
Royal College of Surgeons in Ireland

repository@rcsi.com

Identification of driver mutations and tumour evolution in HER2 positiveIdentification of driver mutations and tumour evolution in HER2 positive
breast cancerbreast cancer

AUTHOR(S)

Peter O'Donovan

CITATION

O'Donovan, Peter (2019): Identification of driver mutations and tumour evolution in HER2 positive breast
cancer. Royal College of Surgeons in Ireland. Thesis. https://doi.org/10.25419/rcsi.10764350.v1

DOI

10.25419/rcsi.10764350.v1

LICENCE

CC BY-NC-SA 4.0

This work is made available under the above open licence by RCSI and has been printed from
https://repository.rcsi.com. For more information please contact repository@rcsi.com

URL

https://repository.rcsi.com/articles/thesis/Identification_of_driver_mutations_and_tumour_evolution_in_HER2_
positive_breast_cancer/10764350/1

mailto:repository@rcsi.com
https://dx.doi.org/10.25419/rcsi.10764350.v1
https://repository.rcsi.com
mailto:repository@rcsi.com
https://repository.rcsi.com/articles/thesis/Identification_of_driver_mutations_and_tumour_evolution_in_HER2_positive_breast_cancer/10764350/1


 

 

 

Identification of driver mutations and 
tumour evolution in HER2 positive breast 

cancer 

Peter O’Donovan 

Department of Physiology and Medical Physics  

Royal College of Surgeons in Ireland 

A thesis submitted to the School of Postgraduate Studies, 

Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 
in fulfilment of the degree of 

Master of Science 

October 2019 

 

Supervision: Dr. Simon Furney, School of Physiology and Medical Physics, 
RCSI 



 

Thesis	declaration	

I	declare	that	this	thesis,	which	I	submit	to	RCSI	for	examination	in	consideration	of	the	
award	of	a	higher	degree	M.Sc.	is	my	own	personal	effort.	Where	any	of	the	content	
presented	is	the	result	of	input	or	data	from	a	related	collaborative	research	
programme	this	is	duly	acknowledged	in	the	text	such	that	it	is	possible	to	ascertain	
how	much	of	the	work	is	my	own.	I	have	not	already	obtained	a	degree	in	RCSI	or	
elsewhere	on	the	basis	of	this	work.	Furthermore,	I	took	reasonable	care	to	ensure	
that	the	work	is	original,	and,	to	the	best	of	my	knowledge,	does	not	breach	copyright	
law,	and	has	not	been	taken	from	other	sources	except	where	such	work	has	been	
cited	and	acknowledged	within	the	text.	

	

Signed	   

 

Student	Number		 17172004	 	

Date		 07/09/2018	



3	

 

 

	

Table of contents 

Table	of	Contents	

Thesis	declaration	.......................................................................................................	2	

IP	declaration	.............................................................................................................	3	

Table	of	contents	........................................................................................................	4	

List of Abbreviations ......................................................................................... 6	

List	of	Figures	.............................................................................................................	8	

List of Tables ..................................................................................................... 11	

Summary	..................................................................................................................	15	

Acknowledgements .......................................................................................... 16	

1 Introduction .................................................................................................... 17 

1.1 The	Genomics	of	Cancer	.............................................................................................	17	

1.2 Cancer	evolution	........................................................................................................	19	

1.3 Breast	Cancer,	HER2	status	and	the	TCHL	project	........................................................	23	

1.4 Mutational	signatures	................................................................................................	27	

1.5 Objective	of	current	study	..........................................................................................	29	

2 Methods	................................................................................................................	31	

2.1 TCHL	sequencing	data	................................................................................................	33	

2.2 Pre	-variant	calling	data	processing	............................................................................	35	

2.3 Bam	File	quality	control	..............................................................................................	36	

2.4 Variant	Calling	............................................................................................................	38	

2.5 Phylogenetic	analysis	.................................................................................................	39	

2.6 Mutational	Signature	analysis	....................................................................................	40	

2.7 Driver	Gene	Predictions	..............................................................................................	41	

3 Results	...................................................................................................................	42	

3.1 -	Cohort	summary	......................................................................................................	42	



4	

 

 

3.2 Mutational	landscape	-	Full	cohort	.............................................................................	45	

3.3 Mutational	landscape	-	Pre-treatment	samples	only	...................................................	45	

3.4 Mutational	landscape	-	Responders	vs	Non-Responders	.............................................	46	

3.5 -	Matched	sample	In-Depth	analysis	...........................................................................	59	

3.5.1 -	TCHL	3	samples	...............................................................................................................	59	

3.5.2 -	TCHL	6	samples	...............................................................................................................	69	

3.5.3 -	TCHL	12	samples	..............................................................................................................	78	

3.5.4 TCHL	29	samples	................................................................................................................	84	

3.5.5 -	TCHL	32	samples	..............................................................................................................	92	

3.5.6 TCHL	39	samples	................................................................................................................	99	

3.6 SciClone	time	point	comparisons	...............................................................................	107	

3.6.1 TCHL	3	Sample	comparisons	............................................................................................	107	

3.6.3	TCHL	6	sample	comparisons	............................................................................................	110	

3.6.3 TCHL	12	sample	comparisons	...........................................................................................	113	

3.6.4 TCHL	29	sample	comparisons	...........................................................................................	114	

3.6.5 TCHL	32	sample	comparisons	...........................................................................................	115	

3.6.6 TCHL	39	sample	comparisons	...........................................................................................	116	

4 Discussion	............................................................................................................	120	

4.1 General	comment/Overall	landscape	........................................................................	120	

4.2 Mutational	signatures	...............................................................................................	121	

4.3 Driver	gene	analysis	-	SNVs	and	indels	.......................................................................	122	

4.4 Driver	gene	analysis	-	Copy	number	changes	.............................................................	123	

4.5 SciClone	info	..............................................................................................................	123	

4.6 Final	conclusions	.......................................................................................................	123	

5 Bibliography	........................................................................................................	126	

6 Supplementary	materials	.....................................................................................	136	



5	

 

 

	

List of Abbreviations 
GATK = Genome Analysis Tool Kit GUI = Graphical User Interface 

ICHEC = Irish centre for High End Computing CNA = Copy Number Alteration 

GFF3 = Generic Feature Format 3 

ICGC = International Cancer Genome Consortium TCGA = The Cancer 

Genome Atlas 

TCHL = Carboplatin, Docetaxel and Trastuzumab, with Lapatinib (Name of the 

clinical trial) 

NGS = Next Generation Sequencing Hg38 = Human reference genome 38 

PON = Panel of Normals (for variant calling) CGI = Cancer Genome Interpreter 

DNA = DeoxyriboNucleic Acid 

FGFR = Fibroblast Growth Factor Receptor 

dbSNP = The Single Nucleotide Polymorphism database COSMIC= Catalogue 

of Somatic Mutations in Cancer NCBI = National Centre for Biotechnology 

Information 

FACETS = Algorithm to implement Fraction and Allele specific Copy number 

Estimate from Tumour/normal Sequencing 

CNV = Copy Number Variation  

VAF = Variant Allele Frequency  

ITH = Intra Tumour Heterogeneity 

VCF =Variant call format (file format) 



6	

 

 

SAM = Sequence Alignment Map (file format)  

BAM = Binary Alignment Map (file format) VEP = Variant Effect Predictor 

FACETS = algorithm to implement Fraction And Copy number Estimate from 

Tumour/normal Sequencing 

DSB = Double Strand Break 

HER2 = Human Epidermal Growth factor receptor 2 (gene) ER= Estrogen 

receptor (gene family) 

PR = Progesterone receptor (gene family) 

EGFR = Epidermal Growth Factor Receptor (gene) TP53 = Tumour Protein p53 

(gene) 

BCL2 = B Cell Lymphoma 2 (gene) 

MYC = MYeloCytomatosis (gene family consisting of c-myc, l-myc, and n-myc. 

MYC in the text refers to c-myc). 

APOBEC = apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 

(gene family) 

RAS = RAt Sarcoma (gene) 



7	

 

 

 

List of Figures 
Figure 1.1 - A visual summary of the classification system for breast cancers  

Figure 1.2 - Survival rates associated with either breast cancer subtype 

Figure 1.3 - TCHL trial summary, showing which samples were TCH and which 

were TCHL, which samples showed pCR and which did not, and which samples 

showed a relapse. 

Figure 1.4 - Signature 4, the signature associated with tobacco smoke. Image is 

from the COSMIC website, url: https://cancer.sanger.ac.uk/cosmic/signatures  

Figure 2.1 - The pre-variant calling workflow 

Figure 3.2.1 - Predicted or known driver indels and SNVs, across all the Pre- 

treatment samples. Dark green indicates that a predicted driver SNV or indel is 

present in that gene in that sample. 

Figure 3.2.2 - Mutational signature heatmap - Pre-treatment samples only  

Figure 3.3.1 - Predicted or known driver indels and SNVs, across all the 

responder samples. Dark green indicates that a predicted driver SNV or indel is 

present in that gene in that sample 

Figure 3.3.2 - Predicted or known driver indels and SNVs, across all the Non- 

Responder samples. Dark green indicates that a predicted driver SNV or indel 

is present in that gene in that sample 

Figure 3.3.3 - Mutational signature heatmap - Responder samples only  

Figure 3.3.4 - Mutational signature heatmap - Non-responder samples only  

Figure 3.3.5 - Boxplot of SNV counts per sample in the cohort split into 

Responders and Non-Responders 

Figure 3.3.6 - Boxplot of Indel counts per sample in the cohort split into 

Responders and Non-Responders 



8	

 

 

Figure 3.4.1.1 - TCHL Pre-treatment mutational signatures Figure 3.4.1.2 - 

TCHL 3 Pre-treatment subclonal architecture 

Figure 3.4.1.3 - Mutational signatures for the TCHL 3 Post treatment sample  

Figure 3.4.1.4 - Subclonal architecture of the TCHL 3 Post treatment sample  

Figure 3.4.1.5 - Mutational signatures for the TCHL 3 Surgery sample  

Figure 3.4.1.6 - Subclonal architecture for the TCHL 3 Surgery sample  

Figure 3.4.2.1 - Mutational signatures for the TCHL 6 Pre-treatment sample  

Figure 3.4.2.2 - Subclonal architecture for the TCHL 6 Pre-treatment sample 

Figure 3.4.2.3 - Mutational signatures for the TCHL 6 Post-treatment sample  

Figure 3.4.2.4 -Subclonal architecture for the TCHL 6 Post-treatment sample  

Figure 3.4.2.5 - Mutational signatures in the TCHL 6 relapse sample 

Figure 3.4.2.6 -Subclonal architecture for the TCHL 6 Relapse sample  

Figure 3.4.3.1 - Mutational signatures in the TCHL 12 Pre-treatment sample  

Figure 3.4.3.2 - Subclonal architecture in the TCHL 12 Pre-treatment sample  

Figure 3.4.3.3 - Mutational signatures in the TCHL 12 Post treatment sample 

Figure 3.4.3.4 - Subclonal architecture in the TCHL 12 Post treatment sample  

Figure 3.4.4.1 - Mutational signatures in the TCHL 29 Pre-treatment sample  

Figure 3.4.4.2 - Subclonal architecture in the TCHL 29 Pre-treatment sample  

Figure 3.4.4.3 - Mutational signatures in the TCHL 29 Post-treatment sample  

Figure 3.4.4.4 - Subclonal architecture in the TCHL 29 Post-treatment sample  

Figure 3.4.5.1 - Mutational signatures in the TCHL 32 Pre-treatment sample  

Figure 3.4.5.2 - Mutational signatures in the TCHL 32 Relapse sample 



9	

 

 

Figure 3.4.5.3 - Mutational signatures in the TCHL 32 Relapse sample  

Figure 3.4.6.1- Mutational signatures in the TCHL 39 Pre-treatment sample  

Figure 3.4.6.2- Subclonal architecture in the TCHL 39 Pre-treatment sample  

Figure 3.4.6.3 - Mutational signatures in the TCHL 39 Post-treatment sample  

Figure 3.4.6.4- Subclonal architecture in the TCHL 39 Post-treatment sample  

Figure 3.4.6.5 - Mutational signatures in the TCHL 39 Relapse sample  

Figure 3.5.1 - Subclonal architecture in the TCHL 3 Pre and Post treatment 

samples. The graph shows the Variant allele frequencies (VAF) of mutations 

shared by the two samples, grouped into clusters of mutations predicted to 

originate from the same subclone. 

Figure 3.5.2 - Subclonal architecture in the TCHL 3 Post treatment and surgery 

samples. The graph shows the Variant allele frequencies (VAF) of mutations 

shared by the two samples, grouped into clusters of mutations predicted to 

originate from the same subclone. 

Figure 3.5.3 - Subclonal architecture in the TCHL 3 Pre-treatment and surgery 

samples. The graph shows the Variant allele frequencies (VAF) of mutations 

shared by the two samples, grouped into clusters of mutations predicted to 

originate from the same subclone. 

Figure 3.5.4 - Subclonal architecture in the TCHL 6 Pre and Post treatment 

samples. The graph shows the Variant allele frequencies (VAF) of mutations 

shared by the two samples, grouped into clusters of mutations predicted to 

originate from the same subclone. 

Figure 3.5.5 - Subclonal architecture in the TCHL 6 Pre-treatment and relapse 

samples. The graph shows the Variant allele frequencies (VAF) of mutations 

shared by the two samples, grouped into clusters of mutations predicted to 

originate from the same subclone. 

Figure 3.5.6 - Subclonal architecture in the TCHL 6 Post-treatment and Relapse 



10	

 

 

samples. The graph shows the Variant allele frequencies (VAF) of mutations 

shared by the two samples, grouped into clusters of mutations predicted to 

originate from the same subclone. 

Figure 3.5.7 - Subclonal architecture in the TCHL 29 Pre and Post treatment 

samples. The graph shows the Variant allele frequencies (VAF) of mutations 

shared by the two samples, grouped into clusters of mutations predicted to 

originate from the same subclone. 

Figure 3.5.8 - Subclonal architecture in the TCHL 32 Pre-treatment and 

Relapse samples. The graph shows the Variant allele frequencies (VAF) of 

mutations shared by the two samples, grouped into clusters of mutations 

predicted to originate from the same subclone. 

Figure 3.5.9 - Subclonal architecture in the TCHL 39 Pre and Post treatment 

samples. The graph shows the Variant allele frequencies (VAF) of mutations 

shared by the two samples, grouped into clusters of mutations predicted to 

originate from the same subclone. 



14	

 

 

 

List of Tables 
Table 2.1 - A table of the samples from the patients that were sent for re- 

sequencing in order to achieve higher depth of sequencing 

Table 2.2 - Read lengths of the reads in the FASTQ files associated with each 

sample 

Table 2.3 - Mean sequencing depth of the samples from the patients from 

whom samples were taken at multiple timepoints after all files were merged 

Table 2.4 - Mean Depth of the samples from the patients from whom samples 

were taken at a single timepoint after all files were merged 

Table 3.1.1 - SNV, indel and sequence alteration counts per sample, based on 

running the Ensembl Variant Effect Predictor on each sample: 

Table 3.3.1 - Table of which samples were responders and which were non- 

responders to therapy (i.e. which samples showed pCR and which did not) 

Table 3.3.1 - Table of the frequency of known or predicted driver SNVs and 

indels by gene in the responder and non-responder cohorts. Highlighted in bold 

are genes in which a known or predicted driver mutation appears in at least one 

sample in both the responder and non responder cohorts 

Table 3.3.2 - Frequency table of the proportion of samples in each of the 

Responder and Non-Responder cohorts showing predicted driver amplifications 

in that gene. 

