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A B S T R A C T

Objectives: We aimed to firstly identify the different haemodynamic profiles amongst nulliparous women
who develop either gestational hypertension (GH), pre-eclampsia (PE), normotensive fetal growth
restriction (FGR) versus unaffected pregnancies using non-invasive cardiac output monitoring
(NICOM1). Our second primary objective was to assess the ability of NICOM1 derived variables to
predict the evolution of PE, GH and FGR.
Study design: Low risk nulliparous women were enrolled in a single center prospective observational
study. NICOM1 assessments were performed at 14, 20 and 28 weeks’ gestation and data was obtained on
cardiac output (CO), total peripheral resistance (TPR), indexed TPR (adjusted for maternal body surface
area; TPRi), stroke volume (SV), indexed SV (adjusted for maternal body surface area; SVi) and heart rate
(HR). Logistic regression was used to model GH, PE and FGR with NICOM1 measurements as predictors.
Linear, non-linear and interaction terms were assessed using the Akaike Information Criterion.
Results: The haemodynamic profile of pregnancies complicated by uteroplacental disease- GH (n = 18), PE
(n = 6) and FGR (n = 24) were compared to 318 healthy unaffected pregnant controls. Women with
evolving PE have a different haemodynamic profile to those developing either GH or FGR. The best
independent predictors for the evolution of uteroplacental disease at 14 weeks’ gestation were CO in the
prediction of FGR (AUC = 0.61; p 0.002), TPR in the prediction of GH (AUC = 0.63; p < 0.02) and SVi in the
prediction of PE (AUC = 0.62; p < 0.05). The performance of haemodynamic variables was enhanced when
combined in a multivariate logistic model. We demonstrated that TPR, CO and SV when combined with
BP were significant predictors of pregnancies complicated by FGR (AUC = 0.64, p = 0.004; AUC = 0.65,
p = 0.004; and AUC = 0.65, p = 0.007 respectively). Whereas in pregnancies complicated by PE, HR and SVi
in combination with BP were also statistically significant predictors (AUC = 0.75, p = 0.017 and AUC = 0.77,
p = 0.007 respectively).
Conclusions: NICOM1 derived maternal haemodynamic profile at 14 weeks’ gestation has the novel
potential to identify pregnancies which will ultimately develop uteroplacental disease.
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Introduction

Preeclampsia (PE) & fetal growth restriction (FGR) account for a
significant proportion of perinatal morbidity and mortality
currently encountered in obstetric practice [1,2]. The primary goal
of antenatal care is the early recognition of such conditions to
allow treatment and optimization of both maternal and fetal
outcomes. Hypertensive disorders of pregnancy are thought to
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complicate approximately 10% of all pregnancies and PE is thought
to affect between 2 and 8% of all pregnancies worldwide [3].
Despite an improvement in maternal outcomes, PE remains one of
the leading direct causes of maternal deaths and is thought to be
predominantly a result of impaired placentation [2,4]. The
antenatal detection of FGR via clinical examination is suboptimal
with a reported detection rate of one in three [5–7]. As a result
many pregnancies complicated by FGR remain undetected and this
translates to over an 8-fold increased risk of stillbirth when
compared to normal controls (19.8 vs. 2.4/1000) [8]. In particular
an estimated fetal weight (EFW) <3rd centile is most consistently
associated with an adverse outcome [9].

Preeclampsia has traditionally been regarded as a condition of
hypoperfusion with increased total peripheral resistance (TPR)
resulting in hypertension. An elevated cardiac output (CO) is
associated with the development of preeclampsia with changes
apparent as early as the first trimester [10,11]. CO, stroke volume
(SV), maternal heart rate (HR), TPR and end-diastolic volume have
demonstrated potential in predicting FGR prior to its clinical
manifestation [12,13].

Accurate monitoring of haemodynamic profiles has tradition-
ally been performed using invasive methods such as pulmonary
artery catheterization (PAC) [14,15]. Measurement of CO via PAC
has been the clinical gold standard for central haemodynamic
monitoring and is the reference standard used to compare non-
invasive technologies [16–18]. However, it has been shown to have
disadvantages and associated complications [19]. Non-invasive
monitoring of haemodynamics has the advantages of being easy-
to-use, safe and cost effective [20–24]. Transthoracic echocardiog-
raphy (TTE) has been used in studies evaluating CO in pregnancy
[10,25–27]. However, TTE is technically demanding, time-consum-
ing, requires a skilled operator, and provides discrete intermittent
Table 1
Maternal Demographics and Fetal Characteristics (n = 366).

