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Summary. This thesis consists of 2 separate ultrasound (US) based studies, 

performed with the common aim of improving the diagnosis of early vascular 

disease from US images.  

Study 1  
Introduction: Flow mediated dilatation (FMD) is an endothelium-dependent 

process reflecting the dilatation of a conduit artery when it is exposed to 

increased blood flow and therefore increased shear stress. FMD requires a 

healthy endothelium and is depressed in those with cardiovascular risk factors. 

Current 2D US assessment is limited as a research tool only secondary to 

variable reproducibility, technical difficulties and difficulties determining true 

diameter measurement. To our knowledge this is the first study comparing 2D 

and 3D US assessment of FMD. 

Methods: This was a cross sectional reproducibility study with 27 male 

patients. 2D and 3D FMD were performed on both study visits. Nitrate induced 

dilatation (NID) was performed as a control. We hypothesised that 3D US 

would eliminate the systematic underestimation of diameter that we believe 

occurs using 2D US. We believe this is secondary to probe malalignment 

errors occurring in 2D US that are eliminated using 3D US. Furthermore, we 

tested if 3D FMD is more reproducible than 2D FMD.  

Results: We discovered 3D diameter to be greater than 2D diameter with 

between visit FMD correlation and reproducibility being similar in both 3D and 

2D. 

Conclusion: Findings suggest 3D US gives a greater and more accurate 

measurement of diameter, however this should be confirmed with an arterial 

phantom bench study comparing 2D and 3D US diameter measurements. With 

real-time high resolution 4D US likely to provide better temporal resolution, the 

advent of 4D FMD is only around the corner. This is likely to be more accurate, 

reproducible and user friendly than 2D and may soon find its way into clinical 

practice. We believe by identifying 3D US as a useful and comparable tool to 

2D US in the assessment of FMD, this will provide a stepping stone for this to 

happen, thereby facilitating better quantification of endothelial function.  
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Study 2 

Introduction: Pre-eclampsia (PET) results in hypertension and proteinuria in 

pregnancy. It is associated with increased prevalance of cardiovascular risk 

factors and future cardiovascular risk, including increased intima-media 

thickness (IMT) and arterial stiffness. We used 2D US to assess for subtle 

alterations in vascular structure and function in young women with and without 

a history of gestational hypertension (GH) or PET. 

Methods: This was a phase 2 cohort study of 40 women with at least 1 

pregnancy in the last 5 years. Alterations in IMT distribution and compression 

patterns between the 3 groups were assessed according to multiple angles of 

insonation in the distal common carotid artery (CCA), and along the vascular 

tree (proximal versus distal CCA versus bifurcation (BIF) versus internal 

carotid artery (ICA)). Arterial stiffness within the proximal and distal CCA was 

also assessed. Using ANOVA we tested the hypotheses that the PET group 

would illustrate different values to the other groups.  

Results: In women with a history of pre-eclampsia, IMT was greater in areas 

of the vascular tree with a predilection for atherosclerosis i.e. the medial wall of 

the common carotid artery and within the ICA. IMT compression in PET 

differed according to vascular tree and angle. Arterial stiffness was increased 

in the GH and PET groups with less compliant and distensible arteries in the 

distal CCA when compared to normotensives. 

Conclusion: Women with PET have greater IMT than those without such a 

history. The pattern of IMT distribution by angle and along the vascular tree 

has been seen in previous studies, however to our knowledge never in such a 

group of asymptomatic women. A stepwise increase of IMT along the vascular 

tree was observed in the normal and GH groups with a subsequent decrease 

in IMT in the ICA, however, there was a further increase in IMT in the ICA in 

the PET group, suggesting an accelerated atherosclerotic process. Increased 

CCA stiffness in the PET and GH groups further supports this statement. Our 

results warrant further evaluation in other pre-eclampsia sufferers and perhaps 

similar asymptomatic groups using more novel non-invasive ultrasound 

techniques studying vascular wall structure and mechanics. 
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1.1 Overview 

In recent years there has been an increasing emphasis on the early 

identification of those at an increased risk of developing disease so that we 

may provide them with early treatment options thereby arresting or delaying 

the onset of morbidity and mortality. Preventative medicine is a massive field 

and there has been and continues to be an enormous amount of research into 

identifying those at risk of developing cardiovascular disease which continues 

to be the leading cause of death in western society. 

This thesis consists of two separate ultrasound based studies. The first uses 

ultrasound as a tool to assess endothelial function and aims to improve on 

existing and well established methods by comparing 3 dimensional and 2 

dimensional ultrasound approaches. The second study uses ultrasound to 

assess the vascular structure and function in young women with and without a 

history of gestational hypertension or preeclampsia. 

This introduction chapter will consist of a literature review of atherosclerosis 

and endothelial function and in particular the use of ultrasound in its 

assessment. It will also examine ultrasonic assessment of carotid intima media 

thickness and its use as a marker of cardiovascular disease. The concept of 

vascular stiffness will be described in addition to its value as a cardiovascular 

risk assessment tool. An appreciatation of the physics of ultrasound was 

required in order to complete the studies, therefore this is also explained in 

detail. Finally the hypotheses and aims of the two studies are discussed. 

 

1.2 Introduction to atherosclerosis, its 

pathogenesis and important consequences 

Large vessel atherosclerosis leads to heart attacks and strokes, which account 

for 45% of all deaths in the western world. The earliest detectable indications 

of atherosclerotic changes are alterations in two important vascular properties, 



  23 

namely impaired flow mediated dilatation and increased vascular wall stiffness. 

Atherosclerotic plaque rupture followed by intravascular thrombosis is the final 

common pathway leading to heart attacks and strokes.  

 

1.2.1 Definition of atherosclerosis 

Atherosclerosis is a progressive chronic inflammatory disorder of large 

arteries. It results in focal intimal disease and atherosclerotic plaques 

characterized by accumulation of both extracellular and intracellular lipid 

derived from oxidized low density lipoprotein (LDL), macrophages derived from 

circulating monocytes, and vascular smooth muscle proliferation and migration 

(Webb DJ et al, 1997).  

Its prevalence in premenopausal women is less than half that in men of equal 

age but between sex differences disappear within five years post menopause 

(Kiechl S et al, 1999).  

 

1.2.2 Aetiology/risk factors 

The risk factors for the development of atherosclerosis are numerous and 

include a variable combination of genetic, and environmental or traditional risk 

factors such as smoking and the development of free radicals, hypertension, 

diabetes, dyslipidaemia, age and hyperhomocysteinaemia. Certain infections 

such as Chlamydia pneumoniae and herpesviruses are also thought to play an 

uncertain role (Stassen FR et al, 2008).  
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1.2.3 Pathophysiology of atherosclerosis 

The earliest signs of atherosclerosis are seen in the first decades of life. At this 

stage it is purely an inflammatory lesion containing macrophages and T-

lymphocytes. Initially, atherogenic LDL’s enter the tunica intima where they are 

oxidized and deposited in the extracellular intimal space and phagocytosed by 

macrophages. This in turn, leads to the formation of lipid rich foam cells that 

progress to form fatty streaks, which are the first pre-atherosclerotic lesion 

seen in life. They are observed in the aorta of children in the first decade, 

progress to the coronary arteries of adolescents in the second decade and to 

the cerebral arteries of young adults in the third decade (Rader et al, 2008). 

Vascular smooth muscle cells secrete extracellular matrix components such as 

collagen and proteoglycans into the intima and in turn increase the retention 

and aggregation of LDL. A chronic inflammatory process results with further 

monocyte and T-cell recruitment. As the plaque expands, compensatory 

vascular remodelling occurs resulting in a preserved overall lumen size, 

however the overall diameter increases. Foam cells die and release crystalline 

cholesterol and debris. A fibrous cap formed by smooth muscle cells walls off 

the plaque and by doing so, separates it from the blood. In time, a necrotic 

core forms in the plaque and promotes further inflammation via recruitment of 

inflammatory cells. At this stage the endothelium may erode or the plaque may 

rupture leading to formation of a thrombus in the arterial lumen. This may 

result in acute coronary syndrome or stroke. In the event that the plaque 

remains intact and continues to narrow the lumen, and therapeutic 

interventions are not initiated, clinically obstructive disease is inevitable. Figure 

1.1 below illustrates the progression of atherosclerosis. 
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Figure 1.1 The progression of an atherosclerotic lesion is shown in a simplified 
form. Plaque develops from a normal blood vessel (far left) to a vessel with an 
atherosclerotic plaque and superimposed thrombus (far right). Potential targets 
for molecular imaging at each stage are also listed. AHA, American Heart 
Association; ICAM1, intercellular adhesion molecule 1; LDL, low-density 
lipoprotein; MMP, matrix metalloproteinase; VCAM1, vascular cell-adhesion 
molecule 1 (Figure and legend from Sanz et al, 2008). 

 

Despite the systemic nature of the major cardiovascular risk factors 

atherosclerosis is a geometrically focal disease with a propensity to develop on 

the outer walls of arterial bifurcations and on the inner walls of arterial curves 

(Caro CG et al, 1971 and Zarins CK et al, 1983). The carotid bifurcation, the 

coronary arteries, the infrarenal abdominal aorta, and the vessels supplying 

the lower extremities are at greatest risk (Glagov S et al, 1988). These are 

areas of low shear and high tensile stress, and there is evidence that these 

haemodynamic alterations contribute to atherogenesis in these regions (figure 

1.2).  
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Figure 1.2 Localization of Atherosclerosis Lesions.    
 A, Illustration of focal nature of atherosclerosis and its tendency to 
affect outer walls of vascular bifurcations. B, Carotid angiogram demonstrating 
focal narrowing at the outer walls of the carotid bifurcation involving the 
internal and external carotid arteries (arrowheads). C, Velocity map of the 
carotid artery in end-systole illustrates the lower velocities at the outer lateral 
edges (blue) where the shear stress is lower. Flow velocity and shear stress is 
higher at the inner edge of the bifurcation (green). (Figure taken and legend 
adapted from Malek AM et al, 1999). 

 

Blood flow and the blood viscosity exert a frictional force per unit area on the 

endothelial cells and lumen wall that is known as shear stress. Low shear 

stress leads to leukocyte adhesion, accumulation of subendothelial 

macrophages and lymphocytes, and irregular endothelial morphology with 

platelet aggregation at damaged endothelial sites. It also results in dilated 

intercellular clefts in the outer walls of flow dividers such as the carotid 

bifurcation (Malek et al, 1999). Shear stress is inversely related to intima-

media thickness (IMT), age, systolic BP, and BMI (Gnasso et al, 1996, Carallo 

et al, 1999). Tensile stress is circumferential wall tension divided by the wall 

thickness. It acts perpendicularly to the arterial wall and results from the 

dilating effect of blood pressure on the vessel. Increased tensile stress is 

directly associated with increasing wall thickness, age and BMI (Carallo et al, 

1999). Plaques have a greater propensity to develop when arterial remodelling 

reduces flow velocity and shear stress resulting in turbulent blood flow. This 
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allows more time for offending particles such as circulating LDL for example, to 

congregate at the outer walls of bifurcations and exert their damaging effects. 

Conversely, areas of laminar unidirectional blood flow with high shear stress 

rates clear these particles more rapidly resulting in less atherosclerotic lesions 

at these sites.  

 

1.3 Endothelial dysfunction and its relationship 

with early atherosclerosis 

The following section will describe the normal endothelium, the process of 

endothelial dysfunction and the methods by which it is quantified with particular 

emphasis on flow mediated dilatation (FMD). 

 

1.3.1 The normal endothelium 

A normal healthy conduit artery is comprised of an endothelium that consists of 

a monolayer of endothelial cells lining the arterial lumen each anchored to an 

underlying basal lamina. This is surrounded by the media, containing 

concentric layers of smooth muscle cells, elastin fibres and extracellular 

matrix. The outermost connective tissue layer is the adventitia. A normal artery 

is seen below in Figure 1.3. 
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Figure 1.3 The structure of the normal human artery. 

This illustrates a single layer of endothelial cells, the innermost intima, the 
media and adventitia (Figure taken from Lusis AJ, 2000). 

 

Endothelial cells are able to sense changes in blood flow, pressure, and 

oxygen tension. In response to changes in local conditions, they secrete a 

range of bioactive substances that have powerful regulatory effects on 

vascular smooth muscle tone, platelet and leukocyte interactions, coagulation, 

fibrinolysis and vascular growth (Pohl U et al, 1986). Important vasodilator 

mediators, secreted by the endothelium in response to increased blood flow 

and shear stress, include nitric oxide (NO) and prostacyclin (PI), whilst 

angiotensin II and endothelin are the most important vasoconstrictor 

substances.  In addition to effects on vascular tone, the endothelium also 

influences coagulation, platelet aggregation and adhesion, leukocyte 

activation, adhesion and migration, and smooth muscle proliferation. It does 

this through release of interleukins, endothelial growth factors, adhesion 

molecules, plasminogen inhibitors and von Willebrand factor.  
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1.3.2 Endothelial dysfunction 

Under physiological conditions, in the vasculature of healthy young humans, a 

balance exists between vasodilators and vasoconstrictors.  However, 

endothelial dysfunction (a deficit of anti-atherosclerotic vasodilating growth 

inhibitors and an excess of pro-atherosclerotic vasoconstricting growth 

promoters) has been described with age, hypertension, dyslipidaemia, 

diabetes mellitus, and smoking and in patients with coronary artery disease.  

Recent models have emphasised the key role played by endothelial 

dysfunction in the initiation and propagation of macrovascular and 

microvascular disease (Ross R, 1993) (Dzau VJ, 2001). In addition, 

endothelial dysfunction is detectable long before any structural atherosclerotic 

disease is present (Celermajer DS et al, 1992). The effects of ED and its 

combination with traditional and non-traditional cardiovascular risk factors and 

their consequences are illustrated below in Figure 1.4. 
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Figure 1.4 Endothelial dysfunction as the “risk of the risk factors.”  

The endothelium represents a mechanical and biological barrier between the 
blood and the vascular wall. Traditional and non-traditional risk factors, local 
factors (e.g., shear stress), genetic factors, and yet-unknown factors 
(protective or harmful) determine the status of endothelial function, which may 
be regarded as an integrated index of both the overall cardiovascular risk 
factor burden and the vasculoprotective factors in any given individual. The 
presence of endothelial dysfunction reflects a specific atherogenic vascular 
milieu, which is associated with perfusion abnormalities and cardiovascular 
events. (Figure and legend taken from Bonetti PO et al, 2003). 

 

1.3.3 Nitric oxide and endothelial dysfunction 

Endothelial nitric oxide is a free radical that is generated from L-Arginine via 

endothelial nitric oxide synthase (eNOS). It plays a pivotal role in vascular 

homeostasis and tone. NO decreases the expression and activity of 

endothelin-1 (ET-1), a potent and opposing vasoconstrictor, and has been 

demonstrated to oppose vascular smooth muscle cell proliferation and 

extracellular matrix production (Kolpakov V et al, 1995). In addition, NO has an 
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inhibitory effect on platelet adhesion via stimulation of cyclic adenosine 

monophosphate (cAMP) pathways (Giannarelli et al, 2007). With ED there is 

diminished availability and production of NO leading to increased endogenous 

oxidative stress and an increase in the production of superoxide anions 

(Herrmann J et al, 2008). These reactive oxygen species (ROS) interact with 

NO to form peroxynitrite, further decreasing production of NO and decreasing 

the availability of eNOS via the reduction of its important co-factor BH4. This 

process is known as eNOS uncoupling. Xanthine oxidase and NADH/NADPH 

oxidase in conjunction with uncoupled eNOS are the 3 main enzymatic 

substances that lead to an increase in ROS in those with ED. Their 

relationship to cardiovascular risk factors, oxidant stress and ED is illustrated 

in Figure 1.5 below.  

 

Figure 1.5 Endothelial dysfunction and the relationship between 
cardiovascular risk factors and oxidant stress (Figure taken from Cai H et al, 
2000). 
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1.3.4 Quantification of endothelial dysfunction  

As endothelial dysfunction acts as an early indicator of future risk of 

atherosclerotic events, there is considerable interest in its accurate 

quantification. An indication of dysfunction may be provided through 

measurement of biochemical markers such as plasma levels of endothelin, 

CD40 ligand, cell adhesion molecules, C reactive protein, or urinary NO 

metabolites (nitrates and nitrites). However most investigators favour methods, 

which directly assess endothelial regulation of vascular tone, such as;  

• Coronary angiography with measurement of blood flow and artery 

diameter during selective infusion of acetylcholine and nitric oxide synthase 

inhibitors (Ludmer PL et al, 1986). 

• Forearm plethysmographic measurements post intra-arterial infusion of 

acetylcholine and nitric oxide synthase inhibitors (Panza JA et al, 1990). 

• Measurement of changes in vascular diameter with varying flow rates in 

cannulated arterioles from tissue biopsies (Paniagua OA et al, 2001). 

• Ultrasonic measurements of brachial artery diameter and flow velocities 

post-ischaemia (Celermajer DS et al, 1992). 

The first three methods are well-established, accurate reproducible methods 

for assessment of endothelial dysfunction in a variety of vascular beds.  

Furthermore, coronary endothelial vasodilator dysfunction when assessed 

using quantitative coronary angiography and infusion of acetylcholine, has 

been shown to be a strong independent predictor of long-term atherosclerotic 

disease progression and cardiovascular event rates (Schächinger V et al, 

2000). However, because of the invasive nature of these three methods they 

are unsuitable as instruments to be applied to large asymptomatic populations 

or to be used repeatedly in order to evaluate responses to therapeutic 

interventions.  Assessment of endothelial dysfunction by the fourth method, 

brachial flow mediated vasodilation (FMD), is non-invasive, and is therefore 

the current most commonly used method.  However this method currently 

utilises 2-dimensional (2D) ultrasound and therefore has disadvantages 
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including operator dependency and poor reproducibility (both intra-observer 

and inter-observer).  

1.4 Introduction to flow mediated dilatation 

Flow mediated dilatation is defined as an endothelium-dependent process 

reflecting the relaxation of a conduit artery when it is exposed to increased 

blood flow and therefore increased shear stress (Stout M, 2009). This requires 

an intact or healthy endothelium and can be demonstrated in femoral, radial or 

brachial arteries. It is widely used in clinical research to assess for endothelial 

dysfunction.  

 

1.4.1 Physiology of endothelial dependant flow 

mediated dilatation 

The technique was first described by Celermajer in 1992, and involves 

measurement of the change in diameter of a conduit artery in response to 

increased blood flow that is induced by a period of ischaemia in the distal 

circulatory bed (Deanfield J et al, 2005). The ischaemia is created artificially by 

inflation of a blood pressure cuff to supra-systolic pressure for a period of 4-5 

minutes. Following abrupt deflation of the cuff there is a reactive hyperaemia 

and increase in shear stress causing a release of NO from the endothelium 

and a dilatation of the artery. The degree of FMD is representative of 

endothelial function. As this is an endothelium dependent process and is 

predominantly mediated by NO, it is depressed in those with endothelial 

dysfunction, atherosclerosis and cardiovascular risk factors (Celermajer DS et 

al, 1992). It is well known to correlate with coronary artery vasodilator function 

(Anderson TJ et al, 1995). Methodology will be described in detail elsewhere.  

As stated above, NO is thought to be the major mediator in the FMD process 

(Joannides R et al, 1995), with a lesser role played by prostaglandins 

(Okahara et al, 1998) and endothelium-derived hyperpolarizing factor (EDHF). 
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FMD cannot be fully explained by NO activation. Recently, mice were 

genetically engineered to lack the eNOS gene. Subsequently, their arteries 

were shown to respond to shear stress by dilating, proving that NO is not the 

only mediator involved (Sun D et al, 1999). The precise mechanism of FMD is 

not fully understood but is thought to involve specialized ion channels in the 

endothelial cell membrane called calcium-activated potassium channels. 

These channels open in response to shear stress and hyperpolarize the 

endothelial cell thus providing a mechanism for calcium entry (Cooke JP et al, 

1991). Calcium activates eNOS resulting in generation of NO causing FMD.  

 

Figure 1.6 Flow mediated dilation schema: in response to different changes in 
shear stress. * = very short-term changes;** = changes taking place over 
minutes; *** = changes taking place over many minutes or hours 

PGI2 = prostacycline; EDHF = endothelium-derived hyperpolarizing factor; Kc 
= calcium-activated potassium.  

(Figure and legend taken from 
http://www.balgrist.ch/en/Home/Forschung_und_Lehre/Anaesthesiology/Labor
atory_Research/Effects_on_endothelial_function.aspx). 

 



  35 

1.4.2 Flow mediated dilatation and early 

endothelial dysfunction 

Early signs of ED in the younger population can be demonstrated via impaired 

FMD. Low birth weight babies have demonstrated decreased FMD as early as 

9 years of age (Leeson CP et al, 1997), and this can also be seen in children 

with familial hypercholesterolaemia (Sorensen KE et al, 1994). 

 

1.4.3 Flow mediated dilatation and relationship 

to cardiovascular risk factors 

FMD has been shown to correlate with risk factors for coronary artery disease 

in asymptomatic individuals (Celermajer DS et al, 1994). It is also impaired in 

hypertension, type II diabetes, active and passive smoking and 

hypercholesterolaemia (Kelm M et al, 1996; Williams SB et al, 1996; 

Celermajer DS et al, 1993; Raitakari et al, 1999; Vogel RA et al, 1998). 

 

1.4.4 Flow mediated dilatation and the 

prediction of cardiovascular events 

Impaired FMD has been shown to accurately predict future cardiovascular 

disease risk. In 2000, Suwadi et al demonstrated an absence of cardiac events 

in those with absent or mild coronary artery dysfunction. However, they noted 

a 14% cardiac event (death, MI or revascularisation) rate in those with 

impaired FMD/severe ED (Suwaidi et al, 2000). Another study carried out in 

2008, assessed FMD in 435 healthy middle-aged subjects. A median FMD of 

10.7% was demonstrated and those with dilatation less than this value were 

found to have significantly higher risk of cardiovascular end-points including 

MI, heart failure, stroke and coronary intervention in addition to traditional 
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cardiovascular risk factors (Schecter M et al, 2008). FMD also correlates to the 

extent and severity of coronary artery disease (Neunteufl et al, 1997). 

 

1.4.5 Limitations of flow mediated dilatation 

FMD is not carried out in routine clinical practice due to the following reasons:  

• Variable reproducibility: One research group found large inter-individual 

variability of measurements of FMD when assessing 18 young healthy 

volunteers. Measurements made by 2 experienced physicians on the same 

day were repeated after 1 week and were found to be significantly different; 

5.95 +/- 2.93% versus 4.23 +/- 1.6% (P=0.03) and 7.63 +/- 4.3% versus 4.94 

+/- 2.69% (P=0.003). However, when they compared FMD at 1st and 2nd 

measurements taken by one physician there were no significant differences; 

Physician 1: 5.95 +/- 2.93% versus 7.63 +/- 4.3% (P=0.21); Physician 2: 4.23 

+/- 1.6% versus 4.94 +/- 2.69% (P=0.22) (Sejda T et al, 2005). In 1997, Hardie 

KL et al conducted a similar reproducibility study using 19 subjects and found 

poor reproducibility with the greatest variability occurring between studies; 

mean difference in FMD of 0.57% with a SD of difference of 6.83 (Hardie KL et 

al, 1997). There are significant individual skill differences and operator 

dependency issues with 2D US and because FMD is a percentage-ratio 

measure, small inter-observer differences will appear large. Other research 

groups have found this technique to be accurate and reproducible (Sorensen 

KE et al, 1995; Uehata A et al, 1997). 

• To date, FMD has been assessed using 2D US, therefore it can be 

difficult to determine exactly when the probe is accurately bisecting the artery 

in the longitudinal plane giving a true diameter measurement. A transverse 

approach is not reliable as it only measures a single point along the length of 

the artery and is difficult to reproduce.  

• Lack of standardised protocols: For example, in healthy volunteers FMD 

can vary from a few percent to 22% depending on cuff occlusion site (Agewall 

S et al, 2001) and greater dilatation is seen when the blood pressure cuff is 
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placed on the upper arm versus the forearm with differing physiological 

mechanisms for each (Betik AC et al, 2003; Peretz A et al, 2007).  

• It is technically challenging with a significant learning curve requiring 

several months of training.  

• Artery size: Brachial artery diameters of between 2.5-5mm are suitable 

for FMD. However, arteries less than 2.5mm are difficult to image accurately 

and those greater than 5mm do not vasodilate significantly even in those with 

normal endothelial function (Patel S et al, 2006). 10% of the adult population 

will therefore fall outside this category. 

 

 

• FMD is affected by the following: 

1. Biological factors such as blood viscosity and changes in haematocrit 

(Giannattasio et al, 2002), mental stress (Gottdeiner JS et al, 2003), exercise 

(Hwang IC et al, 2012), glucose levels and high fat meals (Keogh JB et al, 

2005), menstrual cycle and circulating levels of oestrogen and progesterone 

(Hashimoto M et al, 1995). 

2. Drugs especially vasoactive substances, caffeine (Papamichael CM et 

al, 2005) and smoking (Amato M et al, 2013). 

3. Age and gender. There is a progressive decrease in FMD with age 

occurring earlier in men, however at the time of the menopause there is a 

steep decline in dilatation in females (Celermajer DS et al, 1994). 

4. Diurnal variation in FMD (Etsuda H et al, 1999). 

5. Environmental factors such as room temperature and weather 

(Widlansky ME et al, 2007).  

 

In summary, it can be said that FMD has enormous potential in preventative 

medicine, diagnostics and monitoring responses to therapy. Due to the afore 
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mentioned factors and variables surrounding FMD it is currently a research 

tool only and therefore there remains great interest in improving methodology, 

in particular with a view to greater accuracy and reproducibility. 
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1.5 Carotid intima-media thickness  

The following section will describe Carotid intima-media thickness (CIMT) in 

detail including its value as a cardiovascular risk assessment tool in evaluating 

subclinical atherosclerosis, its relationship to cardiovascular risk factors and its 

accuracy in detecting the prevalence of cardiovascular disease. Measurement 

of CIMT and the need for standardized protocols will also be described as will 

its dynamic properties throughout the cardiac cycle. 

 

1.5.1 Introduction 

Carotid US is the most commonly performed non-invasive assessment used to 

detect the presence, progression or treatment response of atherosclerotic 

plaques. Carotid plaque can be defined as a “focal wall thickening that is at 

least 50% greater than that of the surrounding vessel wall or as a focal region 

with CIMT >1.5mm that protrudes into the lumen that is distinct from the 

adjacent boundary” (Stein JH et al, 2008). Carotid intima-media thickness is a 

measure of the thickness of arterial walls. When imaged via conventional B-

mode US the wall of the artery can be seen as two echogenic lines 

(representing the intima and the media) separated by a hypoechoic space 

(See Figure 1.7 below). It is well known to have good correlation with histologic 

specimens (Pignoli et al, 2006) and therefore is widely used as a tool in clinical 

research and less so in clinical practice to detect subclinical atherosclerotic 

disease.  CIMT varies with age, ethnicity and is generally thicker in men than 

women (Stein JH et al, 2008). 
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Figure 1.7 Ultrasound image illustrating the intima-media thickness. 

Longitudinal carotid ultrasound image of the distal common carotid artery on 
the right and the carotid bifurcation on the left. Note the blown up image of the 
far wall at the bottom of the figure which shows the intima-media thickness 
representing the distance from the leading edge of the lumen-intima interface 
to the leading edge of the media-adventitia interface (Figure taken from Wald 
DS et al, 2009).    

 

1.5.2 Carotid intima-media thickness and its 

relationship to age 

The measurement of CIMT may be used to evaluate signs of early or 

subclinical atherosclerosis in younger individuals. CIMT in subjects under the 

age of 18 years is extremely difficult to measure due to the elastic nature of the 

artery and the fact that CIMT at this age consists mainly of media. The carotid 

arterial wall of a normal healthy individual appears to be unaffected by age and 

gender until after 18 years of age. However, following this period, there is 
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diffuse progressive intimal thickening (O’Leary et al, 2010). This occurs in a 

uniform manner in linear segments of arteries with advancing age, and at an 

accelerated rate with increasing levels of cardiovascular risk. Hypertension 

and inherited genetic factors result in greater acceleration of this process 

(Touboul PJ et al, 2007). 