Table 3.3.3 - Frequency table showing the proportion of samples in each of the 

Responder and Non-Responder cohorts showing predicted driver deletions in 

that gene 

Table 3.3.4 - Table of the number of ubclonal populations in each sample 

(based on the number of clusters in the SciClone analysis for that sample), 

divided into responders and non responders. Where SciClone was unable to 

analyse the sample, the entry is “NA”. 



15	

 

 

Table 3.3.5 - Simple statistical analysis of the mutation counts in the cohort, 

split into Responders and Non-Responders 

Table 3.3.6 – Set of contingency tables used to run  

Table 3.4.1.1 - Known or predicted driver SNVs and indels for TCHL 3 Pre- 

treatment. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

Table 3.4.1.2 - Known or predicted driver SNVs and indels for TCHL 3 Post- 

treatment. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

Table 3.4.1.3 - Known or predicted driver SNVs and indels for TCHL 3 Surgery 

treatment. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

Table 3.4.2.1 - Known or predicted driver SNVs and indels for TCHL 6 Pre- 

treatment. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlight in bold. 

Table 3.4.2.2 - Known or predicted driver SNVs and indels for TCHL 6 Post 

treatment. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

Table 3.4.2.3 - Known or predicted driver SNVs and indels for TCHL 6 Relapse. 

Predicted or known driver genes that are not shared with other samples from 

the same patient are highlighted in bold. 

Table 3.4.3.1 - Known or predicted driver SNVs and indels for TCHL 12 Pre- 

treatment. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

Table 3.4.3.2 - Known or predicted driver SNVs and indels for TCHL 12 Post 

treatment. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

Table 3.4.4.1 - Known or predicted driver SNVs and indels for TCHL 29 Pre- 



16	

 

 

treatment. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

Table 3.4.4.2 - Known or predicted driver SNVs and indels for TCHL 29 Post 

treatment. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

Table 3.4.5.1 - Known or predicted driver SNVs and indels for TCHL 32 Pre- 

treatment. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

Table 3.4.5.2 - Known or predicted driver SNVs and indels for TCHL 32 Pre- 

treatment. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

Table 3.4.6.1 - Known or predicted driver SNVs and indels for TCHL 39 Pre- 

treatment. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

Table 3.4.6.2 - Known or predicted driver SNVs and indels for TCHL 39 Post 

treatment. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

Table 3.4.6.3 - Known or predicted driver SNVs and indels for TCHL 39 

Relapse. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold.  

Table 3.6.1 - Fisher exact test to test the statistical significance of the 

association between RAD50 and Relapse samples 



17	

 

 

 

Summary 
This thesis describes the results of a variant calling project using data from the 

TCHL (Trastuzumab, Carboplatin, and Docetaxel, with Lapatinib) breast cancer 

whole exome sequencing project. Using a data processing pipeline based on 

the GATK (Genome Analysis Tool Kit) Best Practices Pipeline, variants were 

called on a total of 34 tumour samples from 25 patients. This included 20 

patients where only a pre-treatment sample was taken from that patient, and 5 

patients where samples were taken from multiple timepoints across the course 

of therapy. The whole exome sequencing data were analysed for the presence 

of known or predicted driver mutations. The subclonal architecture and 

mutational signatures of the genomes of these samples were also analysed. 

The cohort showed mutational signature patterns typical of a breast cancer 

cohort. The genomic landscape of the samples taken from the same patient 

across multiple timepoints was used to analyse the evolutionary history of the 

tumours in those patients and how they had evolved in response to therapy. 

The genomic landscape of samples from patients who showed complete 

response to therapy is compared to the genomic landscape of patients who did 

show complete response to therapy. 

The results of this study highlight the following subjects as promising areas for 

future study with larger scale cohorts: 

-The impact of the subclonal complexity of a tumour on the probability it will 

show complete response to therapy 

-The impact of the presence of SNVs and indels in RAD50, ARID1B, DHX9, 

IZF3, TNPO2, UBR5 and TAOK1 on the probability that a tumour will show 

complete response to therapy 
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1 Introduction 
1.1 The Genomics of Cancer 

Cancer is the second most common cause of death in the world, killing over 8 

million people every year (1). Cancer is a genetic disease (2). Out of control 

cellular proliferation occurs because mutations in the DNA bases of the genome 

and epigenetic marks of the epigenome release the usually existing constraints 

on cellular proliferation (3). The “genome” of an individual refers to the total 

DNA sequence of the DNA present in the nuclei of the cells of that individual, as 

well as the DNA sequence of their mitochondria (mtDNA). The “epigenome” of 

an individual refers to non-DNA chemical modifications on elements of the 

genome that affect the expression levels of genes without altering the DNA that 

makes up those genes directly (e.g. methyl groups attached to DNA bases, or 

acetyl groups attached to the histones the DNA is wound around) (4). Changes 

to the epigenome are referred to as “epigenetic” changes. A “mutation” in this 

context refers to a permanent change in the genetic sequence of the DNA in the 

cell(s) of that individual from the sequence that was originally there. 

Later in the development of the cancer, cancerous cells spread to different parts 

of the body to where the cancer started, seeding new tumours in these new 

locations. This process is called “metastasis”, and a cancer undergoing 

metastasis is referred to as “metastatic” (5). The process of metastasis is 

estimated to be the cause of death in 90% of cancer mortalities  (6). This is a 

clear motivation to learn as much as possible about how tumours evolve in 

order to understand why metastasis occurs. 

The Genetic Mutations behind cancer 

Genetic mutations can either be “germline” or “somatic”. Germline mutations 

refer to mutations that are present in the first fertilized egg cell that eventually 

gives rise to all of the cells in the mature individual. These mutations arise in the 

sperm or egg cells that form this fertilized egg, and are propagated to every cell 

in the body of the adult individual. In contrast, “somatic” mutations are 

mutations that arise at any point after the fertilized egg begins dividing. These 
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mutations will only be propagated to other cells or tissues that arise from that 

specific mutated cell (4). Cancers are caused mainly by somatic mutations, 

although germline mutations play a role as well in many cases (7).  

It remains a point of contention whether or not it is necessary for a cell to have 

an elevated somatic mutation rate compared to the normal background rate for 

the cell to become cancerous (“mutation rate” refers to the number of mutations 

in a cell per unit time). Although an elevated mutation rate may not be strictly 

necessary for tumourigenesis to occur (8) most human cancers display an 

elevated mutation rate and an elevated tendency to mutate further (“mutator 

phenotype”) compared to other somatic cells (9). The association between 

higher mutation rate and higher cancer risk is also seen in the fact that tissues 

that have more stem cell divisions over the course of a lifetime show a far 

higher likelihood of developing cancer than tissues with a lower rate of stem cell 

division (10). “Stem cells” are cells that have not yet differentiated into a 

particular type of cell (e.g. differentiated into a neuron or a skin cell). Stem cells 

within a tissue are self-renewing –they generate new stem cells along with 

differentiated cells to maintain that tissue (11) (12). “Stem cell divisions” in this 

case refers to the number of times that the stem cells in a given tissue divide, 

on average, over the lifetime of a human being (10). 

Only a small fraction of the total mutations present in the genome of a cancer 

cell actually contribute to the cell’s cancerous state. These mutations are 

referred to as “driver” mutations, in contrast to the other “passenger” mutations 

present in the cell, which have a neutral or even actively negative effect on the 

cell’s survival (13). A driver mutation, by definition, has at some point during the 

evolutionary history of a cancer tumour been actively selected for, though it may 

not necessarily be necessary for the survival of the tumour at every stage in its 

life (14). Genes that are capable of bearing driver mutations are known as 

“cancer genes”. The identification of cancer genes and the mutations within 

them that can act as drivers is a core focus of cancer research. This is  because 

identifying which mutations are causing cancer allows the design of tailored 

therapeutic approaches which combat the specific effects of these mutations to 

attempt to cure the cancer that they cause (15).  
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Intratumour heterogeneity 

Analysis of cancer genomics is further complicated by the phenomenon of intra 

tumour heterogeneity. “Intratumour Heterogeneity” (ITH) refers to the fact that 

cells within a cancer tumour do not share identical genomes – different cells 

acquire different mutations as the tumour grows (16). Some mutations in the 

cells in a tumour are “clonal” – this means they were present in the first 

progenitor cell of the tumour when it began to divide uncontrollably. “Clonal” 

mutations are expected to be present in every cell in a tumour, unless within 

that cell the genomic position of the mutation has mutated further. However, 

cancer tumour cells may also harbor “subclonal” mutations, which are unique to 

a cell or subset of cells in the tumour (17). The phenomenon of ITH appears to 

stand somewhat in contrast to the traditional model of tumour evolution in which 

cells bearing the most advantageous mutations would grow to dominate the 

tumour and displace all cells with less advantageous genomes (“selective 

sweeps”) (18). However, it is still possible that the traditional model is accurate, 

and that the ITH we observe in cancer genomes is due to the tumour being mid 

- sweep: the more beneficial mutation may not have had time to grow to 

ubiquity in the tumour. 

ITH occurs due to the continuing action of mutagenic processes as the tumour 

grows, as well as the selective pressures applied by the local microenvironment 

around the tumour and by cancer treating drugs (19). The impact of the local 

microenvironment can be seen in the following phenomenon: in any sizable 

tumour, there are regions of low oxygen levels (hypoxia) and regions of regular 

oxygen levels (normoxia). Studies have shown that regions of hypoxia favour 

cells with mutations that cause those cells to metabolise anaerobically, whereas 

in regions of normoxia cells that metabolise aerobically are favoured  (20) (21). 

This is just one example of the impact that the local microenvironment can have 

on the evolutionary environment of the cells in a tumour, and therefore on the 

amount of ITH present in that tumour.   

The mutations that cause ITH can take the form of point mutations, copy 

number variations or differences in chromosomal structure or number (22). 

Point mutations are mutations that affect only a single nucleotide base in the 
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genetic sequence – usually this involves a nucleotide base being substituted for 

another one (e.g. a G > A mutation), but it sometimes involves a base being 

deleted from the sequence, or a new base being inserted into the sequence (4). 

A “copy number variation” refers to alterations in the number of copies of 

specific regions of DNA – the region may either be deleted or duplicated (23). 

With the advent of next generation sequencing, the extent of ITH in tumours is 

beginning to be understood, as is the fact that some tumour types show more 

heterogeneity than others. Cancers that are usually preceded by prolonged 

exposure to a powerful external mutagen, such as lung cancer and melanoma, 

tend to have a much higher proportion of subclonal mutations compared to 

other cancer types (24). 

Just as some tumour types are more likely to be heterogenous than others, 

some driver mutations are more likely to be subclonal than others – for 

example, across several cancer types subclonal mutations in genes involved 

the PIK3- AKT- mTOR pathway are more common than genes involved in the 

RAS-MAPK pathway (25). For some mutations, whether they are likely to be 

clonal or subclonal depends on the cancer type – for example, mutations in 

TP53 are almost always clonal in ovarian cancer (26), but are often subclonal in 

chronic lymphocytic leukemia (27). 

 

Intratumour heterogeneity is relevant to tumour metastasis because the 

metastatic site may be seeded by a cell from the original tumour harboring 

subclonal driver mutations (28) (29). These mutations may be crucial to allow 

the cell to detach from the primary tumour, survive the immune system while 

travelling to the site of metastasis, and survive in the microenvironment of the 

secondary tumour site (30). 

ITH is relevant to this project because the samples being sequenced 

(described further below) actually represent an entire population of tumour cells. 

The “SciClone” R package (described further below) is used to make inferences 

from the mutation calling data generated about the nature and evolutionary 

history of the tumour cell population that that mutation calling data comes from.  
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1.2 Cancer evolution 

Over time, a cancer evolves in a manner analogous to the evolution of an 

asexually reproducing, single celled species (31). Mutations accumulate in the 

descendant cells of the original cancer progenitor cell, and these mutations are 

selected in a Darwinian fashion – cells with disadvantageous variants are more 

likely to die, and so these are selected against, whereas cells with 

advantageous variants are more likely to survive and proliferate and so become 

more common (32). As with all evolutionary processes, tumour development is 

affected not just by Darwinian evolution but also by genetic drift. Genetic drift 

refers to the fact that genetic alleles in a population fluctuate in frequency 

randomly across time, and alleles may rise to ubiquity across a population 

(“fixation”) or be driven to extinction by chance rather than because of the effect 

of those alleles themselves (4). This occurs because how many progeny an 

individual cell or organism gives rise to is not an exact function of how beneficial 

its genome is in its environment, but is to some extent down to random chance - 

in a cancer context, an example might be a driver mutation arising in a cell, but 

that cell being killed by unrelated bodily processes (as opposed to being 

targeted for destruction), before it is able to proliferate. Current evidence 

suggests that drift plays less of a role in tumour genome evolution than 

selection, but it is still a driving force that shapes tumour genomes (33). 

Despite the great genomic heterogeneity seen in tumours both within and 

between different cancer types, the final phenotype of the tumour is always 

highly similar – most cancers grow and evolve in a similar way, despite the vast 

genomic differences they may harbor under the surface (34). We can conclude 

from this that there are many different genomic pathways that, when altered, 

can lead to tumourigenesis and eventually metastasis. This is why it is 

necessary to scan whole genomes of tumours to find these mutations, and why 

the evolution of any given tumour is such an unpredictable process - there is 

not one neat, simple set of genetic alterations that must occur for 

tumourigenesis or metastasis to occur, but instead a wide variety of possibilities 

that all lead to the same phenotypic outcomes (35). We also note that, as well 
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as being impacted by genomics, cancer biology is also impacted by the 

transcriptomics (36) and epigenomics (37). 

As explained in section 1.1, a cell usually needs multiple driver mutations to 

become cancerous, with the exact number and nature of driver mutations 

needed varying by tissue type. Recent examination of the mutational burden of 

somatic tissue suggests that driver mutations are selected for in somatic tissue 

before the cells become fully cancerous. This, of course, increases the number 

of cells bearing a number of driver mutations, and so increases the chances 

that a driver mutation will occur in a cell that already bears other driver 

mutations, until an actual tumour develops when the correct combination of 

drivers exist in the same cell (38). 

Evolution after Tumourigenesis 

Evolution continues to take place after initial tumourigenesis, shaping the 

genomic development of the cells in the tumour over time (39). Even in the 

fastest growing tumours, the time taken for the tumour to double in size is vastly 

longer than the time taken for individual tumour cells to double. This implies 

either that most cells in a tumour are restrained from dividing by signals from 

their local micro-environment, or that the vast majority of cells produced by a 

tumour die before they themselves can divide. (40) 

In either case, there is clearly ample scope for natural selection to occur. This 

may occur through the deaths of tumour cells with suboptimal genomes, or via 

positive selection for cells capable of dividing more rapidly, thus escaping 

environmental constraints on growth. The tumour may even evolve in such a 

way as to remodel the local microenvironment to the benefit of the tumour (41). 