Characteristic Overall cohort
N = 366

Control
N = 318

Age, years 29.1 � 5.1 29.1 � 5.1 

Ethnicity
-White European 316 (86.3) 276 (86.8)
-African 6 (1.6) 6 (1.9) 

-Asian 11 (3.0) 7 (2.2) 

Single 206 (56.3) 180 (56.6)
Tertiary education 205 (56.0) 177 (55.7)
Spontaneous Conception 351 (95.9) 307 (96.5)
Maternal height, cm 165.8 � 6.1 166.0 � 6.0
Maternal weight at booking, kg 67.6 � 14.2 67.9 � 14.1
BMI, kg/m2 24.5 � 4.6 24.6 � 4.6 

Smokers 66 (18.0) 56 (17.6) 

FHx HTN 89 (24.3) 77 (24.2) 

FHx DM 34 (9.3) 32 (10.1) 

FHx both 43 (11.7) 35 (11.0) 

GA at enrolment, weeks 13.2 � 1.4 13.2 � 1.5 

GA at delivery, weeks 39.8 � 1.8 39.9 � 1.8 

Birthweight, g 3399 � 529 3475 � 480
FGR 27 (7.4) 0 (0) 

Apgar at 5 min 10 (10–10) 10 (10–10)
Arterial Cord pH < 7.1 6 (1.6) 5 (1.6) 

NICU admission 38 (10.4) 32 (10.0) 

Adverse perinatal outcome 2 (0.5) 2 (0.6) 

Neonatal Deaths 1 (0.3) 1 (0.3) 

Abbreviations: PE- preeclampsia, GH- Gestational hypertension, FGR- fetal growth restric
Mellitus, GA- Gestational age. a. Continuous variables are summarized with mean � SD

* p-value < 0.05.
** p-value < 0.001.
data. Accuracy also depends upon image quality during acquisition
[19].

Transthoracic bioreactance is a new technique of non-invasive
continuous CO monitoring based on analysis of relative phase
shifts of oscillating currents occurring when a current traverses the
thoracic cavity [21]. Non invasive cardiac output monitor
(NICOM1) observes the extent of time delay or phase shift which
occurred and determines how much blood would have had to exit
the left ventricle and enter the base of the aorta to cause the
specific time delay thus calculating the stroke volume (SV). The
ECG element of the NICOM1 sensors detects heart rate (HR) and
allows calculation of CO from Starling’s law (CO = HR � SV).
Measurements derived from bioreactance based non-invasive CO
assessment have been demonstrated by the HANDLE group and
others to correlate well with results derived from TTE in the
obstetric population [28,29].

A pilot study by Doherty et al. utilized NICOM to demonstrate
the presence of differing haemodynamic profiles among women at
high risk of uteroplacental disease [30]. The goals of this single
centre prospective observational study were to demonstrate the
altered haemodynamic profile in the presence of uteroplacental
disease via NICOM1 in low risk nulliparous women. In addition, we
aimed to demonstrate the ability of altered haemodynamics to
predict the development of PE, FGR or Gestational hypertension
(GH) prior to the clinical presentation of disease.

Study design

The HANDLE study (HAEMODYNAMIC Assessment iN preg-
nancy anD neonataL Echocardiography assessment) is a single
centre prospective observational study conducted in a large
tertiary maternity center in Ireland with an annual birth rate of
approximately 8500. Eligible consecutive patients were
PE
N = 6

GH
N = 18

FGR
N = 24

30.7 � 6.8 29.6 � 5.6 29.2 � 5.2

 6 (100) 15 (83.3) 19 (79.1)
0 (0) 0 (0) 0 (0)
0 (0) 2 (11.1) 2 (8.3)

 4 (66.7) 10 (55.6) 12 (50)
 2 (33.3) 12 (66.7) 14 (58.3)

