
Royal College of Surgeons in Ireland

repository@rcsi.com

Violin SuperPlots: visualizing replicate heterogeneity in large data sets.Violin SuperPlots: visualizing replicate heterogeneity in large data sets.

AUTHOR(S)

Martin Kenny, Ingmar Schoen

CITATION

Kenny, Martin; Schoen, Ingmar (2021): Violin SuperPlots: visualizing replicate heterogeneity in large data
sets.. Royal College of Surgeons in Ireland. Journal contribution.
https://hdl.handle.net/10779/rcsi.15073512.v2

HANDLE

10779/rcsi.15073512.v2

LICENCE

CC BY 4.0

This work is made available under the above open licence by RCSI and has been printed from
https://repository.rcsi.com. For more information please contact repository@rcsi.com

URL

https://repository.rcsi.com/articles/journal_contribution/Violin_SuperPlots_visualizing_replicate_heterogeneity_i
n_large_data_sets_/15073512/2

mailto:repository@rcsi.com
https://hdl.handle.net/10779/rcsi.15073512.v2
https://repository.rcsi.com
mailto:repository@rcsi.com
https://repository.rcsi.com/articles/journal_contribution/Violin_SuperPlots_visualizing_replicate_heterogeneity_in_large_data_sets_/15073512/2

1

Supplementary Information accompanying the article

Violin SuperPlots: Visualising replicate heterogeneity in large datasets

M. Kenny and I. Schoen

Molecular Biology of the Cell, Volume 32, July 15, 2021

doi: 10.1091/mbc.E21-03-0130

Table of contents

Supplementary Figures .. page 2

User documentation of the ‘Superviolin’ Python package page 6

Appendix A: Basic implementation of Violin SuperPlots in MATLAB page 13

file:///C:/Users/schoenbub/Documents/Arbeit/Projects/side/Violin%20Superplots/MoBC/Proofs/doi.org/10.1091/mbc.E21-03-0130

2

Supplementary Figures

3

◄ Supplementary Figure S1. Comparison of Beeswarm SuperPlots and Violin SuperPlots using

simulated data with varied numbers of biological (3, 6, 12, 24) and technical (6, 36, 216, 1296)

replicates. Technical replicates representing e.g. single cell data were randomly drawn from

normal distributions with means and standard deviations varying between biological replicates.

Beeswarm SuperPlots were created using the SuperPlotsOfData web app by Joachim Goedhart

(https://huygens.science.uva.nl/SuperPlotsOfData/). The same data was plotted using the

Superviolin Python package and is shown side-by-side for comparison. Violin SuperPlots provide

a fast visual assessment of heterogeneity between and within biological replicates in all cases,

with a remarkably similar perception despite the large variation in numbers. Limitations arise for

many (>18) biological replicates when the colour code is not unique anymore, as well as for few

(<10) technical replicates where the density estimation kernel is smoothing out the discrete

distribution of the raw data. Beeswarm SuperPlots work well for low numbers of technical and

biological replicates. However, the heterogeneity within biological replicates becomes difficult to

assess for 6 or more colour-coded biological replicates. Moreover, with increasing number of data

points from either many technical replicates and/or many biological replicates, not all data points

are visible anymore despite their partial transparency, which can lead to the complete masking of

datasets in the background, as seen especially for >200 technical replicates.

Supplementary Figure S2. Violin SuperPlot generated by the running the superviolin demo

command from the Anaconda command line prompt.

https://huygens.science.uva.nl/SuperPlotsOfData/

4

Supplementary Figure S3. Examples for the usage of optional name-value pairs and their effect

on the appearance of Violin SuperPlots in the Python Superviolin package. For a detailed

description of optional parameters, see section 6 (pages 11-12). a) 1: default settings (the

smoothing bandwidth (bw) calculated by Scott’s Method was 0.341). 2: bw = 0.2. 3: bw = 0.6. 4:

centre_val: median (value used to plot the middle line of the summary statistics), error_bars: CI

(use 95% confidence intervals for the error bars), sep_linewidth: 0.2 (changes the width of the

lines separating the stripes in each Violin SuperPlot). 5: cmap: Accent (the colours used to

represent each replicate on the Violin SuperPlot). 6: show_legend: yes (whether to show a legend

which provides the replicate names). b) xlabel: Four conditions, ylabel: Variable (AU), order: 1, 3,

2, 0 (order of the conditions on the x-axis). c) total_width: 0.5 (the width of each Violin SuperPlot

in the figure), xlabel: Multiple conditions, ylabel: Arbitrary units (AU).