The most important outcome of these post tumourigenesis evolutionary 

processes from a therapeutic perspective is the development of metastasis. In 

order to become metastatic, tumour cells must develop the ability to leave the 

original tumour, survive in the bloodstream, and found new tumours at distant 

sites from the original. It remains a subject of active debate whether metastatic 

cells arise late in tumour development and are highly genetically distinct from 

the original founder cell (“linear progression”), or whether proto-metastatic cells 
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disseminate from the founder cell at relatively early stages in tumour 

development, long before the cancer can be detected, and the initial tumour 

develops independently from the metastasis, with the metastatic cells 

developing most of the features necessary for successful metastasis after 

leaving the initial tumour (“parallel progression”) (40). Studies trying to 

distinguish between which of these models are correct have been inconclusive, 

showing some evidence for both models, sometimes even in the same patient. 

Thus, it is likely that there is a continuum between the two models rather than 

one model being entirely correct (42).  

In terms of which genes specifically can trigger metastasis when mutated, the 

only gene consistently associated with a metastatic phenotype is TP53 (full 

name: tumour protein p53) (43). The usual role of TP53 in a healthy cell is to 

act as a tumour suppressor protein, preventing the cell from proliferating 

uncontrollably. TP53 fulfils this role in a number of ways, including the 

regulation of the cell cycle, DNA repair, and cellular metabolism (44). It should 

be self-evident how the inactivation of a gene with this role would increase the 

likelihood of a cell becoming cancerous and surviving to become metastatic. 

Another reason for the association between TP53 mutations and a metastatic 

phenotype is the association between TP53 and chromosomal instability (45), 

as well as chromothripsis (46). “Chromosomal instability” refers to a state in 

which whole chromosomes or parts of chromosomes are duplicated or deleted. 

This leads to the daughter cells of a dividing tumour cells with chromosomal 

instability showing aneuploidy (i.e. having an incorrect number of 

chromosomes) (4). “Chromothripsis” refers to a phenomenon whereby 

chromosomes are observed to break apart and then reattach together in a 

single event that leads to thousands of clustered rearrangements (47) In 

general, metastasis seems to be associated with chromosomal instability, 

structural alterations and somatic copy number changes (48) (49) (50) (51). 

Since, as discussed above, a cell must acquire a large number of new traits to 

become metastatic, and these traits may not be individually beneficial for 

survival (e.g. it is not useful to be able to seed a new site if the cell cannot 

survive in the bloodstream), it would be difficult for all of these changes to occur 

in an evolutionary step wise manner (52) (53). Instead it is likely to be 
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necessary for large-scale changes to cause all of the metastasis causing 

mutations in a single step. This would explain why the instability-enabling TP53 

mutations are so frequently associated with metastasis. TP53 itself also 

contributes to pathways that inhibit metastasis, so inactivating mutations in 

TP53 represent a release of a restraint on metastasis as well as contributing to 

the likelihood of metastasis causing mutations occurring (43). 

Studies examining metastatic genomes in breast cancer specifically support a 

linear progression model of metastasis in breast cancer (54). They also support 

the idea that chromosomal instability, TP53 mutations and somatic CNAs are 

highly likely to be involved in a given case of metastasis (55) (56) (57).  

The impact of therapy on Tumour Evolution 

Therapy, of course, represents an environmental hazard to the cells in a 

cancer, and so the cells evolve in response to this constraint. Therapy is also 

often genotoxic, so the somatic mutation rate of the cells in the body reacting to 

the therapy is elevated while therapy is ongoing (58). The evolutionary 

environment during therapy is therefore one in which there is strong selective 

pressure to develop resistance and a large number of novel mutations being 

created as a substrate on which natural selection can act. The level of tumour 

genetic heterogeneity correlates with the likelihood that a tumour will survive 

therapy - increased genetic diversity in the tumour prior to the start of therapy 

raises the odds that a mutation capable of allowing the tumour to escape the 

attempts made by the therapy to eradicate it (59) (60) (61). Studies comparing 

the genetic markers of resistance in pre-treatment and post-relapse samples in 

cancers that eventually relapsed have shown that small populations of resistant 

subclones often exist prior to therapy starting, indicating that selection for pre-

existent populations is the main mechanism through which a tumour becomes 

resistant to therapy (62). 

The traditional method to learn about the evolutionary history of a tumour is to 

analyse the level of clonality of different mutations - is a given mutation in a 

tumour clonal or subclonal? If a mutation is subclonal, this implies it arose after 

the founder cell of the tumour originally became cancerous, whereas a clonal 

mutation is likely to have been present in the founder cell. The frequency of a 
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subclonal mutation may give us information about how advantageous that 

mutation is and therefore how strongly it is selected for. 
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1.3 Breast Cancer, HER2 status and the TCHL project 

Breast cancer is the most commonly diagnosed cancer in women and the main 

cause of cancer-related mortality in women worldwide (63). Breast tumours are 

highly heterogeneous and are classified based on histology, gene expression 

profiles, and the expression of oestrogen (ER) and progesterone (PR) hormone 

receptors and HER2 (ERBB2) (64). There are five broad categories in the gene 

expression based classification system, which is the classification system we 

are using in this project: Luminal A, Luminal B, basal-like, triple negative and 

HER2 positive. Figure 1.1 below summarizes how the classification system 

works. Figure 1.2 summarizes how the classification impacts the prognosis of 

the patient upon diagnosis: different subtypes are associated with different 

survival rates. This graph looks at Overall Survival (OS) as opposed to Disease-

Free Survival (OS just looks at whether a patient remains alive, Disease-Free 

Survival also looks at whether the patient suffered a relapse in the time frame 

under examination). This method of breast cancer classification was first 

reported by Sorlie et al in 2001 (65). These classifications are used in both 

research and the clinic because classification status is a significant prognostic 

factor (a factor that tells you the likelihood of recovering from the disease) and 

can guide therapy because different therapies are appropriate for different 

subtypes (66) (67). Another reason that these classifications are used in the 

clinic is that a clinic can use immunohistochemistry (IHC) staining to identify 

which subtype a given tumour falls into (68). This gives a doctor a convenient 

way to classify a tumour, rather than needing to sequence the patient’s genome 

to classify the tumour – far more hospitals have IHC equipment and expertise 

than have the capacity to carry out gene sequencing. 

In brief: Luminal A breast cancer is hormone receptor positive (overexpression 

of estrogen receptor (ER) and/or progesterone receptor (PR)), has no 

amplification of HER2, and tends to be the least aggressive and have the best 

prognosis (67). Luminal B breast cancers are hormone receptor positive, but 

also have amplification of HER2 (68). Tumour grade does not play an explicit 

role in the distinction between the Luminal A and Luminal B subtypes, though 
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luminal B cancers have been shown to be associated with a higher grade 

compared to luminal A patients in a study of Pakistani patients (69). Basal like 

breast cancer is breast cancer with no expansion of ER, PR, or HER2, but with 

an expression signature of basal markers including cytokeratins 5,6 and 17sa 

(70). Triple negative breast cancer is similar to basal-like breast cancer in that it 

shows no amplification of HER2, ER or PR, but it does not show expression of 

the basal markers (71). It is the rarest and most aggressive form of breast 

cancer (72). HER2 positive breast cancer is breast cancer in which the HER2 

gene is amplified (i.e. the gene copy number is increased) or the gene is 

overexpressed for other reasons, without amplification or overexpression of the 

hormone receptors (ER and PR) (73).
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Since this project is about HER2 positive breast cancer, this subtype is described in 

depth below. 

 

Figure 1.1 - A visual summary of the classification system for breast cancers  (68)). This diagram refers 
specifically to Invasive Ductal Carcinomas, but the same gene-expression based classification scheme 
applies to all types of breast cancers. “Invasive Ductal Carcinoma” is a classification in a different 
classification scheme for breast cancers, based around morphology rather than gene expression. The 
other classes in this classification scheme are invasive lobular carcinomas (~10% of invasive breast 
cancers) and a long series of other, much rarer subtypes (68) 
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Figure 1.2 – Survival rates associated with either breast cancer subtype. The data is from the cited paper, and 
originated from a Peruvian hospital database showing data on breast cancer patients treated between 2000 and 
2002. The percentages shown refer to the overall percentage of patients with that breast cancer subtype 
diagnosis who were still alive that many years after the date of diagnosis (i.e. Overall Survival). The purpose of 
the figure is to show the impact of which subtype of breast cancer a person has on their probable survival time/  
(74) 

HER2 Positive Breast Cancer 

HER2 stands for Human Epidermal Growth factor receptor 2 (75). It is found on 

the surface of all breast cells, cancerous or otherwise (76). HER2 is one of the 

4 member of the ERBB receptor tyrosine kinase family of receptors (hence why 

HER2 is also known as ERBB2). As with all members of this family, it contains 

an extracellular ligand binding domain, a transmembrane domain, and an 

intracellular domain which can work in a ligand dependent or ligand 

independent manner (77). HER2 is able to heterodimerize with any of the other 

family ERBB family members. Heterodimerization leads to phosphorylation of 

tyrosine in the intracellular domain of the receptors, activating various signaling 

pathways which trigger mitosis and oppose apoptosis in the cell they are active 

in. (78) 

HER2 positive breast cancer is breast cancer in which the HER2 gene is 

amplified (i.e. the gene copy number is increased) or the gene is overexpressed 

for other reasons, without amplification or overexpression of the hormone 

receptors (ER and PR). The number of HER2 receptors correlates with the rate 
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of tumour growth, which makes logical sense given the function of these 

receptors (79). HER2 positive cancers account for 15-20% of breast cancers in 

women, though they are believed to be less common in male breast cancer 

(80). The risk factors for getting HER2 positive breast cancer are for the most 

part exactly the same as the risk factors for any other given subtype of breast 

cancer (81). These common risk factors include age, early menarche (before 12 

years old), obesity, alcohol use, physical inactivity, family history of breast 

cancer, X-rays and radiotherapy. Obesity ws noted in the cited paper to be 

slightly less common in ther HER2 positive subtype than in the other subtypes. 

Though less aggressive than triple negative breast cancer, HER2 positive 

breast cancer is associated with a worse prognosis than Luminal A or Luminal 

B breast cancer. Several targeted therapy options exist for HER2 positive 

breast cancer, including trastuzumab (a.k.a herceptin). Other targeted therapies 

for HER2 positive breast cancer include docetaxel and carboplatin.  These 

targeted therapies have lead to great increases in disease free survival and 

overall survival rates for HER2 positive breast cancer patients, but a subset of 

HER2 positive patients either fail to show any initial response to the therapy or 

show an initial response followed by a relapse (82). HER2 positive breast 

cancers that fail to respond to targeted therapies often have mutations in the 

PI3 kinase pathway - either mutation in the PIK3CA gene or downregulation of 

the PTEN tumour suppressor gene (83).  

Risk factors for disease progression to metastasis in HER2 positive breast 

cancer include cigarette smoking, steroid receptor status, history of cancer in 

the family, and being postmenopausal (84). The standard therapy for HER2 

positive breast cancer worldwide has for many years been trastuzumab 

(explored in more detail in the next section) (79), often with platinum based 

chemotherapy as an adjuvant (85) (86). Modern studies are experimenting with 

replacing the chemotherapy with other targeted medications, as these targeted 

medications are likely to be more effect in treating the disease and cause fewer 

harmful side effects to the patient. This study is one such study. The relevant 

targeted therapies (docetaxel, carboplatin, lapatinib, and trastuzumab itself) are 

described in detail in the next section. 
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Targeted therapies for HER2 positive breast cancer 

Trastuzumab is a humanized monoclonal antibody created from recombinant 

DNA (87). It binds with high affinity and selectivity to the extracellular domain of 

HER2. By binding to the HER2 receptors, it blocks growth signals that the 

receptors would otherwise receive (88). Trastuzumab also plays a role in 

alerting the immune system to destroy the cancer cells it is attached to (89). 

Approximately 15% of patients who initially respond to trastuzumab eventually 

experience relapse. The reason for this is not yet conclusively known (90). 

Docetaxel is an anti mitotic drug that is used in treatment of breast, ovarian and 

other cancer types (91). Docetaxel functions by binding to the β-tubulin subunit 

of tubulin in the microtubules. This hyper-stabilizes the structure of the 

microtubules and makes it impossible for the microtubule to disassemble, 

ruining the flexibility of the microtubules needed for mitosis to occur (92) (93). 

Docetaxel also binds to the anti apoptotic protein Bcl 2 (B-cell leukemia 2), 

blocking its function and thereby promoting apoptosis in the cell (94).  

Carboplatin is a chemotherapeutic agent most often used to treat ovarian and 

lung cancer (95) (96). It functions by adding platinum adducts to DNA, thereby 

inhibiting replication and transcription of that DNA, ultimately leading to cell 

death (97). Alkylating agents (e.g. cyclophosphamide) are often prescribed 

alongside carboplatin, as the drugs seem to be particularly effective when 

combined in this way (98) . 

Lapatinib is a tyrosine kinase inhibitor that can block both EGFR (Epidermal 

Growth Factor Receptor) and HER2 (99). It has been shown to have anti-

tumour activity in trastuzumab resistant breast cancer (90). 

The TCHL Clinical Trial 

The TCHL clinical trial (clinicaltrials.gov/ct2/show/NCT01485926) assesses 

treatment of HER2 positive breast cancer patients with docetaxel, carboplatin 

and trastuzumab, with or without lapatinib (TCH, TCHL). The trial excluded 

patients with concurrent therapy with any other non-protocol cancer treatment. 

35 available tumour biopsies pre- and during the first treatment cycle (after 21 

days), and recurrent tumours, as well as whole blood used as a ‘normal’ control, 
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were exome sequenced for both protein coding and selected non-coding 

regions. “Recurrence” can be either local (an apparently cured tumour 

reappears at the same site) or non-local (a tumour appears at another location 

in the body of a patient whose original tumour was cured, indicating that the 

original tumour had gone metastatic before therapy was successful). This is the 

dataset used in this project. The purpose of sequencing a “normal” control is 

that it allows us to “call” somatic mutations – germline mutations will be shared 

by both the normal and the tumour cell, so by subtracting any mutations seen in 

the normal cell from the full set of mutations seen in the tumour cell, we can 

identify which mutations in the tumour cell are genuinely somatic (this is a 

simplification of a much more complicated process – see section 1.5 for more 

details on how the variant calling software, Mutect2 works). 

The metric used for whether therapy has been successful is whether or not pCR 

(pathological complete response) was achieved in the patient. pCR means that 

all signs of cancer are absent in tissue samples removed post-treatment. To 

determine pCR, a pathologist examines tissue slides under a microscope to see 

whether there are still any cancer cells remaining.  

The results of the trial are summarized in Figure 1.3. The data analysed in this 

project is a subsection of the overall set of data in the overall TCHL clinical trial 

(100).
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Figure 1.3 – TCHL trial summary, showing which samples were TCH and which were TCHL, which 
samples showed pCR and which did not, and which samples showed a relapse. The “21-days-on-
treatment biopsy” row refers to whether a biopsy was taking from the patient 21 days after the 
treatment was started. “C1”, “C2” etc. refer to being on treatment cycle 1, treatment cycle 2, and 
so on. It is not possible to give a citation for this image because it is not from a published paper – 
It is from an Irish Cancer Society Research presentation. My sincerest thanks to the Society for 
allowing me to include it in my thesis. 