 

1.5.3 Carotid intima-media thickness and its 

relationship to cardiovascular risk factors 

Several studies have highlighted increased CIMT in younger individuals and 

their relationship to traditional cardiovascular risk factors. The Bogalusa Heart 

Study in Louisiana (Urbina EM et al, 2002) examined the impact of multiple 

risk factors on the IMT of different segments of the carotid artery in 518 young, 

biracial (71% white) asymptomatic healthy adults with a mean age of 32. 

Gender distribution was 39% male and 61% female. The results demonstrated 

increased IMT in the common carotid artery (CCA) and the carotid bifurcation 

(CB), with age, race (black more than white), systolic BP, LDL and high-

density lipoprotein (HDL) (inverse relationship), and insulin (inverse 

relationship in CB only) being independent predictors of IMT in the CCA and 

CB. Males, more so than females, and BMI were found to be predictors of IMT 

in the internal carotid artery (ICA). The CB was found to have the greatest IMT. 

In 1980, the Cardiovascular Risk in Young Finns Study (Raitakari OT et al, 

2003) set out to determine if childhood or adolescent cardiovascular risk 

factors were associated with increased IMT in adulthood in a cohort of 2229 

young Finnish subjects followed over a period of 21 years. They found that 

when adjusted for age and sex, adult IMT (33-39 years) was associated with 

levels of childhood (12-18 years) LDL, BP, BMI and smoking.  The Muscatine 

study (Davis PH et al, 2001) also found increased CIMT in young and middle 

aged adults to be associated with both childhood and current cardiovascular 

risk factors and risk factor load. 
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1.5.4 Carotid intima-media thickness in the 

prediction of cardiovascular disease 

Numerous studies have demonstrated that CIMT can predict future 

cardiovascular events. The Atherosclerosis Risk in Communities Study (ARIC) 

found that a 0.1mm difference in CIMT adjusted for age and gender was 

associated with an increased incidence of myocardial infarction (MI), hazard 

ratio (HR 1.13) (Chamberless LE et al, 1997). In a similar analysis, the 

Rotterdam Study reported a HR of 1.19 for MI (Bots ML et al, 1997). The 

Cardiovascular Health Study (CHS) (O’Leary DH et al, 1992) reported on 4476 

individuals without clinical cardiovascular disease (CVD) followed over a 

median period of 6.2 years. Using combined CCA and internal carotid artery 

(ICA) IMT measurements they discovered a HR of 1.15 for MI. In 2007 a meta-

analysis examining over 35,000 participants including those in the above 

studies found that a 0.1mm absolute difference in CIMT increased risk of MI by 

13-15% and stroke by 13-18% (Lorenz MW et al, 2007). CIMT can also 

reclassify patients at intermediate cardiovascular risk into a higher or lower risk 

category, and as such can play a role in the management options for patients 

(Stein JH et al, 2004). 

 

1.5.5 Carotid intima-media thickness and the 

prevalence of cardiovascular disease 

The presence of true atherosclerotic lesions is less than 1% in men under the 

age of 40 and premenopausal women (Kiechl S et al, 1999). A CIMT of 

between 0.6-0.7mm is considered normal in healthy middle aged adults and 

varies according to specific measurement sites (see section on measurement 

of CIMT below). An IMT of >0.9mm is estimated to be indicative of existing 

abnormalities and plaque can be identified with an IMT of >1.3mm, or a focal 

increase in thickness of 0.5mm or 50% of the surrounding IMT value (Mancia 

et al, 2007). CIMT is associated with the prevalence of CVD. In the CHS study 
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mentioned above, coronary artery disease and stroke were significantly 

associated with CIMT (O’Leary DH et al, 1992). Amato M et al, evaluated 

thickness in the coronary arteries, as assessed by coronary angiography and 

intravascular US, and CIMT of the carotid arteries using traditional non-

invasive US. They found significant correlation between CIMT and coronary 

atherosclerosis (Amato M et al, 2007). 

 

1.5.6 Measurement and variations of carotid 

intima-media thickness 

The use of carotid intima-media thickness to non-invasively quantify 

atherosclerotic disease is used extensively in clinical trials as previously 

eluded to, however consensus regarding the most accurate and reliable 

method of doing so is divided.  

The carotid artery is typically separated into three 1cm segments for the 

purposes of quantifying IMT. These consist of the following: 

• CCA – 1cm segment of distal common carotid artery (CCA) immediately 

prior to the carotid bifurcation or bulb (CB). 

• CB – 1cm segment of the CB, beginning at the divergence of the near 

and far walls and ending at the start of the flow divider (representing the 

beginning of both the internal carotid artery (ICA) and the external carotid 

artery (ECA)). 

• ICA – 1cm proximal segment of ICA. 

 



  44 

 

Figure 1.8 Illustration depicting the segments of the distal common carotid 
artery, the carotid bulb and the internal carotid artery. 

Figure demonstrates from right to left; distal common carotid artery 
immediately prior to the bulb, the bifurcation between the start of the bulb and 
prior to the flow divider, and lastly the internal carotid artery (Figure taken from 
Polak JL et al, 2010). 

 

There is evidence that different risk factors and cardiovascular outcomes are 

associated with different CIMT segments. For example, diastolic BP and 

fasting glucose are more closely associated with the CCA, whilst others are 

related to the CB (hypertension, current smoking and diabetes) and ICA (LDL) 

(Polak JF et al, 2010). IMT segment differences are also due in part to the 

linear nature of the proximal CCA (linear CCA measured in the proximal neck 

above the clavicle some distance prior to the bifurcation) and the high shear 

stress and laminar flow occurring in this region. This is contrasted to the 

complex nature of both the CB and the ICA, and the haemodynamic 

differences occurring at these sites namely low shear stress and turbulent 

blood flow as mentioned previously.  
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1.5.7 Variation of the carotid intima-media 

thickness throughout the cardiac cycle  

CIMT varies throughout the cardiac cycle and is thickest in end-diastole and 

thinnest during peak systole with variations of up to 0.03mm (O’Leary DH et al, 

2010).  Other studies demonstrated changes in IMT (ΔIMT) of 5.3% or 

0.039mm (Selzer et al, 2001). A smaller study examining the ΔIMT in a healthy 

cohort of 50 men and 50 women aged between 18 and 25 years found a 

difference of 7.1% or 0.026mm between IMT values in end-diastole and end-

systole and also found IMT values to be up to 3.1% greater in the right CCA 

(Gonzalez et al, 2007). 

Numerous groups have attempted to explain the change in IMT over the 

cardiac cycle. 

Polak et al examined the ΔIMT in 5633 patients with an average age of 62 in 

the Multi-ethnic Study of Atherosclerosis (MESA) study. They found ΔIMT to 

be 0.041mm between end-diastole and end-systole and found the difference to 

be significantly related to both pulse pressure and ethnicity and none of the 

traditional cardiovascular risk factors with pulse pressure the most important 

determinant. They found that an increase of 10mmHg in pulse pressure 

resulted in a 0.0022mm decrease in IMT. Ethnicity and its relationship to ΔIMT 

was felt possibly to relate to inherent differences in the structural properties of 

arteries between ethnic groups. They also found the association of traditional 

risk factors with both end-diastolic and end-systolic IMT was similar (Polak and 

Johnson et al, 2012).  

Another study by Polak et al examined 2930 subjects from the Framingham 

Offspring Study with an average age of 60 years and found an average 

difference of 0.037mm in IMT through the cardiac cycle. Once again they 

found the ΔIMT to be associated with pulse pressure, but in addition they 

discovered a weaker correlation with LDL and age. The decrease in IMT with 

increased pulse pressure is felt to be due increased arterial expansion and 

consequent wall thinning. It was difficult to explain the relationship between 
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LDL and age with the ΔIMT. One theory is that they alter the biochemical and 

structural characteristics of the wall resulting in greater arterial expansion in 

the radial direction hence causing a thinner IMT. This theory however, conflicts 

with the concept of increasing arterial stiffness with increasing age and so the 

association is not fully explained (Polak and Meisner et al, 2012). 

In 2013 Zahnd et al examined 57 healthy and 25 high cardiovascular risk 

patients and found that the amplitude of ΔIMT was greatest in the at risk group; 

0.079mm +/- 0.036mm versus 0.064mm +/- 0.026mm in the healthy group 

(P=0.032). Again a possible explanation was that increased radial stress on 

the lumen alters endothelial function during the atherosclerotic process 

resulting in greater IMT compression (Zahnd et al, 2013). An important 

limitation of the study is that analysis was performed over longitudinal 

segments of CCA measuring just 3mm possibly discounting the 

heterogeneous nature of CCA, especially in the at risk group. 

A study of arterial wall compressibility in 2001 found the ΔIMT in 19 female 

patients with Pseudoxanthoma Elasticum (PXE), a disease characterized by 

proteoglycan accumulation in connective tissues leading to large artery 

calcification and stenosis, to be greater in these patients versus 15 healthy 

controls. Proteoglycans play a pivotal role in sustaining compression and 

shaping the arterial wall. In PXE they accumulate and cause increased 

compressibility and can increase the transmural transport of lipids and their 

subsequent retention in the arterial wall. They found that the ΔIMT was greater 

earlier in the disease process in younger patients and less so in those over 40 

suggesting that proteoglycans play an important role in compressibility 

(Boutouyrie et al, 2001). 

Meinders et al found IMT compression to be less in younger groups of healthy 

subjects versus their elderly counterparts, possibly due in part to the 

surrounding tissue being more compressed than the actual IMT in the younger 

group with the IMT being more compressed than the surrounding tissues with 

increasing age (Meinders et al, 2003).  
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There are also variations in near versus far wall measurements and in the way 

in which IMT is measured; in an offline semi-automated fashion or using 

manual tracings (Bots ML et al, 2003).  

 

1.5.8 Strategy to standardize measurement 

protocols 

Since 2000, there have been 7 consensus statements or guidelines drawn up, 

recommending CIMT measurement and detection of carotid plaque as useful 

tools in the assessment of vascular disease. In 2008 the American Society of 

Echocardiography (ASE) addressed standardization of imaging protocols to 

aid in the interpretation and variability of findings from the numerous trials that 

are carried out in this field (Stein JH et al, 2008). These guidelines are 

highlighted below. 

 

American Society of Echocardiography 2008 Consensus Statement guidelines 

for carotid intima-media thickness (CIMT) measurement. 

 

Instrumentation and Image Display: 

• The carotid arteries should be interrogated using a state-of-the-art 

ultrasound system with a linear-array transducer operating at fundamental 

frequency of at least 7 MHz. The typical pixel size with imaging at 4cm depth is 

approximately 0.11 mm. 

• B-mode imaging is preferred over M-mode imaging (M-mode provides 

measurement of only a single point of thickness, rather than a segmental 

measurement). 

• Digital images should be stored directly from the ultrasound system, rather 

than digitized video captures. 
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CIMT Imaging Protocol: 

• Ultrasound images of the distal 1 cm of the far wall of each common carotid 

artery should be obtained and compared with values from a normative data 

set. 

• These measurements should be supplemented by a thorough scan of the 

extracranial carotid arteries for presence of carotid plaques. 

• Transverse B-mode scan (3–5 beat cine-loop in each segment) from 

proximal common carotid artery (CCA) through middle of the internal carotid 

artery. 

• Internal and external carotid artery Doppler recordings (one frame of each) 

at proximal 1 cm of each branch. 

• Longitudinal plaque screen scan (3–5 beat cine-loop from at least 3 different 

angles in each segment) at near and far walls of CCA, bulb, and internal 

carotid artery (ICA) segments. 

• CIMT imaging (3–5 beat cine-loop and optimized R-wave gated still frames 

at each angle) at distal 1 cm of each CCA. 

• Mean CIMT values from the far walls of the right and left CCA’s (mean-

mean) should be reported. 

 

 

In 2009 the United States Preventative services Task Force (USPSTF) 

criticized the ASE guidelines and recommended against measuring CIMT as a 

marker of atherosclerosis (Helfand M et al, 2009). Some of the reasons behind 

these recommendations were as follows (Stein JH et al, 2010): 

• The independent predictive value of CIMT for those at intermediate coronary 

heart disease (CHD) risk was questionable due to lack of specific data in this 

area. 

• Concerns regarding the use of CIMT to reclassify these patients into lower or 
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higher risk categories. 

• They highlighted that some studies used to support CIMT as a predictive tool 

were of short duration, and included subjects with pre-existing CHD or risk 

equivalent conditions. 

A recent study in 2010 carried out by Nambi et al heavily criticized the 

USPSTF’s statements and proved that measurement of carotid plaque and 

CIMT could accurately predict CHD and stroke. They examined 13,145 

patients who were free of CHD or stroke at the start of the study. Following 

over 15 years follow up they were found to have 1,812 CHD events that 

included MI or death. The area under the receiver operating characteristic 

curve (AUC) for traditional risk factor prediction of CHD events was 0.742. This 

increased significantly to 0.750 and 0.751 when CIMT and carotid plaque were 

added respectively. When all three parameters were included this further 

increased to 0.755. They also noted that 37.5% of subjects in the 5-10% risk 

category (based on risk factors) and 38.3% in the 10-20% category were 

reclassified when plaque and CIMT data were added, with plaque presence 

being more important than increased CIMT among women (Nambi et al, 2010). 

It is important to mention that the majority of those whose risk was reclassified 

were placed into a lower risk category meaning less intensive treatment 

implications for this group. This study definitively proves the value of 

measuring CIMT or detecting carotid plaque in cardiovascular risk prediction in 

those at intermediate cardiovascular risk. 

 

1.5.9 Near versus far wall CIMT measurement 

Near wall CIMT measurements can present certain technical difficulties, and 

are believed by some to be less reproducible whilst not improving risk 

prediction when compared to far wall CIMT measurement (Roman MJ et al, 

2006). The reasons for this are laid out below: 

• At the adventitia-media and intima-lumen interfaces the US beam is 

travelling from a more echogenic to less echogenic layer. 
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• The precise location of the boundaries between tissues with different 

echogenic properties is represented by the leading edge of an ultrasound echo 

reflective surface. This is the edge closest to the US probe. 

• The edge furthest from the probe or trailing edge of the echo line is thought 

by some to be an acoustic shadow cast by the tissue interface and may give 

inaccurate readings when measured (Wikstrand J, 2007). 

• Studies have shown that CIMT measurement at the near wall was increased 

by 20% when using US contrast agents (as these agents provide a “true” 

acoustic delineation between the intima-media interface by enhancement of 

the arterial lumen) and these findings have been observed in previous 

histological examination (Coll et al, 2008). 

However, other studies report that by using stricter protocols and taking 

measurements from multiple predefined segments, at consistent angles of 

acquisition and by using improved technology such as automated edge 

detection algorithms, that near and far wall measurement can be combined 

giving more reproducibility and accuracy. The following studies have 

recommended a combined approach: 

• In 2009 Dogan et al performed a post-hoc analysis of the “Osteoporosis 

Prevention and Arterial effects of tibolone” (OPAL) study, a 3-year randomized 

controlled trial among healthy postmenopausal women.  They compared 66 

different US protocols based on combinations of 60 CIMT measurements (2 

sides, 2 walls, 3 segments and 5 angles) that were used to measure CIMT 

progression rate in 675 women. They found that mean common CIMT 

protocols that included both near and far walls at ≥2 angles give the greatest 

reproducibility combined with the greatest estimates of CIMT progression and 

recommend usage of this protocol in such a population (Dogan et al, 2009). 

The group conducted a similar trial in 2010 that confirmed these results 

amongst patients with mixed dyslipidaemia and familial hypercholesterolaemia 

(Dogan et al, 2010).  

In summary, CIMT can be used to detect early atherosclerosis, is related to 

traditional cardiovascular risk factors and can predict future cardiovascular 
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events and prevalence of coronary artery disease and stroke. Technical 

difficulties associated with its measurement have led to varying opinions in the 

field and several recommendations on best practice. However, semi-

automated edge detection software that analyses multiple arterial segments at 

multiple angles appears to be the most accurate and reproducible method at 

present in the assessment of CIMT. CIMT varies throughout the cardiac cycle 

being greatest in diastole and thinnest in diastole. The degree of compression 

has been found to be positively and significantly related to pulse pressure, 

increasing age, LDL and ethnicity.  

 

1.6 Arterial stiffness 

1.6.1 Introduction 

This section will describe arterial stiffness in detail including the arterial 

waveform, its pathophysiology, factors contributing to stiffness, its value in 

detecting the prevalence of cardiovascular disease and also its predictive 

power. There are numerous methods used in its detection and these will also 

be described.  

1.6.2 Functions of the arterial system 

The arterial system acts as a conduit in transporting blood from the heart to the 

peripheries and also as a reservoir dampening the pressures received from the 

contracting heart, thereby providing a steady flow of blood throughout the 

arterial system. There are 3 separate anatomical regions in the body used to 

explain the functions of the arterial system. The initial dampening of oscillation 

comes from the large elastic aorta which functions as a reservoir. Next the 

large muscular arteries or branches of the aorta act as the conduit and modify 

wave propagation via regulating smooth muscle tone. Lastly, the distal 

arterioles alter the peripheral vascular resistance resulting in the maintenance 

of mean arterial pressure and the delivery of constant flow to the capillary beds 

(O’Rourke MF et al, 2005). With age and the development of cardiovascular 
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disease the composition of the arterial wall changes resulting in an imbalance 

between the ratio of elastin and collagen fibres. This causes the arteries to 

become stiffer and more resistant to wall deformation resulting in hypertension.  

 

1.6.3 The arterial pressure waveform  

The propagative / distensible tube model (Laurent S et al, 2006) is felt to be 

the most accurate model illustrating the arterial pressure waveform. The model 

consists of a single distensible tube with two ends. The first end represents 

peripheral resistance with the other end receiving blood in pulses via the heart. 

The contraction of the left ventricle results in a pressure wave that travels 

down the tube and is subsequently propagated to all of the distal arteries and 

cushioned by the viscoelastic properties of the vessel wall. The pulse becomes 

amplified as it propagates down the arterial tree due to the increasing stiffness 

of arteries in the peripheries. As the pressure wave arrives at sites of 

impedance mismatch or branch points the pressure wave is reflected back to 

the heart. These reflected pressure waves arrive during diastole thus merging 

with the diastolic pressure wave. The returning pressure wave from the 

peripheries results in an amplification of the pressure signal. This is greater in 

the peripheral vasculature than in the central arteries due to the numerous 

bifurcations and branching points. This is referred to as the amplification 

phenomenon (Laurent S et al, 2006). The final pressure wave is a summation 

of both the incident and reflected pressure waves and is illustrated in figure 1.9 

below. 
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Figure 1.9 Illustration of the arterial pressure waveform. 

Illustration depicting the summation of the incident and reflected waves (left 
and middle) resulting in the resultant wave on the (right). (Figure taken from 
Koelwyn GJ et al, 2012).  

 

1.6.4 Pathophysiology of arterial stiffness 

In normal healthy arteries the velocity of the pressure pulse is relatively slow, 

however when arterial stiffness increases the resultant velocity of the pressure 

wave also increases. This results in the reflected waves arriving at the heart 

and aorta earlier, thereby augmenting central systolic blood pressure that in 

turn, increases the afterload within the left ventricle and compromises blood 

flow within the coronary arteries. 

The properties of the arterial wall are heterogeneous throughout the arterial 

system and there are differences in the elastin and collagen content depending 

on the central or peripheral nature of the vessel. In the proximal aorta the ratio 

of elastin to collagen fibres is greatest with an equal amount of both noted in 

the abdominal aorta. More peripherally, the collagen content predominates 

(Harkness et al, 1957). 

 

1.6.5 Factors contributing to arterial stiffness 

The process of arterial stiffening occurs secondary to a series of complicated 

interactions involving cellular and structural components of the arterial wall as 
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depicted in figure 1.10 below. Haemodynamic factors and external factors 

such as glucose regulation, hormones and salt all play a role in increasing 

vascular stiffness (Zieman SJ et al, 2005). Diabetes and hypertension 

(Tedesco MA et al, 2004) and normal ageing also result in arterial stiffness 

(Kelly RP et al, 1989). Obviously, the arterial system will also degenerate 

secondary to the other traditional cardiovascular risk factors such as smoking 

(Mahmud A et al, 2003) and dyslipidaemia (Urbina EM et al, 2012). Healthy 

ageing demonstrates increased stiffness that is seen predominantly within the 

aorta and its proximal elastic branches and to a lesser degree the peripheral 

arterial system (O’Rourke MF et al, 2002). The primary mechanism associated 

with ageing and disease processes causing stiffening of the arteries is 

degeneration of the media within the central arteries. This begins with 

fracturing and degeneration of the elastin and collagen fibres. The elastin 

becomes fragmented and thinned and the collagen content increases resulting 

in a more inelastic artery (Laurent S et al, 2007). Ageing of the arterial media is 

coupled with increased expression of matrix metalloproteinases (MMP) that 

result in degradation of elastin and collagen fibres. Two enzymes linked with 

vascular stiffness in this regard are MMP-2 and MMP-9. Animal studies have 

shown that elastin fragmentation and thinning is associated with increased 

expression of MMP-2 in the arterial intima and media (Wang et al, 2002). 

Levels of MMP-2 and MMP-9 and associated genetic polymorphisms correlate 

with arterial stiffness in humans (Yasmin et al, 2009) and MMP-2 correlates 

with increased pulse wave velocity (PWV) and calcium deposits in renal 

transplants (Chung et al, 2009). Changes in the structure of collagen fibres 

and collagen cross linking by advanced glycation end products also has a link 

to arterial stiffness. In animal models, suppression of these end products 

prevents vascular stiffness without altering the structural content of elastin or 

collagen fibres (Corman B et al, 1998). In a subsequent human trial, treatment 

of hypertensive patients with a non-enzymatic breaker of collagen cross-links 

led to significant reduction in BP and PWV versus placebo (Kass DA et al, 

2001). 
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Figure 1.10 Summary of the multiple causes and locations of arterial stiffness.  

AGE’s=Advanced glycation end products; I-CAM=Intercellular adhesion 
molecule; MMP=Matrix metalloproteinases; TGF-β=Transforming growth factor 
β; VSMC=Vascular smooth muscle cell; NaCl=Sodium Chloride (Figure taken 
from Zieman SJ et al, 2005). 

 

Endothelial dysfunction has already been discussed in detail, however the 

decreased levels of nitric oxide that is observed in ED, leads to an increase in 

vascular tone of the small arterioles that are involved in the major changes of 

total peripheral vascular resistance. This is turn results in functional and 

structural changes of the larger more central arteries causing stiffening, and 

vascular remodelling, atherosclerosis and an elevated blood pressure 

(Koelwyn GJ et al, 2012). 

Several genetic links have been made to arterial stiffness. Marfan’s syndrome 

is associated with mutation of the FBN1 gene that encodes fibrillin-1. This 

gene is involved in regulation of elastin fibres and is associated with increased 

arterial stiffness (Jondeau G et al, 1999). Fibrillin-1 is also associated with 

increased severity of coronary artery disease and aortic stiffness (Medley T L 

et al, 2002). William’s syndrome, a connective-tissue disorder caused by 

deletion of chromosome 7q, results in disruption of the elastin gene resulting in 
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decreased arterial stiffness (Lacolley P et al, 2002). Endothelin receptor and 

angiotensin 2 type-1 receptor genes have been shown to relate to increased 

arterial stiffness in hypertensive patients (Lajemi M et al, 2001). 

 

1.6.6 Arterial stiffness and the prevalence of 

cardiovascular disease 

Several studies have shown that arterial stiffness can detect the prevalence of 

cardiovascular disease. In 2012 Wang JW et al measured brachial-ankle pulse 

wave velocity (BaPWV), a marker of stiffness in both central and peripheral 

muscular arteries, in 2,852 Chinese subjects. They found increased BaPWV in 

22.3% of men and 26.4% of women. Heart rate, systolic blood pressure, 

smoking and fasting glucose were significantly associated with arterial stiffness 

in men. Serum cholesterol, diabetes, heart rate and systolic blood pressure 

were significant associations in women (Wang JW et al, 2012). 

In 2007, Maple-Brown LJ et al investigated the incidence of increased PWV in 

both indigenous Australians (162) and Australians of European decent (121), 

of similar age and sex who were at a high risk of CVD. 60 of the indigenous 

group had type 2 diabetes and a corresponding 38 in the European group. The 

group assessed stiffness via applanation tonometry to assess PWV and the 

augmentation index (AI). Using these measures they found the indigenous 

Australians to have higher indices of arterial stiffness than their European 

counterparts. Factors likely contributing to the difference were smoking, 

metabolic syndrome variables, homocysteine levels, CRP and heart rate 

(Maple-Brown LJ et al, 2007). 

In 2011, Liu CS et al examined the relationship between BaPWV and coronary 

artery disease. They examined 654 asymptomatic patients including 296 men 

and 358 women with a mean age of 55. Coronary artery disease was 

assessed using CT coronary artery calcium scoring (CAC) to detect stenotic 

vessels and arterial stiffness was assessed using BaPWV. 127 patients or 

19.4% of the group had at least one stenotic coronary artery assessed by 
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means of CT coronary angiography, with the mean BaPWV and mean CAC 

being significantly higher in the stenotic group than in controls. They found 

arterial stiffness to correlate well with coronary artery atherosclerosis and to be 

a useful additional tool in the detection of cardiovascular disease (Liu CS et al, 

2011).  

The relationship between PWV and type 1 diabetes was evaluated by Prince 

CT et al, in 2010. They examined 144 subjects with a diagnosis of childhood 

onset type 1 diabetes and looked at various arterial stiffness parameters 

including Augmentation index (AI) and Augmentation pressure (AP). They also 

examined myocardial perfusion, CAC and low ankle brachial index (ABI). The 

results demonstrated greater AP (but not AI) to be independently associated 

with prevalent coronary artery disease, decreased myocardial perfusion and 

low ABI’s in type 1 diabetes (Prince CT et al, 2010). 

 

1.6.7 Arterial stiffness and the prediction of 

cardiovascular events 

In the case of uncomplicated hypertension, measurement of arterial stiffness 

via carotid-femoral pulse wave velocity has been shown to have an 

independent predictive value for all-cause morbidity and cardiovascular 

mortality and cerebrovascular and coronary events (Mancia G et al, 2007). In 

2001 Laurent S et al, examined aortic stiffness via carotid-femoral PWV in 

1890 patients with essential hypertension. The mean age was 50 and patients 

were followed for approximately 9 years, during which time there were 107 

fatal events, 46 of which were cardiovascular in nature. They found that PWV 

was significantly associated with all-cause and cardiovascular mortality 

independent of diabetes, prior cardiovascular disease and age (Laurent S et 

al, 2001).  

In  2010 Mitchell et al, examined an asymptomatic population of 2232 

individuals from the Framingham heart study using pulse wave velocity, the 

non-invasive gold standard of measuring arterial stiffness. During a median 
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follow up of 7.8 years, 6.8% of the study group experienced a cardiovascular 

event. They found a PWV of >11.8 m/s to be associated with a 48% increased 

risk of a first major cardiovascular event including stroke, unstable angina, 

myocardial infarction and heart failure. They also found that aortic PWV when 

combined with the traditional cardiovascular risk factors improved risk 

prediction. (Mitchell GL et al, 2010) 

In 2001, Barenbrock et al reported on carotid distensibility in 68 renal 

transplant recipients. Subjects were followed for approximately 8 years post 

transplant during which time there was 19 cardiovascular events. Carotid 

distensibility was found to be an independent predictor of cardiovascular 

events (Barenbrock et al, 2001). In 1998 Blacher J et al, examined carotid 

elasticity in 79 end-stage renal patients undergoing haemodialysis over a 

period of approximately 2 and a half years. Over this period there were 8 non-

cardiovascular and 10 cardiovascular deaths. They discovered that decreased 

carotid elasticity as measured by ultrasound and low diastolic blood pressure 

were predictors of all-cause and cardiovascular mortality in high risk patients 

(Blacher J et al, 1998).  

Aortic stiffness, as opposed to myocardial dysfunction of the left ventricle, via 

the development of higher pressures in the left ventricle and aorta, has been 

found to be the predominant factor leading to heart failure (Levy D et al, 2005). 

In 2011 in was discovered that aortic stiffness was a predictor of 

cardiovascular events independent of age, conventional cardiovascular risk 

factors and arterial pressure (Adji A et al, 2011).  

