12 

Mitochondrial Fatty Acid Beta-

Oxidation 
0 1 1 0.04 0.12 

Defective CFTR causes cystic 

fibrosis 
0 1 2 0.04 0.12 

Antimicrobial peptides 1 0 2 0.04 0.12 

ABC transporter disorders 0 1 2 0.04 0.12 

WNT5A-dependent internalization of 

FZD4 
0 1 2 0.05 0.12 

PINK1-PRKN Mediated Mitophagy 0 1 2 0.05 0.12 

7.4.4. Results of mediation analysis adjusted for baseline total omega-3 PUFAs 
in addition to age, sex and baseline protein levels. The table shows the results of 

mediation analysis using change in total omega-3 PUFAs, plasma proteins and clinical outcomes as 
exposure, mediator and outcome variables, respectively. The model is adjusted for age, sex, baseline 
total omega-3 levels and baseline total omega-3 PUFA levels.CI- confidence interval, PSS- Positive 
Symptom Severity score, SOFAS- Social and Occupational Functional Assessment scale, BACS- 
Brief Assessment of Cognitive Function & *significant findings 

Outcome Mediator Mediation effect Direct effect Total effect 

SOFAS 

C5 
0.23 * 

(0.03 to 0.50) 

-0.06 

(-0.68 to 0.56) 

0.17 

(-0.44 to 0.78) 

APOD 
0.09 

(-0.04 to 0.25) 

0.12 

(-0.50 to 0.74) 

0.21 

(-0.40 to 0.82) 

BACS 

CFB 
0.10 

(-0.02 to 0.31) 

0.47 

(-0.14 to 1.07) 

0.57 

(-0.04 to 1.17) 

C1QB 
0.29 * 

(0.06 to 0.63) 

0.24 

(-0.35 to 0.83) 

0.53 

(-0.05 to 1.11) 

Factor V 
0.16 * 

(0.02 to 0.35) 

0.42 

(-0.17 to 1.00) 

0.58 

(-0.04 to 1.17) 

APOE 
0.20 

(-0.00 to 0.48) 

0.37 

(-0.22 to 0.97) 

0.57 

(-0.01 to 1.15) 
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Outcome Mediator Mediation effect Direct effect Total effect 

APOC3 
0.18 

(-0.02 to 0.43) 

0.40 

(-0.21 to 1.00) 

0.58 

(-0.001 to 1.16) 

APOD 
0.10 

(-0.01 to 0.26) 

0.48 

(-0.10 to 1.07) 

0.59 

(-0.001 to 1.17) 

PSS 

C5 
0.23 * 

(-0.49 to -0.36) 

-0.08 

(-0.74 to 0.58) 

-0.31 

(-0.96 to 0.34) 

S100A9 
0.18 * 

(-0.44 to -0.01) 

-0.11 

(-0.77 to 0.55) 

-0.29 

(-0.93 to 0.35) 

IGHG4 
-0.19 

(-0.49 to 0.04) 

-0.12 

(-0.72 to 0.77) 

-0.30 

(-0.94 to0.34) 

7.4.5. Supplementary methods 

Gas chromatography-based quantification of PUFA levels 

Fasting blood samples were collected at baseline and 6-month follow-up. The 

molecular percentage of the total sum of the omega-3 and omega-6 fatty acid series 

in erythrocyte membrane rafts were measured based on the phosphatidyl-

ethanolamine fraction using gas chromatography95. Total omega-3 PUFAs comprise 

alpha linolenic acid (18:3), eicosapentaenoic acid (20:5), docosapentaenoic acid 

(22:5) and docosahexaenoic acid (22:6). Total omega-6 PUFAs include linoleic acid 

(18:2), gamma-linoleic acid (18:3), eicosadienoic acid (20:2), dihomo gamma-linoleic 

acid (20:3), arachidonic acid (20:4) and adrenic acid (22:4). 

Mass spectrometry based proteomic measures 

Plasma samples of baseline and follow-up time points were processed according to 

the manufacturer’s instructions (PreOmics iST kit, no.iST 96x). Briefly, 4 µl of 

individual samples were solubilized in 50 μL of “Lyse” buffer (containing Tris-HCl, 

sodium deoxycholate (SDC), 0.1% sodium dodecyl sulfate (SDS), tris (2-

carboxyethyl) phosphine (TCEP), and 2-chloroacetamide and heated to 95 °C for 10 

min. 50 μL of the resulting denatured, reduced, and alkylated solution was 

transferred to the reaction tube. Enzyme (LysC and trypsin) was added, and samples 

were hydrolysed at 37°C for 1.5 hours. The resulting peptide mixture was washed 

and eluted as per the manufacturer’s instructions. The eluted peptides were vacuum-

dried and dissolved in 100 µl of LC Load buffer. The reconstituted digested peptide 
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mixture [200 ng/ µl] was then eluted using Evotips and injected using Evosep One 

(Evosep, Odense, Denmark 96. The digested samples were run on a Bruker timeTof 

Pro mass spectrometer connected to a Evosep One liquid chromatography system. 

The mass spectrometry was operated in positive ion mode with a capillary voltage of 

1500 V, dry gas flow of 3 l/min and a dry temperature of 180oC. Trapped ions were 

selected for ms/ms using parallel accumulation serial fragmentation (PASEF). A 

scan range of (100-1700 m/z) was performed at a rate of 10 PASEF MS/MS frames 

to 1 MS scan with a cycle time of 1.15s 97,98. The MS raw files were then processed 

with MaxQuant 99 version 1.6.17.0 as described in 98 and the peptide data were 

further annotated and interpreted using the Perseus platform (V 1.6.7, 

www.maxquant.net/perseus/) 100. FDR was set at 0.01 to global protein identification 

level. Proteins that were identified in less than 70% of the total samples were not 

taken forward for analysis. Log2 transformed values of LFQ intensities were used for 

statistical analysis. Missing values of mass spectrometry based proteomic data 

(corresponding to values below the level of detection) were imputed with minimum 

values.   

 

http://www.maxquant.net/perseus/
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