One aim of this project is to “call” mutations from the raw sequencing data and 

analyze these mutation calls to discover which driver mutations are present in 

the samples, in particular whether certain driver genes are commonly 

associated with those relapse samples. 
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1.4 Next Generation sequencing – how the data is prepared 

In recent years, the speed and accuracy with which researchers can sequence 

genetic data has improved at a lightning pace in comparison to older Sanger 

sequencing technology. So called “Next Generation Sequencing” (NGS) allows 

for genomes, including cancer genomes, to be sequenced much more rapidly, 

at much higher depth, and for much lower cost than would have been possible 

in the past. This explosion of sequencing information has allowed researchers 

to scan entire exomes or genomes to look for potential driver mutations, rather 

than focusing on specific regions of the genome that they knew ahead of time 

were likely to be involved in cancer development, and to examine regions of 

interest at much higher “depth” of sequencing. “Depth” in this context means the 

number of sequencing “reads” covering the same area - the greater the depth, 

the more accurate the sequencing information is and the more likely it is for rare 

alleles to be discovered (101). Figure 1.3 below shows how much more data it 

has become feasible to sequence per instrument run since the year 2000. 

 

Figure 1.4- Figure 1.3 – Output in kilobases per instrument run of sequencing technology by year, 
demonstrating the massive improvement of sequencing technology that has taken place since the 
turn of the millennium (Mardis, 2011) 

The Polymerase Chain Reaction 

Modern sequencing technology relies on a process called the polymerase chain 

reaction (PCR) (NB- PCR as described here should not be confused with pCR, 

pathological complete response, as described above) PCR is a technique to 

make a very large number of copies (thousands to millions) of a single copy or a 

few copies of a DNA segment. Having all of these copies is necessary for the 

sequencing instrumentation to work (102).  
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Illumina Sequencing Technology 

Although PCR is an extremely valuable tool without which NGS would be 

impossible, the sequence “copies” created by PCR contain some systematic 

inaccuracies (i.e. they are different from the template DNA used in systematic 

ways) (103).  The issues created by the PCR process include preferential 

amplification of certain fragments, which leads to over representation of certain 

sequences. The factors influencing whether a fragment will be preferentially 

amplified include length and GC content. This issue is addressed by the 

“duplicate marking” stage of data processing (see section 1.6). PCR may also 

amplify substitution errors - if the DNA polymerase inserts the wrong base early 

in an early PCR cycle, the PCR process will copy this error into many read 

copies (104). 

NGS is a catch all term for modern rapid and accurate sequencing 

technologies. The specific technology used to generate the sequencing data 

presented in this thesis is Illumina sequencing technology. Illumina sequencing 

technology starts with a silicon surface covered in primer sequences attached to 

the surface that are complementary to the adapters ligated to the DNA 

fragments that are to be sequenced. The DNA “library” of fragments is poured 

over this surface, so that the fragments bind to the adaptors. Each of the bound 

fragments is then amplified by a PCR process called “bridge amplification”, 

leading to many copies of the same fragment being present all very close to 

each other in a “cluster” on the silicon surface. The bridge amplification process 

is summarized in Figure 1.5 below. 
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Figure 1.5 - The process of PCR bridge amplification. This process is used to create many clusters 
in a flow cell, each cluster corresponding to a specific fragment to be sequenced. Each read in the 
data output by the sequencing equipment corresponds to one cluster. Image from wikipedia, url: 
https://en.wikipedia.org/wiki/Illumina_dye_sequencing#/media/File:Cluster_Generation.png 

With the clusters amplified, sequencing primers corresponding to the adaptors 

are added to the surface. These hybridize to the ends of the fragments in each 

cluster, in preparation for the addition of DNA bases complementary to the 

sequence of the fragment. The deoxyribonucleotide triphosphates (dNTPs) 

used to extend the primer are special in two ways - firstly, they each have an 

attached fluorescent molecule that, when the base is added to a growing DNA 

sequence, emits a color that is unique to the identity of the attached base (so 

there is a set color corresponding to A, another corresponding to G, and so on). 

The emitted fluorescence is detected by the sequencing instrumentation, and 

this is how the “base calls” in the “read” describing the DNA base sequence of 

the fragment are determined. Secondly, the dNTPs have a “blocker” molecule 

on the 3 prime end that blocks further synthesis until the blocker is removed. 

The blocker is used so that the bases are added one at a time so that 

fluorescence from a bases being added is gone by the time the next base is 

added and does not interfere with the signal from the next base, confusing the 

sequencing instrumentation. Despite this step, residual fluorescence does 

interfere with the signal from later added bases, which is one of the reasons 
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why base calls from later in the read (i.e. farther along the fragment) are 

systematically lower in accuracy than calls earlier in the read (105). 

The reads produced for this project were paired end reads. This means that 

when sequencing is being performed, the ends of each fragment are 

sequenced, leading to there being 2 “mate pair” reads for each fragment. This 

allows for greater accuracy in alignment - because the distance between the 

mate pairs is known, they are easier to map to repetitive regions of the genome 

than solo reads would be, increasing the overall accuracy of the alignment. 

They are also helpful for detecting genomic rearrangements - if the mate pairs 

map to separate parts of the genome, it implies the presence of rearrangements 

(106). Figure 1.6 shows how paired end reads work and why they are helpful 

when mapping reads to the reference genome. 

 

Figure 1.6 - Paired end reads and their use in mapping to the reference genome. Image from 
Illumina website, url: https://www.illumina.com/science/technology/next-generation-
sequencing/paired-end-vs-single-read-sequencing.html 
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1.5 Data processing – what we do with sequencing data, and why 

Many steps of the data processing in this project use tools from the Genome 

Analysis Toolkit (GATK) suite of programs. The GATK is a set of programs 

available for free for academic use from the Broad Institute. The GATK website 

is accessible at the following link: https://software.broadinstitute.org/gatk/. The 

tools used can be downloaded from the following URL: 

https://software.broadinstitute.org/gatk/download/. The GATK programs are all 

based around a MapReduce framework, in order to create programs that will 

work efficiently on the huge file sizes that characterize most biological data 

generated by NGS  (107). In addition to providing these programs, the GATK 

website also provides a set of “Best Practices” guidelines explaining how to 

build a standard pipeline for variant calling in such a manner as to make the 

final variant calls as accurate as possible. The variant calling pipeline used in 

this project is based on these guidelines (108). The GATK pipeline is used 

because it is the industry standard for variant calling. The same rationale 

applies to the other non-GATK programs described below: they were chosen 

because they are the industry standard for the specified task. A given software 

is chosen as the industry standard due to having the best performance on that 

task in terms of accuracy, speed and computational efficiency in comparison to 

other available software for the same task. 

The other main tool set used in this project is the Picard Tools suite of 

programs. This is a set of tools, again provided by the Broad Institute, designed 

to aid with manipulating SAM/BAM files and VCF files (explained below). These 

tools are called from the command line using Java 

(http://broadinstitute.github.io/picard/) 

Introduction to data and quality control 

The data used in this project started out as files in FASTQ format. FASTQ 

format is an extension of FASTA format. FASTA format files hold the genetic 

sequence of the reads as text, along with metadata about the reads in comment 

lines. Fastq format is similar but also includes a sequence quality score for each 

base in each read, showing how confident the sequence calling instruments are 

that that base call is accurate. These scores are important for ensuring the 
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accuracy of variant calling, as a low confidence base call is unlikely to represent 

true variation (109). 

The first step of data processing for variant calling is checking the quality of the 

reads. In this project we used the FastQC program to generate statistics about 

the quality of the reads for each sample. FastQC, which can be accessed 

through a GUI or through the command line, generates a results readout 

containing information on quality scores across the reads, the GC base content 

across the reads, sequence duplication levels and the presence of 

overrepresented sequences (overrepresented sequences may represent 

adapter sequences mistakenly included in the reads). (110) A sample FastQC 

report is shown below in Figure 1.7 

 

Figure 1.7 – Sample FastQC report, taken from the following URL: 
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 

In order to make the reads used for alignment and variant calling as accurate as 

possible, we “trim” the reads produced to remove low quality bases and 

sequences that are likely to represent adapters rather than bona fide genetic 

data from the sample under examination. In this project we used the 
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“trimmomatic” program, accessible via the command line, to perform trimming 

on our read files. This program was used due to it being optimized to work 

properly with paired end Illumina read data (111). 

Read Alignment to Reference Genome 

Once the reads have been fully prepared, they must be “aligned” to a reference 

genome in order to discover what variants are present. This means that an 

algorithm is run to find the location in that reference genome that corresponds 

to the location in the genome that the read in question is most likely to have 

originated from. This project uses the Burrows-Wheeler Aligner, called from the 

command line as “bwa”. This Aligner is based on the Burrows-Wheeler 

transform, a technique to rearrange a character string into chunks of similar 

characters, and the usage of this technique to match strings (112). This 

approach is used rather than the approach simply comparing the read to the 

entire genome to avoid the memory and processing costs of scanning the entire 

genome when many regions of the genome are likely to have no reads align to 

them. Along with the reads and the reference genome, the bwa program also 

takes as input a “read group” argument. This argument contains metadata 

about the reads, including what type of sequencing was used to generate them, 

what sample the reads were obtained from, and the sequencing library and lane 

they are from. This read group information is necessary for several downstream 

tools to work properly, and is especially important for merging BAM files that 

originate from the same sample together. 

The bwa alignment program outputs files in the sequence alignment map (SAM) 

format, a format for storing genetic sequencing data aligned to a reference 

genome that was developed by Heng Li et al in 2009 in response to the need 

for a common alignment format to make it easier to write tools for downstream 

processing of alignment information (113). Each line in the SAMfile gives 

information about a read, where in the reference genome that read has been 

mapped to, the “mapping quality” (how confident the algorithm is that this 

mapping is correct), the base quality of the bases in the read, and the presence 

or absence of gaps in the alignment (if gaps are present they likely represent 

insertions or deletions in the genome under examination). Due to the very large 
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size of SAM files, they are almost always converted to the binary version, the 

BAM (BAM = Binary Alignment Map) file, for storage and for downstream 

processing. The Li et al paper also introduces the samtools suite of programs, 

which includes various programs to manipulate SAM format files to help with 

bioinformatics work. It includes utilities to sort SAM and BAM files, and to 

generate index files corresponding to those SAM and BAM files. These index 

files are necessary for several other tools (including many GATK tools) to work 

with the SAM/BAM files, as they are needed to allow these tools to rapidly “look 

up” certain parts of the file so that the programs can run in a reasonable amount 

of time (113). 

BAM File Quality Control 

Before further analysis of these sorted and indexed BAM files, it is necessary to 

carry out “duplicate marking” on them. “Duplicate marking” software identifies 

cases where there are multiple identical reads mapped to the same spot on the 

reference genome. While naively it might seem like each extra read covering 

the same location is evidence for greater sequencing depth at that location, in 

reality extra reads that are identical are far more likely to be PCR errors or 

cases where a single amplification cluster has been misidentified as multiple 

clusters by the sequencing instrument (“optical duplicates”). Including them in 

downstream analysis and in depth coverage calculations would give inaccurate 

information about the depth associated with variants called from those reads as 

a result, which would give inaccurate information about the confidence we can 

have in those calls. For this reason, the “MarkDuplicates.jar” tool from 

PicardTools was run on all BAM files before further processing. This tool flags 

all duplicates in the BAM/SAM and identifies what type of duplicate each 

identified duplicate is. Downstream tools are programmed to ignore these 

duplicate reads where relevant (114). 

Base quality score recalibration (BQSR) is a machine learning based process 

that aims to enhance the accuracy of the quality score that is attached to each 

base in each read in an alignment (i.e. SAM or BAM file). This step in the 

variant calling pipeline is needed because there are systematic errors in the 

way that quality scores are assigned by the sequencing equipment - some due 
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to the chemistry of the sequencing reaction, some likely due to real life 

machines having manufacturing flaws and wear and tear etc and so not working 

exactly like theoretical ones would. Since the assigned scores in the reads we 

receive are always going to be imperfect due to these issues, the BQSR 

process gets around this by using machine learning to build a picture of which 

base calls are likely to be inaccurate based on empirical data (115). BQSR is a 

two step process. In the first step, a model of how base quality scores covary 

across reads and across the genomes is built by running an algorithm on the 

data under examination and a set of known variants. This algorithm might 

identify, for example, that there is a 2% higher rate of error after any ACG 

trinucleotide in the datasets fed into it - therefore, any base called after such a 

nucleotide should have its quality score reduced by 2%. This model is stored as 

a “recalibration table” for the corresponding BAM/SAM file. In the second step, 

this recalibration table is used to adjust the base quality scores in the reads in 

the alignment file to more accurate scores. 

With the BAM files fully prepared for variant calling, there were some quality 

control checks we ran on the files to ensure they were appropriate for use in 

variant calling. First, we ran the samtools “flagstat” command, which generated 

for each file data on what percentage of the reads were properly paired and 

what percentage of reads had successfully been mapped to the reference 

genome. Secondly, we examined the depth of coverage of each file using the 

GATK DepthOfCoverage tool. This tool outputs statistics about the depth of 

coverage in a SAM/BAM file, which is the average number of reads mapped to 

a region of interest in that SAM/BAM file. In general, the higher the depth of 

sequencing the more confidence we can have in the variants called 

downstream and the greater chance of discovering rare subclonal variants in 

the sample. This was particularly important to examine because the samples 

TCHL 3,6, 12, 29, 32, 39 and 45 had been re-sequenced to achieve a greater 

depth of sequencing, so it was important to establish that this effort had 

genuinely achieved a greater depth of sequencing. 

 

Variant Calling 
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Variant calling in this project was run using the GATK 4 Mutect 2 algorithm 

(crucially, this is a different algorithm to GATK 3 MuTect2). This is an algorithm 

specifically designed to call somatic variants (as opposed to a germline variant 

caller, like the GATK Haplotype Caller function). Like the Haplotype Caller 

function, Mutect 2 re-maps reads in regions of expected variation, allowing the 

simultaneous discovery of indels (insertion-deletion) and SNVs (single 

nucleotide variants; somatic single base changes). Unlike Haplotype Caller, 

Mutect2 allows for varying ploidy (ploidy = the number of sets of chromosomes 

present in a cell), in recognition of the fact that cancer cells often have an 

abnormal number of chromosomes present due to chromosomal duplication or 

loss (aneuploidy). For each sample, the Mutect2 algorithm is given as input the 

tumour BAM file, a “normal” (i.e. reads derived from non-tumour tissue) BAM file 

from the same sample, and a file containing a set of variant calls from a set of 

normal samples, referred to as the Panel of Normals (PON). Sites that are 

unambiguously variant in the normal file compared to the reference genome are 

removed from the callset, as these are likely germline variants rather than 

somatic variants. The PON is used to filter germline sites in the same way, and 

is also used to identify and remove apparently variant sites that are actually 

artefacts of sequencing and mapping error. Removing germline variants is 

especially important because “tumour” samples are often contaminated with 

DNA from nearby non cancerous cells, so it is important to remove such 

variants to make the final callset as accurate as possible. 