Aortic pulse wave velocity has also found to be predictive of cardiovascular 

outcomes in the general population as highlighted by a Danish study of 1678 

participants aged between 40 and 70. Subjects were chosen at random and 

followed over a median of 9 years and monitored for both cardiovascular 

morbidity and mortality. Aortic PWV predicted a composite of cardiovascular 

outcomes above and beyond the traditional cardiovascular risk factors and 

found that an increase in PWV of 3.4 m/s (an increment of 1 SD) increased the 

risk of a cardiovascular event from 16% to 20% (Willum-Hansen T et al, 2007). 
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In 2006, it was reported by Williams et al that pulse pressure and central 

augmentation index (AI) were independent predictors of cardiovascular events 

in hypertensive patients (Williams et al, 2006).  

Carotid-femoral pulse wave velocity remains the gold standard measurement 

of vascular stiffness. The other techniques have less predictive power but 

nonetheless play an important role in the assessment of cardiovascular 

disease. 

 

1.6.8 Methods of measurement 

1.6.9 Pulse pressure 

Pulse pressure (PP) is the simplest and one of the first methods developed as 

a surrogate marker of arterial stiffness (Bramwell JC et al, 1922). It is defined 

as the difference between systolic and diastolic blood pressure. As it does not 

take account of blood volume it is not a true measure of arterial stiffness, 

however its value does depend on arterial stiffness, wave reflection and 

cardiac output. With increasing age the PP widens as systolic pressure 

continues to increase after 60 years of age, whilst diastolic pressures do not 

and may even fall after the 6th decade (Franklin SS et al, 1997). Pressures are 

derived from the brachial artery using a sphygmomanometer, which may not 

be a true reflection of central arterial pressures with differences observed of up 

to 20 mmHg (Wilkinson IB et al, 2000). Regardless of its limitations the 

Framingham study demonstrated that PP was a better predictor of coronary 

heart disease in the over 50’s than either systolic or diastolic blood pressure 

alone (Franklin SS et al, 1997). 

 

1.6.10 Local measurement of arterial stiffness 

Ultrasound can be used to determine local arterial stiffness parameters in 

superficial arteries through measurement of vessel diameters in both systole 
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and diastole via the change in pressure, leading to the distension of the artery. 

This is illustrated in figure 1.11 below.   

 

  

 

  

 

 

  

 

 

 

Figure 1.11 Illustration demonstrating the stroke change in lumen cross-
sectional area. 

(Figure taken from Laurent S et al, 2006). 

 

Vessel wall elasticity is explained by the arterial wall stress and strain 

relationship. Stress is defined as the force that produces deformation and is 

applied in a longitudinal, radial or circumferential direction. Strain is the 

deformation incurred by the artery subjected to stress (Cavalcante JL et al, 

2011). Various calculations can be performed on the artery to explain stiffness 

including the following: 

• Young’s elastic modulus 

This is the stress/strain ratio and uses the changes in lumen diameter and the 

arterial wall thickness to measure intrinsic stiffness within the arterial wall. 

Current techniques used to measure arterial wall thickness cannot distinguish 

the adventitia from the surrounding soft tissues and therefore the intima-media 
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thickness is used as a surrogate for wall thickness. This assumes that the 

arterial wall is homogenous and that the IMT is load bearing. These 

assumptions can lead to unrealistic and inaccurate measurements (O’Rourke 

et al, 2002) and therefore caution may be warranted in interpretation. 

• Distensibility 

This is the relative change in the arterial volume for a given change in 

pressure. It is the inverse of Young’s elastic modulus. 

• Compliance  

Arterial compliance is the absolute change in arterial volume (strain) for a 

given pressure change (stress). 

The above calculations are carried out using the following equations from 

ultrasound images: 

• Young’s elastic modulus = (ΔP×D)/(ΔD×h) (mmHg/cm) 

• Distensibility = ΔD/(ΔP×D) (mmHg−1) 

• Compliance = ΔD/ΔP (cm/mmHg) (or cm2/mmHg) 

Where P=Pressure, D=Diameter, h=Wall thickness. 

 

1.6.11 Limitations of local arterial stiffness 

measurement 

Limitations of assessing local arterial stiffness include the operator dependant 

nature of the measurement. In addition, blood pressure is ideally assessed 

locally over the artery examined using an applanation tonometer. This is a high 

fidelity strain gauge transducer that records pressure waveforms in an artery. 

The artery is flattened, using pressure applied by the operator, against the 

underlying structures such as ligaments and bone. It is the most accurate non-

invasive method to assess local blood pressure (Van Bortel et al, 2001). 

Difficulties can be encountered in obese patients where it becomes difficult to 
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flatten the artery due to surrounding structures. When local blood pressure 

cannot be assessed the brachial pressure measured using a 

sphygmomanometer can be used as a surrogate for pressures in the carotid 

artery. The pulse pressure however, is not constant along the arterial tree with 

the systolic pressures in peripheral muscular arteries being greater than the 

systolic pressures in the more central elastic arteries such as the aorta and the 

carotid. Hence, when the brachial artery is used to measure pressure it may 

have the effect of overestimating arterial stiffness (Laurent S et al, 2006). 

Brachial pressures may differ with carotid pressures due to wave reflection 

(Karamanoglu M et al, 1993). However, other studies have demonstrated 

brachial pressures to be a reasonable approximation of pulse pressure (Van 

Dijk RA et al, 2000). 

 

1.6.12 Regional measurement of arterial 

stiffness and Pulse wave velocity 

As mentioned previously, when the heart contracts it results in dilatation of the 

aortic wall and generation of a pulse wave that propagates down the arterial 

tree at increasing speed depending on the arterial segments and the 

properties of the wall. When arterial stiffening occurs the velocity of the pulse 

wave increases. Pulse wave velocity (PWV) involves measuring pulse waves 

at two different sites over an average of 10 cardiac cycles to ensure 

measurement over at least one cycle of respiration. Aortic PWV or central 

PWV is most commonly measured between the carotid and femoral arteries 

and therefore evaluates stiffness in the large elastic arteries. Muscular medium 

sized arteries of the upper and lower limb can be assessed using peripheral 

PWV. It is calculated using the formula: 

Pulse wave velocity = D/Δt 

Where D=Distance between measurement sites, Δt=Pulse transit time. 

Locations of PWV measurement include: 



  63 

• Carotid-femoral PWV (the gold standard) 

• Carotid-radial PWV 

• Femoro-tibial PWV 

• Brachial-ankle PWV 

Non-invasive recordings are made using sensors or doppler probes. The pulse 

wave transit time is determined using the foot-to-foot method and is the 

interval between the onset of the carotid and femoral wave upstroke. This is 

illustrated in figure 1.12 below.  

 

 

 

 

 

 

 

Figure 1.12 Illustration demonstrating the foot-to-foot method used to calculate 
carotid-femoral pulse wave velocity.  

Pulse waves are obtained using sensors placed over both the carotid and 
femoral arteries. Δt=Pulse transit time, D=Distance between measurement 
sites. (Figure taken from Rhee MY et al, 2008). 

 

The distance between measurement sites is estimated using a measuring tape 

and therefore is not a true measure. Sensors are applied to the skin over the 

artery simultaneously measuring the pulse waves. Methods used include 

doppler, single high fidelity applanation tonometry, plethysmographic sensors 

incorporated into blood pressure cuffs (for brachial-ankle PWV) and MRI. 
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1.6.13 Limitations of regional arterial stiffness 

measurement 

Carotid to femoral pulse wave velocity is well recognized as the current gold 

standard in the assessment of arterial stiffness (Laurent S et al, 2006). As the 

measurement of the distance between arterial sites is an estimate it can 

introduce error in the calculation of PWV. It may underestimate distance in 

those with a tortuous aorta and overestimates distance in obese subjects. MRI 

is not limited in terms of accurate distance measurement, however its high cost 

and lack of available equipment limit its widespread use. Physiological 

parameters such as heart rate and blood pressure can affect PWV, with a 

sudden rise in heart rate (Latelme P et al, 2002) and BP (Asmar R et al, 1995) 

causing increased PWV. In patients with peripheral vascular disease, diabetes 

and in obesity the femoral waveform is difficult to accurately record and 

therefore assessment of PWV may be limited in these cohorts (Van Bortel LM 

et al, 2002). 

 

1.6.14 Systemic measurement of arterial 

stiffness 

Systemic arterial compliance can be determined via the measurement of the 

velocity of aortic blood flow at the level of the suprasternal notch using a 

velocimeter. The pressure waveform driving the flow is measured using 

applanation tonometry at the level of proximal right common carotid artery. 

This is referred to as the ‘area method’ and is expressed as: 

Systemic arterial compliance = Ad/[R(Ps-Pd)] 

Where Ad=area under blood pressure diastolic decay curve from end systole 

to end diastole, R=total peripheral resistance, Ps=end-systolic blood pressure, 

Pd=end-diastolic blood pressure (calibrated against brachial artery pressure). 

The area method is illustrated in Figure 1.13 below. 
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Figure 1.13 Measurement of systemic arterial compliance using the ‘area 
method’. 

Ps=end-systolic blood pressure, Pd=end-diastolic blood pressure, Ad=area 
under the diastolic delay portion of the obtained pulse pressure contour. 

(Figure taken from Rhee MY et al, 2008). 

 

Another method of calculating systemic stiffness is one based on an electrical 

circuit and determines a proximal capacitive (large artery) compliance and a 

distal oscillatory (small artery) compliance. Arterial pulse is recorded at the 

radial artery using tonometry, and a decaying sinusoidal wave identifies the 

pulse wave reflections in diastole. This is known as diastolic pulse contour 

analysis or the Windkessel model. The reliability of this method has been 

questioned due to the fact that compliance differs within the upper and lower 

limb suggesting a significant influence of regional circulatory properties such 

as arterial length, stiffness of individual arteries and the number of reflection 

sites (Manning TS et al, 2002). 

An indirect measure of systemic compliance is obtained by measuring the ratio 

of stroke volume to pulse pressure (SV/PP). This is based on the crude 

assumption that the arterial tree can be modelled as an elastic chamber with a 
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constant compliance in steady-state conditions and therefore is somewhat 

limited in terms of validity (Laurent S et al, 2006). 

 

1.6.15 Central pulse wave analysis  

As mentioned previously the arterial pressure waveform consists of a 

summation of both the forward pressure wave and the reflected wave. When 

arterial stiffness occurs there is a subsequent rise in PWV causing the 

reflected wave to arrive at the central arteries sooner, and therefore adding to 

the forward wave and augmenting the systolic pressure. This process is 

explained by the augmentation index (AIx) and is defined as the proportion of 

central pulse pressure resulting from arterial wave reflection. It is the difference 

between the second and first systolic peaks of the arterial waveform (P2-P1) 

and is expressed as a percentage of the pulse pressure. This is illustrated in 

Figure 1.14 below. 

 

 

 

 

 

Figure 1.14 Determination of the Augmentation index. 

P1=1st systolic peak, P2=2nd systolic peak, P3=diastolic pressure. 

(Figure taken from Antonini-Canterin F et al, 2008). 

 

Augmentation index is thus calculated using the following equation: 

Augmentation index = P2-P1/PP 

The augmentation index is influenced by high PWV and changes in reflection 

sites. Therefore, diastolic BP and height, which are related to reflection sites, 
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and aortic PWV and age, are the main determinants of AIx. The central arterial 

waveform is commonly obtained via tonometry of the radial or carotid artery 

and then, in the case of the radial artery waveform, applying a transfer 

function, thereby transferring the peripheral pulse wave into a central pulse 

waveform (Pauca AL et al, 2001). Radial tonometry is perhaps an easier and 

more accessible approach as the artery is easily applanated against the 

underlying radius, however a transfer function is needed and therefore, whilst 

used extensively to convert to a central waveform, its accuracy in determining 

the aortic AIx has been questioned (Millasseau SC et al, 2003). The carotid 

approach does not require a transfer function as it more closely resembles the 

pressures in the aorta. However limitations of this method include difficulty in 

applanating the artery in obese individuals or those with extensive 

atheromatous plaques. Allowing for limitations, the central pulse pressure and 

central augmentation index are independent predictors for all all-cause 

mortality in end-stage renal disease (Safar ME et al, 2002). They have also 

been shown to predict re-stenosis and myocardial infarction in patients 

undergoing cardiac intervention (Weber T et al, 2005).  

In summary, there are numerous useful and non-invasive methods of 

measuring arterial stiffness with some of the more validated and established 

methods explained above. Each method has its own advantages and 

limitations. It is important to consider the predictive value, accuracy, cost and 

level of technical expertise required when deciding on what method to use. 
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1.7 Novel methods of measuring arterial 

stiffness using ultrasound 

In order to overcome some of the limitations of measuring arterial stiffness 

there has been recent interest in the development of various novel non-

invasive ultrasound based technologies. Some of the more relevant methods 

are subsequently discussed.  

 

1.7.1 Pulse wave imaging 

Pulse wave imaging (PWI) is a novel ultrasound technique developed to 

visualize the pulse wave propagation and quantitatively estimate regional or 

local PWV. Due to high pulse wave velocities of approximately 5 m/s in healthy 

subjects and over 12 m/s in those with established cardiovascular disease, a 

high frame rate is utilised in PWI. A standard B mode image of the carotid 

artery will use up to 128 beams giving a maximum frequency of 140 Hz. By 

reducing the number of beams or the beam density to 16, the frame rate can 

be increased to 1127 Hz giving a frame rate capable of capturing and 

estimating the pulse wave propagation (Sorensen GL et al, 2011). The artery 

wall is displaced during systole, and in a longitudinal scan, this is shown as an 

upward or towards the probe displacement of the near wall, and a downward 

or away from the probe displacement of the far wall. Far wall displacement is 

then subtracted from the near wall motion giving the distension velocity 

waveform. Local PWV is then estimated from the spatiotemporal variation of 

the pulse waves. Figure 1.15 below demonstrates the propagation of the pulse 

wave. This technique has been validated in aortic phantoms (Vappou et al, 

2010) and the aortas of healthy subjects using tonometry (Vappou J et al, 

2011).  
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Figure 1.15 Successive PWI images demonstrating the propagation of the 
pulse wave from left to right.  

The white arrows indicate the approximate location of the foot of the wave on 
both the near and far walls. 

(Figure taken from Vappou J et al, 2010). 

 

The technique has also been validated in hypertensive and aneurysmal aortas. 

In 2013 Li RX et al, used radiofrequency based speckle tracking to estimate 

the PWV in the aortas of 15 normal, 13 hypertensive and 5 patients with 

abdominal aortic aneurysms (AAA). They found the aortic PWV in the normal 

subjects to be 6.03 ± 1.68 m/s, in the hypertensive subjects 6.69 ± 2.80 m/s 

and in the AAA patients to be 10.53 ± 6.52 m/s. No significant difference was 

demonstrated between the PWV of the normal and hypertensive patients, 

however the PWV in the AAA patients was significantly higher compared to the 

other groups. This study, albeit with a small group of patients, demonstrated 

the potential of PWI in providing useful information in the characterization and 

the wall mechanics of abdominal aortic aneurysms (Li RX et al, 2013).  

In 2012, Luo et al assessed the feasibility of PWI in the carotid arteries of 8 

healthy subjects and found the local PWV to range from 4.0 to 5.2 m/s. These 

values are felt to be similar to those found using standard PWV 

measurements, albeit the study number was small (Luo et al, 2012).  

PWI attempts to overcome the major limitation of C-F PWV, namely its 

oversimplification of the arterial tree and its inability to measure the true length 

of the arterial system.  PWI itself however can be limited in its assessment of 

aneurysms, stenotic lesions, fluctuations in arterial wall properties and arterial 

morphology and branching (Vappou J et al, 2010). There are also difficulties 
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imaging obese patients due to beam attenuation. In addition, offline analysis 

and processing can be time consuming. To date there have been no large 

clinical trials assessing PWI and therefore, it has yet to be accepted clinically 

as a tool in the assessment of arterial stiffness.  

 

1.7.2 UltraFast imaging 

Recently a technique called UltraFast imaging or Ultra-FastEcho has been 

developed to measure local arterial stiffness. This is based on a very high 

frame rate of up to 10,000 images per second or 10 kHz. It is approximately 

100 times faster than conventional ultrasound systems and functions by 

sending a single plane wave in emission (up to 128 are sent by conventional 

US systems) and focusing on the received signal only. An extremely powerful 

processing device receives the signals and performs rapid reconstruction of 

the image. The high temporal resolution is able to capture the propagation of 

the pulse wave measured locally up to dozens of meters per second (Messas 

E et al, 2013). The local PWV is calculated from the beginning to the end of 

systole. It has recently been used to accurately assess the PWV in the carotid 

arteries of Ehlers-Danlos patients, albeit in a small group of patients (Mirault T 

et al, 2015). One obvious limitation is that with very high frame rates there is a 

trade off in image quality. Ultrafast imaging can be used to track the pulse 

wave in targeted arteries such as the aorta or carotid arteries however, larger 

trials are needed before it becomes more widely accepted.  

 

1.7.3 Shear wave elastography 

The principle of shear wave elastography has recently been adapted to assess 

carotid artery elasticity. Elastography is a recognized ultrasound technique that 

evaluates tissue elasticity by generating low frequency vibration in tissues to 

induce shear stress. The images are subsequently analysed and the shear 

stress and stiffness parameters calculated. The general principle is that when 



  71 

organs and tissues are affected by disease processes such as malignancy or 

cirrhosis for example, they stiffen and become less elastic. The potential 

benefits of this technology have been evaluated in breast, liver, 

musculoskeletal, parotid and salivary gland, prostate and thyroid imaging 

(Cosgrove D et al, 2013). An ultrasonic shear wave is sent into the tissue 

under examination, and the propagation velocity of the wave is correlated 

directly with Young’s elastic modulus. The velocity of the shear wave is 

independent of blood pressure and viscosity. This technique recently 

demonstrated the ability to quantify carotid plaque elasticity in a group of 81 

patients with a mean age of 76. Patients were assessed using both shear 

wave elastography and the grey scale median. The grey scale median is a 

technology that analyses the density of carotid plaque and therefore its risk of 

rupture. This study found that shear wave elastography when combined with 

the percentage stenosis of the artery, improved diagnostic accuracy 

(Ramnarine KV et al, 2014). Standard diagnostic transducers are incapable of 

generating the high intensity ultrasound beams required for shear wave 

elastography. Therefore, in order for this technology to be more widely 

accessible and accepted, manufacturers of ultrasound systems will need to 

integrate plane wave imaging into their transducers and upgrade their beam 

forming systems (Hopkins PR et al, 2015). Whilst both high temporal resolution 

imaging and ultrasound elastography show potential in their ability to aid in the 

early detection of cardiovascular disease, larger multicenter studies need to be 

performed to further assess their diagnostic and prognostic accuracy. 

 

1.7.4 Speckle tracking imaging 
 
Speckle tracking imaging (STI) is a relatively new, non-invasive approach that 

was originally developed to assess left ventricular rotation and torsion. It is 

based on the principle that temporally stable unique acoustic markers, within 

the tissues under evaluation, are created as a result of constructive and 

destructive interference of the ultrasound waves from structures smaller than 

their wavelength (Burns AT et al, 2008). These speckles are ultrasound 
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reflectors within tissue and are highly reproducible. Algorithms have been 

developed that filter out random noise yielding small segments of tissue with 

stable speckle patterns called “kernels” approximately 20-40 pixels in area. 

These kernels are tracked frame-to-frame and accurate displacement and 

velocity data can be obtained. Speckle tracking has recently been developed 

to assess arterial strain and has been validated in arterial phantoms (Hansen 

HH et al, 2009). Speckle tracking imaging has shown potential in the detection 

of subclinical arterial disease and lower strain values have been associated 

with increased cardiovascular risk (Catalano M et al, 2011). The majority of 

techniques to date have focused on assessment of both radial and 

circumferential strain patterns. Recently, a study was performed to validate 

and compare radial, circumferential and longitudinal strain using speckle 

tracking applied to images obtained using standard ultrasound equipment and 

on those using high frequency ultrasound. Phantoms mimicking the carotid 

artery were used and reference strain values were obtained using 

sonomicrometry. This measures the distance between 2 piezoelectric crystals 

using the speed of the acoustic signals through the tissues that they are 

embedded in. The study found good correlation between sonomicrometry and 

speckle tracking with regards to all strain patterns and found that the speckle 

tracking performance was not considerably improved with data from the high 

frequency ultrasound system when compared to the standard clinical 

ultrasound system (Larsson M et al, 2015). Figure 1.16 below illustrates an 

example of carotid circumferential strain evaluation using speckle tracking. 
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Figure 1.16 Speckle tracking evaluation of carotid artery circumferential strain.  

Illustration demonstrating a transverse US image of the distal common carotid 
artery immediately before the carotid bulb. (A) The region of interest (ROI) is 
manually drawn along the intima–blood interface. (B) Software automatically 
checks appropriate tracking along segments in which the region of interest is 
divided. (C) Calculation of the strain appears in colour scale at the level of 
ROI, according to the degree of distension of the vessel during systole. (D) 
Curve of average strain along the region of interest during the cardiac cycle, 
with the possibility to measure the peak systolic value. 

(Figure taken and legend adapted from Catalono M et al, 2011). 

 

A study recently performed by Podgórski M et al, in 2015, evaluated 58 

patients with a mean age of 61, with the aim of correlating CT calcium score 

(CS) values with carotid artery function. They performed CT CS and US of the 

CCA on each participant. 2D speckle tracking (2DST) US assessed both IMT 

and circumferential strain. They correlated circumferential strain and IMT with 

CS, age and systolic BP. They concluded that IMT and 2DST used together 

reflected the development of coronary artery calcification and can be used to 

evaluate for atherosclerosis, until the 6th decade. It also allowed for a more 

detailed examination of atherosclerosis risk in those with a normal calcium 

score (Podgórski M et al, 2015). 
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STI has also been shown o be superior to the β stiffness index and Young’s 

elastic modulus in the detection of hypertension (Saito M et al, 2012) and has 

been used in the detection of subclinical atherosclerosis (Park HE et al, 2012). 

It has been shown to be more accurate than conventional US in detecting age 

related differences in the mechanical properties of arteries (Bjällmark A et al, 

2010). It is a relatively cheap, quick and non-invasive technique used in the 

assessment of arterial stiffness. However, it has some limitations, including 

being unsuitable for use in those with atrial fibrillation and those with near total 

occlusion of the CCA. It may also be unreliable in looking at aortic stiffness in 

young people (Oishi Y et al, 2008).  

Overall, this technique is extremely promising and may overcome some of the 

limitations associated with conventional PWV assessment however, larger 

trials are needed before it is accepted into clinical practice. 

 

1.7.5 Velocity vector imaging 

Velocity vector imaging (VVI) is a relatively new technology that utilizes both 

speckle tracking imaging and multiple M-mode measurements. It compares the 

speckle pattern in a small kernel region of an image to a larger surrounding 

search region in the previous image and identifies the displacement of the 

speckle between frames. Algorithms are then used to calculate blood flow 

velocity vectors. This overcomes the limitations of conventional doppler 

imaging such as aliasing and angle dependence. 

Initially, the technology was developed to assess left ventricular dyssynchrony 

and predict responses to cardiac resynchronization therapy (Canneson M et al, 

2006). This software allows for the simultaneous measurement of radial and 

longitudinal velocity, strain, strain rate and displacement by detecting the 

change in tissue position from sequential frames. This is illustrated in Figure 

1.17 below. 
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Figure 1.17 A longitudinal B-mode ultrasound image with Velocity vector 
imaging software demonstrating the longitudinal and radial wall motion of the 
common carotid artery at a specific time point of the ECG recording.  

(Figure taken from Svedlund S et al, 2011). 

 

Velocity vector indexes have recently been found to correlate significantly with 

histological specimens of the aortas of dogs (Kim SA et al, 2013). In 2015, Fan 

XJ et al used VVI to examine radial systolic and diastolic velocity, radial and 

circumferential peak strain, and radial displacement of carotid plaques in 43 

patients who recently suffered a large artery atherosclerotic stroke. They 

enrolled 38 patients who also had carotid plaque as controls. They found radial 

peak strain to be the best predictor of large artery atherosclerotic stroke with 

an odds ratio of 1.118, 95% confidence interval, 1.012-1.236 with a P = 0.029. 

Although a relatively small study, it demonstrates the value of using VVI in the 

characterisation of the mechanics of carotid plaque and it’s potential to identify 

those at risk of large artery stroke (Fan XJ et al, 2015). 

The mechanics of the longitudinal motion of the arterial wall have not been 

extensively researched to date, however this has also recently been evaluated 

using VVI. In 2011 Svedlund S et al, evaluated the longitudinal movement of 
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the common carotid artery in 16 healthy volunteers and 16 with established 

coronary artery disease using VVI. In the healthy group total longitudinal 

displacements (tLoD) was similar in both the right and left common carotid and 

in the near and far walls of the arteries. In those with coronary artery disease 

the tLoD was found to be significantly lower (0.543 mm ± 0.394 versus 0.112 

mm ± 0.074 with a P<0.0001) (Svedlund S and Gan LM 2011). Using VVI, the 

same group, investigated the predictive value of tLoD for cardiovascular 

outcome, by examining the carotid arteries of 441 patients undergoing 

myocardial perfusion scintigraphy for suspected coronary artery disease. After 

1 year follow up, 61 patients suffered a major cardiovascular event. A low tLoD 

(<0.055 mm) was associated with a greater degree of myocardial ischaemia 

and following adjustment for IMT, pulse pressure, radial strain, age, gender 

and percentage reversibility of myocardium, a low tLoD remained a significant 

independent predictor of a major cardiovascular event. It also gave additional 

predictive value when combined with IMT. A high tLoD (>0.055 mm) was 

predictive of 1-year event free survival (Svedlund S et al, 2011).  

This technology has shown promise in the evaluation of carotid plaque 

mechanics and has shown potential in identifying those at risk of stroke. It also 

can evaluate the longitudinal motion of arteries, of which there is little research 

data on to date and which is difficult to evaluate using the more established 

technologies. To date this technology has only been evaluated in small trials. 

All of the above novel techniques will no doubt further our understanding of the 

biomechanics behind arterial wall movement and how this relates to 

cardiovascular disease. In the near future, they will likely become valuable 

adjuncts to already well-established non-invasive methods used to measure 

arterial stiffness. Larger trials are needed however, before they are to be 

widely accepted within the research community or used in clinical practice. 
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Chapter 2. The principles of ultrasound
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2.1 Introduction 

As alluded to in the previous chapter, endothelial dysfunction, carotid intima-

media thickness and vascular stiffness are all assessed by way of ultrasound. 

To accurately capture and interpret ultrasound images it is essential to have a 

basic knowledge of the properties and principles of how ultrasound works. This 

chapter will describe the physics of ultrasound and this project will explore 

improvements in ultrasound assessments and attempt to apply this knowledge 

to gain further information about vascular structure and function.   

 

2.2 The physics of ultrasound 

Ultrasound (US) is mechanical energy that propagates through tissue as an 

oscillating wave of alternating pressure ( Kossoff G, 2000).  It is propagated 

through a medium by alternating between compression and rarefaction (see 

Figure 2.1 below). Sound waves constitute a mechanical longitudinal wave, 

which can be described in terms of particle displacement or pressure changes. 

These waves are reflected off tissues in the body and their echoes are 

converted into an image called a sonogram. Some of the more important 

elements of US are subsequently described. 
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Figure 2.1 Sound is a mechanical wave. It is a periodic series of compressions 
and rarefactions that is represented by a sine wave.  

(Figure taken from Lieu D, 2010). 

 

2.2.1 Frequency 

The frequency of an US wave consists of the number of cycles or pressure 

changes that occur in 1 second. The units are cycles per second or hertz (Hz). 

Frequency is determined by the sound source and is unaffected by the 

medium in which it travels. US has a frequency greater than 20 kHz which is 

the upper limit of human hearing. Medical US uses frequencies in the range of 

2 to 10 MHz. 
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2.2.2 Wavelength 

This is the distance between two corresponding points on a wave. It is the 

velocity of propagation divided by the frequency. Wavelength is important as it 

determines the imaging resolution of the equipment and its units are in 

millimetres (mm). Short wavelengths offer the best resolution but have the 

disadvantage that they have difficulty penetrating to any great depth in body 

tissues. Long wavelengths on the other hand penetrate deeply but do not 

provide good resolution (Figure 2.2). 

