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ABSTRACT  

The synthetic feasibility of any compound library used for virtual screening is critical to the drug 

discovery process. TIN, a recursive acronym for „TIN Is Not commercial‟, is a virtual combinatorial 

database enumeration of diversity-orientated multicomponent syntheses (MCR).  Using a „one-pot‟ 

synthetic technique, 12 unique small molecule scaffolds were developed, predominantly styrylisoxazoles 

and bis-acetylenic ketones, with extensive derivatization potential. Importantly, the scaffolds were 

accessible in a single operation from commercially available sources containing R-groups which were 

then linked combinatorially. This resulted in a combinatorial database of over 28 million product 

structures, each of which is synthetically feasible. These structures can be accessed through a free web-

based 2D structure search engine, or download in SMILES, MOL2 and SDF formats. Subsets include a 

10% diversity subset, a drug-like subset and a lead-like subset that are also freely available for download 

and virtual screening (http://mmg.rcsi.ie:8080/tin).   

 

KEYWORDS 

Chemoinformatics, combinatorial chemistry, multicomponent synthesis, diversity orientated synthesis, 

drug discovery, derivatization, database, structure search, free access. 

 

BRIEFS 

Enumeration of a virtual combinatorial compound library of 28m small molecules that can be 

synthesized using simple multicomponent methods.  
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INTRODUCTION 

Virtual Screening (VS) is a viable and rapid method to search for ligands and antagonists of novel 

target proteins.
1-3

 While the costly high throughput screening (HTS) of hundreds of thousands of 

synthesized compounds remains the predominant method used by the pharmaceutical industry, VS is 

steadily growing in importance and is increasingly being used to support drug discovery efforts.
4-6

 Large 

databases of millions of compounds can be screened relatively rapidly using docking software, 

pharmacophore based substructure matching, or descriptor based filtering rules.
5
 Ligand databases 

include collections of commercially available molecules such as the ZINC database compiled by Irwin 

and Shoichet,
7
 or virtual representations of either 'in house' compound collections or commercially 

available compound libraries. Top scoring hits are then purchased and tested in vitro and may yield lead 

compounds effective against the target protein.   

Development of the lead compound into a drug candidate may, however, be limited by synthetic 

complexity which reduces the scope for derivatization of these lead compounds. Derivative synthesis 

involving numerous steps, some or many of which may be patented, could result in poor yields and 

unpatentable drug candidates. This may necessitate the redesign of the synthetic route with concomitant 

delays in the drug discovery pipeline. Furthermore, the synthesis pathway may limit the available choice 

of derivatives due to incompatible side reactions. Synthetic feasibility of the compound library is thus 

critical to the drug discovery process.  

A few years ago, Adamo‟s group initiated a program of research aimed at generating chemical 

diversity through multi-component reactions. This approach to the development of diversity-oriented 

syntheses was based on the generation of building blocks that contain multiple functionalities which 

could be selectively reacted. Therefore, it was hypothesised that a scaffold containing a number of 

functionalities m which could be selectively reacted through a number of n reactions would have 

generated diversity in D = mn directions.
8
 This study generated several one-pot multicomponent 

reactions, the synthetic details of which were described in previous papers.
8-13

 Diversity is achieved by 

substituting each of three or four substituents at one time and keeping the synthetic strategy already 
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optimized constant. In this fashion synthesis of opportunely modified structures could be achieved 

within hours/days instead of weeks/months. While this is clearly a rich source of structural diversity, the 

technology remains in the domain of the skilled medicinal chemist and is not readily available for 

chemoinformatics exploration. We have thus enumerated a significant fraction of the possible 

derivatives that can be constructed using each of numerous multicomponent synthesis methods, resulting 

in over 28 million virtual compounds. It is important to note that each of these 28 million compounds is 

theoretically synthetically feasible, as examples of each scaffold structure have been synthesized, 

characterized, and described in the literature.
8-13

 To the best of our knowledge, this is the first publicly 

available database of synthetically feasible combinatorial compounds that can be produced using the 

multicomponent „one-pot‟ synthesis method (http://mmg.rcsi.ie:8080/tin). A number of subsets („drug-

like‟, „lead-like‟ and 10% diversity) are available for download and incorporation into docking or virtual 

screening studies, while the remaining analogues are available through a web based search engine. 