5

Supplementary Figure S4. Examples for the usage of optional name-value pairs and their effect

on the appearance of Violin SuperPlots in the MATLAB implementation. For a detailed description

of optional parameters, see Appendix A (pages 13-15). Simulated data contained 50-100

technical replicates each per biological replicate. a) 1: default settings. 2: ‘Width’, 0.3; changes

the overall width of the violin. 3: ‘FaceAlpha’, 0.35; changes the transparency of stripe colours. 4:

‘LUT’, ‘jet’; changes the look up table for the coloured stripes. 5: ‘Centrals’, ‘robustmean’;

determines which centrality measure is displayed as a circle overlaid with each stripe. 6:

‘Errorbars’, ‘ci’; changes the error bars. 7: ‘LineWidth’, 0.1; changes the line width of stripe outlines

and marker edges. b) Variation of the ‘Bandwidth’ parameter which determines the smoothing of

the histogram data. Small bandwidths more closely reflect the raw data at the cost of losing the

easy visual appreciation of the histogram distributions.

6

User documentation of the ‘Superviolin’ Python package

The superviolin package can be used to create Violin SuperPlots. As well as a tutorial on

how to use the package, this documentation provides an introduction to Python

installation and package management to enable non-programmers to easily setup a

Python workspace to use this software.

When using this software for your research, please cite our article.

1. Python installation for non-programmers

If you haven’t used Python before, you will be installing a Python distribution called

Anaconda, which is widely used by scientific Python developers. A distribution is a bundle

that contains the components necessary to run Python, as well as some domain-specific

packages. For example, the Anaconda distribution is intended for use as a data science

solution and contains packages for machine learning, scientific data analysis, and much

more. It ships with over 200+ packages, including the package dependencies for

Superviolin.

However, as this guide is aimed at non-programmers, we will be installing the Miniconda

distribution, which has the same functionality as Anaconda, but saves on hard drive space

and installation time by only installing the basic packages required for it to function. If

there are other packages you want to use in the future, you can install them manually

later on.

To install Miniconda:

1. Download the Python 3.x Miniconda installer for your OS at

https://docs.conda.io/en/latest/miniconda.html.

Superviolin requires the installed Python version to be at least 3.6.2

2. Run the installer and follow the on-screen instructions, using the default settings

you are prompted with.

3. Congratulations! You now have a functional Python environment on your

computer!

You can now proceed to installing Superviolin. Python has a so-called package manager

which is used to install, update, and remove packages. It ensures that all package

https://docs.conda.io/en/latest/miniconda.html

7

dependencies are maintained and will warn you if something would be broken by a new

package installation.

Superviolin uses basic functions from Numpy, Scipy, and Pandas which aren’t likely to be

changed dramatically, so you don’t need to worry about the version number. As long as

you installed Python 3.6.2 or later, Superviolin should install just fine.

Installing Python packages requires you to enter text commands in the terminal (Mac,

Linux) or in Anaconda Prompt (Windows). Spacing and upper/lower case must be

maintained to ensure the commands run as expected. Most common programming errors

occur due to these mistakes and they affect both experienced and beginners alike, though

experienced programmers tend to get these errors less often.

To install Superviolin, open up the terminal or Anaconda Prompt and enter:

pip install superviolin

The package manager will list the dependencies required and install them for you. Once

you see a message stating superviolin was successfully installed, you can proceed to the

next section and try out the package with your data.

2. Superviolin command overview

The superviolin CLI has 3 commands:

demo

This command creates a Violin SuperPlot using dummy data that ships with the package.

Run superviolin demo from your command prompt after installation to be sure the

package is working. It should generate a figure similar to Supplemental Figure S2

above. If you get an error, please contact Martin Kenny at mkenny5@tcd.ie to report your

issue so that it can be corrected.

init

The superviolin init command generates an ‘args.txt’ file in the current directory,

which will be used to generate a Violin SuperPlot based on the Excel or csv file of your

data, located in the same folder.

mailto:mkenny5@tcd.ie

8

plot

The superviolin plot command renders the Violin SuperPlot as a figure. This layout

can be edited prior to saving. A paired or unpaired t-test is run if there are 2 conditions to

be compared. A one-way ANOVA followed by Tukey’s tests with Bonferroni corrections

are run when there are 3 or more conditions. Statistical test results are output on the

Anaconda command line interface, as well as saved in a ‘posthoc_statistics.txt’ file in the

same folder as the data. There is no strict limit for the number of conditions that can be

plotted/compared, apart from the size of the plot window which limits the navigation of the

plot.