 

Figure 2.2 A comparison of the resolution and penetration of different 
ultrasound transducer frequencies.  

(Figure taken from Lawrence J, 2007). 

 

2.2.3 Velocity of propagation 

Propagation speed is the speed at which sound can travel through tissue 

(Figure 2.3). This is known to be 1540 m/sec through soft tissue. This value 

does not depend on the frequency, but solely by the characteristics of the 

medium namely density and stiffness. Velocity of propagation in bone varies 

between 3000 and 5000 m/sec depending on composition and through air it is 
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much slower at 440 m/sec. Hence, air containing structures are not amenable 

to examination by US for this reason, and also due to the fact that air has high 

attenuation and low accoustic impedance properties. Bone has very high 

accoustic impedance and therefore it is not possible to view structures lying 

deep to bone.   

 

Figure 2.3 Speed of sound in media. 

(Figure taken from Lieu D, 2010). 

 

2.2.4 Accoustic impedance 

This is a product of the density and the velocity of sound in a material. It is 

independant of frequency. Air/lung has low accoustic impedance (low density 

and low velocities of sound). Bone on the other hand has high accoustic 

impedance. Differences between accoustic impedances at interfaces 

determine the amount of energy reflected at the interface (Huda JW, 2009). 

 

2.2.5 Amplitude 

The amplitude is measured in decibels and corresponds to the loudness or 

intensity of the US wave. Intensity is important as the amount of reflected 
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energy that is to be sensed by the US transducer is a fraction of the initial 

strength of the emitted sound wave. This is due to attenuation of the US beam. 

 

2.2.6 Attenuation 

This is the loss of intensity of the US beam as a medium is traversed. It occurs 

due to absorbtion of US energy by conversion to heat, and other processes 

such as reflection, refraction and scattering (Figure 2.4). Reflection refers to 

reflected echoes which form the basis of all US imaging. US waves are 

reflected at all tissue boundaries and interfaces. Refraction occurs when an 

US beam encounters media of different velocities and the proportion of the 

beam that is not reflected but is transmitted underoes bending or refraction. 

This can result in artifacts such as a double image. Scattering is the means by 

which energy is dispersed from its main direction of propagation. The amount 

of attenuation varies with the frequency of US and the higher the frequency of 

the US beam the greater the attenuation. 

 

Figure 2.4 Ultrasound interacting with biological tissue causing scatter, 
refraction, reflection and attenuation (Figure taken from Lawrence J, 2007). 
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2.2.7 Interaction of the US beam with tissue 

Specular reflectors are structures that are relatively large compared to the US 

beam. The amount of sound returning to the transducer is a function of the 

density of the specular reflector and the angle at which the sound wave is 

reflected. Tissues with different densities reflect sound differently and in 

general terms the denser the medium the greater the amount of reflected 

sound. This is portrayed on the display as brighter white. Liquids do not 

significantly absorb or scatter US waves and are generally considered to be 

nonattenuating. Soft tissue is a significant absorber but mild scatterer of US 

and bone is a significant absorber and scatterer. Air containing tissue such as 

lung has high attenuation with energy being scattered in all directions and 

therefore lungs cannot be imaged via US. 

 

2.3. Transducers and the US beam 

2.3.1 Overview 

Ultrasound transducers generate US waves and sense the reflected echoes. 

The transducers house multiple piezoelectric crystals and when electricity is 

applied to them they vibrate. This is known as the piezoelectric effect and was 

first discovered by the Curie brothers in 1880 after they subjected a cut piece 

of quartz to a mechanical force and found that it developed an electrical 

charge on its surface. They also found that if electricity was applied to the 

quartz, it would vibrate (the reverse piezoelectric effect) (Fischetti A et al, 

2007). These vibrations cause the alternating rarefaction and compression 

described above and also seen in Figure 2.1 that allows for propagation of the 

US wave. The crystals used in modern transducers are synthetic such as lead 

zirconate titante (PZT) or ceramic. Each crystal vibrates at a certain 

characteristic frequency. The transducer first excites the crystals to send a 

short pulse (2-3 cycles) of sound wave into the tissues. Then the transducer 

becomes a receiving device and waits for the echo to return. Most of the time 
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the transducer acts as a receiver following the initial short pulse of emitted 

sound waves. Damping material is used in the housing of the transducer to 

dampen the initial vibrating crystals so that they can prepare to interpret the 

returning sound waves (Figure 2.5). 

 

Figure 2.5 Components of a typical transducer. 

When the electrical pulse is applied to the transducer element, it is rather like 
striking a bell with a hammer: just as the bell produces a sound that is 
determined by its size, the transducer will resonate (i.e., vibrate at one 
particular frequency, which is determined by its size). The critical factor here is 
the width of the transducer. After the pulse is applied, the two opposing faces 
will move and send out pressure waves (Figure and legend taken from Aldrich 
J, 2007). 

 

The US beam is initially cylindrical in shape close to the transducer (near field 

or Fresnel zone) and then it becomes conical and in shape and diverges at a 

constant angle the further it travels from the transducer (far field or Fraunhofer 

zone). The near field is proportional to the square of the transducer diameter 

and inversely proportional to its frequency and the far field is proportional to 

the diameter and inversely proportional to the frequency (Kosoff G, 2000). 

The transducer in its simplest form is the single element circular disc. 

Frequency is set by the thickness of the disc and in a 5 MHz transducer this 

would be 0.4mm. The initial beam as stated above is cylindrical and equal to 

the diameter of the transducer. Focusing of the beam using a spherical lens is 

done to improve lateral resolution. The point at which the beam is at its 
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narrowest and greatest intensity is called the focal zone demonstrated in 

Figure 2.6. Due to diffraction focusing can only be done in the near field. The 

length of the near field can be lengthened by decreasing the wavelength 

(increasing the frequency), or by increasing the size of the transducer (Figure 

2.7). 

 

Figure 2.6 Illustration of Ultrasound beam showing the near field (Fresnel 
zone) and far field (Fraunhofer zone) with the focal zone in the middle. 

(Figure taken from Lieu D, 2010). 
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Figure 2.7 The size and frequency of the transducer and their effects on the 
near zone (Figure taken from Lawrence J, 2007). 

 

2.3.2 Annular array transducers 

These devices consist of a disc transducer surrounded by 7 annular or ring 

shaped transducers. By energising the outer ring first and then progressively 

the next innermost transducer until the centre transducer is energised, the 

beam can be focused. Timing delay determines the focusing position. Many 

different energising sequences can be used to maintain a narrow symmetrical 

beam over the required examination distance and due to its dynamic focusing 

capabilities, it provides a greater field of depth than single disc transducers 

and a much improved focal zone (Reza Chabok H et al, 2011).  
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2.3.3 Linear array transducers 

A linear array transducer is composed of up to 512 elements situated in a 

linear fashion spaced over 75-120 mm. All of the elements generate an US 

pulse and receive the returning echo simultaneously and therefore a single still 

image is generated. By displaying a series of still images the transducer 

creates the illusion of real-time. The beam pattern of the linear array 

transducer is narrow in the length plane but similar to that of a single element 

transducer in the height plane. The beam produced by such a narrow element 

diverges rapidly after only a few millimetres resulting in poor lateral resolution. 

In order to overcome this the outer elements are pulsed initially with a 

subgroup of inner elements pulsed after a time delay, thereby allowing 

focusing of the beam. Varying the time delays allows for a change in the depth 

of focus. Typically the image is rectangular and focusing can be accomodated 

by means of a cocave lens in one direction or electronic “phasing” in the other.  

 

2.3.4 Phased array transducers 

Phased arrays work by using a delay in the pulsing of adjacent piezoelectric 

elements. By varying the timing, for instance by pulsing the elements one by 

one in sequence along a row, a pattern of constructive interference is set up 

that results in a beam at a set angle. This means that the beam from an array 

can be automatically steered in a sweeping or scanning motion. This creates 

sector scanning or 2D pie shaped images or slices of tissue in real time US 

machines. The sweeping can be done manually with the operator sweeping 

the probe back and forth in a single plane. The differences between linear and 

phased array transducers are shown in Figure 2.8 and 2.9 respectively. 
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Figure 2.8 Illustration of a linear sequenced array transducer.  

A voltage pulse is applied to a small group of elements and then to another 
group, until the process is repeated over and over again to produce a real-time 
image. The emitted beams are always parallel to each other. 

(Figure and legend taken from Fischetti A et al, 2007). 
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Figure 2.9 Illustration of a phased array linear transducer.  
 
Note the time delay profile in the first image and then the second. When these 
delays are applied in rapid succession, the beam is steered to and fro. 
 
(Figure and legend taken from Fischetti A et al, 2007). 
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2.4 Ultrasound modes 

2.4.1 M mode ultrasound 

M Mode, or motion mode is a stationary narrow beam that produces a one-

dimensional view of the anatomical structures over time (Bunce et al, 2004). 

Time is displayed on the horizontal axis and depth on the vertical axis (Figure 

2.10). Movement of structures provides information on structural movement 

towards or away from the transducer. It records the amplitude of the US beam 

and rate of motion in real-time by repeatedly measuring the distance of the 

object being examined from the single transducer at a given moment. It has 

been mostly used in the past for cardiac and fetal imaging with its high 

temporal resolution allowing visualisation of tiny structures such as heart 

valves and accurate measurements of size and distances, and has also been 

used to determine flow mediated dilatation and small changes in arterial 

diameters during the cardiac cycle.  

 

 

 

 

 

 

 

 

Figure 2.10 M-Mode image measuring the diameter of the aorta. 

The diameter of the aorta (Ao) is measured in both diastole (D) and systole (S) 
with time shown on the horizontal axis and depth on the vertical axis. 

(Figure taken from Cavalcante JL et al, 2011). 
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2.4.2 B mode ultrasound 

Also known as brightness modulation this is a 2D display of B Mode data and 

is the most widely used form of US. B Mode is based on brightness which 

depends on the intensity of the echo. Sweeping a narrow ultrasound beam 

through the area being examined while transmitting pulses and detecting 

echoes along closely spaced scan lines produces B- Scan images. Vertical 

positions of the dots are determined by the time delay from pulse transmission 

to receiving of the echo and horizontal dots are determined by the location of 

the receiving transducer element. Repeated sweeping of the US beam 

generates a rapid series of 2D images that show motion. Varying intensities 

create varying shades of grey on the display that represent variations in the 

texture of organs or tissues being imaged. The appearance of fluid as being 

black and solid areas being white is what is referred to as grey scale. Typically 

between 15 and 100 images per second are shown with improved resolution 

as frame rates rise. To achieve the effect of real-time 16 or greater images per 

second are required.  

 

2.4.3 Doppler ultrasound 

The Doppler principle, first described in the early 19th century, is the 

phenomenon in which sound transmitted from a moving object is perceived by 

a stationary observer to be of a different frequency depending upon the 

velocity and direction of travel. The classical illustration is of a train whistle, 

which increases in pitch (frequency) as the train approaches and decreases as 

the train moves away (Taylor P, 2003). Doppler US uses the scattering of 

ultrasound waves seen above in Figure 2.4 that is generated by the movement 

of blood cells through vessels. Doppler can provide the user with information 

on velocity and direction of blood flow within individual vessels and the heart. 

Valuable information can be obtained in conjunction with the various other US 

modes on the function of structures in the body. Doppler US analyses the 

difference between the transmitted frequency and the received frequency, also 
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known as the frequency shift. The signal processing of the Doppler 

frequencies or frequency shift is a process called spectral analysis. The signal 

is maximal when blood is flowing directly towards or away from the transducer 

and the value of cosine tends towards unity (Figure 2.11).  

 

Figure 2.11 The Doppler principle. 

This relies on the change in frequency of the sound wave, which is reflected 
from a moving object. The magnitude of the frequency change is related to the 
velocity of the moving object and the cosine of the angle of incidence (θ). To 
maximize the value of cos θ the angle of incidence should be as close as 
possible to the direction of flow i.e. θ should be as close as possible to 0° or 
180°. 

(Figure and legend taken from Taylor P, 2003). 

 

The different Doppler formats are briefly presented below: 

(i) Continuous wave doppler. 

 

Here, the changes in pitch of the sound waves are used to produce information 

about flow through vessels or heart valves. Sounds produced enable the 

examiner to quicky ascertain whether or not there is flow in a vessel or valve. 

The advantage of this is that information is continuously analysed and 

therefore provides information on velocity and direction of flow in areas of high 

velocity blood flow, for example in calculating gradients across stenotic valves 

in the heart or a significant carotid artery narrowing.  
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(ii) Pulse wave doppler. 

In contrast to continuous wave doppler, pulse wave doppler uses a transducer 

element that is activated with a short burst or pulse and the returning signal is 

received by the same element. The interval between pulses is termed the 

pulse repetition frequency (PRF). High PRF’s are seen when vessels are near 

the surface or when the blood flow is fast, and conversely low PRF’s are used 

to sample blood flow in deeper vessels or when blood flow is slow. A specific 

area of interest, for example the centre of an artery, can be selected for 

analysis. This region is separated from the rest of the image in terms of 

analysis by means of an electronic gate that is placed in the centre of the 

artery and only signals generated from within this region are accepted for 

analysis of flow. Information is presented audibly and also by graphical 

representation. 

(iii) Colour flow doppler. 

Colour Flow imaging (CFI) is predominately used to study blood flow, but is 

also increasingly being used to assess organ expansion and function. CFI 

provides a real-time blood velocity component and direction of blood flow is 

displayed in colour which is superimposed on the screen. Typically red 

denotes flow toward the probe and blue away from it with varying intensities of 

red and blue corresponding to the velocities of blood flow (Carson et al, 2009).  

(iv) Power doppler. 

Power Doppler, also known as Ultrasound Angiography or Colour Power 

Angiography demonstrates the amplitude of the Doppler shift in the auto-

correlation sequence without estimating velocity or direction (Hamper UM et al, 

1997). Here only the Doppler signal power or intensity is displayed 

superimposed on the B-Mode image (Figure 2.12). It is 3 times more sensitive 

at detecting flow than CFI as it is dependant on the reflected power that is 

generated by moving blood cells and can produce useful images even close to 

90° to the transmitted beam. This allows imaging of small vessels and those 

with low-velocity flow. 
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Figure 2.12 Power Doppler of the carotid artery bifurcation. 
(Figure taken from 
http://www.medical.siemens.com/siemens/en_US/rg_marcom_FBAs/images/pr
esskits/ACC_2008/USD/X300_PWR_Doppler.jpg). 
 

(v) Duplex ultrasound 

This form of US is mainly used in vascular US and incorporates both 2D B-

Mode US and Colour Doppler imaging to assess anatomy, direction and 

velocity of blood flow through vessels. 

 

This project will be utilizing 2D and 3D B-mode ultrasound, however a 

knowledge of doppler imaging can be helpful to confirm vascular anatomy for 

example, distinguishing venous from arterial structures and also aiding in the 

correct identification of the internal carotid from the external carotid artery. 
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2.5. Imaging artefacts 

Modern US machines make certain basic assumptions when generating 

images that lead to imaging artefacts, which need to be understood when 

interpreting images. These artefacts are image errors and are usually caused 

by physical properties that affect the US beam in some way so that it does not 

follow the machines basic assumptions listed below: 

• The US beam only travels in a straight line with constant attenuation 

rates.  

• The velocity of sound in all body tissues is 1540m/s. 

• The US beam is finitely thin with all echoes coming from its central axis. 

• The depth of a reflector is accurately determined by the time it takes for 

sound to travel from the source to the reflector and return to the source. 

In fact, the ultrasonic energy propagates through tissue as a beam of a finite 

size determined by the properties of the transducer (Kossoff G, 2000). Velocity 

of sound is not the same in all tissues throughout the body and this may lead 

to deviation of the beam from the assumed direction of propagation resulting in 

misplotting of echoes on the image from their true position in space. The main 

artefacts encountered in US are described below: 

• Reverberation: These artefacts appear as multiple equally spaced lines 

along a beams path. This occurs when the US beam is repeatedly reflected 

between two strong specular reflectors before the US waves return to the 

transducer. This can result in an apparent extra structure further from the 

transducer (Figure 2.13). Changing the angle of the transducer, applying more 

gel or rotating the patient can resolve these artefacts. 
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Figure 2.13 Reverberation artefact caused by a metallic foreign body. 
 
In this case a biopsy needle, which has been introduced to the subcutaneous 
tissues during an ultrasound guided biopsy.  
 
(Figure taken from http://www.vaultrasound.com/educational-
resources/ultrasound-physics/artifacts/). 
 

 

• Mirror images: These are similar to reverberation artefacts in that a 

structure is anomalously placed on the display due to redirection of the beam 

as it interacts with strong reflectors (Baun J, 2009). Reproduction of tissue 

interfaces is called reverberation artefact, whereas the reproduction of objects 

is termed mirror image. Mirror-image artefacts are produced when an object is 

located in front of a highly reflective surface at which near total reflection takes 

place. The surface will act as a mirror and reflect the beam to another tissue 

interface. The US machine assumes that the second interface is beyond the 

first surface and this is where it appears on the scan (Figure 2.14). 
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Figure 2.14 Mirror image artefact. 
 
This a longitudinal image of the trachea with the air-mucosa interface 
visualized just below the tracheal wall. A=reverberation artefact from the air-
mucosal interface. B=mirror image artefact of the cricoid cartilage at the 
cartilage-soft tissue interface. CRI-Cricoid cartilage. RINGS=Cartilaginous 
rings within the anterior wall of the trachea.  
 
(Figure taken from http://new.sinaiem.us/artifact-3-mirror-in-the-wall/). 
 

 

• Ring down artefacts: These are produced when objects such as air 

bubbles (in the abdomen for example) or cholesterol crystals resonate at the 

same frequency as the US beam and emit sound. The sound is emitted after 

the transducer receives the initial reflection and so the machine thinks the 

echo is coming from a deeper structure. These artefacts appear a solid streak 

or a series of parallel bands radiating away from the air (Figure 2.15). They 

occur from a large mismatch or large difference in acoustic impedance 

between two kinds of tissues, such as air and water (Bollinger C et al, 2009). 
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Figure 2.15 Ring down artefact. 
 
Transverse image of an internal jugular vein during an ultrasound guided 
percutaneous central venous access procedure. Note the ring down artefact 
resulting from a needle tip that is not clearly seen on this image but which 
casts a narrow shadow inferiorly. The artefact in this case can be used as a 
guide to the accurate placement of the needle tip. IJ=Internal jugular vein.  
 
(Figure taken from http://www.sonoguide.com/line_placement.html).     
 
 

 

• Acoustic shadowing: This is the result of decreased energy within the 

beam as a result of reflection and absorption. It can be seen with arterial 

(Figure 2.16) and valvular calcification, or gallstones and calculi where most of 

the ultrasound waves are reflected back to the transducer preventing 

visualization of anything beyond the calcification which appears as a dark 

posterior shadow. Spatial compound imaging can decrease the effect of 
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acoustic shadowing and will be discussed later in this chapter. Figure 2.16 

illustrates the appearances of different types of plaque with different acoustic 

properties. 

 

 

 

 

 

 

 

 

 

 

Figure 2.16 Acoustic shadowing artefact. 
 
Longitudinal ultrasound images of the common carotid artery illustrating 
arterial plaques with different acoustic properties. Image at the top of the figure 
demonstrates a diffusely thickened homogenous far wall intima-media 
thickness (IMT). A=Posterior acoustic shadowing caused by dense calcific 
plaque in the CCA. B=Homogenous ulcerated plaque in a segment of CCA. 
C=Homogenous plaque in a CCA segment with an echo-poor central area of 
haemorrhage.  
 
(Figure taken from Bathala L et al, 2013). 
 

• Acoustic enhancement: This presents as abnormally high brightness 

and occurs when sound travels through a medium with an attenuation rate 

lower than the surrounding tissues (Aldrich J, 2007). Posterior enhancement 

occurs when fluid structures attenuate the sound less than solid structures with 

the strength of the pulse increasing after passing through fluid compared to 

passing through a solid structure (Bollinger C et al, 2009). This is illustrated in 

Figure 2.17. 
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Figure 2.17 Posterior acoustic enhancement in a simple breast cyst.  

Ultrasonography reveals a well-circumscribed anechoic cyst with dense 
echoes in the posterior wall and acoustic enhancement deep to the lesion.  

(Figure taken from 
https://iame.com/online/sonographic_evaluation_of_benign_and_malignant_br
east_masses_/content.php). 

 

2.6 Limitations of 2D ultrasound 

• In 2D US the sonographer needs to mentally create a 3D picture of the 

anatomy that he/she is examining and this can often be difficult especially for 

the inexperienced sonographer.  

• 2D US is known to be very subjective and have variable reproducibility, 

which can lead to diagnostic errors. 

• Measurement of length and volume use a simple measurement of width 

in only 2 planes to calculate volumes, which can lead to inaccurate 
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calculations. 

• Many organs or anatomical locations in the body are difficult to visualise 

due to angulation difficulties and variable anatomy. It is also difficult to image 

the exact same location on each successive occasions thus making it difficult 

to perform quantitative follow up studies and accurately monitor response to 

treatment. 

 

2.7 Introduction to 3D ultrasound 

Real-time quantitative 3D ultrasound has recently become available and may 

overcome many of the afore mentioned limitations of 2D ultrasound (Fenster et 

al, 2001). With 2D imaging, the sonographer must mentally transform a series 

of 2D images into volumetric information in order to obtain a 3D impression of 

the anatomy. The ability to do to this varies greatly with experience.  

The goal of 3D US imaging is to overcome these limitations thus providing 

clinicians with a complete view of the anatomy of the target organ. It also has 

many advantages over conventional 2D US. This section will outline how 3D 

US can overcome the various limitations of 2D US and will also illustrate the 

basic principles of 3D US, how images are created and processed as well as 

its many clinical applications.  

 

2.7.1 Basic principles  

3 Dimensional Ultrasound is a data set that contains a large number of 2D 

images or planes (x, y and z). Each individual 2D plane may be thought of as a 

page in a book and the book itself the entire data set. The data set in this 

instance is a “snapshot” of the imaged object in 3D taken over a specific time 

period, i.e. a series sequential 2D slices in 3 planes taken over approximately 

1 second and put together to form a 3D image. The units of stored 2D 

information are called pixels and the stored 3D units are termed voxels. One is 
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able to leaf through the individual 2D images following acquisition of a 3D data 

set. This process is known as translation. The data set or volume can be 

flipped in any direction to view the 3D object in different planes. The volume 

can also be dissected in any plane to achieve multiplanar imaging.  4D 

ultrasonography is a 3D image displayed in real-time and is produced by the 

rapid display of sequential 3D data sets. The faster the data sets are acquired 

the less interrupted the motion of the 4D image becomes. 3D US machines 

must meet or exceed the specifications of modern 2D machines in order to 

produce quality images and a 3D image is only as good as its 2D capabilities. 

A typical 3D US transducer is illustrated in Figure 2.18. 

 

 

Figure 2.18 B Mode transducer in a housing that swivels on a motor in fan like 
motion.  

(Figure taken from 
http://www.gehealthcare.com/usen/ultrasound/education/products/cme_3d4d.h
tml) 
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2.7.2 Data acquisition techniques 

There are 2 methods that have been developed for data acquisition. The first 

uses a series of 2D images created by 1D arrays and the second uses 2D 

arrays to produce 3D images directly (Downey et al, 2000). In each case the 

relative position and angulation of the 2D image must be known and the 

images must be acquired rapidly or with gating thereby avoiding artifacts 

secondary to respiratory, cardiac or patient movement.  

There are 4 types of 3D US systems: Mechanical scanners, Tracked freehand 

systems, Untracked freehand systems and 2D matrix arrays. These are 

explained below. 

1. Mechanical scanners: This method utilises a motorised assembly to 

rotate or translate the transducer while 2D images are taken at predefined 

spatial or angular intervals. This method can be cumbersome but may provide 

very accurate 3D reconstructions. The three types of mechanical transducer 

are linear, tilt and rotational (Figure 2.19). 

a) Linear scanning: Here the transducer moves along the patients skin in a 

linear fashion. When tilted away from the vertical plane at an angle 3D colour 

and power doppler can be performed. Intervals between digitized images can 

be adjusted for proper sampling and reconstruction of data sets is fast and 

efficient because images are parallel and separated by a predefined interval. 

b) Tilt scanning: Here the transducer is tilted about it’s face and images 

are digitized at a predetermined angle. As seen in Figure 2.19 the mechanical 

device is quite small and allows for easy manipulation when held. However, 

due to the fan-like digitized images the space between them increases as 

depth increases leading to poorer resolution. 

c) Rotational scanning: The transducer is rotated about a central axis  

producing propellorlike digitized images. Here the sampling distance increases 

and resolution decreases as the distance from the rotational axis increases. 

Due to images intersecting close to the transducer patient movement creates 

artifacts at the centre of the image. 
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(a)      (b) 

    

 

 

 

 

(c) 

Figure 2.19 Mechanical 3D scanning.   

(a) Linear scanning. Illustration of an US transducer in a cradle (C). The motor 
(M) moves the transducer in a smooth, consistent and linear fashion (arrow). 
(b) Tilt scanning. A motor tilts the cradle and transducer in a smooth and 
consistent arc (arrow). (c) Rotational scanning. A motor turns the cradle and 
transducer in a smooth and consistent manner around its axis (arrow). 

(Figure taken from Downey D et al, 2000). 

 

2. Tracked freehand systems: Here the sonographer holds a mechanism 

composed of a transducer with an attachment and manouvers it over the area 

being imaged. 2D images are digitized as the transducer moves. The exact 

relative position and angulation must be known for each image and the 

operator ensures no significant gaps are left when the transducer is moved 
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along the anatomy. The three types of tracked free-hand systems are 

accoustic, articulated arm and magnetic field tracking (Figure 2.20). 

a) Accoustic tracking: Microphones are placed above the patient with three 

sound emitters mounted on the transducer. The sound emitting devices are 

activated when the transducer is moved. The relative distance and timing of 

the emitted sound waves that are received by the microphones are used to 

calculate the position of the transducer. 

b) Articulated arm tracking: Here the transducer is mounted on a 

mechanical arm with multiple moveable joints. Potentiometers at the joints are 

used to measure their relative rotation thereby allowing the continuous 

measurement of the position and angulation of the transducer. 

c) Magnetic field tracking: Tracking with magnetism involves detecting 

changes in a spatially varying magnetic field that is produced by a transmitter 

attached to the transducer. The detector contains three orthogonal coils that 

measure the strength of the magnetic field. By measuring the local magnetic 

field the relative position of the transducer can be determined. To minimise 

electromagnetic interference the detector is positioned close to the transducer. 

Also, there should be no ferrous or conductive materials such as pacemakers 

in the vicinity (Hoppenrath M, 2006). 
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(a) (b) 

 

 

  

 

 

 

(c) (d) 

Figure 2.20 Tracked freehand 3D scanning.  

(a) Acoustic tracking. Note the triangular device mounted on the transducer 
containing 3 sound emitters. As the transducer is moved the sound emitters 
emit pulses that are detected by three microphones positioned in different 
locations above the patient. The time delay between sound emission and 
detection is measured allowing for continuous monitoring of the angulation and 
position of the transducer. (b) Articulated arm tracking. Transducer mounted 
on a mechanical arm with numerous moveable joints containing 
potentiometers allowing for continuous monitoring of angulation and position of 
the transducer. (c, d) Magnetic field tracking. (c) Note the small 
electromagnetic device attached to a transducer. The adjacent box detector 
registers nearby changes in the electromagnetic field. Transducer position is 
calculated secondary to changes in the signal detected by the box detector. (d) 
Abdominal scan using a magnetic field tracking device attached to a 
transducer (T) with a black plastic cover (arrow) and adjacent box detector 
(D). (Figure and legend taken from Downey D et al, 2000). 
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3. Untracked freehand systems: In this method the sonographer moves 

the transducer at a preselected linear or angular velocity whilst 2D images are 

digitised. From these images a reconstructed 3D data set is made, however, 

as there is no direct information regarding positions of these digitised 2D 

images measurements such as volume, distance etc. will be inaccurate and 

should not be used. 