Synthetically feasible analogues of lead compounds can thus be found using the 2D structural search. 

This will provide researchers with a set of readily synthesizable derivatives for lead optimization. 

 

MATERIALS AND METHODS 

Software used. The modelling program used for preparation of virtual molecular structures was MOE 

(Molecular Operating Environment) from the Chemical Computing Group, Montreal, Canada. The 2D 

search is performed using OpenBabel (www.openbabel.org). Statistics were prepared using a MySQL 

(www.mysql.com) database of the full library on an Ubuntu Linux server (www.ubuntu.com), and Toad 

(www.toadsoft.com) as the MS Windows interface. The website was programmed in Java 

(www.java.com), using NetBeans IDE (www.netbeans.org). Structural fingerprints for comparison to 

the ZINC database were generated using the Chemistry Development Kit java package 

(http://sourceforge.net/projects/cdk/).
14

 

Synthesis of scaffolds MA01-MA21: The basic scaffold structure of each synthetic route is shown in 

Figure 1, while Schemes 1-12 provide more detail regarding the possible permutations of these 

http://www.openbabel.org/
http://www.mysql.com/
http://www.ubuntu.com/
http://www.toadsoft.com/
http://www.java.com/
http://www.netbeans.org/
http://sourceforge.net/projects/cdk/
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scaffolds. Compounds MA01 (Scheme 1) were obtained by reacting equimolar amounts of 3,5-

dimethyl-4-nitroisoxazole (Isi), an aromatic aldehyde (Ald), a -diketone (K) in the presence and 

hydrazine or hydroxylamine (X) in the presence of piperidine followed by treatment with aqueous 

sodium hydroxide.
12

 Compounds MA02 (Scheme 2) were obtained by reacting equimolar amounts of 

2,5-dimethyl-4-nitroisoxazole (Isi), an aromatic aldehyde (Ald), a -diketone (K) and hydrazine or 

hydroxylamine (X) in the presence of piperidine.
12

 Compounds MA03 (Scheme 3) were obtained by 

reacting MA02 with SnCl2 followed by treatment with an in situ generated acyl chloride. This synthesis 

is as yet unreported and will be described elsewhere. Compounds MA04 (Scheme 4) were obtained by 

reacting equimolar amounts of 3,5-dimethyl-4-nitroisoxazole (Isi), an aromatic aldehyde (Ald) and a -

diketone (K) in the presence of substoichiometric amounts of piperidine base.
8
 Compounds MA05 

(Scheme 5) were obtained by reacting equimolar amounts of 3,5-dimethyl-4-nitroisoxazole (Isi), an 

aromatic aldehyde (Ald) and a -diketone (K) in the presence of two equivalents of piperidine base.
8
 

Compounds MA06 (Scheme 6) were obtained by reacting equimolar amounts of 3,5-dimethyl-4-

nitroisoxazole (Isi), an aromatic aldehyde (Ald) and a -diketone (K) in the presence of 

substoichiometric amounts of piperidine base.
11

 Compounds MA07 (Scheme 7) were obtained in two 

steps reacting equimolar amounts of 3,5-dimethyl-4-nitroisoxazole (Isi), an aromatic aldehyde (Ald), 

and a -diketone (K) in the presence of substoichiometric amounts of piperidine base, then adding DCC 

and amine. This synthesis is unreported and will be described elsewhere. Compounds MA08 (Scheme 8) 

were obtained in two steps by reacting equimolar amounts of 3,5-dimethyl-4-nitroisoxazole (Isi), an 

aromatic aldehyde (Ald), and diethyl malonate (K) in the presence of substoichiometric amounts of 

piperidine base, then treating the resulting adduct with dilute HCl and excess SnCl2.
11