NOTE: To run any of these commands, enter it into your terminal or Anaconda Prompt.

3. Generating a Violin SuperPlot

Superviolin comes with a command-line interface (CLI) so you can generate SuperPlots

using the terminal or Anaconda Prompt. You can also import the “Superviolin” class into

your Python scripts and extend its functionality to create your own specific brand of Violin

SuperPlot, but first, let’s understand how it works. This section also contains a simple

how-to for non-programmers.

1. Prepare your data as a *.csv or Excel file and place it into an empty folder. The

data should be arranged in either (A) the tidy data format where you have a column

for each variable/property and a row for each observation, or (B) ‘untidy’ data in an

Excel workbook where each sheet is an experimental replicate containing columns

for each condition. The tidy data format is preferred because it is more flexible.

For tidy data, the Condition column specifies if an observation belongs to a

different condition (control vs drug, different drug concentrations, wild type vs

mutant, etc.), the Value column(s) specify the value(s) of the measured variable(s)

(spreading area, circularity, intensity, etc.), and the Replicate column specifies

which replicate the observation is from (donor ID, date, well, etc.).

Condition Area Ellipticity Replicate

Control 25.2 1.434 Donor 1
Control 17.1 1.017 Donor 1

… … … …
Drug 26.6 1.418 Donor 1

9

Drug 12.4 1.592 Donor 1
… … … …

Control 28.9 1.481 Donor 2
Control 35.3 1.294 Donor 2
Control 39.5 1.374 Donor 2

… … … …
Drug 9.8 1.767 Donor 2
Drug 18.9 1.660 Donor 2
Drug 32.2 1.376 Donor 2

… … … …
Control 34.1 1.374 Donor 3

… … … …
Drug 25.5 1.810 Donor 3

… … … …

Example of a data file in tidy format (either csv or Excel file).

For ‘untidy’ data, column names have to be exactly the same across replicates to allow

the software to combine the data for plotting; the data in each column doesn’t have to be

paired data, i.e. can have different number of entries. Column names should not contain

special characters or sub/super-script.

Example of a data file in an ‘untidy’ format (several Excel spreadsheets).

2. Open the terminal or Anaconda Prompt. Navigate to the folder containing the data

file by typing & copy-pasting cd drive:\full\path\to\your\data\folder

into the command line (replace the ‘drive:\...’ by your actual path).

3. Run superviolin init to generate the args.txt file in this folder.

4. Edit the args.txt file with the parameters specific to your data file. Optional

arguments are detailed in section 6. The required parameters are:

i. filename, the name of your data file. Must be in CSV or Excel format.

10

ii. data_format, whether the data follows the format of tidy data (table above)

or ‘untidy’ data (figure above). NOTE: when using the untidy format, the

package creates a tidy format dataframe from the Excel sheets, and the

columns of this dataframe are named from the following 3 arguments.

For tidy data, additional inputs are required:

iii. condition, the column in your dataset which specifies the experimental

conditions.

iv. value, the variable to be plotted from your dataset.

v. replicate, the name of the replicate column in your dataset.

5. Save the args.txt file.

6. Run superviolin plot to generate your Violin SuperPlot which will open in the

“Figure 1” window. Please note that the Figure window needs to be closed to be

able to access the command line / Anaconda prompt again.

Simply changing the filename in the args.txt file will allow you to apply those settings to

other CSV or Excel files with the same structure, provided the new filename is in the same

directory as the args.txt file.

4. Editing your Violin SuperPlot

Most of the editing of the Violin SuperPlot is done directly in the args.txt file. The basic

Violin SuperPlot generated by the program can then be further adapted to edit the amount

of whitespace around your plot. Supplemental Figure S2 shows the Violin SuperPlot

generated by the superviolin demo command. The whitespace around the plot is

already optimized within the code, but the size of these spaces can be adjusted by clicking

on the slider button to open a menu of sliders corresponding to the whitespace to the

top, bottom, left, and right of the plot.