The output of the Mutect is files in the Variant Call Format (VCF files). This is a 

standardized format for presenting information about small scale genetic 

variation (i.e. genetic variation other than chromosomal alterations and CNVs) 

that is now used in many large scale sequencing projects such as the 1000 

Genomes project and is accepted as a standard input to many bioinformatics 

tools. VCF files, in addition to listing each called mutation, contain information 

about the quality of each mutation call (i.e. likelihood that it is true), as well as 

further metadata about each mutation call - including, importantly for our 

research, the allele frequency of the reference allele and the alternate allele in 

the reads (116). 
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The initial output VCF files from Mutect2 are “raw” files that have not yet been 

filtered for contamination. This 3-step process uses GATK tools to annotate 

those variants that are judged more likely to be the result of technical errors 

than genuine somatic variants. The variants filtered include variants that are of 

too low quality to be considered genuine (either due to base call quality or due 

to mapping quality), as well as variants that are likely to be a sequencing 

artefact in the normal file. The first step is running GATK GetPileUpSummaries 

on each tumour BAM file, which generates a “pileup table” of the number of 

reads supporting the reference, the alternate and other alleles for each site. The 

second step is running GATK CalculateContamination on each pileup table to 

calculate the fraction of reads coming from cross sample contamination and 

generate a “contamination table” for each sample with this data. The third and 

final step is to run GATK FilterMutectCalls, supplying the VCF and the 

corresponding contamination table for that sample as inputs to annotate all of 

the variant calls that fail the filtration tests. 

Mutect2 allows us to uncover small scale genetic variation in the samples, but 

we also want to analyse whether copy number alterations (CNAs) are present in 

the samples. To this end, we use the R package FACETS (algorithm to 

implement Fraction And Copy number Estimate from Tumour/normal 

Sequencing). First, the snp-pileup command line function is run on the tumour 

and normal BAM files for each sample to generate a table of the counts, for 

each SNP found, of the reference nucleotide and the alternate nucleotide, as 

well as errors and deletions. This table is then used as input to the FACETS 

program, which outputs data about the CNAs observed in the samples. 

FACETS uses an allele specific copy number analysis approach which takes 

into account copy-neutral loss-of-heterozygosity events, thereby allowing more 

comprehensive CNA discovery. (117). 
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Analysis of Discovered Variants 

In order to analyze the likely consequences of the mutations discovered, we 

used the Variant Effect Predictor (VEP) tool. This is a tool provided by Ensembl 

and written in the Perl language that annotates variant callsets provided to it 

with the likely functional consequence of each mutation, along with a prediction 

of how impactful the mutation is likely. In this project we assume that mutations 

with the potential to act as driver mutations are likely to be high impact 

mutations, as it is unlikely that a low impact mutation would alter cell biology 

radically enough to be able to contribute to a cancerous phenotype (118). 

The Cancer Genome Interpreter (CGI) is an online resource that takes VCF or 

other mutation files and returns information about which mutations are 

definitively known to be driver mutations, as well as predictions about which 

mutations are likely to act as driver mutations, and which mutations are likely to 

be passenger mutations. The tool is usable for free as an API or via the web 

interface at http://www.cancergenomeinterpreter.org. The information about 

known cancer driver mutations is derived from a Catalogue of Cancer Genes 

that the creators of the tool made using information from manually curated 

literature, as well as information from international initiatives like The Cancer 

Genome Atlas (TCGA, described further below) and the International Cancer 

Genome Consortium (ICGC). The predictions about whether mutations of 

unknown driver status are drivers or passengers is made by the 

“OncodriveMUT” tool. This tool uses features like whether the mutation a gene 

appears in is a known oncogene or tumour suppressor, the location of a 

mutation in a transcript and the predicted functional impact of that mutation to 

assess the likelihood that a given mutation is a driver mutation. It has been 

shown to be 86% accurate at classifying validated drivers and passengers, out-

performing other currently existing tools (119). In this project, CGI is used to 

interpret the output from Mutect2 to predict which of the small scale mutations 

discovered are drivers. 

To analyze which of the CNAs discovered are likely to be drivers, we use 

Annovar. Annovar is a Perl based command line tool that can annotate input 
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mutational data with information from UCSC genome browser databases, or 

any databases that follow Generic Feature Format 3 (GFF3) standards (120). 

SciClone is a software package for the programming language R that performs 

clustering analysis for individual tumour samples or pairs of samples in order to 

infer the clonal architecture of the tumour(s), which allows us to analyse the 

evolutionary history of the tumour(s). As input, SciClone takes Variant allele 

frequency (VAF) data from the sample(s) under examination, and the analysis 

can be further refined by including copy number variation (CNV) data (121). In 

this project we use both VAF data and CNV data as inputs to SciClone to build 

up the most accurate model possible of the clonal architecture and evolutionary 

history of the samples under examination. 

Genomic Data Online Resources 

The freely available web resources used in this project to get publicly available 

genomic data were DbSNP, the 1000 Genomes Project website, COSMIC and 

TCGA. They are described below. 

DbSNP is a database of Single Nucleotide Polymorphisms (SNPs; germline 

single base genetic mutations) that appear often in the human population. It 

was created and is maintained by the NCBI. In this project it was used as a 

resource for information about regularly occurring germline SNPs, so that these 

mutations could be filtered from the final mutation call files to avoid the risk that 

the mutation caller had misidentified germline variants as somatic mutations 

(122). 

The 1000 Genomes Project is an international research project aiming to build 

the most detailed and complete catalogue of human genetic variation that has 

been created to date via deep sequencing of the genomes of 1092 anonymous 

individuals spanning a number of different ethnic groups (123). In this project 

the publicly available data from the 1000 Genomes Project was used as a 

resource for high confidence SNP and indel callsets for the human population. 

COSMIC (The Catalogue of Somatic Mutations in Cancer) is an online 

database hosting data about known driver mutations (URL: 
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https://cancer.sanger.ac.uk/cosmic). By 2015 it listed over 500 cancer genes. 

The known driver mutations in these genes included over 4 million coding 

mutations, 10 million non-coding mutations, 1 million copy number alterations 

(CNAs) and over 8 million epigenetic variants (124). Mutations on COSMIC are 

curated in order to ensure that the database contains as few technical artefacts 

and other mutations not genuinely associated with cancer as possible. 

Mutations are also annotated with a “functional impact score” assigned by the 

FATHMM-MLK algorithm (more information on the algorithm available here:  

http://fathmm.biocompute.org.uk/). Variants with scores below 0.5 are classified 

as “neutral”. Variants with scores between 0.5 - 0.7 are classified as 

“deleterious”. Variants with scores of 0.7 and above are classified as 

“pathogenic”. The COSMIC dataset is used in this project as a resource to 

identify known driver mutations. 

The final online resource used was TCGA (The Cancer Genome Atlas). TCGA 

is a project funded by the US government which began in 2006 and is co-

ordinated by National Cancer Institute's Center for Cancer Genomics and the 

National Human Genome Research Institute. The project studied over 20,000 

cancer samples with matched normal samples across 33 cancer types at a 

molecular level. The data from the project is now hosted online, and is used in 

this project as a resource to identify known driver mutations. 

The final electronic resource needed for this project was a High Performance 

Computing (HPC) environment capable of hosting the very large files that store 

genomic data, and performing the sometimes computationally intensive 

bioinformatics jobs that needed to be done. The Irish Centre for High End 

Computing (ICHEC) is an Irish HPC organization, a national body headed by 

Nation University of Ireland, Galway. It provides High Performance Computing 

services to Irish Universities. Data processing for all samples described in this 

thesis was performed on the now de-activated ICHEC fionn server. Some data 

was stored on another server in University College Dublin (UCD) called the 

Alpen server. The ICHEC website is available at the following URL: 

https://www.ichec.ie/. 
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1.6- Mutational signatures 

Phenomena that cause mutations in the human genome do not cause 

mutations in a random, unpredictable pattern. Instead, there is a particular 

pattern of mutations associated with a given mutagenic agent, due to how the 

chemistry of that agent interacts with the chemistry of the DNA in a genome. By 

examining the patterns of mutations apparent in human cancer samples, 

researchers have derived a set of “mutational signatures”, each “signature” 

describing a particular pattern of frequency of specific SNV mutations at specific 

trinucleotide contexts (e.g. a given signature would have a known frequency of 

T > A mutations at ATG sites in the genome) (24). The cited paper was the first 

to define mutational signatures in cancer by looking at whole genome 

sequences in all cancer types as opposed to examining only mutations in driver 

genes to define mutational signatures, or examining whole genome sequences 

of one specific cancer type. As noted in the cited paper, the whole genome 

approach is superior because when looking at a driver gene, the signal of a 

mutational signature is “jumbled” by signals of positive selection for driver 

mutations in that driver gene. The method of the cited paper was to calculate 

the relative frequencies of each possible SNV (C>A, C>G, C>T, T>A, T>C, 

T>G) at each possible trinucleotide context (by looking at the bases 3’ and 5’ to 

the mutated base) across the genomes of 21 cancer types, then feed this data 

into an algorithm they had developed to extract mutational signatures. The 

benefit of this algorithm was that it allowed the disentangling of signatures in 

cases where multiple signatures had affected the genome of a sample under 

examination. The algorithm had been previously validated on beast cancer 

whole genome sequences. Running this algorithm on those breast cancer 

whole genome sequences successfully recapitulated known mutational 

signatures, as well as showing some novel signatures (125) (126) . 

The signatures discovered by the researchers in the cited paper ((24) were 

developed into a curated set of signatures now hosted on the website of an 

organization called the Catalogue of Somatic Mutations in Cancer (COSMIC, 

URL here: https://cancer.sanger.ac.uk/cosmic/signatures). Note that this project 

was undertaken while the COSMIC “Version 2” set of 30 signatures were still 

the most up to date set available. There is now a version 3 set of signatures, 
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which can be seen by following the URL. However as I cannot redo the entire 

project to work with the new signatures (they came out after the original, 

uncorrected thesis was submitted and I no longer have access to the original 

data), the presented thesis is still working with the older set of signatures. 

 Some signatures have known causes (e.g. Signature 4 is associated with 

tobacco smoke), while for other signatures the cause is not yet known (127). 

Signature 4 is shown below in Figure 1.8 to show an example of what a 

mutational signature looks like. 

 

 

Figure 1.8 – Signature 4, the signature associated with tobacco smoke. “C>A” refers to the probability of a 

C base changing to an A base in the specified tri-nucleotide context. Image is from the COSMIC website, 

url: https://cancer.sanger.ac.uk/cosmic/signatures_v2 

DeconstructSigs – The software for analyzing Mutational Signatures 

In this project we used the R package deconstructSigs to find the frequency of 

known mutational signatures in the samples being examined. The input for 

DeconstructSigs is a file listing the set of somatic mutations present in a sample 

or samples, and the output is a table showing the extent to which the package 

predicts each of the known signatures contributed to causing the overall set of 

mutations present in that sample. To illustrate: if a sample were assigned a 

value of 30% for Signature 1 and 70% for Signature 7, this would mean that the 

overall set of somatic mutations in that sample were predicted to be 30% 

caused by Signature and 70% caused by Signature 7 – this would roughly 

correspond to 30% of the mutations being caused by Signature 1 and the other 

70% being caused by Signature 7.  

DeconstructSigs works by building a model of mutational frequencies by 
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“layering” known mutational signatures onto each other and finding the 

combination of mutational signatures that most closely approximates the SNV 

data presented to it (the package ignores non-SNV data). It is important to 

remember that this is how the program works when interpreting the results, as 

sometimes the results reflect the working of the algorithm rather than 

necessarily being an accurate representation of what signatures caused the 

mutations observed - for example, the aging based signature (signature 1) 

logically must have affected all of the samples as all cells have gone through 

the biological aging process, but DeconstructSigs sometimes assigns samples 

a 0% level of signature 1 because a combination of the other signatures got 

closer to the mutation frequencies observed rather than because the samples 

were actually unaffected by signature 1 (128). 

In our analysis, as well as examining the prevalence of each signature 

individually, we also examine the results of grouping similar signatures together, 

under 5 groupings: Aging based signatures, APOBEC based signatures, DNA 

damage based signatures, Environmentally based signatures (e.g. the smoking 

signature, signature 4) and signatures of Unknown Aetiology (see the methods 

section for which signatures fall into which group). APOBEC (ApolipoPrOtein B 

mRNA Editing enzyme, Catalytic polypeptide-like) is a family of ssDNA cytidine 

deaminase proteins - they catalyse C -> U base changes via deamination of 

cytidine in single stranded DNA. Family members have various roles in the 

body, including aiding in the assembly of very low-density lipoproteins (129). 

The most common role shared by APOBEC proteins is protection against viral 

infection via alteration of the viral genome (130). However, when dysregulated, 

these APOBEC enzymes can cause mutations in the host DNA, thereby 

creating a distinct mutational signature capable of contributing to cancer 

development (131). “DNA damage based signatures” refers to signatures that 

appear in cells with deficiencies in the mechanisms for repairing DNA damage 

(e.g. deficiencies in double strand break (DSB) repair (132) or deficiencies in 

DNA mismatch repair (132). The meaning of the other signature groupings is 

self-explanatory. 

The logic for grouping the signatures is that the signatures within a group share 
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the same or a similar biological cause, and since our main purpose in analyzing 

the signatures is to discover the biological causes of the driver mutations driving 

the cancers in these tumours, grouping the signatures in this way makes sense. 

It is also easier to interpret the relative prevalence of 5 groupings of signatures  

than it is to interpret the relative prevalence of 30 separate signatures.  
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1.7 -Objective of current study 

List of core objectives: 

1. To define the overall mutational landscape of a cohort of HER2 positive 

breast cancers taken from a population of Irish women 

2. To define the mutational landscape of the Pre-treatment samples and look for 

commonalities in driver genes and mutational signatures prior to treatment 

starting 

3. To compare the mutational landscape of the responders in the cohort to the 

non-responders 

4. To investigate molecular evolution of matched pre- and post-treatment 

samples in patients 

By calling and carefully filtering mutations from the deeply sequenced TCHL 

cohort, we aim to discover new driver genes and mutations that are responsible 

for the outcomes observed in the patients. We also aim to learn about the 

evolutionary history of the samples using the SciClone R package, and learn 

about the cause of the mutations present in the sample by examining the 

mutational signatures present using the deconstructSigs R package, in order to 

develop a holistic understanding of the biology of the samples. By learning 

about the driver mutations responsible for the cancers observed, the mutational 

signatures that caused these drivers to occur, and the way that these cells 

evolved through the selective pressures imposed by the therapy applied, we 

hope to make discoveries about cancer biology that will inform future 

therapeutic approaches. 
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2 Methods 
All data processing was run on ICHEC except where otherwise indicated. The 

variant calling pipeline described is based on the GATK best practices pipeline 

from the GATK website (URL: https://software.broadinstitute.org/gatk/best-

practices/ ). All settings used by the tools matched the settings recommended in 

the GATK best practice pipeline, except for specific cases which use different 

settings. These are described and explained below when they come up. 

The GATK best practice pipeline was used as a starting point for designing the 

pipeline in this project because the GATK best practice pipeline is the standard 

in both industry and academia for how to call variants from raw sequencing 

data. 

All data transfers between different computing environments (e.g. local drive to 

ICHEC) were performed using either the ftp or the sftp protocol and the 

accuracy of the transfer was validated using an md5 checksum each time. All of 

the reference files used, except where otherwise indicated, were downloaded 

from the GATK resource bundle. 