 Compounds 

MA11 (Scheme 9) were obtained in two steps by reacting equimolar amounts of 3,5-dimethyl-4-

nitroisoxazole (Isi), an aromatic aldehyde (Ald), and nitromethane (K) in the presence of 

substoichiometric amounts of piperidine base, then treating the resulting adduct with dilute HCl and 

excess SnCl2
13

. Compounds MA16 (Scheme 10) were obtained by reacting bis acetylenic ketones with 
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equimolar amounts of an opportune enamine.
9
 Compounds MA20 and MA21 (Scheme 11 and 12) were 

prepared by reaction of bis acetylenic ketones and an opportunely substituted Boc-amidrazone in the 

presence of excess trifluoroacetic anhydride.
10

 

Creating Constituent Databases. Creation and collation of initial constituent databases was 

performed manually to prevent common automation problems occurring early in the database creation 

process. Compounds which were identified as possible constituents in a scaffold-based molecule in the 

initial search were then searched for by product number in the electronic Sigma-Aldrich structure data 

file (SDF) catalogue. When a product was matched, constituent molecules were separated based on 

specific substructures, resulting in 11 databases (see Table 1).  The Sigma SD files were planar and did 

not account for chirality.  Hydrogen atoms were added where necessary and compounds allowed to relax 

using the steepest decent algorithm and the MMFF94x forcefield with default settings in MOE. 

Alternative, more efficient, options for 3D topology creation that are free for academia include the 

CORINA
15

 and OMEGA
16

 systems. To ensure correct stereochemistry we manually checked each 

molecule. If necessary, a molecule‟s chirality was changed to reflect that described in the full compound 

name. Where only racemic mixtures were available, or the full name could not be established, all 

combinations of chirality were manually stored in the database under the same name and catalogue 

number but with each set of chiral combination noted. All molecules with more than four chiral centers 

were discarded. Occasionally the structure needed to be reconstructed in MOE using the 2D drawing on 

the Sigma-Aldrich website as a guide. Where the product number differed from that on the website, this 

was updated in the constituent database to reflect the website nomenclature. 

Creating Scaffold Databases. Numerous scaffolds were created on the basis of this synthetic 

technique with a high level of variety in their basic structure, as seen in Schemes 1-12. Various elements 

of the scaffold structure are variable while the basic structure generally remains consistent. This means 

that for every basic scaffold there are a number of different second generation scaffolds which can be 

created from it. This variety allows for even greater combinatorial expansion when combined with 

reagent (R-group) databases. Each scaffold possibility was constructed using MOE and then assigned a 
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name according to a specific nomenclature described in Schemes 1-12 and described in more detail here. 

Each scaffold has a basic structure which is indicated by the title MA00, where 00 represents a number 

which defines the synthetic route. K groups (depicted in blue in the Schemes) are represented by K00, 

and X groups (depicted in red or green) are represented by X00. For example, Scaffold MA01 has 

fifteen different second generation scaffolds which are all defined by the combination of MA, K, and X 

groups present in the title. Therefore, MA01K02X03 indicates that this scaffold is made up of the basic 

parent scaffold of MA01, its variable R-groups which form a backbone are made up of -CF3 groups, and 

the N-X group is in this case a methyl hydrazine (N-N-CH3). If, as in Scaffold MA02, there was more 

than one X group present, the X groups were differentiated as being either XA00 or XB00. Which group 

is considered A and B is noted in the Schemes. Individual databases of both X and K groups were also 

created to serve as a key marrying structure to name in MySQL backtracking of the component parts. 

Finally, each scaffold has an attachment site to which a subset of compounds with specific reactive 

groups will bind. For example, MA02 molecules bind to aldehydes, as can be seen in Scheme 2. This 

was represented on the virtual scaffold as a „port‟ with which an R-group molecule could later link. In 

some instances, for example MA01, some scaffolds have more than one „port‟, often for different types 

of molecules. In this instance again, the „ports‟ are differentiated as A1-An, where n represents an 

integer; these numbers must be labeled consecutively.  Because of the large number of scaffold 

permutations associated with MA03 (75 unique descendant scaffolds), the MA03 database was split into 

8 different databases called MA03(a)-(h). MA03(h) database contains only 5 scaffolds while the others 

contain ten. All scaffolds used can be downloaded from the TIN website (http://mmg.rcsi.ie:8080/tin). 