5. Saving your Violin SuperPlot

Once satisfied with the plot, you have the option to save it either as a rendered image or

a vector graphics image. Clicking the save icon will open a dialog to choose the location

for saving your figure and allow you to select the appropriate output format from the

dropdown menu.

11

Rendered images: preferred are lossless formats (TIFF, PNG). The plot is saved at the

resolution specified during creation of the plot (see section 6 below for optional arguments

in the ‘args.txt’ file).

For maximal resolution and further editing in other programs, it is recommended to save

the figure in SVG vector graphics format.

6. Optional arguments in args.txt used to customize the Violin SuperPlot

For example usages of optional arguments, see Supplemental Figure S3.

i) Xlabel and Ylabel indicate the labels you wish to use for the x and y axes. These

arguments can be left unchanged if you don’t wish to have a label on either axis.

Special characters and super/sub-script formatting can be specified using

Python’s string formatting: https://pythonforundergradengineers.com/unicode-

characters-in-python.html

 For example, the y-axis label “spreading area (µm2)” in Supplemental Figure S2

is input into the args.txt file as “spreading area ($\mu$$m^2$)”, where μ and

the m^2 correspond to the Greek letter µ and the m2, respectively.

ii) Order, the order of the experimental conditions to be displayed on the x axis. The

values in this argument MUST be separated by a single comma and single space

otherwise it will throw an error. There is no default order.

 In the above example: ‘Control, Drug’

iii) Middle_vals, the central measure of each replicate. Displayed as circles over each

replicate stripe. Default is mean. Accepted values are “mean”, “median”, or

“robust”. The “robust” mean ignores the upper and lower 2.5% of the data before

taking the mean of the inner 95%.

iv) Centre_val, the central tendency (mean or median) calculated from replicate

means (or medians) and shown between the error bars on the plot. Default is

mean.

v) Error_bars, whether to use the standard error of the mean (SEM), the standard

deviation (SD), or 95% confidence interval (CI) for plotting error bars. Default is

SEM.

https://pythonforundergradengineers.com/unicode-characters-in-python.html
https://pythonforundergradengineers.com/unicode-characters-in-python.html

12

vi) Bw, the bandwidth of the kernel density estimator, a decimal smoothing factor for

stripe and violin outlines. The default value is “None”, which means an optimal

value will be calculated using Scott’s Rule and the software will show this quantity

in the Anaconda Prompt or Terminal window.

vii) Paired_data, whether to run a paired samples t-test or a non-paired t-test for

statistical comparison of replicates. Values are either “yes” or “no”. Only applicable

if exactly two conditions are provided/present.

viii) Stats_on_plot, choose whether to display t-test statistics on the plot. Only

applicable for 2 experimental conditions. Either “yes” or “no”.

ix) Ylimits, the minimum and maximum values to display on the y-axis. Should be in

the form “low, high” e.g. “0.5, 1.5”. If this argument is to be ignored, leave the value

as “None”.

x) Total_width, the overall normalised width of each violin in decimal form. Should

be between 0 and 1. Default is 0.8.

xi) Linewidth, the width of lines (in points) used to plot summary statistics and the

outline of each violin. Default is 1.

xii) Show_legend, whether to show a legend or not. The legend links the names of

each replicate to the corresponding colour-coded stripe in each Violin SuperPlot.

xiii) Cmap, the colourmap specifying the colours used for the replicates. Set2 is the

default colourmap, but users can specify a list of colours or a colourmap of their

choosing from https://matplotlib.org/stable/gallery/color/named_colors.html or

https://matplotlib.org/stable/tutorials/colors/colormaps.html

xiv) Dpi, the dots per inch used for saving the plots. Plots are rendered at 300dpi for

display purposes, but can be saved at much higher resolution, as Python cleverly

manages an object for the figure which can be rendered and saved at different dpi

values. The default value for saving is 600dpi, but can accommodate other values

e.g. 300 or 1200.

https://matplotlib.org/stable/gallery/color/named_colors.html
https://matplotlib.org/stable/tutorials/colors/colormaps.html

13

Appendix A. Basic implementation of Violin SuperPlots in MATLAB

If you have questions regarding the use of these MATLAB functions, please contact the

author ingmarschoen@rcsi.ie.

When using this software for your research, please cite our article.

Files

Two files are provided:

superviolin.m MATLAB function to create a basic Violin SuperPlot

ExampleUsage.m MATLAB script illustrating the usage of the superviolin function and

its optional parameters.