4. 2D matrix arrays: In this method the transducer remains stationary and 

a built in beam former makes an electronic sweep in a pyramidal fashion over 

the area of interest. In these sophistacted transducers reside many thousands 

of equally sized piezoelectric crystal elements that steer the beam in a phased 

array manner (as previously described) in all three planes. The transducer 

used to perform 3D scans in this thesis will be a 2D matrix array transducer.  

 

2.7.3 Image reconstruction  

Image reconstruction refers to the process of generating a 3D representation 

of the anatomy by first placing the acquired 2D images in their correct relative 

positions and orientations in the 3D image volume, and then using their pixel 

values to determine the voxel values in the 3D image (Fenster A et al, 2001). 

Two methods are used for volume reconstruction: a 3D surface model and a 

voxel-based volume model. 

• 3D surface model: Here the boundaries of the desired features are 

extracted from the 2D images and a 3D surface model of the anatomy is 

displayed. This is done either manually which can be tedious and time-

consuming, or computer assisted using various algorithms. With this method 

information is reduced which helps with rendering and the data files are not as 

large leading to shorter reconstruction times, greater efficiency and assisting 

with storage considerations. Contrast is artificially increased between adjacent 

structures making them distinct from one other, however this may distort or 

misrepresent subtle image features and cause loss of valuable information 

especially in areas with very subtle tissue differences. 
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• Voxel-based volume model: Here each digitised 2D image is placed into 

its correct position in the 3D voxel-based volume i.e. each 2D image pixel is 

placed at its correct 3D voxel co-ordinate (x, y and z). This is the most popular 

approach as no information is lost during reconstruction and it makes possible 

a variety of rendering techniques. The downside is that volume data-sets are 

very large which can slow processing and have storage implications. 

 

2.7.4 3D Ultrasound image display 

After 3D reconstruction the image can be viewed interactively using 3D 

visualisation and rendering software. The three main rendering techniques are 

surface rendering, multiplanar reformatting and volume-based rendering. 

These are discussed below. 

• Surface rendering: Here a wire frame representation is created with the 

operator delineating structures to be rendered either manually or computer 

assisted. These boundaries are shaded and illuminated giving optimal 

visualisation of structures or organs. 

• Multiplanar reformatting: In this method one of two approaches can be 

used. The first presents the user with three orthogonal or perpendicular planes 

that are taken from the volume and displayed simultaneously. They can be 

rotated to view the structure from different angles. The second technique views 

the 3D volume as a polyhedron and the appropriate imaging plane is “painted” 

on each face of the polyhedron which is then manipulated. The advantage with 

this method is that the operator can always relate the manipulated plane to the 

anatomy (Figure 2.21). 
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Figure 2.21 3D multiplanar ultrasound images of the brachial artery.  

Note that the X, Y and Z planes transect the centre of the artery. 1. Sagittal 
view. 2. Transverse view. 3. Top-down view. The image in the bottom right of 
the figure is a volume rendered image of the artery which can be manipulated 
as a polyhedron. 

 

 

• Volume-based rendering: In this method the entire volume of data and 

not just selected planes are viewed in the desired orientation. This is made 

possible by ray casting whereby a 3D image is projected onto a 2D plane by 

casting rays through the 3D image. The algorithm produces a projection that is 

directed through a row of 3D voxels in the set of image data. When the ray 

encounters each voxel a value is assigned to that particular voxel that weights 

the volume elements and then sums them to produce varying degrees of 

translucency. For example, when voxel values are multiplied by a factor of 1 

and then added they form a radiographic type image. When values are 



  110 

multiplied by factors they appear translucent. This method allows for the 

display of many different effects such as maximum intensity projection images 

wherein only the voxel with the greatest intensity along each ray is displayed. 

In this way, internal features can be visually explored throughout the entire 

data volume (Hoppenrath M, 2006). Figure 2.22 illustrates a combination of 

multiplanar and volume rendering techniques. 

 

 

Figure 2.22 Multiplanar and volume rendered display of fetal face.  

The top two images and the bottom left image represent the multiplanar 
images with the bottom right image representing the volume rendered display.  

(Figure taken from http://3dviz.ucsd.edu/~3DUS/Home.html). 

 

2.7.5 3D Imaging artifacts 

In general terms the same artifacts that occur in 2D US imaging occur in 3D 

US imaging and at approximately the same rate (Nelson et al, 2000). Artifacts 

need to be minimised in the 2D image in order to achieve good quality 3D data 

sets. All suspected 3D US artifacts in rendered images should be confirmed 
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with multiplanar images or 2D scanning to avoid misdiagnosis and error. 

Multiplanar images may identify the source of the artifact which can be 

confirmed or refuted with 3D US. Also, the acquisition of data from multiple 

angles can reduce the impact from artifacts.  

 

2.7.6 Clinical applications of 3D ultrasound 

Until recently the fields of cardiology and obstetrics and gynaecology have had 

the most to gain from utilising 3D US. Today however, many more specialities 

are benefiting from its use in clinical practice. The clinical applications of 3D 

ultrasound are extensive but some of the more well known clinical applications 

are listed below: 

• Obstetrics and gynaecology: Use of 3D US either transabdominally or 

transvaginally is used to aid in assisted conception when assessing tubal 

patency, predicting IVF outcome (Kupesic S et al, 2002) and diagnosing 

uterine anomalies (Salim R et al, 2003). It is also used in the preoperative 

assessment of submucosal fibroids, where 2D US is limited as it provides 

views in the sagittal and coronal planes only (Smith A et al, 2006). In addition it 

aids in the assessment of adnexal masses, endometrial cancer, follicular cysts 

and intrauterine device position. 

• Fetal imaging: Improved visualisation of fetal features including cardiac 

imaging and imaging of the face and limbs improves anomaly identification and 

helps parents-to-be in their understanding of diagnoses. It is a useful 

supplement to 2D imaging. 

• Cardiology: Valve geometry and motion assessment can be performed 

using transoesophageal and transthoracic 3D US. It also has a role in 

intracoronary ultrasound, determination of ventricular motion and volumes 

(Corsi C et al, 2005), mass and ejection fraction and prior to cardiac surgery 

(Mor-Avi V et al, 2008). It has also been used successfully in 

transoesophageal valve repair (Chikwe J et al, 2012). 
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• Interventional: 3D US provides accurate identification of needle or 

catheter placement (Zhao Y et al, 2013). It is also useful in transjugular 

intrahepatic portosystemic shunt (TIPS) procedures during main portal vein 

access (Rose SC et al, 2002). 

• Opthalmology: 3D reconstruction of orbit with retinoblastoma provides 

unique views that are unavailable with 2D US and is used in evaluation and 

follow up after treatment (Finger PT et al, 2002), and when used in conjunction 

with fundoscopy provides equal diagnostic accuracy to that of CT (Ghosh S et 

al, 2010). 

• 3D Transrectal and transabdominal ultrasound imaging: This involves 

use of a rotational side-firing linear array transducer and is used in prostate 

biopsy (Figure 2.23), permanent implant prostate brachytherapy and prostate 

segmentation. Transabdominal 3D US is used in the delivery of prostate 

external beam radiotherapy (Carson PL et al, 2009). 

 

Figure 2.23 Registered 3D transrectal ultrasound image on the left and a 
corresponding MR image of the same patient on the right.  

Two suspicious lesions are circled in red and green on the MR image and then 
superimposed on the corresponding US image. The lesions are subsequently 
targeted for biopsy using a 3D guided biopsy system. 

(Figure taken from Fenster A et al, 2013). 
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• Breast imaging: 3D US can complement 2D US in providing information 

about both site and differential diagnoses of breast lesions (Kotsianos-Hermle 

et al, 2009) and also in determining breast density and volume (Moo WK et al, 

2011). 

• Vascular imaging: 3D US may become an alternative to X-ray 

angiography in the assessment of arterial stenosis. Studies have shown 3D 

colour doppler sonography to be similar to digital subtraction angiography in 

the assessment of internal carotid artery stenosis (Wessels T et al, 2004) and 

may be useful when more invasive imaging is contraindicated. It has also been 

found to be useful in detecting carotid artery plaque composition changes 

following treatment with statins (Awad J et al, 2010) and also was found to be 

more reliable than 2D US in detecting carotid artery plaque ulcers (Heliopoulos 

J et al, 2011). 3D US has recently proved to be accurate in determining local 

arterial wall strain and vessel displacement in abdominal aortic aneurysms with 

use of 3D speckle tracking programs (Karatolios K et al, 2013).  

 

2.7.7 Advantages and limitations of 3D US 

Recent advances in 3D data acquisition techniques, image reconstruction and 

acquisition and rendering have provided 3D US with an exciting future. The 

added dimension facilitates surgical planning in ways previously only available 

with CT or MRI. It can also be used intra-operatively to monitor progress and 

results of the procedure. It is relatively cheap in comparison to other imaging 

modalities (yet still more expensive and not as widely accepted as 2D), and 

doesn’t expose the patient to the radiation risks seen in other procedures. 

When using MRI, even though acquisition of images is less time consuming 

than before, infants may need general anaesthesia, whereas with 3D 

techniques adequate images may be acquired in 3-4 cardiac cycles. MRI has 

certain contraindications where metallic instrumentation or prostheses are 

concerned whilst 3D US does not. As stated earlier, 2D US is inaccurate when 

calculating volume and length of a structure due to the limited capabilities of 

having only 2 dimensions whereas in 3D US the added dimension allows for 
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much more accurate and reproducible measurements. 3D US also allows for 

the imaged data set to viewed from any angle and also allows for significant 

rendering and post processing of data described above, which is not possible 

in 2D, US.  

The main disadvantage with 3D US imaging is the time taken to perform image 

reconstruction and rendering although with modern US machines this has 

improved greatly. A single 3D data set also has considerably more data than a 

2D image of the same area. This may have storage implications especially if 

3D US is used in a clinical setting. The learning curve for performing 3D US 

varies between those who have limited experience and those considered to be 

expert sonographers. In many radiology departments there are a set of 

standardised protocols in place for different imaging studies. Such protocols 

allow for consistency when performing and reporting the scan. With 3D US 

becoming more popular protocols must be put in place to allow for similar 

standardization. 

 

2.8 Recent advances in image resolution  

Spatial resolution is the ability to differentiate closely spaced objects in the 

beams trajectory as separate entities and is dependent on lateral, elevatory 

and axial resolution (Fischetti AJ et al, 2007). Lateral resolution depends on 

the scanners ability to resolve structures perpendicular to the beam axis and 

elevatory resolution to structures along its slice thickness. Axial resolution is 

dependent on resolving structures along the axis of the US beam. Some of the 

major technologies that have lead to improved spatial resolution are briefly 

discussed below: 

• Digital beam formers: Beam formers provide pulse delay sequences 

that are responsible for transmission, focusing and reception of US waves. A 

greater number of beam formers in a transducer means more piezoelectric 

elements and therefore better lateral resolution. A pulser provides the initial 

voltage to the piezoelectric elements. A delay generator allows for beam 
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transmission focusing. The beam former automatically adjusts for frequency, 

pulse repetition and amplitude and then digitizes and sums returning echoes. 

The receiving focus is dynamic and changes automatically thereby accurately 

tracking reflector depth and improving signal to noise ratio and spatial 

resolution. A dynamic aperture limits the variations in beam width and depth 

and maintains a narrow width for optimal resolution. Digital beam formers allow 

for a wide range of signal frequencies and decrease unwanted artefacts. 

• Coded pulse/coded excitation: Amplitude and frequency of pulses 

determine the depth at which we can image effectively. Amplitude is limited in 

clinical imaging due to safety considerations and high frequencies can provide 

very clear images but have limited penetration. Coded pulse technology uses 

long, high energy pulses that dramatically improve echo signal and decrease 

noise in deeper tissues whilst not sacrificing spatial resolution, thereby 

overcoming previous limitations. 

• Tissue harmonic imaging (THI): When sound propagates through tissue 

its shape is distorted leading to the production of harmonic frequencies. The 

echo signal from tissue not only contains the original frequency (fundamental 

frequency) but also its multiples of (harmonic frequencies) (Weinstein SP et al, 

2006). Therefore if a transducer uses a frequency of 4 MHz for example, the 

tissues will produce harmonic frequencies of 8 MHz. In THI the fundamental 

frequency is separated from the harmonic frequency via signal processing. 

This results in an improvement of clinically useful artefacts such as acoustic 

enhancement and shadowing and a reduction in artefacts that hamper 

diagnosis such as side lobe and ring down artefacts. There is also improved 

resolution and signal to noise ratio and decreased speckle, noise and 

reverberation.  

• Spatial compounding: Speckles are variations in intensity imposed on 

the image due to the interference of echoes on the tissue resulting in 

decreased image quality.  Spatial compounding uses a phased array 

transducer to generate a single real-time image from multiple fused frames. In 

this way speckles can be reduced by combining partially correlated or non-

correlated images of the same region of interest produced by transducers with 

different spatial locations (Behar V et al 2003). When used with spatial 

compounding images are further improved but at the expense of frame rate. 
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An important point to note is that artefacts that sometimes help with diagnosis 

such as posterior acoustic enhancement and shadowing are reduced. The 

effects of spatial compounding are illustrated in Figure 2.24 below. 

 

 

Figure 2.24 Example of an irregular echogenic plaque located at the carotid 
bifurcation and the effects of spatial compounding.  

Due to acoustic shadowing, the plaque texture is poor in the conventional B-
mode scans (C and D). With spatial compound imaging there is a reduction in 
shadowing and improved resolution (A and B). 

(Figure taken from Kern R et al, 2004). 

 

 

2.9 Summary 

An understanding of the physics of ultrasound, its limitations and advantages 

along with a knowledge of imaging artefacts, has enabled me to optimise the 

images taken for analysis throughout this project. For all images a high 
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resolution ultrasound scanner with a broadband linear array (2D) and a 

broadband volume linear array transducer (3D) were used. The methods will 

be discussed in the chapters that follow. 
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Chapter 3. A comparison of novel 3 

dimensional and established 2 dimensional 

flow mediated dilatation  
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3.1 Introduction 

With the evolution of flow mediated dilatation numerous limitations of this 2D 

US assessment have been made evident. The most significant of these is 

variable reproducibility, both inter-individual (Sejda T et al, 2005) and between 

study reproducibility (Hardie KL et al, 1997). Furthermore, as the 2D model 

uses the longitudinal plane only, probe malalignment may occur thereby 

resulting in the US beam inaccurately bisecting the artery resulting in 

inaccurate measurements of arterial diameter.  

Further limitations of the 2D US approach include a lack of standardised 

protocols and the technically challenging nature of the assessment which 

requires significant training. 

To our knowledge this is the first study to evaluate flow mediated dilatation 

using 3D US. 

Hence we conducted this study wherein two hypotheses were tested, namely 

that: 

• Use of 3D ultrasound images to quantify flow mediated dilatation 

 eliminates the systematic underestimation of diameter that occurs when 

 2D ultrasound is used, and hence estimates gained utilising 3D 

 ultrasound images will be greater than estimates gained utilising 2D 

 ultrasound images. 

• Quantification of flow-mediated dilatation gained using 3D ultrasound 

 images will be more reproducible than quantification using 2D 

 ultrasound images. 
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3.2 Methods 

3.2.1 Study design 

This was a cross sectional reproducibility study with 30 males recruited to 

participate. The study was performed over 2 visits separated over 

approximately 2 weeks. The study compared the accuracy and reproducibility 

of 2D and 3D ultrasound in the assessment of flow mediated dilatation. Both 

2D and 3D FMD were performed on visit 1 and on visit 2 thereby facilitating 

assessment of reproducibility. 

The study was approved by the Beaumont Hospital Ethics (Medical Research) 

Committee of Beaumont Hospital, Dublin and the research was carried out in 

accordance with the Declaration of Helsinki (2000) of the World Medical 

Association. 

All participants received a coded study number with the patients initials and a 

number assigned to them chronologically according to their participation in the 

study. This facilitated the blinded measurements of images performed off-line. 

All electronic and paper data was stored using the coded study number.  

For example FMD – 1 – 001 – AB.  

Where FMD – 1 = Flow mediated dilatation – Visit 1. 

001 = study number, first patient to participate in the study. 

AB = patient initials. 

And  

NID – 1 – 001 – AB. 

Where NID – 1 = Nitrate induced dilatation – Visit 1. 

001 = study number, first patient to participate in the study. 

AB = patient initials. 
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3.2.2 Study population 

The volunteers were aged between the 18 and 80 years and were eligible if 

they were willing to provide informed and written consent. Volunteers were 

excluded from the study if they had an acute illness or were suffering from any 

significant chronic illness or if their medication was likely to be changed 2 

weeks prior to starting or 2 weeks following completion of the study. 

Intolerance to sub-lingual glyceryl trinitrate was also deemed an exclusion 

factor. All subjects were Caucasian and of Western European descent.  

 

3.2.2.1 Population recruitment 

Subjects were identified from amongst attendees of Beaumont hospital 

outpatient clinics and also the general public in the Dublin area. The 

participants were approached and given both verbal and written information in 

the form of an invitation letter and participant information leaflet about the 

study. An example of this letter, the consent form and a sample letter that was 

sent to the participants General practioner following the study, is given in 

Appendix 1. Approximately 50 letters of invitation were sent to achieve the 

required participation giving a study uptake of 60%. Interested participants 

either contacted the study doctor directly for more information, or were 

contacted by a follow up telephone call one week after the letter of invitation 

was sent. Following screening for inclusion and exclusion criteria a study visit 

was arranged at the RCSI Clinical Research Centre, Beaumont Hospital. 

 

3.2.2.2 Study conduct 

There was a total of 2 visits per participant separated by a period of 

approximately 2 weeks. Volunteers abstained from caffeine containing 

beverages and alcohol for 24 hours prior to both study days and abstained 

from smoking for at least 4 hours prior to the visit. All assessments were made 
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in the morning and subjects were fasted from midnight the night before. All 

studies were performed in the same room with ambient temperature 

maintained within the thermo neutral zone (19°C - 22°C). All study visits and 

ultrasound scans were performed in the Vascular imaging suite in the Smurfit 

Building (Clinical Research Centre), Beaumont hospital in Dublin. 
The following assessments were performed prior to Ultrasound on the first 

study day only unless stated: 

• Medical history and examination; Lifestyle assessment including diet 

 and smoking history; Alcohol consumption; Family history; Current drug 

 treatments; Exercise patterns were defined as none, occasional (up to 3 

 times per week) or regular (> 3 times per week, ≥ 20 minutes each 

 session). Height & weight measurement. 

• A family history of heart disease included a history of MI, angina, 

 CABG, coronary artery disease, coronary stenting, cardiomyopathy or 

 valvular disease. A family history of DM included both IDDM and 

 NIDDM in parents, brothers or sisters. A family history of dyslipidaemia 

 included those on either dietary or medical treatment. 

• Clinic BP measurement (both study days).  

• Phlebotomy: Fasting glucose, Lipid profile, Serum creatinine. 

 

3.2.3 Clinical and laboratory measurements 

3.2.3.1 Clinical measurements 

All participants had their height and weight measured in kilograms. Body mass 

index was calculated as weight in kilograms divided by height in meters 

squared. 
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3.2.3.2 Blood pressure measurements 

Blood pressure was taken from the right arm in accordance with the 

recommendations of the British Hypertension Society (Ramsey et al 1999) with 

the patient resting in the supine position for 5 minutes. Measurements were 

obtained using a regularly calibrated semi-automated blood pressure machine 

(OMRON® HEM 705CP, Omron Healthcare, Sussex, UK (O’Brien et al 1996)). 

Blood pressure was measured 3 times and the mean of the second and third 

measurements was taken to be representative of brachial artery blood 

pressure. 

 

3.2.3.3 Laboratory measurements 

Fasting glucose, lipid profile and serum creatinine and electrolytes were 

measured on all patients with analysis being performed in the central hospital 

laboratory in Beaumont hospital. Patients were deemed to have 

hypercholesterolaemia if they had a total cholesterol ≥ 5 mmol/l or if they were 

on current treatment for hypercholesterolaemia.  

 

 

 

 

 

 



  124 

3.2.4 Determination of flow mediated dilatation 

using ultrasound 

The equipment used for ultrasound imaging was a Philips iU22 Premium High 

Resolution Vascular Ultrasound Scanner. The Phillips L17-5 broadband linear 

array transducer (2D) and the VL13-5 broadband volume linear array 

transducer (3D) were used.  

  

 

 

 

 

 

 

Figure 3.1 Philips iU22 Ultrasound Scanner (left), 2D (middle) and 3D (right) 
transducers used in determining FMD. 

 

Following 15 minutes of supine rest, a baseline cineloop of a straight segment 

of the right brachial artery was performed. The arm was extended in a 

comfortable supinated position. Baseline longitudinal images were obtained 

5cm above the antecubital fossa using 2D US with the L17-5 high frequency 

broadband linear array transducer for approximately 15 seconds (or until a 

satisfactory image was obtained). Images were deemed satisfactory when 

both the near and far walls of the artery were clearly visualized, and the artery 

was visualized throughout the entire field of view in a horizontal fashion in an 

attempt to minimize skew (Figure 3.2). Gain was optimized with focusing set at 

the far wall. Depth was typically set at approximately 3cm. The artery was 

marked for subsequent images using a skin marker. A record of anatomical 

location was documented to ensure imaging of the same segment of artery 
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during subsequent scans performed that day and during the follow up visit. All 

images were ECG gated and heart rate was recorded prior to starting the 

procedure. 

 

 

Figure 3.2 2D ECG gated longitudinal image of the brachial artery with the 
entire segment under evaluation included in the field of view and orientated in 
line with the probe.  

 

Flow mediated dilatation (endothelium dependant dilatation) is based upon the 

arteries ability to dilate in response to increased blood flow (hyperaemia) and 

increased shear stress. This environment is created by inflating a blood 

pressure cuff to 50 mmHg above the systolic BP. After 5 minutes the cuff is 

rapidly deflated creating a reactive hyperaemia with arterial dilatation occurring 

primarily in response to NO and prostacyclin released from the healthy or 

intact endothelium on which it is dependant. A cineloop was recorded between 

50 and 70 seconds post deflation. Maximal dilatation is known to occur at 60 

seconds (Uehata A et al, 1997). 

Endothelium independent dilatation (nitrate induced dilatation (NID)) was 

performed 20 minutes later following a period of rest and a return to baseline 

brachial arterial diameter. The same segment of the brachial artery was 

identified with the aid of the skin marker, and a 15 second cineloop was 
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performed to record baseline brachial artery diameter. Two puffs (800mcg) of 

sublingual glyceryl trinitrate (S/L GTN) were administered to achieve NID. A 

further cineloop was performed after 3 minutes and 50 seconds for a period of 

20 seconds (maximal NID is known to occur 4 minutes after GTN 

administration). This was performed as a control. The FMD procedure was 

performed according to the guidelines issued in 2002 by the International 

brachial artery reactivity task force (Corretti MC et al, 2002). Figure 3.3 

summarises the FMD procedure. 

 

 

Figure 3.3 Flow mediated dilatation. 

Schematic on the left demonstrates brachial artery FMD following cuff 
deflation. Schematic on the right demonstrates the blood pressure cuff on the 
upper arm with the transducer positioned above the antecubital fossa. The 
differences in brachial arterial diameter between baseline imaging, imaging 
following deflation of cuff and following administration of GTN are also 
illustrated. 

(Figure taken from Corretti MC et al, 2002). 

 

After a further 20 minutes of rest to allow a return to baseline artery diameter, 

the process was repeated using 3D US and the VL 13-5 volume linear array 
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probe. The basic principles of the 3D FMD process were identical to the 2D 

assessment however, important differences to be noted when using 3D US are 

the following: 

1. Baseline diameter imaging was performed by capturing a 3D volume data 

set with the 3D probe held in position over the region of interest. All images 

were ECG gated with the beginning of the 3D sweep triggered by the R wave 

of the QRS complex.  

2. 3D sweeps took approximately 1 second to complete. 

3. 3 X 3D sweeps / volume data sets were captured at each stage of the 

process. For example, when recording images post deflation; 3 X 3D sweeps 

were captured between 50 and 70 seconds post deflation. For recording 

images during NID, 3 X 3D sweeps were taken at the time of maximal 

dilatation i.e. after 3 minutes and 50 seconds. 

 

3.2.4.1 Summary of calculations in the 

assessment of 2D and 3D flow mediated 

dilatation 

• Determination of brachial FMD utilising 2D ultrasound. 

• Determination of brachial nitrate induced dilatation utilising 2D 

 ultrasound.  

• Determination of brachial FMD utilising 3D ultrasound.  

• Determination of brachial nitrate induced dilatation utilising 3D 

 ultrasound.  
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3.2.5 Measurements  

3.2.5.1 Image labelling / image selection 

All 2D cineloops were ECG gated so as to capture images in end-diastole 

(peak of R wave). 3D volume data sets were also ECG gated and triggered to 

acquire a ‘sweep’ at end-diastole (peak of R wave). The time to acquire a full 

‘sweep’ took approximately 1 second.  

Following each individual scan, the cineloops and 3D data sets were 

transferred electronically from the iU22 ultrasound scanner in DICOM format to 

a PC for analysis offline. All images were carefully reviewed and the best 2D 

images and 3D data sets were identified and saved to a USB disk. The 

software used to select images for analysis was QLAB (3DQ Advanced, QLAB 

7, Philips, The Netherlands). 

 

2D measurements were performed at the following points in the cineloops: 

• 2D brachial artery baseline diameter prior to FMD and NID was 

 measured at three different points in the cineloop during diastole at the 

 peak of the R wave.  

• 2D brachial diameter post cuff deflation (FMD) and post administration 

 of GTN (NID) was also measured at three different points in the 

 cineloop taken following the appropriate interval as outlined above.  

  

3D measurements were performed at the following points in the 3D sweeps: 

• 3D brachial artery baseline diameter prior to FMD and NID was 

 measured using three 3D sweeps triggered by the R wave. 

• 3D brachial diameter post cuff deflation (FMD) and post administration 

 of GTN (NID) was measured from three 3D sweeps triggered by the R 

 wave. 
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In all cases the diameter measurement was taken to be the median of the 

three measurements. 

3.2.5.2 Offline diameter measurement using 

Arterial Measurement System 

Diameter was defined as the mean distance from the leading edges of the 

intima-lumen interfaces of the near wall and lumen-intima of the far wall. This 

is illustrated below in figure 3.4.  

   

             

  

       

    

   

 

Figure 3.4 A longitudinal B-mode 2D Ultrasound image of a segment of the 
brachial artery illustrating the calculation of lumen diameter from the echogenic 
interfaces.   

The schematic on the right demonstrates lumen diameter I3 (leading edge of 
second echogenic zone in near wall) – I5 (leading edge of first echogenic zone 
in far wall). The distance between I5 and I7 is the intima-media thickness 
(IMT).  

I3=near wall intima-lumen interface, I5=far wall intima-lumen interface, I7=far 
wall media-adventitia interface. 

 

Individual diameter measurements were performed on a separate PC using a 

software called AMS (Arterial Measurement System) version 1.102 (Chalmers 

University, Gotenburg, Sweden). This is a semi-automated and histologically 

validated software for the calculation of arterial diameter at each stage in the 

process as summarised in section 3.2.10. The software evaluates lumen 
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diameter by measuring approximately 150 points over a 1 cm segment of the 

artery thus reducing the standard error of the measurement (Wendelberg et al, 

1997). It uses a multi-scale dynamic programme algorithm based on echo 

intensity, intensity gradient between pixels and boundary continuity.  

All images are initially calibrated to scale into mm/pixel. The calibration 

distance is 10 mm and is carefully chosen by the operator prior to analysing 

each set of images. A box is then placed around the region of interest to be 

measured representing a 1cm segment of the brachial artery. The echogenic 

interfaces are chosen automatically by the software and the accuracy of the 

border detection is visually inspected by the operator. Figure 3.5 below 

illustrates an example of the border detection. 

 

Figure 3.5 Longitudinal 2D ultrasound image of the brachial artery with a box 
placed around the region of interest. 

I3=near wall intima-lumen interface, I5=far wall intima-lumen interface, I7=far 
wall media-adventitia interface. 

 

The figure above demonstrates how after placing the box around the ROI, the 

software automatically detects the echogenic borders of the near and far wall 

in order to calculate the diameter. This is an image of the artery in end-diastole 

as indicated by the ECG tracing at the bottom of the figure. Lumen diameter is 
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the distance between near wall intima-lumen interface and the far wall intima-

lumen interface. 