Clipping R-Groups. Abbreviations used: aldehyde (Ald); alcohol (Alch), carboxylic acids (Ac), 

amines (NHAmi). Because each compound within the constituent database was screened initially by 

chemists with the one-pot synthesis in mind, each constituent was grouped to need the same „clip‟ to 

prepare for linking with a scaffold. For example, scaffold MA01 requires an aldehyde group which is 

seen in the resulting molecule as simply the Ald constituent as the carbonyl element of the aldehyde is 

removed in the chemical process. Therefore, when preparing the Ald databases of constituent molecules 
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to become a database of R-groups ready for combinatorial linkage, a „clip‟ removed the carbonyl group 

and replaced it with a „port‟ which is ready to dock with the scaffold resulting in the final product. Ports 

on the R-Groups are labeled with A0. Each „clip‟ was designed with the synthetic process in mind so 

that the final virtual R-group, when linked, would be representative of the final product of chemical 

synthesis. These „clips‟ are represented as SMILES strings in Table 1. Each clip was then assigned a 

unique name and number which allow for easy identification based on its chemical properties. For 

example, an aliphatic alcohol present in the Alch database would be named Alch_naro_nnnn, where n 

is an integer. This unique tag was linked to the R-group so that in subsequent molecular construction, it 

would always be present in the name of the final molecule, indicating which R-group was involved in 

making that product. The alcohol (Alch) subset was further divided into either phenols (Alch-aro) or 

aliphatic alcohols (Alch-naro), each of which were clipped to remove either a single hydrogen atom or 

the whole hydroxyl group. Only aromatic aldehydes were included in the aldehyde group (Ald). 

Carboxylic acids were subdivided into aromatic (Ac-aro) and aliphatic (Ac-naro) groups. Amine groups 

(NHAmi) were also divided into aromatic amines (NHAmi_aromatic) and the remainder 

(NHAmi_naromatic), both of which were further subdivided into either primary (-NH2) or secondary (-

NH) amines. 

Combinatorial Linking of R-groups to Scaffolds. By this point, both the scaffolds and the 

constituent R-groups have a „port‟ with which they are able to link; combining to form a single virtual 

molecule. Combinatorial linking was done using the Quasar:Combigen function in MOE. For each 

linking process, a log file detailing any errors was generated. If possible, all errors were corrected 

manually, otherwise the compound was deleted.  

Characterizing Output Databases. With construction complete, each output database was subjected 

to a variety of refinements. Each entry within each database was assigned a unique tag of 

RCSI_nnnnnnnn, where n is an integer. This tag was added to the original name of the molecule which 

consisted of the scaffold name and R-group identifying tags. Each database was then subjected to a 

steepest decent energy minimization process using the MMFF94x forcefield with default settings and 
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the addition of hydrogens where necessary.  This was done using in parallel the SMP function and MOE 

batch mode on six Dell Dual Xeon Pentium 6 machines with 2Mb RAM, each operating Linux RedHat.  

Molecular descriptors (listed in Supplementary Table S1) were then calculated for each output 

molecule. This descriptor calculation was done using functions in MOE's QuaSAR_Descriptor function 

in MOE/Batch. All the data are supplied in the download files. The descriptors were used to calculate 

the Lipinski „drug-like‟
17, 18

 and Oprea „lead-like‟ rules,
19

 depicted with a binary „1‟ or „0‟. In addition, 

substructure diversity selection was used to provide users with a smaller 10% diversity subset. All 

virtual molecules are available for download (in SMILES format only) and include the descriptor 

calculations.  

The potential energy was calculated as a final check of the MOE „minimize‟ function to ensure 

reasonable structural poses were produced. Any particularly high energy molecules were inspected 

manually for mistakes in construction and were corrected manually.  

As a final step, each database was exported into three commonly used formats: SDF, MOL2, and 

ASCII (exported as a TXT file), in addition to the MDB format specific to MOE. For internal use, the 

resulting SMILES strings are stored in a MySQL database allowing for standard Structured Query 

Language (SQL) searches throughout the collated database internally and as a basis for web-server 

integration. 