 6 (100) 16 (88.9) 22 (91.7)
 163.3 � 6.8 165.9 � 6.1 163.3 � 6.1

 67.7 � 14.6 70.8 � 16.4 61.0 � 11.8*

25.5 � 5.6 25.7 � 5.6 22.9 � 4.3
1 (16.7) 2 (11.1) 7 (29.2)
1 (16.7) 6 (33.3) 5 (20.8)
0 (0) 1 (5.6) 1 (4.2)
1 (16.7) 4 (22.2) 3 (12.5)
14.0 � 2.7 13.8 � 1.7 12.8 � 1.7
36.0 � 2.8** 39.7 � 1.4 39.6 � 1.5

 2478 � 773** 3456 � 477 2728 � 332**

0 (0) 3 (16.7) 24 (100)
 10 (10–10) 10 (10–10) 10 (10–10)

0 (0) 0 (0) 1 (4.2)
2 (33.3) 1 (5.6) 3 (12.5)
0 (0) 0 (0) 0 (0)
0(0) 0(0) 0(0)

tion, BMI- Body mass index, FHx � Family History, HTN-hypertension, DM- Diabetes
, median [Interquartile range] and categorical variables with n (percentage).



Fig. 1. The reported nulliparous PE rate in the Rotunda hospital between 2004–2015. There was a significant fall in mean preeclampsia rates p < 0.001 pre and post 2009.
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approached and enrolled between May 2014 and January 2016 to
undergo serial assessment of maternal haemodynamics using the
NICOM1 (Cheetah Medical, Maidenhead, Berkshire, United King-
dom). Inclusion criteria were nulliparous patients >18 years old
with a singleton non-anomalous pregnancy, normotensive and
with no medical co-morbidities at their first prenatal visit. Ethical
approval was granted by the Rotunda Research and Ethics
Committee and written informed consent was obtained from all
participants.

NICOM1 assessments were performed at (14–16 weeks’, 18–22
weeks’, 26–30 weeks’ and review at least six weeks’ postpartum).
Table 2
Serial Haemodynamic Profile Changes During the Study Period.

Cardiac Variable 14 weeks 20 we

NORMAL
CO (L/min) 6.3 (1.3) 6.4 (1
SV (mL) 75 (17) 72 (17
TPR (dynes.sec) 1180 (272) 1131 (
HR 85 (10) 90 (11

PE
CO(L/min) 5.7 (1.0) 6.3 (0
SV (mL) 72 (20) 77 (9)
TPR (dynes.sec) 1302 (305) 1181 (
HR 83 (10) 83 (9)

GH
CO (L/min) 6.2 (1.3) 6.5 (0
SV (mL) 73 (18) 71 (11
TPR (dynes.sec) 1262 (204)y 1217 (
HR 87 (12) 92 (10

FGR
CO (L/min) 5.8 (1.1)y 5.9 (1
SV (mL) 72 (17) 69 (15
TPR (dynes.sec) 1209 (284) 1183 (
HR 83 (10) 87 (10

Abbreviations: CO �cardiac output, TPR- total peripheral resistance, SV- stroke volume, H
with repeated measures was used to assess change over time.

* Indicates p values < 0.05 compared with baseline assessment at 14 weeks (Bonferr
y p value < 0.05 compared with respective Normal cohort value.
Haemodynamic monitoring was performed with the patient
lying semi-recumbent, left lateral position to avoid aorto-caval
compression. The NICOM1 system was allowed to calibrate and
each assessment was performed over 15 min with outputs
recorded at one minute intervals. Data was obtained on CO,
indexed CO (adjusted for maternal body surface area; COi), TPR,
indexed TPR (adjusted for maternal body surface area; TPRi), SV,
indexed SV (adjusted for maternal body surface area; SVi), systolic
blood pressure (SBP) and diastolic blood pressure (DBP). Maternal
characteristics, pregnancy outcome data, delivery details and
neonatal outcomes were recorded.
eks 28 weeks Postnatal ANOVA p

.3) 6.6 (1.4)* 5.6 (1.2)* <0.001
)* 71 (15)* 69 (16)* <0.001
258)* 1102 (237)* 1350 (301)* <0.001
)* 95 (11)* 83 (10)* <0.001

.8) 6.4 (1.5) 5.7 (1.2) 0.62
 71 (12) 71 (20) 0.92
194) 1309 (542) 1421 (327) 0.76

 91 (14) 81 (8) 0.15

.8) 6.6 (1.2) 6.1 (1.3) 0.39
) 66 (16) 71 (21) 0.2
204) 1243 (217) 1454 (396)* 0.02
) 101 (11)*,y 87 (10) <0.001

.1) 6.0 (1.4)y 5.6 (1.3) 0.48
) 65 (18)y 69 (18) 0.27
300) 1208 (291)y 1350 (393) 0.06
) 94 (11)* 83 (11) 0.003

R- heart rate. Values are presented as means (Standard deviations). One way ANOVA

oni adjustment).