The following steps were parallelised by multi-threading utilities built into the 

tools (i.e. multiple threads ran on the same task simultaneously to speed up 

processing): 

-FastQC 

-Trimmomatic 

-Bwa 

-Samtools “sort” command 

The following steps were parallelised using the ICHEC taskfarm utility (each 

thread on a processor is given a separate task and all tasks are run 

simultaneously to speed up processing): 

-MergeSamFiles (Picard Tools) 
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-MarkDuplicates (Picard Tools) 

-CollectMultipleMetrics (Picard Tools) 

-Both steps of Base Quality Score Recalibration: 

-BaseRecalibrator (GATK 4) 

-ApplyBQSR (GATK 4) 

-DepthOfCoverage (GATK 3.5) 

-Mutect2 (GATK 4) 

-The three steps of Contamination filtering the called VCFs: 

-GetPileupSummaries (GATK 4)  

-CalculateContamination (GATK 4) 

-FilterMutectCalls (GATK 4) 
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2.1 TCHL sequencing data 

The TCHL data analysed in this project was sequenced as paired end reads 

using Illumina sequencing technology by VIB Belgium. At this stage some of the 

samples were run in separate sequencing lanes (so that there were files with 

data from the same sequencing library but run on separate lanes). The data 

was a subsection of the overall TCHL project, introduced in the Introduction, 

section 1.3 (100) . 

A subset of samples was selected for re-sequencing, again as paired end 

reads, at a higher depth by BGI China. These were from patients 3, 6, 12, 29, 

32, 39, 45. Below is a table showing the samples associated with each patient 

included in this subset. The reason that only a subset of the patients were 

sequenced at a higher depth is that deeper sequencing is expensive and 

projects have budget constraints. 

These higher depth sequencing samples were the main focus of this project, 

and so in-depth from these samples are analyzed in the main Results section 

3.4. Analogous results for the other samples are shown in the Supplementary 

Materials section after the Bibliography at the end of this thesis. Table 2.1 on 

the next page summarizes the samples available for each of the patients whose 

samples were sent for higher depth sequencing, along with the relevant clinical 

data about these patients. 
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Table 2.1 – A table of the samples from the patients that were sent for re- 

sequencing in order to achieve higher depth of sequencing. In the “Treatment” 

Column, “TCHL” means that the patient was given lapatinib along with 

docetaxel, carboplatin and trastuzumab, while “TCH” means the patient was 

given docetaxel, carboplatin and trastuzumab but no lapatinib. “Non-responder” 

means that the patient did not respond to initial therapy. 

Patient Samples Treatment Response 
category 

TCHL 3 AN, PRE, POST, Surgery TCHL Non-responder 

TCHL 6 AN, PRE, POST, Relapse TCH Non-responder  

TCHL 12 AN, PRE, POST TCHL Non-responder 

TCHL 29 AN, PRE, POST TCHL Non-responder 

TCHL 32 AN, PRE, Relapse TCH Responded to 
therapy initially. 
Later showed 
relapse in the 
brain 

TCHL 39 AN, PRE, POST, Relapse TCH Non-responder 

TCHL 45 AN, PRE TCH Responded to 
initial therapy 

 

For all patients other than those in the table above, the data set consisted of a 

normal set (denoted AN) and a pre-treatment sample (denoted PRE). POST 

above just means a post-treatment sample. “Relapse” refers to samples taken 

from a patient whose cancer had relapsed after appearing to be in remission, 

and “Surgery” refers to samples from patients who had undergone surgery to try 

to remove the cancer. 

The data from VIB Belgium was stored as FASTQ files on the UCD Alpen 

server. The data from BGI China (extra high depth sequencing samples) was 

received as a hard drive containing a set of FASTQ files. 
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Table 2.2 – Read lengths of the reads in the FASTQ files associated with each 

sample 

 

Sample Name 

 

Read length 

 

Sample Name 

Read 
length 

 

Sample Name 

Read 
length 

eTCHL_11_AN 127 eTCHL_39_PRE 127 eTCHL_6_PRE 127 

eTCHL_11_PRE 127 eTCHL3A_PRE 127 eTCHL_76_AN 127 

eTCHL_12_AN 127 eTCHL_3_AN 127 eTCHL_76_PRE 127 

eTCHL_12_POST 127 eTCHL3B 127 eTCHL_7_AN 127 

eTCHL_12_PRE 127 eTCHL_3_POST 102 eTCHL_7_PRE 127 

eTCHL_14_AN 127 eTCHL_42_AN 127 eTCHL_87_AN 127 

eTCHL_14_PRE 127 eTCHL_42_PRE 127 eTCHL_87_PRE 127 

eTCHL_20_AN 127 eTCHL_44_AN 102 eTCHL_8_AN 127 

eTCHL_20_PRE 127 eTCHL_44_PRE 127 eTCHL_8_PRE 127 

eTCHL_22_PRE 127 eTCHL_45_AN 127 TCHL 12 Post - Hard drive 151 

eTCHL25AN 127 eTCHL_45_PRE 127 TCHL 12 Pre - Hard Drive 151 

eTCHL_29_AN 127 eTCHL_4_AN 127 TCHL 29 Pre - Hard Drive 151 

eTCHL_29_AN 127 eTCHL_4_PRE 127 TCHL 32C: Relapse - Hard 
Drive 

151 

eTCHL_29_POST 127 eTCHL_50_AN 102 TCHL 39 Pre - Hard Drive 151 

eTCHL_29_PRE 127 eTCHL_50_PRE 127 TCHL 3A - Hard Drive 151 
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Sample Name 

 

Read length 

 

Sample Name 

Read 
length 

 

Sample Name 

Read 
length 

eTCHL_31_AN 127 eTCHL_54_AN 127 TCHL 3 Post Treatment - 
Hard Drive 

151 

eTCHL_31_PRE 127 eTCHL_54_PRE 127 TCHL 45 AN - Hard Drive 151 

eTCHL_32_AN 127 eTCHL_61_AN 127 TCHL 6C : Relapse - Hard 
Drive 

151 

eTCHL32C 127 eTCHL_61_PRE 127 TCHL 6 Post - Hard Drive 151 

eTCHL_32_PRE 127 eTCHL_66_AN 127 TCHL 6 Pre - Hard Drive 151 

eTCHL_37_AN 127 eTCHL_66_PRE 127 TCHL 29 Post - Hard Drive 151 

eTCHL_37_PRE 127 eTCHL_6_AN 127 TCHL 39 Post - Hard Drive 151 

eTCHL_39_AN 127 eTCHL6CFF - 

Relapse 

127   

eTCHL39C - 

Relapse 

127 eTCHL_6_POST 102   
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2.2 Pre -variant calling data processing 

 

Figure 2.1 – The pre-variant calling workflow 

 

These FASTQ files were uploaded to ICHEC. The workflow that these samples 

were put through is summarized above in Fig 2.1. 

Data about the quality of the sequencing data in the files was obtained by 

running FastQC v0.10.1 on each file. To eliminate low quality base calls and 

adapter sequences, trimmomatic v0.27 was run on each of the FASTQ mate 

pairs with the following parameters: 

“Phred 33, LEADING:20, TRAILING:20, SLIDINGWINDOW:4:20, MINLEN:36” 

Once the reads were trimmed, FastQC was run on all of the trimmed files to 

examine the quality of the trimmed reads. Once the overall quality of the reads 

was deemed satisfactory, the reads were then aligned to Human reference 

genome 38 (Hg38) using bwa v0.7.5a-r405. 

The resulting SAM files were processed using Samtools v1.5. The samtools 

“view” command with options “-b -h” was used to convert them to BAM files. 

These BAM files were then sorted with the samtools “sort” command and 

indexed with the samtools “index” command. 
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Duplicate marking was performed on the BAM files with the Picard Tools 

v1.1118 MarkDuplicates.jar command. At this stage the files that had been run 

on separate lanes but that were from the same original sequencing library were 

merged by putting all BAM files from the same sequencing library as inputs to a 

single MarkDuplicates run. This resulted in a single output of one duplicate 

marked bam file with data from all of the sequencing lanes that that sample had 
been run on. This also generated a duplication notes file for each BAM file. This 

information is shown in results section 3.1. 

Base Quality Score Recalibration was then run on the Duplicate marked BAM 

files, using Hg 38 as the reference for all steps. This was achieved by running 

the following commands from GATK v4.0.4.0: 

-First, RecalibrateBases was run on each BAM file to generate a 

recalibration table for that file. This tool was run with the following 

references supplied with the “--known-sites” options: 

-dbsnp_146.hg38.vcf.gz 

-Mills_and_1000G_gold_standard.indels.hg38.vcf.gz 

-1000G_phase1.snps.high_confidence.vcf.gz 

 

-ApplyBQSR was then run on each BAM file with the appropriate 

recalibration table supplied as an argument. 

The final step was merging the BAM files from samples that were resequenced 

at a higher depth. Since these higher depth samples were sequenced entirely 

separately from the first run, it would not be appropriate to merge these at the 

marking duplicates stage, as was done for the other samples that had data split 

across several files. The reason for this is that higher depth resequencing 

involves the creation of separate sequencing libraries from separate PCR runs 

and matching reads from different libraries are not duplicates as a result. The 

appropriate BAM files were merged with PicardTools v1.118 MergeSamFile.jar 

command. 
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2.3 BAM File quality control 

Once the BAM files were fully processed, the following tools were run as quality 

control checks: 

The mapping rate of each BAM file was found by running the Samtools v1.5 

“flagstat” command on each BAM file. 

The sequencing depth of the files in the region of interest was found by running 

GATK 3.5 DepthOfCoverage on each of the processed BAM files (GATK 3.5 

was used because the depth Coverage analysis tools had not yet been ported 

over to GATK 4). The analysis was limited to the region of interest by supplying 

a bed file to DepthOfCoverage with the “-L” option. The results of these depth 

analyses are shown in Tables 2.3 and 2.4 below. These results were placed in 

the Methods section rather than the Results section because the purpose of the 

depth information is demonstrate the validity of the data (higher depth 

corresponds to greater accuracy of variant calling) as opposed to the 

information that can be analysed to learn more about the biology of the tumours 

under examination. 

Information from the “duplication notes” files generated for each sample when 

MarkDuplicates.jar was run on the samples was examined. 
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Table 2.3 – Mean sequencing depth of the samples from the patients from 

whom samples were taken at multiple timepoints after all files were merged 

Patient Pre During Relapse 

TCHL 3 216 370  

TCHL 6 330 321 271 

TCHL 12 297 226  

TCHL 29 223 357  

TCHL 32 193  227 

TCHL 39 294 248 290 

 

Table 2.4 – Mean Depth of the samples from the patients from whom samples 

were taken at a single timepoint after all files were merged. 

Sample name Mean Depth Sample name Mean Depth 

eTCHL_11 PRE 84 eTCHL_50 PRE 42 

eTCHL_14 PRE 148 eTCHL_54 PRE 106 

eTCHL_20 PRE 88 eTCHL_61 PRE 76 

eTCHL_31 PRE 83 eTCHL_66 PRE 81 

eTCHL_37 PRE 73 eTCHL_7 PRE 75 

eTCHL_4 PRE 59 eTCHL_76 PRE 91 

eTCHL_42 PRE 89 eTCHL_8 PRE 97 

eTCHL_44 PRE 114 eTCHL_87 PRE 39 

eTCHL_45 PRE 167   
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2.4 Variant Calling 

 

Figure 2.2 – Variant calling workflow 

Figure 2.2 above summarizes the variant calling workflow we used once we had our aligned 

and quality controlled BAM files. 

A “Panel of Normals” vcf file was generated from the data from 9 normal sample BAM files 

(the normal samples from TCHL 6, 12, 29, 32, 39 and 45 as well as 3 normal samples from a 

separate ongoing project in the same lab examining the impact of the drug Copanlisib on 

breast cancer). This was achieved by first using GATK 4 Mutect 2 on each of these samples 

in tumour-only mode with Hg38 as the reference genome. The output VCFs from this action 

were then used as inputs to the GATK CreateSomaticPanelOfNormals tools to generate a 

Panel of Normals (PON) vcf. 

For each tumour sample, variants were called using GATK 4.0.4.0 Mutect 2 , inputting the 

corresponding AN (normal) file as the normal sample with Hg38 as reference, the above 

mentioned panel of normal vcf as the PON and the following additional parameters: 

-Germline resource: af-only-gnomad.hg38.vcf.gz 

-Allele frequency of alleles not in resource: 0.0000025 (in accordance with the Broad 

best practices guidelines) 

To filter the files for contamination and sequencing artefacts, the following steps were run for 

each vcf generated in the variant calling stage (all of the following are tools from GATK 

4.0.4.0): 
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-GetPileupSummaries was run on each tumour BAM file with “af-gnomad- 

only.hg38.vcf.gz” as the variant file with the common allele frequencies supplied with the “-V” 

option 

-CalculateContamination was run on each of the pileups tables generated by 

GetPileupSummaries to generate a contamination table for each tumour BAM 

-Finally, FilterMutectCalls was used to filter each VCF file with the contamination table 

from the corresponding tumour BAM file to generate a Contamination filtered vcf file. This 

represents the final stage of the Broad best practices pipeline. The below additional filtration 

steps are not part of Broad best practices and were added to be extra sure of our results. 

The command line tool grep was then used to remove all variant calls from each file that did 

not pass the contamination filter (as the GATK contamination tools annotate the variant calls 

that fail the filter but do not actually remove them from the file). 

To filter for potential germline variants, a file of common germline variants with common 

cancer mutations removed was prepared. The starting point for this was common_all_vcf.gz, 

downloaded from the NCBI dbSNP snp/organisms/human_9606/VCF directory on the 7th 

October 2017. To filter out mutations likely to be relevant to cancer from this file, two files 

were downloaded from the COSMIC website: a file containing known coding mutations 

relevant to cancer and a file containing known non-coding mutations relevant to cancer. 

Bedtools v2.21.0 was used to filter the original “common_all_vcf.gz” file to generate the file 

Db_SNP_HG38_FullFiltered.vcf by using the “intersect -v command” to remove any 

mutations that appeared in either of the COSMIC files from the output file. 

For each of the TCHL VCFs, the bedtools intersect -v command was then used to remove 

any mutations that appeared in the Db_SNP_HG38_FullFiltered.vcf file. 
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2.5 Phylogenetic analysis 

The “snp-pileup” tool from the htstools library was run on each tumour-normal pairing of BAM 

files, with dbsnp_146.hg38.vcf.gz as the reference vcf. This generated a table of read counts 

for the reference and alternate allele for each position in each tumour-normal pair. These 

tables were used as inputs to the R package Facets v0.5.11. For each table, the Facets 

“emcncf” function generated files giving information about the CNV in that sample. 

Python scripts were used to extract the CNV information from the Facets output and the 

Variant allele frequency (VAF) information from the fully processed VCFs, respectively. 

These data were then used as inputs for the R package SciClone v1.1.0. For each individual 

tumour sample, the “sciClone” function was run on that sample with the minimumDepth 

argument set to 50 to perform clustering analysis of the mutations present, and the 

“sc.plot1d()” function was used to generate a graph summarising the Variant allele frequency 

information about that sample. These graphs are shown in results section 3.4 for the samples 

from patients who had samples taken at multiple timepoints, and in the Supplementary Data 

for samples from the other patients. 

For each patient with tumour samples from different timepoints, the “sciClone” function was 

also run pairwise with each pair of samples as input (e.g. for patient 3, samples PRE & 

POST, PRE & Surgery, and POST & Surgery were all run as pairs). The output of Sciclone in 

this case is data about the Variant Allele Frequencies (VAF) in the subclonal populations of 

cells shared by the two paired samples. The advantage of this is if the VAFs are reduced in a 

later sample, this suggests that therapy is successfully killing cells with that variant at a 

higher rate than cells with other variants, while if the VAF is increased in a later sample, this 

suggests that that subclonal population is surviving the therapy better than the other 

subclonal populations in the tumour. 