Structural Fingerprint Generation. To compare the structural diversity of TIN with the ZINC 

database, subsets of each database were randomly selected. A pre-prepared ZINC subset of purchasable 

compounds (#6), that differ from the rest by a Tanimoto cutoff score of 60%, was downloaded. This 

consisted of 10,082 compounds in SMILES format. 11,000 structures from the 10% diversity subset of 

TIN were randomly selected to give a representative group of molecules to compare to the ZINC subset. 

MOE was used to generate initial 3D structures for each molecule. A short java programme was written 

to calculate the CDK structural fingerprints
14

 for each molecule, and sum the occurrence of each 

fingerprint for plotting. 
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OpenBabel SMILES searching. The full TIN database can be searched on the „Search TIN‟ web 

page tab using the Java Molecular Editor kindly donated by Peter Ertl (Novartis). Alternatively, a TIN 

compound can be used as input by typing the compound number (prefixed with RCSI_) in the box 

provided. Each of these methods inserts a SMILES string in the search input box, which can also be 

loaded directly with a SMILES sting. After setting the search criteria (Tanimoto similarity score, 

substructure search, etc), the search starts an OpenBabel command that searches an indexed form of the 

full TIN database in SDF format (~220 GB file). As this takes a number of hours, the user can logout 

and will be notified by email when the output files are ready. These are stored in the „My Results‟ 

section with a unique file name created from the „search description‟ input. 

TIN component parts search. Once the user has selected the TIN compounds they are interested in 

synthesizing, either through screening the diversity subset or searching the whole dataset using the 

browser, one can then deconstruct the final synthetic products into their substituent starting materials. 

These starting materials can all be purchased directly from the supplier, in this case we used Sigma-

Aldrich, and the required TIN product synthesized using the chemistry detailed in the methods section 

and outlined in Schemes 1-12.  

On the „Synthesis‟ page, one can enter TIN codes (in the form RCSI_nnnnnnnn) in the search box 

provided. The output appears on the page in table format which includes the following columns; „Sort 

Order‟, keycode for the search; „RCSI Identifier‟, TIN code number; „Scaffold Template‟, core scaffold 

type;  „Scaffold‟, full scaffold name;  „Scaffold SMILES‟, full scaffold structure;  „compound SMILES‟, 

reagent structure; „compound weight‟, reagent weight; „Ports‟, position of port at which R-group is 

attached; „RGroups‟, name of side chain or R-group at specific port; „RGroup SMILES‟, side chain/R-

group compound structure at specific port; „RGroups chirality‟, up to 4 chiral centers were enumerated 

where the description was not clear; „RGroup Catalog Number‟, supplier catalogue number; „RGroup 

Supplier‟, supplier name. Users can then order the compounds directly from the supplier and synthesize 

the compound using the chemistry outlined and reference in the methods.  
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RESULTS AND DISCUSSION 

TIN aims, as ZINC does, to provide a straightforward way for users to access a large database of novel 

compounds. Using a „one-pot‟ synthetic technique, the combination of unique scaffolds and 

commercially available compound constituents from the Sigma-Aldrich catalogue, a database of novel 

synthetic compounds has been constructed. The TIN database is a collection of 28,473,744 virtual 

compounds, comprising over 220 GB of data in SDF format. Descriptive properties that define drug-like 

and lead-like compounds are present for all compounds allowing the user to independently search 

according to these subset properties or to sort databases according to these properties. Of the 28 million 

compounds, 5,080,762 (17.8%) are considered „drug-like‟ (Figures 2, 3, 4) and 1,731,331 (6.1%) are 

considered „lead-like‟. 

To further explore the structural diversity of the TIN database, structural fingerprints were identified 

in random subsets of both the TIN and ZINC databases. This fingerprint comprises 307 bits, each 

representing a discrete substructure. A pre-prepared diverse subset of 10,082 ZINC compounds was 

downloaded, and this was compared to 11,000 compounds chosen at random from the 10% diversity 

subset of TIN. A table describing the substructure SMARTS pattern of each fingerprint bit, as well as 

how many molecules from TIN and ZINC contained the substructure is included in Supplementary 

Table S2.  