Fig. 2. The differing haemodynamic profiles of normal pregnancy and those complicated by uteroplacental disease. Bars represent 1 standard error around the mean.
Statistical differences from normal not detailed.
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The cohort was divided into four groups based on their final
clinical diagnosis of (1) PE, (2) GH, (3) FGR, and (4) uncomplicated
pregnancies. The American College of Obstetricians and Gynecol-
ogists (ACOG) and the International Society for the study of
Hypertension in pregnancy (ISSHP) define PE as blood pressure of
�140/90 mmHg that occurs after 20 weeks of gestation in a woman
previously normotensive and proteinuria, defined as urinary
excretion of �0.3 g protein in a 24-h urine specimen. An elevated
BP measurement was based on at least two measurements, taken
using the same arm, at least two hours apart [31,32]. Pregnancies
with GH were defined similarly but in the absence of proteinuria or
other signs of end organ damage. An infant was described as FGR if
the mother was normotensive and the birthweight was <10th
centile when plotted on the WHO gender specific Neonatal and
Infant close monitoring charts [33].

The sample size was calculated using the smallest expected
group of 5% PE in comparison to a 10% FGR, based on the
assumption of a 200 dyn s difference in total peripheral resistance
(TPR) between PE cases (1300 dyn s) and control cases (1100 dyn s)
as demonstrated in a previous study in a high-risk cohort for PE
[30]. A 5% level of significance, 80% statistical power and a 5%
prevalence of PE were assumed in this nulliparous population. The
estimated PE rate in the Rotunda nulliparous population was 5% so
we aimed to recruit 400 patients over a two-year period to obtain
20 patients with PE [10,34–36]. As the HANDLE study was
observational and descriptive in nature, there were no pre-defined
management or delivery criteria and all decisions were made by
the lead clinician managing the case.

Continuous data were presented as means (standard deviation)
or as medians [inter-quartile ranges] as appropriate. Categorical
data were presented as absolute values and percentages. Four
group comparisons were conducted using the one-way ANOVA or
Kruskal-Wallis one-way analysis of variance as appropriate. Two
group comparisons were conducted using the independent t-test
or Mann-Whitney U test. Proportions were compared using the Chi
square test (or Fisher’s exact test where appropriate). Haemody-
namic trends over time were displayed using line charts and via
one-way ANOVA with repeated measures. A Receiver Operating
Characteristic (ROC) analysis was performed to determine the
ability of variables by 16 weeks gestation to predict the evolution of
PE, GH and FGR. Linear, non-linear and interaction terms were
assessed using the Akaike Information Criterion. SAS Version 9.3
was used for statistical analysis.



Fig. 3. The differing haemodynamic profiles of preeclampsia and unaffected pregnancy. Bars represent 1 standard error around the mean. Variables were compared by
independent t-test and significant p-value of <0.05 are marked as *.
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Results

During the study period 15298 women booked to the Rotunda
hospital of whom 6324 (41.3%) were nulliparous. Of 422 low risk
nulliparous women recruited to the study 19 were excluded from
the analysis for the following reasons: two (0.4%) chromosomal
abnormalities, eight (1.9%) miscarriages, two (0.4%) intrauterine
deaths at 27 weeks’ gestation, three (0.7%) cases of multiple
pregnancy, one (0.2%) recruited to another research study and
three recruited to the study in error. In addition 19 (4.5%) women
withdrew their consent and 18 (4.3%) delivered at an alternative
obstetric unit. This resulted in 366 patients completing the study
protocol. The mean (�SD) gestational age at time of enrolment was
13.2 (�1.4) weeks. The mean age of participants was 29.1 (�5.1)
years Table 1 further details the maternal demographics and fetal
characteristics of the cohort. Of the 366 patients recruited, there
were six cases of PE (1.6%),18 cases of GH (4.9%) and 24 cases of FGR
(6.6%) and a resultant 318 unaffected controls (86.9%).