In the case where the software automatically detects an interface that is not 

the true border to be measured the user can adjust the border detection in a 

semi-automated fashion. By clicking the mouse on the correct interface the 

software will readjust and try to seek the true border. It is recommended that 

user intervention in this regard be limited to a maximum of 3 attempted 

adjustments in order maintain objective accurate measurements. An example 

of incorrect border detection and its subsequent correction using this method is 

illustrated in figure 3.6 below. 

 

 

 

 (a)       (b) 

Figure 3.6 Semi-automated border correction performed by AMS software. 

(a) The software has automatically and incorrectly detected a border for I5 and 
I7. The correct interfaces of I5 and I7 are illustrated by the white arrows. (b) 
Following user intervention by clicking on the correct interface (the I5 interface) 
the software correctly identifies the I5 and I7 borders.  

 

The user also has the option to manually trace the borders however this is not 

recommended as it is likely to lead to systematic bias and give different 

measurements to those achieved via the semi-automated method. If the 

proximal or distal ends of the ROI are felt by the user to have detected borders 

incorrectly, then that particular segment of the artery can be ‘cut’ or excluded 



  132 

from measurement. This results in a decrease in the number of diameter 

measurements per segment (i.e it will be less than 150 individual 

measurements) and therefore it is recommended not to exclude more than 

20% of the segment so as to maximise accuracy. Full instructions on how to 

use AMS software are found in Appendix 2. 

Arterial diameter measurements from the 3D data sets are performed on a 

logitudinal image from the 3D data set. Choosing a 2D longitudinal image from 

the 3D data set for the purposes of diameter measurement is performed by 

accurately bisecting the artery in the trasverse, sagittal and craniocaudal (view 

from above) planes. This ensures that the artery is not skewed and that a true 

diameter measurement is performed. This is illustrated in figure 3.7 below. 

 

 

 

  

 

 

 

 

 

Figure 3.7 3D data set of the brachial artery optimised for diameter 
measurement by accurately bisecting the artery in 3 planes. 

(1) Longitudinal or sagittal view. (2) Transverse view. (3) Craniocaudal view or 
‘view from above’. Note how the vertical and horizontal straight lines placed in 
the center of the artery by the user, accurately bisect the vessel ensuring a 
true measurement of diameter. The image in (4) is a 3D volume that can be 
rotated in a any direction, however this is not useful in terms of calculating 
arterial diameter. It can be useful when imaging larger body parts such as in 
obstetrics, where in can aid in detection of fetal anomalies. 
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When the 3D image has been optimised it is transferred via USB to another 

PC in order to calculate diameter using AMS. The same process is followed as 

for 2D assessments including careful calibration, and a ROI in the longitudinal 

image is selected for measurement. This is illustrated in figure 3.8 below. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Close up view of a longitudinal image of the brachial artery taken 
from a 3D data set with calculation of arterial diameter using AMS. 

 

3.2.6 End-points 

The primary end-point is brachial FMD (endothelium dependent dilatation), and 

the secondary end-point is brachial nitrate induced dilatation (endothelium 

independent dilatation).  
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3.2.6.1 Brachial diameter endpoints in both 2D 

and 3D 

Brachial diameter at baseline. 

Brachial post-ischaemic diameter. 

Brachial diameter at baseline. 

Brachial nitrate induced diameter. 

 

3.2.6.2 Calculation of end-points 

FMD and NID were expressed as a percentage of the average diameter of the 

artery during the resting / baseline scan. 

The following equations were applied: 

FMD = (post ischaemic diameter – baseline diameter) X 100% 

  Baseline diameter 

 

NID = (NID diameter – baseline diameter) X 100% 

  Baseline diameter 

 

3.2.7 Data handling / storage 

Data was stored using Excel (Microsoft Excel 97, Microsoft Corporation, 

Redmond, WA, USA).  
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3.2.8 Statistical analyses 

All analyses were performed using DataDesk 6.1 software (Data Description 

Inc., NY, USA). All descriptive data were expressed as mean +/-SD or as 

median (interquartile range). Mean values for visit 1 and visit 2 were calculated 

as were the between visit mean differences. Bland Altman plots were then 

constructed using these values to assess between visit 2D and 3D FMD and 

NID reproducibility (Bland JM et al, 1986). 

Mean values at visit 1 and visit 2 were also used to construct correlation plots 

and r² values to assess between visit baseline diameter, FMD and NID 

correlation using 2D and 3D US.  

 

3.2.9 Power of study 

It was anticipated that mean +/- SD of FMD, in these participants would be 

approximately 15% +/- 10%, and that the SD of the differences between 

repeated measurements would be approximately 5%. Hence with 30 

participants this study had 90% power to detect a 3% difference in brachial 

FMD when quantified using 3D ultrasound as opposed to 2D ultrasound, with 

alpha of 0.05. 
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3.3 Results  

3.3.1 Population recruitment 

In total 30 men were recruited to the study.  No patients met the exclusion 

criteria as outlined previously, however 2 patients were unable to attend for the 

second visit and were therefore excluded from analysis. A further patient was 

excluded from analysis as the images obtained were unsuitable due to the 

brachial artery of this thin patient lying superficially almost beneath the skin 

surface. This prohibited accurate analysis of the near wall which is essential 

for measurement of lumen diameter. Therefore, a total of 27 patients were 

analysed.  
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3.3.2 Participant characteristics of study 

population 

Table 3.1 Patient characteristics Data are given as n (%) or mean 
± standard deviation (SD). 

Variables                          n 

 

Age 44 ± 12 

Smoking habit  

 -current 7 (26%) 

 -ex-smoker 10 (37%) 

 -never 10 (37%) 

Alcohol (units/week) 22 ± 13 

Exercise habit  

 -none 3 (11%) 

 -occasional 14 (52%) 

 -regular 10 (37%) 

Salt added 21 (85%) 

Fruit and veg (portions/day) 3.44 ± 1.53 

Weight (kg) 84 ± 9 

Height (cms) 177 ± 6 

Body mass index (kg/m2) 27 ± 3 

Systolic BP (visit 1) 128 ± 12 

Diastolic BP (visit 1) 74 ± 9 

Systolic BP (visit 2) 126 ± 8 

Diastolic BP (visit 2) 75 ± 8 

Heart rate (visit 1) 60 ± 9 

Heart rate (visit 2) 60 ± 7 
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3.3.3 Cardiovascular risk factors of participants 

Cardiovascular risk factors of the 27 participants are shown in Table 3.2 

Table 3.2 Cardiovascular risk factors Data are given as n (%). 

Variables                          n 

 

Smoker (current) 7 (26%) 

Hypercholesterolaemia 12(44%) 

Hypertension 4 (15%) 

Diabetes 1 (4%) 

Ischaemic heart disease 2 (7%) 

Family history of ischaemic heart disease 7 (26%) 

  

 

3.3.4 Biochemical characteristics of 

participants 

Biochemical characteristics of the 27 participants are shown in Table 3.3 

Table 3.3 Biochemical characteristics Data are given as mean ± SD. 

Variables 

 

 

Total cholesterol (mmol/l) 4.83 ± 1.21 

Glucose (mmol/l) 4.96 ± 0.73 

Creatinine (mmol/l) 85 ± 10 

 

 

 



  139 

The participants were between 32 and 56 years of age. Only 37% had never 

smoked with 26% classed as current smokers. Mean alcohol consumption was 

22 units/week, slightly above the recommeded limit. Most subjects exercised 

occasionally or on a regular basis. Mean body mass index was slightly above 

the recommended at 27. Salt was added to food by 85% of subjects. Overall 

the lifestyle habits of particpants were deemed to be somewhat poor. 

44% of participants were classed as having hypercholesterolaemia. The 

cardiovascular risk factor profile was otherwise deemed to be generally good 

with only 4% having diabetes, 15% with hypertension (average systolic BP 

over the 2 visits was 127 ± 10 mmHg) and only 7% with a history of ischaemic 

heart disease. 
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3.3.5 Baseline diameter correlation between 

visit 1 and 2 using 2D and 3D ultrasound 

Mean 2D baseline diameter (pre-cuff inflation diameter) was 4.167 mm at visit 

1 and 4.223 mm at visit 2 (mean difference -0.055mm) with a SD of 0.22 mm. 

The r2 value was 0.68 using 2D (Figure 3.10 (a)).  

Mean 3D baseline diameter was 4.894 mm at visit 1 and 4.920 mm at visit 2 

(mean difference -0.025 mm) with a SD of 0.280 mm. The r2 value using 3D 

was 0.66. (Figure 3.10 (b)). 

 

Figure 3.9 Baseline diameters (mean ± SD) using 2D and 3D Ultrasound at 
visit 1 and visit 2. 

 

3D and 2D baseline diameter reproducibility and between visit correlation was 

similar between the two methods with a SD of 0.22 mm for 2D and 0.28 mm 

for 3D. The r2 values were also similar with 0.68 and 0.66 for 2D and 3D 

respectively. 



  141 

 

(a) Correlation plot illustrating between visit 2D baseline diameter correlation. 

 

(b) Correlation plot illustrating between visit 3D baseline diameter correlation. 

Figure 3.10 Correlation plots demonstrating between visit correlation of (a) 2D 
and (b) 3D US determined baseline brachial diameters prior to cuff inflation. 
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(a) Bland Altman plot illustrating between visit 2D baseline diameter  
reproducibilty. 

 

(b) Bland Altman plot illustrating between visit 3D baseline diameter  
reproducibilty. 

Figure 3.11 Bland Altman plots demonstrating between visit reproducibility of 
(a) 2D and (b) 3D US determined baseline brachial diameters prior to cuff 
inflation.
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3.3.6 Flow mediated dilatation correlation 
between visit 1 and 2 using 2D and 3D 
ultrasound 
 

The mean FMD using 2D was 2.43% (SD 3.63%) at visit 1 and 2.55% (SD 

5.28%) at visit 2. 

The between visit difference in FMD using 2D was -0.12% +/- 4.5% with an r2 

value of 0.28. 

The mean FMD using 3D was 2.58% (SD 3.83%) at visit 1 and 2.16% (SD 

3.63%) at visit 2.  

The between visit difference in FMD using 3D was 0.42% +/- 4.03% with an r2 

value of 0.17.  

Correlation and reproducibility of between visit FMD was slightly better using 

2D with a smaller between visit difference of -0.12% +/- 4.5% with an r2  value 

of 0.28 versus 0.42% +/- 4.03% with an r2  value of 0.17 when using 3D.  
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(a) Correlation plot illustrating between visit 2D flow mediated dilatation 
correlation. 

 

(b) Correlation plot illustrating between visit 3D flow mediated dilatation 
correlation. 

Figure 3.12 Correlation plots demonstrating between visit correlation of (a) 2D 
and (b) 3D US determined Flow mediated dilatation. 
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(a) Bland Altman plot illustrating between visit 2D FMD reproducibility.  

 

(b) Bland Altman plot illustrating between visit 3D FMD reproducibility. 

Figure 3.13 Bland Altman plots demonstrating between visit reproducibility of 
(a) 2D and (b) 3D US determined Flow mediated dilatation. 
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3.3.7 Nitrate induced dilatation correlation 

between visit 1 and 2 using 2D and 3D 

Ultrasound 

The mean NID using 2D was 18.04% (SD 7.25%) at visit 1 and 18.19% (SD 

6.94%) at visit 2. 

The between visit difference in NID using 2D was -0.15% +/- 8.49% with an r2 

value of 0.08. 

The mean NID using 3D was 6.87% (SD 6.09%) at visit 1 and 6.42% (SD 

6.70%) at visit 2. 

The between visit difference in NID using 3D was 0.44% +/- 6.02% with an r2 

value of 0.32. 

Between visit difference and reproducibility in NID was better in 3D than 2D 

with 0.44% +/- 6.02% with an r2  value of 0.32 in 3D versus -0.15% +/- 8.49% 

with an r2  value of 0.08 using 2D. Mean 2D NID was greater at around 18% 

with 3D NID measuring approximately 6%.  
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(a) Correlation plot illustrating between visit 2D NID correlation. 

 

(b) Correlation plot illustrating between visit 3D NID correlation. 

Figure 3.14 Correlation plots demonstrating between visit correlation of (a) 2D 
and (b) 3D nitrate induced dilatation. 
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(a) Bland Altman plot illustrating between visit 2D NID reproducibility.  

 

(b) Bland Altman plot illustrating between visit 3D NID reproducibility. 

Figure 3.15 Bland Altman plots demonstrating between visit reproducibility of 
(a) 2D and (b) 3D nitrate induced dilatation. 
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3.4 Discussion 

Due to hormonal influences on FMD during the menstrual cycle (Masayoshi et 

al, 1995), an all male population was chosen. This made the logistics of the 

study easier in terms of booking patients and as we were comparing two 

different modalities and not study populations, this was deemed appropriate. 

Only one patient was excluded from the study due to technical difficulties. This 

patient had extremely thin arms and the brachial artery was positioned too 

superficially to get an accurate and measureable image. This is a well 

described limitation but did not severely affect the results or power of the 

study. Two further subjects were unable to complete the study, meaning 27 

subjects (90%) completed the study. 

A broad range of cardiovascular risk factors were spread evenly over the study 

population which was felt to be an accurate representation of the general male 

population. This also provided a broad range of brachial artery diameters, flow 

mediated dilatation and nitrate induced dilatation. 

Our hypothesis that 3D US would provide a greater diameter measurement 

than 2D was found to be correct. Our results show that the overall average 

baseline diameter using 3D was 4.907 mm and the equivalent 2D 

measurement was 4.195 mm. This represents an underestimation in diameter 

of 14.5 %. This occurs because 3D US more accurately disects the artery in 

the mid axial, sagittal and coronal planes thereby giving a true estimate of 

arterial diameter (Figure 3.16). We feel 2D diameter measurements can never 

be 100% accurate as the probe may be malaligned or aligned obliquely over 

the artery when in the longitudinal plane.  
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Figure 3.16 3D diameter is greater than 2D diameter and gives a more 
accurate measurement due to the ability to disect the artery in all three planes 
as shown above. 

 

Numerous studies have compared diameter measurements of abdominal 

aortic aneurysms (AAA) obtained using 2D US with CT (the current gold 

standard in assessing AAA > 5 cm). In 2003 Sprouse RL et al, compared axial 

diameters obtained using US and CT in 334 subjects following AAA endograft 

repair. They found CT yielded a significantly greater diameter in 95% of 

subjects with significant discrepancies between the 2 modalities. The mean 

maximum diameter obtained by CT was 5.69 +/- 0.89 cm versus 4.74 +/- 0.91 

cm using US (P < 0.001) (Sprouse RL et al, 2003). In 2009 Manning BJ et al, 

compared AAA diameter in 109 patients obtained by CT with 3D reconstruction 

software, against those using standard 2D. Maximum aortic diameter for CT 

was measured in 4 slightly different planes; the anteroposterior plane (CT-AP), 

along the maximum ellipse (CT-ME), perpendicular to the maximum ellipse 

(CT-PME) and perpendicular to the centerline of flow (CT-PCLF). Maximum 

anteroposterior diameter measurements were also performed using US. They 

found all of the CT measurements to be significanty larger than the US 

measurement and in the case of CT-ME this difference was 9.6 mm +/- 8.0 

mm (mean +/- SD) (Manning BJ et al, 2009). 
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Our results have also found smaller diameter measurements using 2D 

ultrasound, albeit when compared to 3D US and not CT. In order to be 

completely certain that 3D is more accurate than 2D US in the assessment of 

arterial diameter a bench study would have to be performed on an arterial 

phantom of a known diameter comparing the 2 US modalities. Future studies 

may prove this to be the case thereby further supporting our findings. 

Both methods had an average FMD of < 3%. A normal FMD is qouted as being 

between 7 and 10% (Moens AL et al, 2005). Our population was therefore 

deemed to lie in the at risk category which would fit with our population 

characteristics as seen in Tables 3.1, 3.2 and 3.3 above. Another possible 

explanation of the decreased FMD in our study population is that it has been 

shown that FMD exhibits diurnal variation and can be decreased in the 

morning time as opposed to later in the evening (Otto ME et al, 2004). Etsuda 

H et al, examined FMD in the morning, midday, in the evening and at night in 

13 healthy young males. They found FMD to be significantly reduced with a 

mean FMD of 4% in the morning as opposed to the evening where the mean 

FMD was 9.7%, and 6.9% at night  (Etsuda H et al, 1999).  

Inflation of the blood pressure cuff at the upper arm was used as opposed to at 

the forearm, which is a viable alternative. It has been shown that using cuff 

inflation at the forearm demonstrates a lesser FMD than when using cuff 

inflation over the upper arm (Vogel RA et al, 2000, Mannion TC et al, 1998). 

There is no consensus as to which technique is better, however it is suggested 

that inflation of the cuff on the upper arm can be technically challenging as the 

image can be distorted by the collapse of the artery and the shift in soft tissues 

making accurate data acquisition more difficult (Corretti MC et al, 2002). This 

was not felt to be the case in this study where the vast majority of images were 

deemed suitable for analysis. 

The major limitation of our study was that real-time 3D US, or 4D US currently 

is not capable of the temporal resolution necessary to capture such minute 

changes required during FMD. Therefore, whilst we found 3D to be a more 

accurate measure of brachial artery diameter, it is not a real-time 

measurement. In order to account for this, the 3D sweep was triggered by the 
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R wave of the ECG. This meant that the volume data set captured was 

acquiring the arterial diameter from end diastole and through systole and then 

into diastole again. Therefore at least 1 systolic cycle is included in the data 

set as the sweep takes on average 1 second to complete. If the heart rate is 

above 60 the heart will contract further during the sweep and a further systolic 

measurement will be included in the data set. The 3D diameter measurements 

in our study were greater than the 2D measurements and it is likely that this is 

due in part to the fact that the 3D sweep is including some systolic data. It has 

to be said that systole occurs over a relatively short period of time throughout 

the cardiac cycle so that by far the majority of measurements or data captured 

by the 3D sweep will be during diastole. Taking the average diameter 

measurement in 2D FMD over the entire cardiac cycle has been shown not to 

reduce accuracy (Kizhakekuttu TJ et al, 2010) when compared with FMD 

measurements taken at the same time throughout the cardiac cycle. In a way it 

can also be said that the 3D sweep is taking a volume data set from the entire 

cardiac cycle thus giving an average diameter measurement, thereby not 

reducing accuracy.  

Nitrate induced dilatation was greater using 2D US than 3D US. One possible 

explanation for this may be due to a hangover effect of the GTN following the 

2D NID examination. Although a 20 minute washout period was given prior to 

the start of the 3D examination, it is concievable that some GTN was still 

metabolically active, resulting in a lesser NID during the 3D examination. If 

future studies are to be performed perhaps carrying out 2D and 3D 

examinations on different days may help to clarify this discrepancy. Nitrate 

tolerance between the 2D and 3D examinations is a further, but less likely 

explanation or contributing factor. 
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3.4.1 Conclusion 

Our findings suggest that 3D US gives a greater and more accurate 

measurement of brachial artery diameter and we believe that 2D US 

underestimated diameter by approximately 14%. A bench study using an 

arterial phantom of known dimensions, directly comparing 2D and 3D US 

diameters would be needed in future studies to further support our findings.  

Baseline diameter measurements were similarly reproducible and between 

visit FMD correlation and reproducibility was only slightly better with 2D, with 

NID being slightly better using 3D. To our knowledge this is the first study to 

compare 2D and 3D US assessment of flow mediated dilatation. 

With real-time high resolution 4D US likely to provide better temporal 

resolution, the advent of 4D FMD is only around the corner. This is likely to be 

more accurate, reproducible and user friendly than 2D and may soon find its 

way into clinical practice as a means of identifying those at future risk, enabling 

preventive measures to be put in place. We believe that the process of 

identifying 3D US as a useful and comparable tool to 2D US will provide a 

stepping stone for this to happen, thereby facilitating better quantification of 

endothelial function. 
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Chapter 4. Ultrasound assessment of subtle 

alterations in vascular structure and function in 

young women with and without a history of 

gestational hypertension or preeclampsia 
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4.1 Introduction 

Pre-eclampsia is a placentally mediated multisystem disorder characterized by 

hypertension and proteinuria in pregnancy. It usually occurs following 20 

weeks gestation and resolves approximately 3 months post-partum. It affects 

between 2-8% of all pregnancies (Duley L, 2009). Pre-eclampsia occurs as a 

result of failure in the vascular remodelling of the maternal spiral arteries with 

resultant hypoperfusion of the placenta. This is turn leads to the release of 

inflammatory cytokines and vascular endothelial growth factor-1 amongst other 

antiangiogenic proteins, causing systemic endothelial dysfunction and 

vasoconstriction, with subsequent systemic hypertension. 

Pre-eclampsia is associated with an increased prevalence of cardiovascular 

risk factors. The Cardiovascular Health After Maternal Placental Syndromes 

study (CHAMPS study) evaluated over 1 million women, none of whom had 

cardiovascular disease prior to their first pregnancy. This retrospective cohort 

study included those with both pre-eclampsia and gestational hypertension. It 

demonstrated a 12-fold increased risk of CVD in those with a history of pre-

eclampsia and metabolic syndrome versus those without such a history 

(Hazard ratio [HR] 11.7; 95% confidence interval [CI]: 4.9 to 28.3) (Ray JG et 

al, 2005).  

Numerous studies have shown pre-eclampsia to also be associated with future 

cardiovascular risk. The Rochester Family Heart study evaluated 626,272 

Norwegian women over a 25-year period, many of whom had a history of pre-

eclampsia during their first delivery. They found that women with a history of 

pre-eclampsia and a pre-term delivery, had an 8.12 fold higher risk of death 

from cardiovascular causes than those with a normal pregnancy (HR 8.12; 

95% CI: 4.31 to 15.33) (Irgens HU et al, 2001). Furthermore, a recent meta-

analysis of 43 studies found that women with a history of eclampsia or pre-

eclampsia had an increased risk of developing hypertension (HR 3.13; 95% CI: 

2.51 to 3.89), cerebrovascular disease (HR: 1.76; 95% CI: 1.43 to 2.21) and an 

increased risk of developing CVD (resulting in death or adverse clinical 

outcome) (HR: 2.28; 95% CI: 1.87 to 2.78) (Brown MC et al, 2013). 
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Pre-eclampsia is also associated with increased IMT. In 2006, Blaauw J et al, 

examined common femoral artery and CCA IMT in 3 groups of women. Group 

1 consisted of 22 nulliparous women, group 2 had 22 primiparous women with 

a normal pregnancy and group 3 had 22 primiparous women with pre-

eclampsia. Groups 2 and 3 were followed up a year post-partum. They found 

increased femoral IMT in the pre-eclampsia group (mean 0.63 mm) compared 

with the normal pregnancy (mean 0.55 mm) and nulliparous groups (mean 

0.52 mm). Common carotid artery IMT was also higher in the pre-eclampsia 

group (mean 0.65 mm) versus the nulliparous group (mean 0.59 mm) with no 

significant IMT difference between the pre-eclampsia and normal pregnancy 

group (mean 0.62 mm) (Blaauw J et al, 2006). The same study group followed 

up these patients approximately 5 years later in a case control study and found 

no difference in IMT or progression of IMT between 17 pre-eclampsia subjects 

and 16 controls. They concluded that severe pre-eclampsia was not 

associated with increased IMT after 5 years and suggested a transient 

adaptive response of the arteries of those with a history of pre-eclampsia 

(Blaauw J et al, 2014). 

Conversely, Ciftci FC et al, examined the carotid IMT of 33 mild pre-eclampsia 

patients 5 years post-partum and 29 healthy volunteers. They also performed 

echocardiography looking at coronary flow reserve (CFR) and high-sensitivity 

CRP (hs-CRP) in all patients. They found a lower CFR and increased IMT in 

the PET group when compared with the controls (0.59 ± 0.15 versus 0.46 ± 

0.1). These negative effects of pre-eclampsia were also significantly correlated 

with hs-CRP (Ciftci FC et al, 2014). 

Pre-eclampsia is also associated with arterial stiffness. A systematic review 

and meta-analysis including 23 relevant studies demonstrated a significant 

increase in all combined arterial stiffness indices in those with pre-eclampsia 

versus those with normotensive pregnancies (Hausvater A et al, 2012). In a 

small study conducted by Evans CS et al in 2011, the group examined 18 pre-

eclampsia patients and 50 uncomplicated pregnancies with a mean follow up 

of 16 months post-partum. They found that arterial stiffness persists in the 

peripheral arteries of pre-eclampsia sufferers post-partum by way of increased 

heart to brachial PWV. Central stiffness measured by heart to femoral and 
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heart to carotid PWV was not affected (Evans CS et al, 2011). Recently, vector 

velocity imaging (VVI) was used to demonstrate increased peripheral vascular 

stiffness in the CCA’s of 24 pre-eclampsia patients versus 34 normotensive 

pregnant women. These patients were not followed up however to determine if 

this increased arterial stiffness persisted post-partum (Ma XJ et al, 2012). 

Elevated PWV in the second trimester is also associated with an increased risk 

of developing pre-eclampsia (Savvidou MD et al, 2011). 

A previous case control study was performed by Dr Catherine Brown in the 

Clinical Research Centre (Smurfit Building), Beaumont Hospital, Dublin 

(unpublished data). 124 participants were recruited. 43 controls had achieved 

normal pregnancy, 34 experienced gestational hypertension (GH) and 47 pre-

eclampsia (PET). Large vessel vascular structure and function were assessed 

by carotid artery ultrasound, brachial reactivity, carotid to femoral PWV (C-F 

PWV), and various non-invasive assessments of vascular stiffness. The study 

found the PET and GH groups to have greater IMT and common carotid wall 

cross sectional area than the control group. These results were not explained 

by differences in established risk factors such as hypertension, dyslipidaemia, 

smoking, diabetes or a family history of heart disease. There was no significant 

difference in cross sectional compliance, distensibility or elasticity between the 

control, GH or PET groups. However, greater arterial stiffness in the form of 

increased C-F PWV was found in the PET and GH groups when compared to 

the controls. This was explained by a greater mean arterial pressure in those 

with pregnancy-induced hypertension.  

The PET group also demonstrated greater endothelial dysfunction versus 

those in the control group, and this could not be explained by established risk 

factors. 

The study concluded that those with pregnancy-induced hypertension have 

structural abnormalities of large vessels and endothelial dysfunction, thereby 

putting them at risk of developing future cardiovascular events. 

 



  158 

Hence, in order to test for more subtle alterations in vascular structure and 

function, this study was initiated, testing the five following hypotheses:  

•  Women with a history of pre-eclampsia will demonstrate different IMT 

  values according to angle in the distal CCA than women with a history 

  of gestational hypertension or normotensive pregnancies. 

•  Women with a history of pre-eclampsia will demonstrate different IMT 

  values between the proximal CCA, the distal CCA, the carotid bulb and 

  the ICA than women with a history of gestational hypertension or  

  normotensive pregnancies. 

• Women with a history of pre-eclampsia will illustrate different IMT 

 compression patterns, according to angle in the distal CCA than women 

 with gestational hypertension and normotensive pregnancies. 

• Women with a history of pre-eclampsia will illustrate different IMT 

 compression patterns, according to vascular tree than women with 

 gestational hypertension and normotensive pregnancies. 

• Women with a history of pre-eclampsia will illustrate different common 

 carotid compliance patterns from women with normotensive 

 pregnancies. 

 

4.2 Methods 

The objectives of the study were as follows: 

1. To assess if alterations in the distribution of IMT thickness throughout the 

bifurcation provides additional distinction between the 3 groups of women. 

Therefore the following assessments are performed: 

• IMT to be compared by angle at the level of the distal common carotid 

 artery (anterolateral versus lateral versus posterolateral projection). 

• IMT to be compared along the vascular tree (proximal CCA versus 

 distal CCA versus Carotid bulb versus ICA). 
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2. To assess if the distribution of IMT compression (systolic - diastolic 

difference) throughout the bifurcation provides additional distinction between 

the 3 groups of women. 

Therefore the following assessments are performed: 

•  IMT compression patterns are compared by angle at the level of the 

 distal common carotid artery (anterolateral versus lateral versus 

 posterolateral projection). 