Out of the 307 fingerprint substructure features, 209 appear in at least one ZINC molecule, and 104 

appear at least once in TIN. 102 of these features are common to at least one molecule from ZINC and 

TIN, while TIN contains two substructures that do not appear in ZINC, and ZINC contains 107 

substructures that do not appear in TIN. The distribution of fingerprints is shown in Figure 5. Each point 

in the figure represents a single substructure feature. It is clear that TIN shares about half the 

substructure fingerprints with ZINC, with a broadly similar distribution. Fingerprints lying along the x-

axis are those fingerprints in ZINC which do not occur in TIN. These comprise about half of the total 

fingerprint substructures contained in ZINC. Referring to Supplementary Table S2, the bulk of the 

features in ZINC that do not exist in TIN relate to various phosphorus, sulfur, and halogen containing 
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groups. However, phosphorus and halogen containing groups are reactive functional groups which may 

not be desirable from a medicinal chemistry point of view. 

The large size of the TIN database restricts online downloading of the full dataset in 3D format, but all 

28 million molecules are freely available for download in isomeric SMILES format. A smaller diversity 

subset (10%) was created and is available for download in SDF, MOL2, MDB and SMILES formats. 

„Lead-like‟ and „drug-like‟ subsets are also freely available for download in SDF, MOL2, MDB and 

SMILES formats. Once these have been used in virtual screening studies, it is envisaged that researchers 

will synthesize the hit compounds, and test them in vitro for effectivity.  

The TIN website also has a web-based application which allows users to search for molecules similar 

to the input molecule. Once lead small molecule inhibitors are established, the full TIN database can be 

searched for readily synthesizable derivatives using the JME molecule editor and the OpenBabel search 

function. These derivatives can then also be synthesized and screened, potentially yielding novel 

therapeutically useful drugs. 

TIN is a user-friendly public access database that provides a comprehensive search of small molecules 

available through multicomponent synthesis methods. Users are able to search the TIN database based 

on a variety of criteria; (i) diversity subset databases that contain a representative 10% of each scaffold 

database are available for ready download, (ii) drug-like compounds that obey Lipinski‟s „Rule-of-Five‟, 

(iii) smaller lead-like compounds, or (iv) all compounds (although this is only available in SMILES 

format due to the data transfer limitations. The issue of reducing the size of chemical space by excluding 

possible solutions is addressed by allowing TIN to be fully searchable; the structure based searches 

performed by users allow for full exploration of the entire collection of molecules and understanding of 

all TIN's molecular structures. Thus if a „hit‟ is found using the 10% diversity subset, the remaining 

„near neighbors‟ (that were filtered out) can now be accessed using the structure-based search engine. 

Each molecule is available for download in a variety of formats allowing for use in a variety of 

molecular modelling programs.  
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TIN is a sizable database containing a high number of unique molecules which satisfy „drug-like‟ and 

„lead-like‟ properties all of which are theoretically synthesizable. The open access nature of this large 

resource will hopefully facilitate further research from a variety of sectors in virtual screening and future 

drug design and development.  

To investigate how successfully the building blocks of the TIN database have been shown to act 

against protein targets in vitro, a substructure search for each of the 12 substructure scaffolds was 

carried out on the open-access ChEMBL
20

 and PubChem
21

 databases, which contain data on the 

biological activity of small molecules. The results are summarized in Table 2. This shows that a total of 

1,403 molecules containing TIN substructures have been found, with 37 experimentally validated 

activities against 18 protein targets (not including possible duplicates between databases). This indicates 

that there is potential for finding bioactive compounds within TIN. However, considering that TIN itself 

consists of over 28 million compounds, finding only 1,403 tested compounds in publically available 

databases indicates that TIN represents a relatively unexplored region of the chemical space.  