For each of these sample pairing, the function “sc.plot2d” was used to generate a graph of 

the VAFs of the clusters identified in both samples, allowing for phylogenetic analysis. These 

pairs are shown and discussed in results section 3.5. 
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2.6 Mutational Signature analysis 

To analyse the mutational signatures, analysis was performed in R 3.4.3 using the package 

deconstructSigs v1.8.0 . Each fully processed TCHL vcf was fed into R, then processed with 

the deconstructSigs functions “mut.to.sigs.input” followed by “whichSignatures” to find the 

mutational signatures present in that sample. The R package dplyr v0.7.4 was used to add 

extra columns to the dataframe generated by deconstructSigs for each sample. These extra 

columns represented groupings of the Signatures, as shown below: 

Aging Signature = Signature 1  

APOBEC Signatures = Signature 2, 13 

DNA Damage Repair Mechanism Failure Signatures = Signature 3,6,9,10,15,20,26 

Unknown Aetiology Signatures = Signature 5,8,12,14,16,17,18,19,21,23,25,27,28,30 

Environmental Signatures = Signature 4,7,22,24,29 

 

For each sample, the R package ggplot2 v2.2.1 was used to make a bar graph representing 

the proportion of each signature and each signature grouping present in the sample with the 

“geom_col()” function. 

These plots are shown in the results section for the samples from patients who had samples 

taken at multiple timepoints, and in the supplementary data section for the samples from 

patients who had samples taken at only one timepoint. 
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2.7 Driver Gene Predictions 

The Variant Effect Predictor (VEP) tool was downloaded from ensembl, along 

with “homo_sapiens_vep_93_GRCh38.tar.gz” to act as a cache directory for 

VEP. VEP was run on each fully processed TCHL VCF to annotate the likely 

effect of each variant observed in that sample. 

To analyse which of the SNVs and indels present were likely to act as drivers, 

the Cancer Genome Interpreter (CGI) was used. Each VCF file was remapped 

to hg19 genomic coordinates using the crossmap tool, because the CGI only 

works with hg 19 files. Each vcf was submitted in turn to the CGI with the cancer 

type set to “Breast Adenocarcinoma (BRCA)”. Summary heatmaps of the 

mutations that were predicted to act as drivers are shown in the Results 

section. Full tables of the results from CGI are shown in the supplementary data 

section. 
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2.8 –Statistical Tests 
 

Some statistical tests were run on the data to test whether certain factors (e.g. the 

presence of certain mutations) had a statistically significant effect on responder 

status and relapse status. Any statistical test of this type has a “null hypothesis” – 

essentially a hypothesis that there is no significant difference between the 

populations under examination (e.g. responder and non-responder samples), and 

that any differences observed in e.g. the frequency of mutations in certain genes 

between the two cohorts is due to the random chance inherent to sampling rather 

than genuine difference in the underlying population. The output of the tests is a “p-

value” that tells you the probability of observing results at least as extreme as those 

observed if there is no genuine difference between the underlying populations being 

examined (so p =0.05 means there is a 5% chance you would see results at least as 

extreme as those input to the test if there was no genuine difference). 

Fisher’s Exact test is a test used to examine if there is a non-random association 

between two categorical variables. In this Thesis, the categorical variables are 

presence/absence of mutations in a given gene, and Responder status, or Relapse 

status. The null hypothesis of Fisher’s Exact test is that the association between the 

two categorical variables is random (133). 

The other statistical test used is the 2 sample, unpaired t-test. The null hypothesis of 

this t test is that the underlying populations behind the two sample populations being 

compared have the same mean average. It is used to compare the mean averages 

of two separate sets of samples (134). In this thesis it was used to compare the 

mean average number of subclones in the responder cohort compared to the non-

responder cohort. Do note that the two sample unpaired t test assumes that both 

underlying populations that the samples are drawn from are normally distributed. 

The final thing to note in this section is that a statistical test not reaching statistical 

significance (defined in this thesis as p < 0.05 because that is the standard in most 

scientific literature (135) does not mean the association that the test was 

investigating does not exist – it simply means that the signal of the association in this 

dataset was weak enough that the association seen (for example, between 

responder status and a certain mutation) may have been due to chance rather than 

due to genuine biological phenomena (135). In general, larger sample sizes have 
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greater power to discover statistically significant associations.
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3 Results 
The results section is divided into 5 parts – firstly, a summary of the mutation 

counts in each sample in the cohort. Secondly, heatmaps of the presence of 

mutational signatures and the presence of known or predicted driver mutations 

in specific genes in the pre treatment samples only, to allow us to see the 

mutational landscape of the cohort prior to the beginning of treatment. Thirdly, 

heatmaps of the same data for all samples divided into Responder samples and 

non-Responder samples, to allow comparison of the mutational landscape of 

samples that respond to therapy and those that do not. This section also 

includes a boxplot and simple statistical analysis of the mutation counts of the 

samples in the Responder cohort compared to the Non-Responder cohort. The 

fourth section consists of an in depth analysis of each of the samples from the 

patients that had samples taken at multiple different timepoints. This analysis is 

used to build a picture of what likely happened to each of these tumours over 

the course of therapy. The fifth and final section is the SciClone analysis – the 

comparison of samples taken from the same patient at different timepoints by 

the SciClone algorithm. This is taken in the context of the previous analysis of 

the mutational landscape of each of the samples to round out the predictions 

about what happened over the course of therapy for each sample.
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3.1 Cohort summary 

The table below shows the number of SNVs and indels per sample after the 

called variants were filtered as described in the methods section. We can see 

that in every sample SNVs are more frequent than indels, and that there is a 

wide range of possible number of mutations in a given sample (for SNVs, a 

minimum of 13 and a maximum of 2252, for indels a minimum of 3 and a 

maximum of 2170). According to the literature, a tumour with a mutation rate 

greater than 10 mutations per megabase has a “high” mutational burden (136), 

and the human exome cover 30-50 megabases. Therefore, since these tumours 

were exome sequenced, tumours that show >(300-500) mutations, SNVs and 

indels combined, are tumours with a high mutational burden. We can see that 

many of the tumours examined fall into this category, suggesting that this was a 

particularly highly mutated cohort. 

SD in the following paragraph refers to Standard Deviation. 

Pre treatment samples show a mean average of 693.5 SNVs (SD=560) and 

287 indels (SD = 432). In comparison, post treatment samples show a mean 

average of 1026 SNVs (SD=592) and 749 indels (SD=605). The fact that the 

post treatment samples show a higher average mutation burden for both SNVs 

and indels suggests that cancer cells with a heavier mutation burden are more 

likely to survive therapy. It is also worth noting the very high standard deviation 

scores, which emphasizes how wide a spread there is of mutational burden in 

this cohort. 
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Table 3.1.1 – SNV, indel and sequence alteration counts per sample, based on 

running the Ensembl Variant Effect Predictor on each sample: 

 SNVs Indels 

8 Pre-treatment 285 56 

87 Pre-treatment 323 134 

7 Pre-treatment 304 46 

76 Pre-treatment 1750 98 

66 Pre-treatment 113 24 

61 Pre-treatment 395 39 

54 Pre-treatment 384 71 

50 Pre-treatment 290 38 

4 Pre-treatment 471 296 

44 Pre-treatment 600 89 

42 Pre-treatment 844 142 

37 Pre-treatment 647 62 

31 Pre-treatment 295 64 

25A Pre-treatment 13 3 

20 Pre-treatment 1858 275 

14 Pre-treatment 419 107 

11 Pre-treatment 376 37 

6 Pre-treatment 997 694 

6 Post Treatment 470 563 

6CFF – Relapse 998 696 

45 Pre-treatment 558 66 
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3 Post Treatment 1052 854 

3B – Surgery 570 136 

3 Pre-treatment 1422 1338 

39 Pre-treatment 873 809 

39 Post Treatment 1356 752 

39 Relapse 478 71 

32 Pre-treatment 357 40 

32 Relapse 1460 2170 

29 Pre-treatment 1033 1565 

29 Post Treatment 599 863 

12 Pre-treatment 2037 805 

12 Post Treatment 2252 633 
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3.2 Mutational landscape – Pre-treatment samples only 

Below are heatmaps (Figures 3.2.1 and 3.2.2)  summarizing the predicted 

driver SNVs and indels, as well as the mutational signature frequencies, for the 

pre-treatment samples only.  

In regards to the putative driver mutations, TP53 and PIK3CA mutations are 

very common across the cohort of pre-treatment samples. Outside of those 2 

genes however, there is little commonality of the known/predicted driver 

mutations across the cohort. Most of the known/predicted driver mutations 

encountered were in a gene that showed only one known/predicted driver 

mutation across the entire cohort. 

In regards to the mutational signatures, there are only weak signals seen from 

any individual signature. However, when the signatures are combined into the 

groupings explained in the introduction, some of the samples show a strong 

signal from DNA-damage based signatures, and a smaller number of samples 

show a signal from APOBEC related signatures. This suggests that DNA-

damage based processes and APOBEC dysregulation were important in the 

initial oncogenesis in these cancers. In contrast, there is very little signal from 

environmental signatures, suggesting that the environmental processes with 

known signatures played little to no role in driving these cancers. 
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Figure 3.2.1 – Predicted or known driver indels and SNVs, across all the Pre-treatment samples. Dark 
green indicates that a predicted driver SNV or indel is present in that gene in that sample. 

 

Figure 3.2.2 – Mutational signature heatmap – Pre-treatment samples only. First 30 columns are the 
individual signatures, final 3 columns are the signatures grouped. 
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3.3 Mutational landscape – Responders vs Non-Responders 

Below are tables and heatmaps summarising the predicted driver SNVs, indels, 

as well as the mutational signature frequencies, for the full cohort, divided into 

responders and non-responders to initial therapy. These results allow us to see 

how the mutational landscape of tumours affects their likelihood of responding 

to TCH or TCHL therapy. 

Table 3.3.1 – Table of which samples were responders and which were non- 
responders to therapy (i.e. which samples showed pCR and which did not) 

Responders Non-responders 

TCHL 8 TCHL 3 (Pre, Post, Surgery) 

TCHL 14 TCHL 4 

TCHL 25 TCHL 6 (Pre, Post, Surgery) 

TCHL 31 TCHL 7 

TCHL 32 (Pre, Relapse) TCHL 11 

TCHL 37 TCHL 12 (Pre, Post) 

TCHL 44 TCHL 29 (Pre, Post) 

TCHL 45 TCHL 39 (Pre, Post, Relapse) 

TCHL 61 TCHL 42 

TCHL 66 TCHL 50 

TCHL 76 TCHL 54 

 TCHL 87 
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Figure 3.3.1 – Predicted or known driver indels and SNVs, across all the responder samples. Dark green 
indicates that a predicted driver SNV or indel is present in that gene in that sample 

 

Figure 3.3.2 – Predicted or known driver indels and SNVs, across all the Non-Responder samples. Dark 
green indicates that a predicted driver SNV or indel is present in that gene in that sample
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Below is Table 3.3.2, showing the frequency of known/predicted driver mutations by 

gene in the Responder and Non-Responder cohorts. The main take away is that 

most of the tumours, both intra-group and inter-group, are not very similar to each 

other in terms of the genes that known/predicted driver mutations appear in. Many of 

the genes appear as a potential drivers only once across the entire cohort. It is hard 

to build a coherent picture from this data of what the difference between driver genes 

in responders compared to non-responders is. This is still an informative result, 

because it shows us the complexity of cancer genetics in this regard.  

Later on in this series there are a series of contingency tables analyzing whether 

mutations in any of these genes show a statistically significant association with either 

the Responder or non-Responder cohort. 

Table 3.3.2 – Table of the frequency of known or predicted driver SNVs and indels by 

gene in the responder and non-responder cohorts. Frequencies were calculated by 

dividing the number of samples within a group with at least one mutation in that gene 

by the total number of samples in that group (Responder or Non-Responder). Table 

is split in two simply because it was impossible to fit all of the data into one page.  
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Gene Name 

 

Responders 

Non- 
Responders 

Gene Name  

Responders 

Non- 
Responders 

Gene Name  

Responders 

Non- 
Responders 

ABL2 0 0.05 FBXW7 0.07692308 0 PTPRF 0 0.05 

ACO1 0.07692308 0 FGFR2 0 0.05 RAD50 0.07692308 0.2 

AHCTF1 0 0.05 FXR1 0 0.1 RB1 0.07692308 0 

ANK3 0 0.1 GNA11 0.07692308 0.15 RBBP7 0.07692308 0 

APAF1 0.07692308 0 GPS2 0.07692308 0 RBBP8 0 0.1 

APC 0.15384615 0 HDAC2 0 0.05 RET 0.07692308 0 

ARAF 0.07692308 0 HERC2 0.07692308 0 RHOT1 0 0.1 

ARFGAP3 0 0 HGF 0 0.05 ROS1 0 0.05 

 

ARFGEF1 

 

0.07692308 

 

0 

HIST1H3 F  

0 

 

0.1 

 

RPGR 

 

0.15384615 

 

0 

ARHGAP29 0 0.05 IKZF1 0.07692308 0 SEC24D 0 0.05 

ARID1A 0.07692308 0 IKZF3 0 0.15 SEC31A 0 0.1 

ARID1B 0 0.15 ITSN1 0.07692308 0 SMAD4 0.07692308 0 

 

ASPM 

 

0.07692308 

 

0 

 

LNPEP 

 

0.07692308 

 

0 

SMARCE 1  

0 

 

0.05 

ATM 0 0.05 LRPPRC 0 0.05 SMURF2 0.07692308 0 

ATRX 0 0.05 MAP2K4 0 0.05 SPTAN1 0 0.05 

BAX 0 0.05 MAP3K1 0 0.05 STARD13 0.07692308 0 

BLM 0.07692308 0.05 MAP4K3 0.07692308 0 STAT5B 0.07692308 0 

BRCA2 0.07692308 0 MED17 0 0.1 STAT6 0 0.05 

BRWD1 0 0.05 MGA 0.07692308 0.05 STIP1 0.07692308 0 

CLASP2 0 0.1 NCF2 0 0.05 TRAF7 0.07692308 0 
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Gene Name  

Responders 

Non- 

Responders 

Gene Name  

Responders 

Non- 

Responders 

 

Gene Name 

 

Responders 

Non- 

Responders 

CTCF 0.07692308 0 PABPC3 0.07692308 0 TSC1 0.07692308 0 

CUL3 0 0.05 PAX5 0 0.05 UBR5 0 0.15 

CYLD 0.07692308 0 PBRM1 0 0.05 VIM 0 0.05 

DCC 0 0.05 PER1 0.07692308 0 WHSC1L1 0.07692308 0 

DHX9 0 0.15 PIK3CA 0.30769231 0.4 WRN 0 0.05 

DICER 1  

0.07692308 

 

0 

 

PIK3R1 

 

0.07692308 

 

0 

 

XRCC2 

 

0.07692308 

 

0 

DNMT3 A  

0 

 

0.05 

 

PIK3R4 

 

0 

 

0.05 

 

ZFP36L2 

 

0.07692308 

 

0 

EIF4G3 0.07692308 0 PMS2 0 0.05 ZNF292 0.07692308 0 

ERCC3 0 0.05 PSMA2 0 0.05 ZNF814 0 0.05 

FAF1 0.07692308 0.05 PSME3 0.07692308 0    

FBXO1 1  

0.07692308 

 

0 

 

PTPN11 

 

0.07692308 

 

0 

   

COL1A1 0.07692308 0 NCOR1 0.07692308 0.05 TRIO 0 0.05 

CREBBP 0 0.05 NF1 0 0.05 TRIP10 0 0 

CSF1R 0 0.05 NOTCH2 0.07692308 0.1 TRIP12 0 0.05 

CALR 0 0 MLL 0 0 SVEP1 0.07692308 0 

CARD11 0.07692308 0 MLL3 0.07692308 0 TAOK1 0.15384615 0.05 

CBLB 0 0.05 MLLT4 0.07692308 0 TCF4 0 0.05 

CDK12 0 0.1 MRE11A 0 0.05 TFDP2 0 0.05 

CEP290 0 0 MSH3 0.07692308 0 TNPO2 0 0.15 

CHD4 0.07692308 0.05 MSH6 0 0.05 TP53 0.53846154 0.45 

CHD6 0.07692308 0 MUC4 0.07692308 0 TP53BP1 0.07692308 0.05 
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Below are Figures 3.3.3 and 3.3.4, showing the mutational signature burdens 

found in the Responder and non-Responder cohorts respectively. In the 

Responder cohort most of the individual signatures show a weak presence, 

but when the signatures are grouped there is a significant presence of DNA 

damage based signatures and a smaller but still notable presence of 

signatures of unknown aetiology. One sample (TCHL 76) shows a very 

strong signal of APOBEC based signatures. 