•  IMT compression patterns are compared along the vascular tree 

 (proximal CCA versus distal CCA versus carotid bulb versus ICA).  

 

3. The distribution of compliance between the proximal and distal CCA 

provides additional distinction between the 3 groups of women.   

 

4.2.3 Study population 

This was phase 2 of a cohort study involving a total of 40 women who had at 

least one pregnancy within the last 5 years. Women were eligible to participate 

if they were aged between 18 and 40 years. Women were excluded from the 

study if they had chronic hypertension, defined as; current BP ≥160/100, 

currently on BP lowering medications, or history of BP> 140/90 in first 20 

weeks of pregnancy. They were also excluded if they had diabetes, 

dyslipidaemia (total cholesterol >/= 7.0, TG >/= 3.0), and chronic obstructive 

airways disease or if they had significant endocrine, hepatic, gastric (peptic 

ulcer disease), renal or inflammatory disease or any other major illness. 

Women who were pregnant or lactating at the time of the study and those 

using vasoactive drugs were also excluded. All participants were Caucasian 

and of Western European descent. 

In this study there were a total of 13 women who had a normotensive 

pregnancy, 13 who had gestational hypertension and 14 who had suffered pre-

eclampsia.  
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Gestational hypertension is defined as systolic blood pressure ≥140 mmHg 

and/or diastolic blood pressure ≥90 mmHg in a previously normotensive 

pregnant woman who is ≥20 weeks of gestation and has no proteinuria or new 

signs of end-organ dysfunction (American Congress of Obstetricians and 

Gynaecologists, ACOG task force 2013). 

Pre-eclampsia is defined as systolic blood pressure ≥140 mmHg and/or 

diastolic blood pressure ≥90 mmHg in a previously normotensive pregnant 

woman who is ≥20 weeks of gestation and has proteinuria (please note that 

this criterion was revised by ACOG in late 2013 stating that proteinuria is no 

longer essential for the diagnosis of pre-eclampsia) or signs of end-organ 

dysfunction.  

 

4.2.4 Study design 

4.2.4.1 Population recruitment 

124 women were invited to participate. All had already taken part in phase 1 of 

this cohort study entitled “A comparison of the vascular structure and function 

of large and small arterial vessels in young women with and without a history 

of gestational hypertension or preeclampsia”. They were invited initially by 

letter (see Appendix 3) followed by a telephone call, further explaining to them 

the reasons for the study and answering any additional questions they may 

have had. Following an expression of interest a participant information leaflet 

was sent providing further details of the study (See Appendix 3). Out of the 

124 women invited to participate approximately 32% were recruited for the 

current study (Table 5.1). All participants were willing and able to provide both 

written and informed consent (See Appendix 3). 

A breakdown of the recruitment process is illustrated in Table 4.1 below. 
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Table 4.1 Breakdown of the recruitment process for study 2.  

GH=Gestational hypertension, PET=Pre-eclampsia. 

 Control GH PET Total 

Number invited 43 34 47 124 

Number recruited 13 13 14 40 

Percentage uptake 30 38 30 32 

 

 

4.2.4.2 Study conduct 

The study was approved by the Beaumont Hospital Ethics (Medical Research) 

Committee of Beaumont Hospital, Dublin and the research was carried out in 

accordance with the Declaration of Helsinki (2000) of the World Medical 

Association. 

All participants of phase 2 of the study were assigned the same coded 

participant ID number they were assigned in phase 1 of the study. For 

example: 

PIH-2-023 

Where PIH-2-023 = Pregancy induced hypertension-study phase 2-participant 

23. 

 

4.2.4.3 Summary of study visit 

The pre-study preparation for participants, medical history and examination, 

BP and laboratory measurements (fasting glucose, lipid profile, serum 

creatinine) were conducted in the same manner as the FMD study which has 

been previously described in Chapter 3. Following the study visit a letter was 

sent to the participants GP with a summary of the visit and the pertinent clinical 

and laboratory measurements (Appendix 3). 
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4.2.5 Carotid artery, carotid bifurcation and 

internal carotid artery ultrasound protocol 

 

4.2.5.1 Instrumentation 

A Philips iU22 Premium High Resolution Vascular Ultrasound Scanner and a 

Phillips L9-3 broadband linear array transducer were used to acquire all 

cineloops.  

 

4.2.6 Ultrasound examination 

All ultrasound scans were performed in the Vascular Imaging Suite in the 

Clinical Research Centre (Smurfit Building), Beaumont Hospital, Dublin. The 

entire procedure was explained to the participant before commencing the scan 

and the following information was entered into the scanner:  

• Patient initials 

• Date of birth 

• Subject ID number 

• Sonographer initials 

Following a period of 5 minutes rest in a comfortable supine position the 

participant’s neck was extended and slightly rotated to the contralateral side. 

With the probe positioned over the artery and the operator positioned behind 

the patient the right CCA was scanned with the right hand and left CCA using 

the left hand. Prior to capturing cineloops a transverse and longitudinal scout 

scan of the carotid artery was performed to assess the anatomy. All cineloops 

were ECG gated to end diastole (peak of the R wave) and end systole (end of 

the T wave). 
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Images were acquired with the assistance of the Meijer carotid Arc (see Figure 

4.1 below).  

 

Figure 4.1 The Meijer carotid Arc.  

This tool is designed to assist and guide the sonographer through a multi-
angle IMT B-mode Ultrasound scan protocol. Note the angles marked on the 
arc. On the left side 210, 240 and 270 degrees (where the probe is positioned 
in the above illustration) correspond to anterolateral, lateral and posterolateral 
projections. The corresponding angles are marked on the right side as 150, 
120 and 90 degrees. 

(Figure taken from Bots ML et al, 2003). 
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Figure 4.2 Head position and orientation of the probe when examining the 
right common carotid artery. 

The above illustration demonstrates the angle of interrogation of the right 
common carotid artery. This is performed in an anterolateral, lateral and 
posterolateral projection with the head tilted slightly in the contralateral 
direction. The exact opposite is performed when examining the left CCA. 

(Figure taken from Stein JH et al, 2008).  
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Figure 4.3 Right common carotid artery angles of interrogation. 

The illustration above demonstrates the different segments of the right carotid 
artery. From left to right are the internal carotid artery (ICA), the external 
carotid artery (ECA), the bifurcation (BIFUR) and the common carotid artery 
(CCA). The distal right CCA is examined from different angles of interrogation 
in the longitudinal plane and the figure depicts these as 90°, 120°, 150° and 
180°  (note our study did not examine from 180°).  

(Figure taken from 
http://www.meijermedicalultrasound.com/media/doc/MMU%20%20ARC%20ins
tructions%202010.pdf).  

 

4.2.6.1 Ultrasound scanning protocol 

Clear cineloops were obtained for approximately 5 seconds or 3-4 cardiac 

cycles of the right and left proximal and distal CCA, carotid bifurcation (BIF) 

and the internal carotid artery (ICA). The depth was set at 4cm and the focus 

was placed at the far wall for all cineloops. Dynamic range and gain were 

optimized for clear images of both the near and far wall of the artery being 

examined. The frame rate per cineloop was approximately 50 frames per 

second at 45 Hz. The acquired cineloops were exported in DICOM format and 

stored on a local network for later retrieval and offline analysis.  
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The following protocol was used for both the right and the left side: 

1. Longitudinal scan of the most proximal segment of the CCA above the 

 clavicle obtained at an angle that gave the clearest views of both the near 

 and far wall (hereinafter referred to as the proximal CCA or CCA PROX). 

2. Longitudinal scan of the CCA immediately prior to the bifurcation at 90, 

 120 and 150 degrees on the right side and 270, 240 and 210 degrees on 

 the left side corresponding to posterolateral, lateral and anterolateral 

 views respectively (hereinafter referred to as R CCA 90, 120, 150 and L 

 CCA 270, 240 and 210). These projections are illustrated clearly in 

 section 5.4 above. 

3. Longitudinal scan of the bifurcation at an angle that gave the clearest 

 views of the far wall proximal to the flow divider (hereinafter referred to as 

 BIF). See figure 5.3 above. 

4. Longitudinal scan of the internal carotid artery at an angle giving the 

 clearest views of the near and far wall distal to the flow divider 

 (hereinafter referred to as ICA). 

5. Transverse scan of the proximal CCA just above the clavicle at an angle 

 providing the clearest views of the near and far walls (hereinafter referred 

 to as CCA TRANS PROX). 

6. Transverse scan of the distal CCA immediately prior to the bifurcation at 

 an angle providing the clearest views of the near and far walls 

 (hereinafter referred to as CCA TRANS DIST). 

It is important to note at this stage that clear images of the near wall were 

obtained for the purpose of measuring diameter only. Intima-media thickness 

of the near wall is deemed unreliable (as explained in section 1.5.9 of Chapter 

1) and IMT measurements in this study were taken from the far wall. 

On screen annotations provide the reader with information identifying each 

segment under analysis and the angle of insonation in the case of the CCA. 

The bifurcation is always positioned at the left side of the monitor with an on 

screen vertical marker line at the left side of the image positioned over the flow 

divider as illustrated in figure 4.4 below. This signifies the end of the bifurcation 

and the beginning of the ICA. 
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The segments of the carotid artery are illustrated below in Figure 4.4. 

 

Figure 4.4 Segments of the carotid artery and positioning of the vertical 
marker.  

Note the vertical marker positioned at the tip of the flow divider with the image 
selected for analysis of the right bifurcation. 

R BIF=Right bifurcation, ICA=Internal carotid artery, CCA=Common carotid 
artery. 

R/B/NF=Right side, bifurcation, near and far walls. 

 

CCA 
BIF 

ICA 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4.2.7 Measurements of common carotid artery, 

bifurcation and internal carotid artery intima-

media thickness and lumen diameter from 

longitudinal images 

A single observer (LK), blinded to all the individual participants data carried out 

all measurements of common carotid, bifurcation and internal carotid artery 

intima-media thickness and lumen diameter. Measurements were performed 

using Vascular Research Tools Carotid Analyser for Research Version 6.0.1 

from Medical Imaging Applications, LLC 2012 ©. This is a validated software 

program that performs fully automated and semi-automated analysis of carotid 

ultrasound images and cineloops (Mancini GB et al, 2004). This software has 

been used in many large studies of carotid artery structure and function 

including the Muscatine Offspring Study (Dawson JD et al, 2009). In addition, a 

similar version of this software was recently approved by the FDA for use in 

the clinical setting. The Carotid Analyzer uses an automated method for near 

and/or far wall border and near and/or far wall intima border detection and 

vessel diameter as well as intima-media thickness measurement. When 

analyzing a sequence of images of the same vessel location, the method 

automatically learns properties of the analyzed vessel in one frame of the 

sequence that is analyzed under the operator’s supervision. The vessel 

properties are reflected in the cost function used in a graph-search-based 

border detection (Sonka M et al, 2007). The software tracks the near and far 

wall intima (I line) and media (M line) lines throughout numerous cardiac 

cycles performing a frame by frame analysis of the intima-media thickness and 

lumen diameters.  

The images were sent from the iU22 ultrasound scanner to a PC in DICOM 

format for offline analysis. When a series of images is opened by the software 

calibration is performed prior to analysis. This was done in mm/pixel by 

manually selecting 2 calibration markers on the ultrasound image. The 

calibration markers used were the markers denoting centimetres on the right of 
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the image. 

Following this, a region of interest (ROI) is placed over a 1 cm segment of 

artery to be analysed. This produces a rectangular box as illustrated in Figure 

4.5 below. 

 

Figure 4.5 Region of interest box placed over a longitudinal section of the 
proximal right CCA imaged above the clavicle.  

The figure above Illustrates a 1cm region of interest box placed over the 
proximal CCA. Note the pink lines in the near and far walls represent the 
media lines or M lines, and the yellow lines represent the near and far wall 
intima lines or I lines. The ROI is selected at the start of the cineloop and the 
software subsequently performs automated near and far wall IMT and 
diameter measurements throughout the entire cineloop. 

R CCA PROX=Right proximal common carotid artery. R/C/NF=Right side, 
common carotid artery, near and far walls. 

 

If the near and far wall boundaries are not accurately detected by the software 

the operator can stop the cineloop and manually click on the correct boundary. 

The software subsequently makes a semi-automated adjustment and tracks 

this correct boundary for the remaining images in the cineloop. 
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The steps required to select a region of interest (ROI), identify the near and far 

wall boundaries to be measured and make the necessary adjustments to the 

intima line (I line) or the media line (M line) if desired prior to starting the 

tracking process are illustrated in Figure 4.6 below. Diameter is taken to be the 

distance between near and far wall I lines. IMT is taken from the far wall and is 

the distance between the I and M lines. 
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  (a)           (b) 

  

 (c)           (d)  

Figure 4.6 Detection of the media and intima interfaces. 

(a) ROI box placed over a longitudinal segment the carotid artery for analysis. 
(b) The software will display the media lines in red. In this example the 
software has incorrectly identified the near wall intima line as the media line. 
The arrow points to the correct media line interface. The far wall media line 
has been correctly identified. (c) The user right clicks on the near wall media 
line and the red line is shifted to detect the correct interface. Again the near 
and far wall media lines are depicted in red. (d) The near and far wall intima 
lines are correctly detected by the software and depicted as yellow lines. 
Media lines of near and far wall are depicted in red. 

N=near wall. F=Far wall.

90 CHAPTER 6 Carotid Analyzer 5

(a) (b) (c) (d)

Figure 6.5: Determination of preferred M-line locations. (a) ROI - carotid
ultrasound vessel segment of interest. (b) The border identified during 1st
stage of sample frame border detection, note that I-line was identified for near
border. The arrow depicts the required border point interactively defined by
right-mouse-button clicking. (c) Border identified in response to the mouse
click. The border now passes through the vicinity of the required border point.
The interactive border detection can be repeated as many times as needed.
(d) M-line and I-line borders identified.

of the program, the next two steps are disabled.

(a) Generate the sequence analysis study Report by clicking [File →

Report] or clicking [Generate Report] button in the Results win-
dow, print the Report Header by clicking [Print Summary] button
in the Report window.

(b) Save your results by clicking [File → Save/Save As] or button

, this creates a .sdy file. From now on, you will be able to

use [File → Open] or button to access this image sequence
analysis study.

6.6.4 Tutorial 3: Manual editing of the identified borders

The last Tutorial will teach you how to manually edit borders in situa-
tions when the border detection was not successful. See also Section 6.7.6
for additional details as/if needed.

1. Open a previously analyzed image analysis sequence study as described
in Tutorial 1, Section 6.6.2.

2. Review the borders and select a frame in which you will interactively
edit the border(s). You will likely need to select a frame in which the
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The M and I lines are tracked by the software throughout the cineloop at the 

end of which the relevant frames in end diastole and end systole are reviewed 

by the operator and corrected in a semi-automated fashion if necessary. Three 

sequential frames were chosen for end-diastole, with the first frame at the end 

of the R wave. In addition, three sequential frames were chosen for end- 

systole, with the first frame at the end of the T wave. An illustration of an edited 

frame of the R CCA at 150 degrees in end-diastole immediately after the peak 

of the R wave is shown in Figure 4.7 below.   

 

 

Figure 4.7 Edited frame of a cineloop taken of the distal right common carotid 
artery at 150 degrees during end-diastole.  

Note the R wave in the bottom left corner. The vertical marker is positioned at 
the start of the bifurcation and a 1cm ROI is placed at the distal CCA prior to 
the bulb. The I line is highlighted in yellow and the M line in pink. Far wall IMT 
is 0.55mm. 

R/C/NF=Right, common carotid artery, near and far walls. 
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Figure 4.8 ROI box in the same patient zoomed up for illustrative purposes 
showing I and M lines of both the near and far wall of the distal CCA. 

 

 

 

Figure 4.9 Image of the same segment of common carotid artery in the same 
subject taken during end systole.  

Note the ECG in the bottom left corner with the cineloop stopped at the end of 
the T wave. R/C/NF=Right, common carotid artery, near and far walls. 
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       (a)                                                          (b) 

Figure 4.10 Analysis of IMT in the bifurcation and in the internal carotid artery. 

(a) Image of the bifurcation taken during end diastole. Note that the segment of 
far wall bifurcation is downward sloping in the image. The software 
automatically recognises this and has an angle correction built into the 
algorithm to account for it. (b) The same patient with analysis of the proximal 
segment of the ICA. Note the difficulty in gaining accurate IMT measurements 
in the near wall of the ICA. The M line is tracked with accuracy by the software, 
however the I line on the near wall is poorly visualised and therefore is not 
tracked. N=near wall, F=far wall. 

 

As previously stated, 3 individual frames were measured following the end of 

the R wave for each segment analysed in end diastole. 3 measurements were 

also taken during the same cardiac cycle at the end of the T wave in end 

systole. Where possible, a total of 3 cardiac cycles were analysed in this way 

for each individual segment of artery imaged. The mean of the 3 

measurements in both end diastole and end systole was taken as 

representative for the particular segment being analysed at the relevant stage 

of the cardiac cycle. The mean end diastole and end systole measurements of 

the 3 cardiac cycles were then taken as the final representative value. 

Both far wall IMT and lumen diameter were measured for the CCA. With 

regards to the BIF and ICA only the far wall IMT was measured. This was due 

to the fact that many images of the near wall in these segments were 
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significantly degraded by noise and artefact. The IMT is defined as the 

thickness between the leading edge of the lumen-intima interface and the 

leading edge of the media-adventitia interface. The diameter is defined as the 

distance from the near wall blood-intima interface to the far wall blood-intima 

interface, or the distance between near and far wall I lines.  

Transverse images were also performed of the right and left proximal and 

distal CCA as described above in section 4.4.1 (see Figure 4.11 below). This 

was performed in order to calculate vessel compliance at different segments of 

the CCA. Measurements of diameter were calculated as per all other 

cineloops. 

         (a)      (b) 

Figure 4.11 Transverse images of the left distal common carotid artery in end 
diastole and end systole. 

(a) Transverse image of the left distal CCA in end diastole illustrating the 
tracking of the near and far wall M and I lines. (b) Image of the same segment 
during end systole. This was performed to assess diameter change during the 
cardiac cycle and therefore assist in calculating vessel compliance. This was 
also performed for the proximal CCA facilitating comparisons in compliance at 
different segments of the CCA. 
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4.2.7.1 Carotid ultrasound end-points 

4.2.7.2 Longitudinal measurements 

The following measurements were made on longitudinal ultrasound images of 

the common carotid artery, the carotid bifurcation and the internal carotid 

artery: 

Diameter measurements: 

1. Proximal common carotid artery immediately above the clavicle. 

2. Distal common carotid artery immediately prior to the bifurcation at 90, 

 120 and 150 degrees on the right side and 270, 240 and 210 degrees 

 on the left side. 

Intima media thickness measurements: 

1. Proximal common carotid artery immediately above the clavicle. 

2. Distal common carotid artery immediately prior to the bifurcation at 90, 

 120 and 150 degrees on the right side and 270, 240 and 210 degrees 

 on the left side. 

3. Carotid bifurcation. 

4. Internal carotid artery. 

 

4.2.7.3 Transverse measurements 

The following measurements were made on transverse ultrasound images of 

the common carotid artery. 

Diameter measurements: 

1. Proximal common carotid artery immediately above the clavicle. 

2. Distal common carotid artery immediately prior to the bifurcation. 
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Diameter was again measured in end diastole and end systole over 3 cardiac 

cycles as previously described with the mean value taken as representative. 

 

The above longitudinal and transverse measurements were used to calculate 

the following. 

Longitudinal: 

1. Intima media thickness compression during the cardiac cycle. 

Where    Diastolic IMT – Systolic IMT  X 100 = % IMT compression. 

    Diastolic IMT 

 

Transverse: 

2. Cross-sectional compliance, CC (mm2/kPa) = ∆A/PP  

3. Distensibility coefficient, DC (10−3/kPa) = (∆A/Ad)/PP  

Where 

 Diastolic luminal cross sectional area, Ad (mm2) = π x (LDd/2)2 

 Systolic luminal cross sectional area, As (mm2) = π x (LDs/2)2 

  Systolic-diastolic variation, ∆A (mm2) = As – Ad 

All of the above measurements and calculations aided in achieving and 

answering the objectives and hypotheses listed in the following section. 

 

4.2.8 Data handling / storage 

Data was stored using Excel (Microsoft Excel 97, Microsoft Corporation, 

Redmond, WA, USA).  
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4.2.9 Statistical analysis 

The above listed measures of arterial function are compared across the 3 

groups using ANOVA.  

Modelling was performed using a repeated measures, linear mixed effects 

model with the dependent variable of interest measured multiple times 

according to angle or vascular tree depending on which hypothesis was being 

tested. Individual participants formed the random intercept whilst pregnancy 

group, angle, and vascular tree were the fixed effects. The hypotheses we 

attempted to answer are outlined above. 

For each of these hypotheses we were primarily interested in the interaction 

terms. The model with group and angle as fixed effects has pregnancy group x 

angle as its default interaction term. The model with group and vascular tree 

level as fixed effects has pregnancy group x vascular tree as its default 

interaction term. Statistical significance of the interaction term proves that the 

mean of the dependent variable differed across the interacting variables. For 

example in the first hypothesis, a statistically significant pregnancy group times 

angle interaction will demonstrate that the mean IMT values in the distal CCA 

differs significantly across pregnancy groups for different levels of the angle; or 

the means differ significantly across angles for each level of the pregnancy 

group. 

Calculations were carried out using Imer function in R Core Team software 

version 3.1.2. 2015. We used a 5% level of significance to test the above 

hypotheses, all of which were considered to be two-sided.  
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4.3 Results  

4.3.1 Participant characteristics of study 

population 

Table 4.2 Patient characteristics  Data are given as n (%) or mean ±
      standard deviation (SD). N=Normal, 
      GH=Gestational hypertension,  
      PET=Pre-eclampsia. 

Variables              N              GH      PET 

    

Age 35 ± 4 35 ± 5 39 ± 3 

Smoking habit   

   -current 2 (15%) 1 (8%) 0 (0%) 

   -ex-smoker 5 (38%) 3 (23%) 9 (64%) 

   -never 6 (46%) 9 (69%) 5 (36%) 

Alcohol (units/week) 6 ± 6 5 ± 6 5 ± 5 

Exercise habit   

   -none 4 (31%) 5 (38%) 2 (14%) 

   -occasional 6 (46%) 5 (38%) 7 (50%) 

   -regular 3 (23%) 3 (23%) 5 (36%) 

Salt added 8 (62%) 4 (31%) 10 (71%) 

Fruit & veg (portions/day) 3.69 ± 1.38 3.46 ± 1.27 4 ± 1.03 

Weight (kg) 67 ± 8 75 ± 18 75 ± 20 

Height (cms) 168 ± 3 161 ± 5 166 ± 5 

BMI (kg/m2) 24 ± 3 29 ±7 27 ± 8 

Systolic BP 121 ± 12 144 ± 19 133 ± 13 

Diastolic BP 73 ± 9 84 ± 11 82 ± 9 

Heart rate 62 ± 8 67 ± 16 66 ± 8 

Parity 2.07 ± 0.64 1.77 ± 0.73 2.07 ± 0.73 
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4.3.2 Cardiovascular risk factors of participants 

Cardiovascular risk factors for the 40 participants are shown in Table 4.3 

Table 4.3 Cardiovascular risk factors Data are given as n (%). N=Normal, 
      GH=Gestational hypertension,  
      PET=Pre-eclampsia.  

Variables         N       GH      PET 

        

Smoker (current) 2 (15%) 1 (8%) 0 (0%) 

Hypercholesterolaemia 5 (38) 7 (54%) 7 (50%) 

Hypertension 1 (8%) 5 (38%) 3 (21%) 

Diabetes 0 (0%) 0 (0%) 0 (0%) 

Ischaemic heart disease 0 (0%) 0 (0%) 0 (0%) 

Family history of ischaemic heart 
disease 5 (38%) 5 (38%) 7 (50%) 

 

 

 

 

 

 

 

 



  181 

4.3.3 Biochemical characteristics of 

participants 

Biochemical characteristics of the 40 participants are shown in Table 4.4 

Table 4.4 Biochemical characteristics Data are given as mean ± SD. 
      N=Normal, GH=Gestational  
      hypertension,    
      PET=Pre-eclampsia. 

Variables            N        GH      PET 

     

Total cholesterol (mmol/l) 4.59 ± 0.93 5.11 ± 0.77 5.03 ± 0.93 

Glucose (mmol/l) 4.65 ± 0.42 4.49 ± 0.37 4.8 ± 0.30 

Creatinine (mmol/l) 65 ± 10 57 ± 10 59 ± 6 

 

 

From the preceeding tables in can be seen that 15% of the normotensive 

group were current smokers, with only 8% in the GH group and no current 

smokers in the PET group. However, 64% of the PET group admitted to being 

ex-smokers. When looking at the general health of the 3 groups we see that 

the GH and PET group have a raised BMI of 29 ± 7 and 27 ± 8 (mean ± SD) 

respectively. Mean systolic BP was also slightly raised in the 2 groups being 

144 ± 19 mmHg in the GH group and 133 ± 13 mmHg in the PET group. 

Additionally, both groups had mean cholesterol levels greater than 5 mmol/l, 

albeit only slightly above the recommended limit. Those with normotensive 

pregnancies, demonstrated mean values of the aforementioned parameters 

within the recommended reference ranges, and therefore it can be assumed 

that they were in better overall health. 

 

 



  182 

4.3.4 Hypothesis 1 

Intima-media thickness distribution in the distal common 

carotid 

The first hypothesis that was tested was that women with a history of pre-

eclampsia demonstrate different IMT values according to angle in the distal 

CCA than women with a history of gestational hypertension or normotensive 

pregnancies. 

Figure 4.12 below illustrates the mean IMT values across the 3 groups as 

analysed in the distal CCA according to angle. This is shown for both right and 

left sides and also for mean IMT values when the corresponding values on the 

right and left side are combined i.e. the combined mean values of 90° on the 

right and its corresponding angle of 270° on the left (corresponding to the 

anteromedial wall) etc.  

The least squares estimates of means, corresponding standard errors and 

95% confidence intervals for the highest level interactions between the fixed 

effects (pregnancy group and angle) are listed in table 4.5 below.  

ANOVA found the main effect, angle, and the interactive effect, pregnancy 

group x angle, to be statistically significant. Hence it can be concluded that 

IMT is thicker in the anteromedial and medial walls compared to the 

posteromedial walls in all women, and that these differences according to 

angle are greatest in women with a history of preeclampsia. 
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(a) 

 

(b) 

Figure 4.12 Plots illustrating the mean CIMT values with error bars, 
representing the 95% confidence interval for the mean, for the 3 groups 
according to (a) angle and side, and (b) according to angle alone when both 
right and left mean CIMT values are combined. 
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Table 4.5 Intima-media thickness according to angle in the distal common 
carotid artery across the 3 groups 

Data are given as mean ± SE  N=Normal, GH=Gestational  
with 95% confidence intervals (CI) hypertension, PET=Pre-eclampsia.
      
 

Group Angle Mean 
IMT(mm) 

SE 
(mm) 

Lower 
CI (mm) 

Upper  
CI (mm) 

PET Anteromedial wall 0.6286 0.0150 0.5983 0.6589 

GH Anteromedial wall 0.6118 0.0154 0.5806 0.6431 

NORMAL Anteromedial wall 0.6049 0.0154 0.5737 0.6360 

PET Medial wall 0.6334 0.0149 0.6032 0.6636 

GH Medial wall 0.5977 0.0155 0.5664 0.6290 

NORMAL Medial wall 0.6118 0.0154 0.5806 0.6430 

PET Posteromedial wall 0.6121 0.0149 0.5820 0.6423 

GH Posteromedial wall 0.5859 0.0156 0.5545 0.6173 

NORMAL Posteromedial wall 0.6023 0.0155 0.5710 0.6336 
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4.3.5 Hypothesis 2  

Intima-media thickness distribution along the carotid 

vascular tree 

This hypothesis tested whether women with a history of pre-eclampsia 

demonstrate different IMT values along the vascular tree when compared to 

women with a history of gestational hypertension or normotensive 

pregnancies. We examined the IMT in the proximal CCA, distal CCA, carotid 

bulb and the ICA. 

The mean IMT values for the 3 groups along the vascular tree on both the right 

and left sides, and also with the combined mean IMT values of the right and 

left sides are shown in figure 4.13 below. 