Eight of the infants diagnosed as FGR were suspected
antenatally, none of whom had abnormal umbilical artery Doppler
assessments. Of the 24 cases of FGR, eight were a gestation and
gender corrected birthweight <3rd centile. Five of these infants
went on to deliver at a gestational age of greater than 40 weeks.
There were no differences between the haemodynamic profiles of
women whose infants were growth restricted <10th centile and
women whose infants were growth restricted <3rd (data not
shown).

The declining rates of PE in our institution are further detailed
in Fig. 1. Of the six cases of PE, two occured prior to 34 weeks’
gestation. None of the women with pregnancies complicated by
hypertension were in receipt of antihypertensive therapy at the
time of final antenatal haemodynamic assessment.

The differing haemodynamic profiles across the four groups are
detailed in Table 2 and Figs. 2–6. As expected pregnancies
complicated by PE and GH (Figs. 2–4) trended a higher TPR but
demonstrated differences in their overall profile with differing SV
and HR (Fig. 5). PE was associated with a reduction in HR in
comparison to GH. Whereas GH had a lower SV in comparison to PE
but this did not reach a level of significance (Fig. 5). Women with
FGR, in the absence of hypertension demonstrated a lower HR, CO
and lower SV but an increase in TPR in comparison to unaffected
controls but not to the same extent as in hypertensive disease
(Fig. 6).

The best independent predictors for the evolution of uteropla-
cental disease at 14 weeks’ gestation were CO in the prediction of
FGR (AUC = 0.61; p 0.002), TPR in the prediction of GH (AUC = 0.63;



Fig. 4. The differing haemodynamic profiles of gestational hypertension and unaffected pregnancy. Bars represent 1 standard error around the mean. Variables were
compared by independent t-test and significant p-value of <0.05 are marked as *.
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p < 0.02) and SVi in the prediction of PE (AUC = 0.62; p < 0.05).
These are detailed further in Table 3. It was not possible to provide
cut-offs for the univariate analysis secondary to the small numbers
of disease states. The performance of haemodynamic variables was
enhanced when combined in a multivariate logistic model as
detailed in Table 4. TPR, CO and SV when combined with BP were
significant predictors of pregnancies complicated by FGR (AUC =
0.64, p = 0.004; AUC = 0.65, p = 0.004; and AUC = 0.65, p = 0.007
respectively). Whereas in pregnancies complicated by PE, HR and
SVi in combination with BP were also statistically significant
predictors (AUC = 0.75, p = 0.017 and AUC = 0.77, p = 0.007 respec-
tively). It was not possible to provide cut-offs for the multivariate
analysis because of the nature of the inter-dependent relationship
of the variables assessed.

Discussion

In this study we demonstrate four different haemodynamic
profiles among women with pregnancies complicated with PE, GH
and FGR and unaffected controls. In addition we have demonstrat-
ed the potential to predict the evolution of these disease states by a
NICOM1 derived haemodynamic profile.

There have been many studies detailing the altered cardiovas-
cular profile of pregnancy in the presence of co-existing
uteroplacental disease [13,37–40]. The majority of these studies
have employed TTE in evaluation of the cardiac profile in the
presence of uteroplacental disease. Previous TTE studies described
a unique haemodynamic profile in PE of a lower CO and increased
TPR when compared to unaffected pregnant controls. Using the
novel automated NICOM1 device we have shown these altered
profiles in the setting of PE and FGR. Using NICOM1 we have
demonstrated a higher TPR of 1302 dyn s in PE. Although this did
not achieve statistical significance due to the lower than expected
number of PE, this is consistent with findings by Vasopollo et al. but
with the advantage of being apparent at an earlier gestation in the
first trimester [41]. In addition we have demonstrated a new profile
in the setting of GH with differences in the SV and HR between the
two hypertensive states (Fig. 5).