Recent analysis of modern patenting trends by the four largest pharmaceutical companies has shown a 

trend towards increasing hydrophobicity,
17

 and this is likely to result in higher attrition in late-stage 

clinical testing. Similarly, GlaxoSmithKline have recently made available the results of their anti-

malarial high throughput screening assays, in which they found a median molecular weight of 446 Da 

for active compounds.
22

 By the nature of the conjugated styrylisoxazole ring centre scaffold, the TIN 

database contains a significant proportion of highly hydrophobic molecules which fail the Lipinski Rule-

of-Five criteria (Figure 2). This is clearly inconsistent with the aim of the TIN database, namely the 

identification and development of novel pharmaceutical drugs. However, the widened scope of 

compounds considered a lead worthy of patent protection by „big pharma‟,
17

 coupled with large average 

size of anti-malarial hits found by GSK, implies that the TIN database should still hold valuable starting 

leads and novel scaffolds. Furthermore, the versatility of the multicomponent synthesis allows one to 

readily improve polarity and drug-likeness by replacing components with more polar analogues. A 

simple WWW-based structure search of the lead compound will output all possible analogues in TIN, 
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which can easily be sorted for non-violation of Lipinski‟s rules of five (where „lip_druglike‟ = 1), thus 

returning the user to more useful, low lipophilicity, chemical space.
17

  

To illustrate the potential utility of the TIN database, we searched it for compounds structurally 

similar to the anti-thrombotic platelet integrin inhibitor Tirofiban (Figure 6a). The top ranked result was 

the compound RCSI_00000319 (Figure 6b). The overlapping conformations were calculated using 

MOE (CCG), and show surprisingly good alignment with the key pharmacophore features in Tirofiban 

(Figure 6c). The compound „319‟ is part of the MA01 scaffold group (Scheme 1), with the diketone (K) 

option K01 and pyrazole X02 option used to build the azole ring, while the aldehyde used contributes 

major part of the molecule, the phenoxy-propane-dimethylamine. Further derivatization is thus possible 

at each of these positions, offering the possibility of readily synthesizing novel anti-thrombotics. The 

authors envisage that the TIN database and server will find similar utility in converting substrates into 

novel drug leads.  

  

CONCLUSIONS 

We have produced a virtual combinatorial library of 28 million molecules that are all theoretically 

synthetically feasible. The chemistry involved in synthesizing each of the keywords is well established 

and previously published. The databases are freely available and can be downloaded either (i) in their 

entirety, (ii) as 10% diversity subsets, (iii) as drug-like molecule subsets obeying Lipinski's Rule-of-

Five, (iv) as lead-like molecule subsets, or (v) as subsets defined by the core scaffold molecule.  

Furthermore, we have created an online search interface that allows users to draw input molecules for 

substructure or similarity searching of the full database. The 2-dimensional search function can also be 

accessed using 'TIN' codes of molecules that exist in the database. Thus users can find structural 

analogues of hit molecules found using TIN, such as the diversity or drug-like subsets.   

This facility will allow users to rapidly convert lead molecules into synthetically feasible compounds 

for synthesis and in vitro testing. Once hit compounds are identified, the variability inherent in the 

multicomponent synthesis methods will allow for relatively rapid synthesis of a wide range of 
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derivatives, which can then be used in repeating cycles of drug discovery. Further scaffold hopping is 

available using 2D searching (substructure/similarity) of the full database. The TIN database can be used 

in conjunction with the extremely versatile ZINC database of commercially available compounds.
7
 Lead 

molecules found using virtual screening of the ZINC compound library that are purchased and tested in 

vitro, can then be converted into synthetically feasible analogues using the 2D search function in TIN. 

This will then give researchers access to chemical diversity beyond that of the finite commercially 

available compound library.    
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Figure 1: Summary of scaffolds enumerated in the TIN database.  

Substituent colors are explained in Schemes 1-12.  
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Figure 2: Histogram of TIN compounds by molecular weight.  

„Drug-like‟ compounds are depicted with red bars.   
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Figure 3: Histogram of TIN compounds by logP(o/w).  

„Drug-like‟ compounds are depicted with red bars.   

 

 

 



 21 

 

Figure 4: Histogram of hydrogen-bond acceptors and donors.  

Hydrogen-bond acceptors are depicted with blue bars, while Hydrogen-bond donors are depicted with 

red bars.   
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Figure 5: Diversity of TIN compared to ZINC.  