The code and its calling function were tested only with MATLAB version R2020a on a

Windows 10 computer. They require the 'Statistics and Machine Learning Toolbox'

(Version: '11.7' was tested).

The code is not detailed here. Please refer to the in-line comments in the two files.

Implementation

What the superviolin function does: The raw data for different biological replicates is

binned into histograms. A kernel density estimation is run on each of these binned data.

The resulting smoothened histograms are stacked to end up with a symmetric outline.

These transformed histograms are then depicted as filled polygons (patches) which make

up the stripes of the compound violin. Replicate means (medians) are displayed as

markers overlaid over the corresponding stripe of the compound violin. The mean and

standard error of these replicate means are shown as a line with error bars. The function

returns a plot object handle. This handle allows for customization of plot parameters even

after generation of the figure.

Usage

The superviolin function is called with one required input argument, the data for a single

condition, and a variable number of optional input arguments.

mailto:ingmarschoen@rcsi.ie

14

superviolin(condition1, varargin)

Data format

The data has to be provided as a 1-dimensional cell array (‘1xN cell’). Each cell represents

one biological replicate. The number of replicates N will determine the number of stripes

in the Violin SuperPlot.

Each replicate contains n individual measurements, which can be the number of cells or

the number of technical replicates, depending on the experimental design. These data

points have to be in the form of a data vector (an array of size 1xn or nx1). Data points

can take any numerical format. Here an example:

condition1 =
 1×4 cell array
 {1×83 double} {1×73 double} {1×83 double} {1×75 double}

If your data has a different format, you need to convert it into a cell array. Please consult

the Matlab documentation for the built-in functions mat2cell, struct2cell, and

table2cell for help.

Optional input arguments

The appearance of the Violin SuperPlot can be adapted using optional input arguments

provided as a comma-separated list of name-value pairs:

superviolin(condition1, Name, Value, Name, Value,...)

The choice and meaning of optional arguments are largely identical to the ones

implemented in the Python package (see above). The following table gives an overview.

Please note that the Name argument has to be provided in quotation marks.

Name Value
type

Description Range
(* = typical)

Default

‘Parent’ axis
handle

Handle to plot axis in current figure. If no input
is provided, the current axis will be used.

[] []

‘Xposition’ numeric Centre position of the violin along the x axis.
Useful to generate several Violin SuperPlots
side by side by subsequent calls.

0.,1.,2.,
... (*)

1

15

‘Width’ numeric Maximum width of the violin (along the x-axis). 0.5...2 (*) 0.8

‘LUT’ lookup
table

Lookup table for colour-coding of the biological
replicates. Any built-in LUT from Matlab or user-
defined LUTs can be used.

‘parula’,
‘jet’,
‘hsv’, ...

‘lines’

‘FaceAlpha’ numeric Opacity of the face colour of violin stripes.
1=solid, 0=complete transparency.

0...1 0.7

‘LineWidth’ numeric Width of the dividing lines between stripes and
the outlines of markers, given in points

0...1 (typ.) 0.5

‘Centrals’ string Which central tendency of replicates to use:
mean, median, or robust mean. The robust
mean removes outliers by taking the mean of
the data in the [0.025 0.975] quantile range.

‘mean’,
‘median’,
‘robustmean’

‘mean’

‘ErrorBars’ string What to show as error bars: standard error of
the mean (sem), standard deviation (std), or
95% confidence intervals (ci).

‘sem’,
‘std’,
‘ci’

‘sem’

‘Bandwidth’ numeric Bandwidth (relative to the data range) used for
kernel density estimation. Smaller values give
less smoothing. If no value is provided, the
bandwidth is determined using Scott’s rule
which takes into account the number of data
points: bw = 0.5 n(–0.2); the factor 0.5 has been
added to avoid oversmoothing.

0.05...0.3 []

For an example usage of these arguments, see the last section of the ExampleUsage.m

file and Supplemental Figure S4.

Plotting two or more conditions

Plots for different conditions have to be generated by subsequent calls to the function

using the respective data. They can be shown side-by-side in the same plot axis by

varying the optional ‘Xposition’ argument (see above or ExampleUsage.m).

Statistical comparisons

Statistical tests are not implemented in these scripts; we assume that MATLAB users are

familiar with the built-in functionalities of multcompare and alike.