In the setting of fetal growth restriction, a fourth haemody-
namic profile of uteroplacental disease exists as affected pregnan-
cies are found to have a CO lower than the hypertensive
counterparts and a moderate elevation in TPR when compared
to pregnant controls but not reaching that of the hypertensive
groups (Fig. 6) [10,12,30,40–43]. A similar NICOM1 derived
haemodynamic profile described in the late third trimester by
Guy et al. also demonstrated a relatively unchanged HR, lower CO,
reduced SV and elevated TPR [44]. Our findings are in keeping with
Mahendru et al. who have reported a significant association



Fig. 5. The differing haemodynamic profiles of preeclampsia and gestational hypertension. Bars represent 1 standard error around the mean. Variables were compared by
independent t-test and significant p-value of <0.05 are marked as *.
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between pre-pregnancy to mid-pregnancy changes in CO and fetal
weight gain [45].

Interrogation of maternal haemodynamics presents us with a
novel and non-invasive opportunity to identify women at
increased risk of uteroplacental disease. These differing maternal
haemodynamic variables are evident prior to the clinical
emergence of disease. The result of which would allow for better
resource allocation by providing serial ultrasound biometry to
women deemed high risk of FGR and ultimately improving the
antenatal detection and management of FGR. Also the ability to
differentiate GH from PE would allow for improved maternal risk
stratification and improved prenatal care.

The strengths of the HANDLE study are its prospective nature
and ability to plot the serial haemodynamic profiles of recruits
across multiple time points amongst a low risk nulliparous
population. Recruited pregnancies underwent serial monitoring
including over 80% of women attending the postnatal element. The
emergence of the novel bioreactance technology has the benefit of
being easier to implement, as it is independent of both a skilled
technician to perform and interpret the exam.
The study is limited by a lower than expected number of PE
cases. This had a negative effect on the predictive performance of
the haemodyanamic variables and although differing from normal
controls, we did not reach statistical significance. This was a
reflection of overall falling PE rates within the hospital population
at the time of the study (Fig. 1). As a result of the lower than
expected AUC, an additional larger study would need to be
undertaken before any recommendations with regards to a change
in practice could be made. In addition these predictive capabilities
should be reviewed in the context of improved risk stratification.
However, this may not translate to improved perinatal outcomes in
both the hypertensive and growth restricted cohorts.

The positive findings in this study substantiates the need for a
larger multicentre prospective study interrogating the use of
NICOM1 derived maternal haemodynamics as a predictor of
uteroplacental disease in comparison to current clinical practice.
Additional longitudinal studies are also needed to interrogate the
haemodynamic profiles of women prior to embarking on
pregnancy to answer whether these observed aberrations are a
direct result of placental mediated factors or a pre-determined risk
prior to pregnancy.



Fig. 6. The differing haemodynamic profiles of fetal growth restriction and unaffected pregnancy. Bars represent 1 standard error around the mean. Variables were compared
by independent t-test and significant p-value of <0.05 are marked as *.

Table 3
Assessment of independent haemodynamic variables in the prediction of
uteroplacental disease.

Outcome Predictor AUC Odds ratio OR95% CL p-value

FGR CO 0.61 0.72 0.58–0.89 0.002
FGR SV 0.58 0.98 0.96–0.996 0.02
GH TPR 0.63 1 1.00–1.00 0.02
GH HR 0.57 1.03 1.0–1.05 0.04
PE SVi 0.62 1.1 1–1.1 <0.05

Abbreviations: AUC- Area under curve, OR- Odds ratio, CL- confidence limits, FGR-
fetal growth restriction, GH- Gestational hypertension, PE- preeclampsia, CO-
cardiac output, SV- stroke volume, HR- heart rate and, SVi- indexed stroke volume.

Table 4
The ability of haemodynamic variables (combined with BP and adjusted for
gestational age) to predict the evolution of uteroplacental disease.

Outcome Predictor AUC Odds ratio OR95% CL p-value

FGR TPR 0.64 1 1–1.0 0.004
FGR CO 0.65 0.73 0.59–0.91 0.004
FGR SV 0.65 0.98 0.96–0.99 0.007
PE SVi 0.77 1.1 1.0–1.1 0.007
PE HR 0.75 0.94 0.9–0.99 0.02

Abbreviations: AUC- Area under curve, OR- Odds ratio, CL- confidence limits, FGR-
fetal growth restriction, PE- preeclampsia, TPR- total peripheral resistance, CO-
cardiac output, SV- stroke volume, SVi- indexed stroke volume and HR- heart rate.
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