11,000 compounds were randomly selected from the diversity subset of TIN and the Tanimoto 0.6 

subset of ZINC (purchasable compounds). Substructure fingerprints were analyzed in each compound 

using a 307 bit search. Each point in this logarithmic scatter plot thus corresponds to the number of 

compounds found to have at least one copy of the fingerprint in either the ZINC dataset (x-axis) or TIN 

dataset (y-axis). To allow graphical representation, “null” is represented by “0.1”.     
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Figure 6: TIN search using Tirofiban.  

A schematic of the structure of Tirofiban bound to platelet integrin GPIIbIIIa (2VDM) is shown in (A), 

while that of the TIN hit result „319‟ is shown in (B). This shows that both ligands interact with residues 

Arg214, Ser123, Ala218 and the Mg2+ cation. The MOE ligand interactions color scheme is as follows: 

polar residues, pink; acidic, red ring; basic, blue ring; hydrophobic residues, green; solvent exposure, 

blue zone; H-bonds, dashed green lines.  

(B) 

(A) 
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Scheme 1: Synthesis and definition of scaffold MA01. 
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Scheme 2: Synthesis and definition of scaffold MA02. 
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Scheme 3: Synthesis and definition of scaffold MA03. 
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Scheme 4: Synthesis and definition of scaffold MA04. 
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Scheme 5: Synthesis and definition of scaffold MA05. 
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Scheme 6: Synthesis and definition of scaffold MA06. 
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Scheme 7: Synthesis and definition of scaffold MA07. 
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Scheme 8: Synthesis and definition of scaffold MA08. 
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Scheme 9: Synthesis and definition of scaffold MA11. 
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Scheme 10: Synthesis and definition of scaffold MA16. 
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Scheme 11: Synthesis and definition of scaffold MA20. 
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Scheme 12: Synthesis and definition of scaffold MA21. 
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TABLES.  

Table 1: Reactant component subsets. 

Type of R-group
† 

Abbreviation Reactive group 

SMARTS
‡
  

Leaving 

Group 

Leaving 

Group 

SMARTS


Number of 

Entries 

Aromatic Aldehyde Ald [CH](=O)c Aldehyde [CH](=O) 226 

Aromatic Alcohol Alch_aro [OH]C([!O])c Hydroxyl [OH] 120 

Aromatic Alcohol  Alch_aroH [OH]C([!O])c Hydrogen [H] 120 

Aliphatic Alcohol Alch_naro [OH]C([!O])C Hydroxyl [OH] 404 

Aliphatic Alcohol Alch_naroH [OH]C([!O])C Hydrogen [H] 404 

Secondary Aromatic Amine NHAmi_aroNH [NH]c Hydrogen [H] 112 

Primary Aromatic Amine NHAmi_aroNH2 [NH2]c Hydrogen [H] 386 

Secondary Aliphatic Amine NHAmi_naroNH [NH]C Hydrogen [H] 97 

Primary Aliphatic Amine NHAmi_naroNH2 [NH2]C Hydrogen [H] 142 

Aromatic Carboxylic Acid Ac_aro [CX3](=O)(O) c Carboxylic 
Acid 

C(=O)O 616 

Aliphatic Carboxylic Acid Ac_naro [CX3](=O) (O)C Carboxylic 
Acid 

C(=O)O 324 

†Selected molecules in the Sigma-Aldrich catalogue were classified into possible reactant subunits compatible with multicomponent chemistry. 

‡„Reactive Groups‟ were identified, but only a subset of this was removed (the „Leaving Group‟


) in preparation for linking to scaffolds.  
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Table 2: Bioactive molecules with TIN scaffolds in the ChEMBL and PubChem databases. 

 

  TIN scaffold 

substructure 

Active 

compounds* 

Protein 

Targets 

ChEMBL 35 26 17 

PubChem 1368 11 1 

Total 1403 37 18 

*PubChem active compounds are defined as those which pass the PubChem filter “Active in any bioassay”. ChEMBL active compounds are those 

that show a result in any assay that is Activation/Inhibition (IC50, EC50, Ki) < 10000 nM or Max Inhibition, Activity, Recovery > 50%.  
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SYNOPSIS TOC: 

 

 

TIN is a virtual combinatorial database enumeration of diversity-orientated multicomponent syntheses, 

containing over 28 million compound structures for searching or downloading. 
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