The least squares estimates of means, corresponding standard errors and 

95% confidence intervals for the highest level interactions between the fixed 

effects (pregnancy group and vascular tree) are listed in table 4.6 below. 

ANOVA found the main effect vascular tree, and interactive effects pregnancy 

group x vascular tree, to be statistically significant. These differences are 

greatest within the PET group who demonstrated greater IMT in the proximal 

CCA, distal CCA and the ICA. No difference in IMT was found at the 

bifurcation. There is also a stepwise increase in IMT along the vascular tree, 

with it being thinnest in the proximal CCA and gradually increasing in thickness 

within the distal CCA and the bifurcation. For the GH and the normotensive 

groups the IMT then decreases in the ICA relative to the bifurcation. However 

in the PET group there is a further increase of the IMT within the ICA. Hence, it 

can be concluded that those with PET have different and greater values of IMT 

along certain levels of the vascular tree than those with GH or normotensive 

pregnancies. 
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(a) 

 

(b) 
Figure 4.13 Plots illustrating the mean CIMT values with error bars 
representing the 95% confidence interval for the mean, across the 3 groups 
according to (a) vascular tree and side, and (b) according to vascular tree 
alone when both right and left mean CIMT values are combined. CCA 
PROX=Proximal CCA, CCA DIST=Distal CCA, BIF=Bifurcation, ICA=Internal 
carotid artery. 
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Table 4.6 Intima-media thickness according to vascular tree across the 3 
groups 

Data are given as mean ± SE with  N=Normal, GH=Gestational 
95% confidence intervals (CI)   hypertension, PET=Pre- 
       eclampsia. 

ICA=Internal Carotid artery, BIF=Bifurcation, CCA=Distal common carotid 
artery, CCA PROX=Proximal common carotid artery 

      
 

Group Vascular 
tree 

Mean IMT 
(mm) 

SE (mm) Lower CI 
(mm) 

Upper CI 
(mm) 

PET ICA 0.6895 0.0162 0.6572 0.7217 

GH ICA 0.5780 0.0162 0.5455 0.6104 

NORMAL ICA 0.5802 0.0159 0.5483 0.6121 

PET BIF 0.6721 0.0154 0.6413 0.7029 

GH BIF 0.6626 0.0156 0.6313 0.6938 

NORMAL BIF 0.6801 0.0157 0.6485 0.7117 

PET CCA 0.6254 0.0144 0.5963 0.6544 

GH CCA 0.6010 0.0145 0.5717 0.6303 

NORMAL CCA 0.6055 0.0148 0.5755 0.6355 

PET CCA PROX 0.5833 0.0149 0.5533 0.6134 

GH CCA PROX 0.5411 0.0150 0.5109 0.5714 

NORMAL CCA PROX 0.5387 0.0155 0.5075 0.5699 
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4.3.6 Hypothesis 3 

Intima-media thickness compression patterns in the distal 

common carotid artery 

Intima-media thickness compression throughout the cardiac cycle was 

measured in terms of the difference in IMT values, measured in mm, between 

the diastolic and systolic measurements and expressed in terms of percentage 

of IMT compression during the cardiac cycle.  

Figure 4.14 below illustrates IMT % compression differences across the 3 

groups according to angle. 

Table 4.7 below demonstrates IMT compression patterns measured in 

percentage IMT compression throughout the cardiac cycle according to angle 

in the distal CCA. 

ANOVA found the main effect angle and the interaction effects group x angle 

to be significant. The PET group had the greatest IMT compression amongst 

the 3 groups within the posteromedial and medial walls, with the GH group 

demonstrating a comparatively slightly increased IMT compression within the 

anteromedial wall. The 3 groups demonstrated greatest % compression in the 

posteromedial wall, then the medial wall, with the anteromedial wall having the 

least amount of IMT compression (Figure 4.15 (b)). This was true for all groups 

and angles apart from the GH group within the anteromedial wall where % 

compression was greatest in this group. Hence it can be concluded that IMT 

compression in PET differs from GH or Normal groups according to angle and 

that compression is greatest in the PET group within the posteromedial and 

medial walls.  
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(a) 

 

(b) 
Figure 4.14 Plots illustrating the mean % compression differences in IMT 
values between diastole and systole, with error bars representing the 95% 
confidence interval for the mean, across the 3 groups according to (a) angle 
and side, and (b) according to angle alone when the mean IMT differences are 
combined for left and right. 
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Table 4.7 Intima-media thickness compression patterns according to angle 
measured as percentage compression in the distal CCA 

Data are given as mean ± SE with  N=Normal, GH=Gestational 
95% confidence intervals (CI)   hypertension, PET=Pre- 
       eclampsia. 

 

Group Angle Mean IMT % 

compression 

SE (%) Lower CI 

(%) 

Upper CI 

(%) 

PET Anteromedial wall -2.4723 0.4340 -3.3341 -1.6105 

GH Anteromedial wall -3.2604 0.4188 -4.0956 -2.4252 

NORMAL Anteromedial wall -1.9421 0.4075 -2.7561 -1.1280 

PET Medial wall -4.1802 0.4161 -5.0085 -3.3519 

GH Medial wall -2.6116 0.4268 -3.4618 -1.7613 

NORMAL Medial wall -2.8357 0.4189 -3.6709 -2.0004 

PET Posteromedial wall -4.4354 0.4144 -5.2605 -3.6102 

GH Posteromedial wall -3.0769 0.4476 -3.9661 -2.1878 

NORMAL Posteromedial wall -3.6238 0.4273 -4.4749 -2.7728 
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4.3.7 Hypothesis 4 

Intima-media thickness compression patterns along the 

vascular tree 

This hypothesis tested if women with a history of pre-eclampsia demonstrate 

different IMT compression along the vascular tree than those with a history of 

gestational hypertension or normotensive pregnancies.  

Figure 4.15 below illustrates the IMT compression differences expressed in 

terms of % compression across the 3 groups according to vascular tree. 

Table 4.8 illustrates IMT % compression along the vascular tree. 

The PET group illustrated different IMT % compression patterns according to 

vascular tree when compared with the GH and normotensive group. The 

pattern of compression in all 3 groups increases as we move along the 

vascular tree from proximal to distal CCA with further increased compression 

in the bifurcation. The IMT compression then slightly decreases within the ICA 

relative to the bifurcation. The PET group demonstrates the greatest 

compression in the distal CCA but not within the bifurcation or ICA.  

Using ANOVA we found that main effect vascular tree and interactions group x 

vascular tree to be significantly different. Hence, women with PET do illustrate 

different IMT compression percentages, according to vascular tree when 

compared to women with GH or normotensive pregnancies.  
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(a) 

 

(b) 
Figure 4.15 Plots illustrating the mean IMT % compression difference, with 
error bars representing the 95% confidence interval for the mean, across the 3 
groups according to (a) vascular tree and side, and (b) according to vascular 
tree alone when the mean IMT differences are combined for left and right. 
CCA PROX=Proximal CCA, CCA DIST=Distal CCA, BIF=Bifurcation, 
ICA=Internal carotid artery. 
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Table 4.8 Intima-media thickness % compression along the vascular tree 
according to the 3 groups 

Data are given as mean ± SE with N=Normal, GH=Gestational 95% 
confidence intervals (CI)   hypertension, PET=Pre-  
      eclampsia. 

ICA=Internal Carotid artery, BIF=Bifurcation, CCA=Distal common carotid 
artery, CCA PROX=Proximal common carotid artery 

Group Vascular 
tree 

Mean IMT % 
compression 

SE (%) Lower CI 
(%) 

Upper CI 
(%) 

PET ICA -3.5099 0.5704 -4.6316 -2.3882 

GH ICA -4.3400 0.5700 -5.4613 -3.2188 

NORMAL ICA -3.0327 0.4922 -4.0037 -2.0618 

PET BIF -4.0807 0.4784 -5.0243 -3.1372 

GH BIF -4.6371 0.4999 -5.6223 -3.6518 

NORMAL BIF -5.0976 0.4684 -6.0225 -4.1727 

PET CCA -3.7813 0.3418 -4.4667 -3.0959 

GH CCA -3.0758 0.3487 -3.7751 -2.3765 

NORMAL CCA -2.7575 0.3421 -3.4459 -2.0692 

PET CCA PROX -2.1766 0.4233 -3.0143 -1.3389 

GH CCA PROX -2.6692 0.4374 -3.5340 -1.8045 

NORMAL CCA PROX -2.1609 0.4393 -3.0301 -1.2917 
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4.3.8 Hypothesis 5 

Compliance and distensibility patterns in the common 

carotid artery 

This hypothesis examined whether women with a history of pre-eclampsia 

demonstrate different compliance and distensibility patterns within the proximal 

and distal CCA than those with a history of GH or normotensive pregnancy.  

Figures 4.16 and 4.17 below illustrate the mean compliance and distensibility 

coefficients respectively within the CCA across the 3 groups as measured in 

the proximal CCA and the distal CCA. 

Tables 4.9 and 4.10 below illustrate the mean compliance coefficients (CC) 

and distensibility coefficients (DC) respectively within the proximal and distal 

CCA. 

Using ANOVA we found compliance and distensibility coefficients 

demonstrated significantly different values in the PET group when compared 

with the GH and normotensive groups. This was most noticeable within the 

distal CCA where the GH group had the stiffest vessels, followed by the PET 

group with the normotensive group demonstrating greatest compliance and 

distensibility. The CCA was less compliant in the proximal CCA than in the 

distal CCA for all groups. Distensibilty increased from the proximal CCA to the 

distal CCA in the normotensive group. However, in the PET group there was 

only a minimal increase in distension when compared with the proximal CCA, 

and in the GH group there was actually a slight decrease in distal CCA 

distensibility when compared with the proximal CCA. It is clear from our results 

that both the GH and PET groups demonstrated increased stiffness in the form 

of less compliant and distensible arteries in the distal CCA when compared to 

normotensives. 
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(a) 

 

(b) 
Figure 4.16 Plots illustrating the mean compliance coefficient with error bars, 
representing the 95% confidence interval for the mean, across the 3 groups 
within the proximal CCA and the distal CCA for (a) both right and left sides, 
and (b) according to vascular tree alone. CCA TRANS PROX=Proximal CCA 
transverse, CCA TRANS DIST=Distal CCA transverse. 
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Table 4.9 Mean compliance coefficients within the proximal and distal CCA  

Data are given as mean ± SE with N=Normal, GH=Gestational 95% 
confidence intervals (CI)   hypertension, PET=Pre-
CC=compliance coefficient   eclampsia. 

CCA TRANS DIST=Distal CCA transverse, CCA TRANS PROX=Proximal 
CCA transverse 

 

Group Vascular 

tree 

Mean CC 

mm2/kPa-1 

SE 

mm2/kPa-1 

Lower CI 

mm2/kPa-1 

Upper CI 

mm2/kPa-1 

PET CCA TRANS 

DIST 

0.9238 0.0674 0.7877 1.0598 

GH CCA TRANS 

DIST 

0.7054 0.0698 0.5645 0.8462 

NORMAL CCA TRANS 

DIST 

1.0954 0.0693 0.9555 1.2353 

PET CCA TRANS 

PROX 

0.8035 0.0668 0.6685 0.9385 

GH CCA TRANS 

PROX 

0.6627 0.0694 0.5226 0.8029 

NORMAL CCA TRANS 

PROX 

0.7593 0.0694 0.6190 0.8995 
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(a) 

 

(b)  
Figure 4.17 Plots illustrating the mean distensibility coefficient with error bars, 
representing the 95% confidence interval for the mean, across the 3 groups 
within the proximal CCA and the distal CCA for (a) both right and left sides, 
and (b) according to vascular tree alone. CCA TRANS PROX=Proximal CCA 
transverse, CCA TRANS DIST=Distal CCA transverse. 
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Table 4.10 Mean distensibility coefficients within the proximal and distal CCA  

Data are given as mean ± SE with N=Normal, GH=Gestational 95% 
confidence intervals (CI)   hypertension, PET=Pre-
DC=distensibility coefficient  eclampsia. 

CCA TRANS DIST=Distal CCA transverse, CCA TRANS PROX=Proximal 
CCA transverse 

 

Group Vascular  

tree 

DC 

10-3/kPa-1 

SE  

10-3/kPa-1 

Lower CI 

mm2/kPa-1 

Upper CI 

mm2/kPa-1 

PET CCA TRANS 

DIST 

27.1434 1.8192 23.4771 30.8097 

GH CCA TRANS 

DIST 

22.3027 1.8811 18.5103 26.0952 

NORMAL CCA TRANS 

DIST 

35.0175 1.8642 31.2556 38.7795 

PET CCA TRANS 

PROX 

26.4942 1.7992 22.8640 30.1243 

GH CCA TRANS 

PROX 

23.3565 1.8682 19.5875 27.1256 

NORMAL CCA TRANS 

PROX 

26.9197 1.8701 23.1472 30.6922 
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4.4 Discussion 

The IMT in the distal CCA was significantly different across all angles of 

interrogation in the PET group when compared with the other 2 groups, and 

the PET group also demonstrated greater IMT values across all angles, with 

IMT being thicker in the anteromedial and medial walls in all groups. 

We also found the PET group to have significantly different and greater values 

of IMT along certain levels of the vascular tree than those with GH or 

normotensive pregnancies, notably within the proximal CCA and the ICA. 

IMT compression throughout the cardiac cycle in the PET group differs 

significantly from GH or Normal groups according to angle, with compression 

greatest in the PET group within the posteromedial and medial walls. Women 

with PET also illustrate significantly different IMT compression according to 

vascular tree when compared to women with GH or normotensive 

pregnancies. 

Both the GH and PET groups demonstrated significantly increased vascular 

stiffness in the form of less compliant and distensible arteries in the distal CCA 

when compared to normotensives. 

If we consider our analysis of the IMT in the distal CCA according to angle, our 

results are in line with a study carried out by Tajik et al in 2011. This group 

demonstrated an asymmetrical and helical like distribution of atherosclerosis in 

the carotid artery by examining the carotid arteries of 3364 subjects across 4 

multicenter international trials (Tajik et al, 2011). Ultrasound was performed at 

10 different angles of interrogation using the Meijer arc. In the distal CCA we 

found similar patterns of asymmetrical IMT distribution in the anteromedial, 

medial and posteromedial walls as in this large study. The IMT across all 

angles was statistically different in the PET group than the other 2 groups, and 

demonstrated greater IMT values across the majority of angles for both right 

and left sides albeit not at a significant level. All angles demonstrated greatest 

IMT in the PET group. When angles are combined for an overall average IMT 

value in the distal CCA the PET group had a greater IMT value than the other 
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groups, albeit not at a statistically significant level. This is in line with previous 

studies demonstrating increased CIMT in those with pre-eclampsia (Blaauw J 

et al, 2006). To our knowledge however this is the first study to examine the 

distribution of IMT according to angle in such a group. 

In our study there is a stepwise increase in IMT as we travel distally along the 

vascular tree. This was previously described by Espeland MA, et al in 1994. 

This group examined the carotid arteries of 899 asymptomatic low-risk 

participants aged between 40 and 79. They demonstrated that IMT increases 

gradually in the common carotid artery, peaks within the bifurcation and then 

decreases gradually within the ICA (Espeland MA, et al 1994). Our results 

mirror this pattern in the GH and normotensive group and also in the PET 

group as far as the bifurcation. The further stepwise increase of IMT within the 

ICA in the PET group may be suggestive of an early atherosclerotic process in 

this asymptomatic group of women. To our knowledge this is the first study to 

demonstrate the differences in IMT along the vascular tree in such a group of 

women. 

In phase 1 of this cohort study performed by Dr Catherine Brown (unpublished 

data) the IMT value for the PET group in the distal CCA was 0.46 ± 0.05 mm 

(mean ± SE). Our results demonstrate IMT in this group to be 0.6254 ± 0.0144 

mm (mean ± SE). The between study difference in IMT values may be 

explained by smaller numbers in the follow-up study, difference in technique 

and equipment with more measurements taken at 3 different angles in phase 

2, or indeed progression in IMT over time.  

The patterns of IMT within the distal CCA according to angle and within the 

vascular tree are due to the local haemodynamic forces acting within the artery 

resulting in atherosclerosis formation at branch points, the outer walls of the 

bifurcation and the inner walls of curvatures. These are regions where 

endothelial shear stress (ESS) is lowest and tensile stress greatest. ESS also 

has an impact on NO, which is also involved in the generation of 

atherosclerosis and has been explored in detail in chapter 1.  

This pattern of increasing IMT compression from the anteromedial wall to the 

posteromedial wall does not follow the overall pattern of IMT thickness being 
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greatest in the anteromedial and medial walls. One explanation for this would 

be the fact that the exact anatomical orientation of the carotid bifurcation and 

its location varies somewhat between individuals and would therefore produce 

some variation in haemodynamics at the bifurcation between individuals 

(Masawa et al, 1994). A greater arterial expansion is likely to result in greater 

thinning of the artery and resultant increased IMT compression. This of course 

would be extremely difficult to prove in practice, however the pattern of 

increasing compression from the anteromedial wall to the posteromedial wall is 

interesting, and as seen with different IMT values in the distal CCA according 

to angle, is likely related to differences in shear stress and local 

haemodynamics.  

The fact that the PET group had the greatest IMT compression amongst the 3 

groups may also be secondary to possible alterations in the structural and 

biomechanical properties of the arterial wall that may exist within this group. 

This would provide a similar explanation to that which Polak et al explored in 

2012. They found a positive relationship between IMT compression and pulse 

pressure. This group hypothesized altered wall mechanics resulted in 

increased IMT compression due to greater arterial expansion in the radial 

direction and therefore greater compression of the IMT. However they also 

noted a positive relationship between age and LDL levels and IMT 

compression. They found this relationship difficult to explain as age and LDL 

are associated with increased arterial stiffness (Polak et al, 2012).  

The pattern of increasing IMT compression as we travel distally along the 

vascular tree, with peak compression occurring within the bifurcation, is likely 

secondary to haemodynamic factors. These factors include relatively high 

shear stress and low tensile stress in the proximal CCA and decreased shear 

stress and high tensile stress within the distal CCA and bifurcation. 

To our knowledge this is the first study to examine the IMT compression 

patterns according to interrogation angle in the distal CCA and along the 

vascular tree in such a group of women. 

Compliance and distensibility coefficients demonstrated significantly different 

values in the PET group when compared with the GH and normotensive 
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groups, most noticeably within the distal CCA where the GH group had the 

stiffest vessels, followed by the PET group with the normotensive group 

demonstrating greatest compliance and distensibility. The CCA was less 

compliant in the proximal CCA than in the distal CCA for all groups, likely 

secondary to haemodynamic forces in the distal CCA being more turbulent in 

this region when compared with the proximal CCA where there is more laminar 

blood flow. The distending pressure in the distal CCA will exert a greater radial 

tensile stress, thereby resulting in an increase in coefficient values closer to 

the bifurcation. As explained in section 1.6.2, the pressure wave increases as 

we travel distally along the vascular tree, which may also explain the overall 

increase in compliance coefficients in the distal CCA. Our results show that 

both the GH and PET groups demonstrated increased stiffness in the form of 

less compliant and distensible arteries in the distal CCA when compared to 

normotensives. This is suggestive of an early atherosclerotic process occurring 

in these women. Interestingly, the pulse pressure, an indirect marker of arterial 

stiffness, in the GH group was 60 ± 14 mmHg and in the PET group 51 ± 7 

mmHg (mean ± SD). Pulse pressure in the normotensive group was the lowest 

among the groups at 48 ± 6 mmHg. Systolic blood pressure, another indirect 

marker for arterial stiffness, was also greater in the GH and PET groups as 

seen in table 6.1 above, further suggesting an overall increase in arterial 

stiffness in these groups when compared to the normotensive group.  

The study had a number of limitations including relatively low numbers. 

Although 124 women were invited to participate only 40 agreed to take part. 

The relatively low numbers were offset by the extensive analysis of the carotid 

arteries however, with approximately 16,000 individual images analysed 

between the 40 study participants. 

Another limitation is that brachial blood pressure was used to calculate pulse 

pressure, which was in turn used to determine carotid artery compliance and 

distensibility. This method has been used by other groups to calculate arterial 

stiffness and gives a reasonable estimation of pulse pressure (Van Dijk RA et 

al, 2000), however, it may in fact overestimate stiffness in the peripheral 

arteries (Laurent S et al, 2006). Applanation tonometry used to estimate local 

arterial pulse pressure provides a more accurate estimate of stiffness.  
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4.4.1 Future work 

Those with a history of pre-eclampsia are at increased risk of future 

cardiovascular events and our results demonstrate they have increased IMT 

when compared to those without such a history. These women should be 

advised of this increased risk and prescribed optimal cardiovascular protective 

lifestyles and therapies such as BP lowering and statin therapy. 

Future studies should take into account the asymmetrical distribution of IMT in 

the distal CCA, as a single IMT measurement from a single or inconsistent 

angle will no doubt make IMT measurements less reliable, accurate or indeed 

representative. As such multiple measurements taken from at least 3 angles of 

interrogation are recommended. 

Further studies should be performed on those with pre-eclampsia, or indeed 

other asymptomatic groups who have an increased risk of future 

cardiovascular events, to examine whether the IMT in the ICA increases 

relative to the bifurcation and CCA and what impact this may have on their 

future cardiovascular health.  

If future studies are to examine IMT compression patterns and stiffness, the 

measurement of local arterial blood pressure using tonometry may be helpful 

to assess if this has a significant influence. In particular the use of applanation 

tonometry in our study may have been able to show local pressure differences 

within the proximal and distal common carotid artery, thus providing a possible 

explanation for the increased compliance patterns observed in the distal CCA 

when compared to the proximal CCA. Novel methods of measuring local 

arterial stiffness such as PWI, UltraFast imaging, shear wave elastography, 

speckle tracking and other emerging techniques as discussed in section 1.7, 

may further our understanding of local arterial stiffness in asymptomatic 

groups. They may also aid in our understanding of IMT compression 

differences according to angle in the distal CCA and along the vascular tree. 

Indeed, if there is to be a follow up study of these patients, perhaps using a 

novel ultrasound approach such as speckle tracking imaging could be 

employed to assess arterial stiffness and IMT distibution in these groups of 
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women. This is sure to further our understanding of early subclinical 

atherosclerosis in such asymptomatic groups. 

 

4.4.2 Conclusion 

We demonstrated different IMT values according to angle in the distal CCA 

between the PET, GH and normotensive groups and a pattern of IMT 

distribution in the distal CCA with the medial wall having the greatest IMT 

values amongst all 3 groups. This was statistically significant, and provides 

further evidence that those with a history of pre-eclampsia demonstrate greater 

IMT than those without such a history, and as such, may put them at increased 

risk of developing future cardiovascular events. There is also a stepwise 

increase in IMT values along the carotid vascular tree that peaks in the 

bifurcation and then decreases in the ICA. This was true for all groups except 

the PET group who demonstrated a further increase in IMT in the ICA. The 

PET group had significantly different IMT values and greater IMT differences 

along the vascular tree when compared with the GH and normotensive groups. 

These patterns of IMT distribution have been demonstrated in previous studies 

however, to our knowledge never in such a group of asymptomatic women. 

Also the stepwise increase in IMT in the ICA may signify an accelerated 

atherosclerotic process in the PET group and warrants further evaluation in 

other pre-eclampsia sufferers and perhaps similar asymptomatic groups. The 

percentage compression of IMT throughout the cardiac cycle was significantly 

different amongst the 3 groups in both the distal CCA according to angle and 

along the vascular tree. The IMT demonstrated increased compression from 

the anteromedial to the posteromedial wall and also from the proximal CCA to 

the distal CCA and bifurcation with subsequent decreasing compression in the 

ICA. The PET group had the greater compression in the distal CCA. IMT 

compression patterns are not easily explained from our study but we 

hypothesise they may be secondary to anatomical variations, haemodynamic 

factors or perhaps structural and biochemical properties within the vessel wall. 

Both carotid compliance and distensibility were significantly different amongst 
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the 3 groups with the GH and PET groups demonstrating increased vascular 

stiffness in comparison to the normotensive groups. This is suggestive of an 

early atherosclerotic process which again, may put these women at risk for 

future cardiovascular events . Both IMT compression and arterial stiffness 

should be further examined in future studies using more novel non-invasive 

ultrasonic techniques measuring arterial stiffness and vascular wall mechanics. 
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Chapter 5. Conclusion 
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Conclusions 

This thesis attempted to improve our understanding and detection of early 

vascular disease using ultrasound and consisted of 2 ultrasound based 

studies. The first study compared an established 2D US based method of 

assessing flow-mediated dilatation with a novel 3D US approach. The second 

study used US to assess for subtle differences in vascular structure and 

function in women with and without a history of pre-eclampsia or gestational 

hypertension. 

Throughout this process I have gained valuable knowledge on how to design a 

research project. This included gaining ethics approval and the recruitment of 

participants. It also involved meeting with hardware providers and sourcing the 

best available analysis software. There was extensive background reading 

required to understand 2D and 3D ultrasound, endothelial dysfunction, 

atherosclerosis and its non-invasive methods of assessment. Furthermore, 

knowledge of pre-eclampsia, intima-media thickness and arterial stiffness and 

their non-invasive means of assessment were also required.  

In order to complete the studies, it was necessary to be proficient in ultrasound 

techniques. Having had no prior US experience, this meant a steep learning 

curve to progress to a level capable of performing consistent vascular US prior 

to commencing the examinations. This process has no doubt helped me in my 

career as a radiologist. 

Following the US studies came extensive image analysis and compilation of 

the results. This gave me a valuable insight into statistical analysis and in 

particular ANOVA. 

Flow-mediated dilatation is an endothelial dependant process reflecting the 

dilatation of a conduit artery when exposed to increased blood flow and 

subsequently increased shear stress. It requires an intact and healthy 

endothelium and therefore is suppressed in those with cardiovascular risk 

factors. 2D FMD is limited as a research tool due to difficulties in assessment 

of true arterial diameter, reproducibility and technical difficulties. We 
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hypothesised that 3D US would eliminate probe malalignment errors that occur 

in 2D resulting in underestimation of arterial diameter. We also tested to see if 

3D FMD was more reproducible. Our findings suggest that 3D gives a greater 

and more accurate measurement of arterial diameter. This should be 

confirmed in future bench studies comparing diameter measurements of 

arterial phantoms using 2D and 3D US. We found similar 2D and 3D FMD 

reproducibility. 

We also looked to assess for subtle alterations in the vascular structure and 

function in young women with and without a history of pre-eclampsia or 

gestational hypertension. Pre-eclampsia is associated with increased future 

cardiovascular risk including increased IMT and arterial stiffness. Using 2D US 

we assessed for alterations in the distribution of IMT, and for IMT compression 

patterns, at multiple angles of insonation in the distal CCA and along the 

carotid arterial tree. We found the PET group had greater IMT in areas of the 

arterial tree with a predilection for atherosclerosis i.e. the medial wall and the 

ICA. In addition to the gestational hypertension group, they also demonstrated 

increased arterial stiffness in the distal CCA when compared to the 

normotensive group. These findings suggest an accelerated atherosclerotic 

process and provide further evidence that having a history of pre-eclampsia 

may put these asymptomatic women at future risk of cardiovascular events. 

The IMT compression patterns in the PET group differed according to vascular 

tree and angle of insonation. The reasons for this are not easily explained 

however they may be secondary to anatomical variations, haemodynamic 

factors or perhaps structural and biochemical properties within the vessel wall. 

Our extensive US examination of the carotid arterial tree supports other 

studies assessing carotid vascular structure and function and provides a 

unique detailed assessment of how the artery is affected following pre-

eclampsia and gestational hypertension. This may aid in our understanding of 

how this particular disease process affects the vascular health of these women 

and other asymptomatic groups at risk of future cardiovascular events. 

Real-time high resolution 4D US will likely provide improved temporal and 

spatial resolution. We believe that by identifying 3D US as a useful and 

comparable tool to 2D US in assessing FMD, that we have provided a stepping 
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stone for this to happen and therefore facilitate a more accurate assessment of 

endothelial function. Furthermore, our US evaluation of women with a history 

of pre-eclampsia and gestational hypertension further improves our 

phenotypical knowledge of how these conditions affect the carotid arterial tree 

and how they may result in increased future cardiovascular risk.  

  

 