In the Non-responder cohort, there is a much greater signal from the ageing 

signature compared to the Responder cohort. The other notable difference is 

that there is a stronger signal from DNA damage based signatures in the 

Non-Responder cohort compared to the Responder cohort. This suggests 

that non-response to therapy may have been partially caused by DNA 

damage based mechanisms – we speculate this may be due to increased 

DNA damage weakening the cell’s own defenses against cancer (e.g. by 

inactivating tumour suppressor genes), making it less likely for therapy to be 

effective. However for the time being this is just speculation and it would 

require a study focused on this question to scientifically validate this 

hypothesis. 

 

Figure 3.3.3 – Mutational signature heatmap – Responder samples only 
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Figure 3.3.4 – Mutational signature heatmap – Non-responder samples only 
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Tables 3.3.3 and 3.3.4 below show the frequency with which a given gene 

shows a predicted/known driver amplification(s) (3.3.2) or deletion(s) (3.3.3) in 

each of the Responder and Non-responder cohorts, respectively. The 

frequencies differ little between the two cohorts, so it is unlikely that any of 

these mutations are responsible for the difference between the two cohorts. 

Table 3.3.3 – Frequency table of the proportion of samples in each of the 

Responder and Non-Responder cohorts showing predicted driver amplifications 

in that gene. 

 Responders Non-Responders 

AHRR 0.583333333 0.571428571 

AVPR1B 0.75 0.904761905 

C6orf203 0.5 0.428571429 

ERBB2 0.916666667 0.952380952 

FCAMR 0.75 0.904761905 

GRHL2 0.75 0.80952381 

NUAK2 0.75 0.904761905 

PCK1 0.5 0.666666667 

RNF182 0.583333333 0.714285714 

RPRD2 0.75 0.904761905 

STAR 0.25 0.285714286 

ZNF703 0.25 0.238095238 
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Table 3.3.4 – Frequency table showing the proportion of samples in each of the 

Responder and Non-Responder cohorts showing predicted driver deletions in 

that gene 

 
Responders Non-Responders 

AHRR 0 0.04761905 

AVPR1B 0 0 

C6orf203 0 0.04761905 

ERBB2 0 0 

FCAMR 0 0 

GRHL2 0 0.04761905 

NUAK2 0 0 

PCK1 0 0 

RNF182 0 0 

RPRD2 0 0 

STAR 0.08333333 0.14285714 

ZNF703 0.08333333 0.14285714 
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Below is Table 3.3.5, showing the number of subclonal populations in each sample 

(based on the number of clusters in the SciClone analysis for that sample), divided 

into responders and non responders. Each “subclonal population” represents a 

genetically distinct population of cells within the tumour – for this to happen, there 

must be subclonal driver mutations within the tumour (see Introduction section 1.2). 

These subclonal driver mutations can cause uncontrolled cellular proliferation 

independently from the drivers in the original tumour. This is relevant to therapy 

because if therapy kills cells with the original mutations, but does not eradicate cells 

with cancer driven by the subclonal mutations, those subclonal cancerous cells will 

simply colonize the space left over by the original cancer and the patient will still have 

cancer. In this way, subclonal populations can cause a relapse in a patient who 

initially appeared to be cured. The presence of subclonal driver mutations is known to 

adversely impact clinical outcome (137) 

(Cells that show “NA” are ignored in the following analysis). The responders show a 

mean average of 1.75 subclones, in contrast to an average of 2.2105 in the non-

responders. This is in line with the literature cited above showing that subclonal 

cellular populations are a poor prognostic factor. The p-value of a two sample t-test 

performed in R using the “t.test” function from the “stats” package in base R is 

0.3566, showing that the difference between the two sample means is not statistically 

significant. However, this is a fairly small cohort, and the fact that the means are 

different at face value, along with the fact that greater genetic diversity is known to be 

associated with greater chance of a tumour surviving therapy (as mentioned in the 

Intro section), suggests that it may be worth studying the association between the 

number of subclones and response to therapy status in larger cohorts in future. 

The relapse samples show a mean average of 3.5 subclones, while Pre treatment 

samples show a mean average of 2 subclones, and the Post treatment samples 

show a mean average of 1.8333. The relapse samples having a substantially higher 

number of subclones than the other groupings is in line with the logic above about 

subclones potentially causing relapse (the more subclones, the higher the chance 

that one will be capable of driving a relapse). The post treatment samples having a 

lower average number of subclones than post treatment samples suggests that the 

therapy process may, on average, lower the number of subclones in a sample (which 
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makes logical sense since the point of therapy is to kill the cancerous cells). 
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Table 3.3.5 – Table of the number of subclonal populations in each sample (based 

on the number of clusters in the SciClone analysis for that sample), divided into 

responders and non responders. Where SciClone was unable to analyse the sample, 

the entry is “NA”.  

 

Responders 

 

Number of subclones 

 

Non responders 

Number of 
subclones 

32 PRE NA 3 PRE 2 

32C RELAPSE 4 3 POST 1 

45 PRE 2 3B SURGERY 1 

8 PRE 2 6 PRE 2 

14 PRE 1 6 POST 2 

 

25 PRE 

 

NA 

 

6 CFF RELAPSE 

 

3 

31 PRE 1 12 PRE 3 

37 PRE 1 12 POST 3 

44 PRE 1 29 PRE 2 

61 PRE NA 29 POST 1 

66 PRE NA 39 PRE 1 

76 PRE 2 39 POST 3 

  39 RELAPSE NA 

  4 PRE 2 

  7 PRE 2 

  11 PRE 1 

  42 PRE 7 

  50 PRE 3 

  54 PRE 2 

  87 PRE 1 
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Below are boxplots and simple statistical analysis of the numbers of SNVs and indels 

in each sample of the cohort, split into Non-Responders and Responders. These 

results should be considered with the caveat that there are more Non- Responders 

with higher depth sequencing, which is likely to reveal more mutations. However 

even with this caveat, we can see that there are substantially more mutations in the 

non-responder samples. This suggests that a higher mutational burden gives a 

tumour a greater chance of surviving therapy. A possible mechanism for this is that 

having more mutations raises the chance that a tumour will have a mutation that will 

be protective from therapy. This is in line with what we saw in Results Section 3.1, 

where responder samples showed a higher mutational burden. It is also in line with 

the Sciclone data above, as a tumour with more subclones (remember that non-

Responders on average have more subclones) are logically likely to have more 

mutations overall than a tumour with fewer subclones (as each subclonal population 

will have its own distinct set of mutations). There is one outlier of an extremely highly 

mutated responder sample – this is sample 32C, the relapse sample from patient 32. 

This patient is annotated as a responder because their tumour initially responded, but 

unfortunately later suffered a relapse. The most likely explanation is that a mutagenic 

process active during therapy caused a host of new mutations that drove their cancer 

to relapse despite the initial therapy response – see section 3.4.5 for more details. 

 

Figure 3.3.5 – Boxplot of Indel counts per sample in the cohort split into Responders and Non-
Responders 
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Table 3.3.12 – Fisher’s exact test table for the relationship between the 

 

 

 

	 	

Figure 3.3.6 – Boxplot of SNV counts per sample in the cohort split into Responders and Non-
Responders 
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Table 3.3.12 – Fisher’s exact test table for the relationship between the 

 

 

 

Below is table 3.3.6, showing simple statistical analysis of mutation counts in 

the cohort, segregated into responder and non-responder samples. The results 

are in line with the other results examined above, in that we see a lower 

average mutational burden in the responder samples compared to the non-

responder samples. An unpaired t test shows gives a p-value of 0.167285 for 

the association between SNV counts and responder status. The same test for 

indels gives a p value of 0.13068. So neither association reaches statistical 

significance at a p-value <0.05. 

Table	3.3.6	–	Simple	statistical	analysis	of	the	mutation	counts	in	the	cohort,	split	into	
Responders	and	Non-Responders	

 Mean	 Median	 Interquartile	
Range	

Standard	
Deviation	

Responders:	

SNV	counts	

574	 407	 319	 519	

Responders:	
Indel	counts	

235	 63	 51	 610	

Non-	
Responders:	

SNV	counts	

855	 722	 589	 563	

Non-	
Responders:	
Indel	counts	

523	 598	 735	 455	
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Table 3.3.12 – Fisher’s exact test table for the relationship between the 

 

 

 

Below are a set of contingency tables, represented on Table 3.3.7, used to run 

Fisher’s Exact tests to test the statistical signifigance of the association between 

the presence/absence of predicted/known driver mutations in the gene in 

question and Responder status.  The genes selected for this analysis were all 

genes that show predicted driver mutations in at least one sample in both 

cohorts or where genes showed over 3 predicted driver mutations in either the 

responder or the non-responder cohort. P-values were obtained by performing 

Fisher’s exact test in R using the “fisher.test” function from the “stats” package 

from base R. The null hypothesis is that the presence or absence of mutations 

in a given gene is unrelated to whether a sample responds to therapy or not. 

The name of the gene each table corresponds to is shown in the column on the 

left. Fisher’s exact test is used rather than a chi square test due to the small 

sample sizes making tests other than Fisher’s exact test inappropriate to use 

with this data. Genes that had identical counts were combined into the same 

row because it’s the same calculation every time and doing it this way takes up 

less space. The percentages refer to what percent of that row the number 

represents (e.g. 50% of Responders carry a TP53 mutation). 

None of the associations is significant at a p-value > 0.05. This may indicate 

that there is no genuine biological association between mutations in any of 

these genes and Responder Status, and that the differences observed are due 

to chance. On the other hand, it may indicate that the cohort under examination 

is too small to distinguish the signal from such an association from statistical 

noise. 

  



94	

Table 3.3.12 – Fisher’s exact test table for the relationship between the 

 

 

 

Table 3.3.7 – Contingency tables used to run Fisher’s exact tests. 

Gene name Response 
category 

Samples with 
gene 
mutated 

Samples 
without gene 
mutated 

P-value 

TP53 Responders 6  (50%) 6 (50%) 1 

Non-responders 10 (48%) 11 (52%) 

PIK3CA Responders 4 (33.3%) 8 (66.6%) 1 

Non-responders 7 (33.3%%) 14 (66.6%) 

RAD50 Responders 1 (8.3%) 11 (91.6%) 0.6301 

Non-responders 4 (19%) 17 (81%) 

GNA11 Responders 1 (8.3%) 11 (91.6%) 1 

Non-responders 3 (14.29%) 18 (85.7%) 

ARIB1B, DHX9, 

IZF3, TNP02, 

UBR5 

Responders 0 (0%) 12 (100%) 0.2841 

Non-responders 3 (14.29%) 18 (85.7%) 

NOTCH2 Responders 1 (8.3%) 11 (91.6%) 1 

Non-responders 2 (9.5%) 19 (90.5%) 

TAOK1 Responders 2 (16.6%) 10 (83.3%) 0.5831 

Non-responders 1 (5%) 20 (95%) 

BLM, CHD4, 

FAF1, MGA, 

NCOR1 

Responders 1 (8.3%) 11 (91.6%) 1 

Non-Responders 1 (5%) 20 (95%) 
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3.4  Matched sample In-Depth analysis 

This section describes in depth each of the samples from the patients that had 

samples taken from multiple timepoints (e.g. Pre and Post Treatment). The 

mutational signatures present in each sample and the subclonal architecture of 

each sample are analysed. The predicted or known driver mutations in each 

sample are also analysed. These mutations are classified into being “known” or 

“predicted”, as well as being classified into “oncogenic” or “Tumour 

suppressing”, based on the classification assigned to them by CGI.  

The CGI Catalogue of Validated Somatic Mutations is built from data in the 

DoCM (Database of Curated Mutations in Cancer (138) ), ClinVar (an NCBI 

archive for clinically significant variants (139) ), and OncoKB (a precision 

oncology knowledgebase (140)). See this URL for proof of this: 

https://www.cancergenomeinterpreter.org/mutations. If you would like to see the 

relevant literature for any gene reported in these sections, please check these 

databases. In cases where further claims are made about any given gene 

beyond the information given by CGI, these claims are supported by citations 

from the relevant literature. The CGI software also predicts whether the 

mutation is likely to cause a loss of function in that gene (denoted “LoF”) or to 

activate that gene in contexts it would not otherwise be active (denoted “Act”). 

Finally, for the mutations not conclusively known to be cancer driving, the 

mutation is assigned a “tier” based on how likely the mutation is to be a driver 

based on the databases CGI is based on (so a Tier 1 variant has more 

evidence supporting it being a driver than a Tier 2 variant, etc). 

This data is considered holistically to build a picture of what is likely to have 

happened to the tumour in each patient over the course of therapy.  

The equivalent data for the tumours from the patients that did not have samples 

taken from multiple timepoints is shown in the Supplementary Data section at 

the end of this thesis.  
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3.4.1  TCHL 3 samples 

The TCHL 3 patient was given lapatinib (TCHL patient) and was a non- 

responder to initial therapy (no pCR). 

3.4.1.1 - TCHL 3 Pre-treatment Mutational Signatures 

 

 

 

 

 

 

 

 

 

 

TCHL 3A Pre-treatment sample shows a mutational spectrum influenced by all 

signature groupings other than environmental signatures. The largest individual 

signature is signature 1, the Aging signature, suggesting that the most impactful 
factor in the somatic mutations seen in this sample was naturally occurring 

mutations during the aging process. The presence of APOBEC related and 

DNA damage signatures suggests that the sample was also impacted by the 

dysregulation or breakdown of normally occurring processes in the cell - 

dysregulation of the APOBEC enzymes presumably caused the APOBEC 

signature, while deficiencies in DNA damage repair mechanisms presumably 

caused the DNA damage signature. Finally, there is a contribution from 

signatures of unknown aetiology (around 0.2 of the overall mutational 

spectrum). 

  

Figure 3.4.1.1 – TCHL Pre-treatment mutational signatures 
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SciClone Data 

 

 

The TCHL 3A Pre-treatment sample shows 2 main clusters (see the graph for 

copy number 2, each different colour represents a different cluster and so a 

different subclonal population). This suggests there is a less mutated founder 

clone (hence the low density of the higher VAF cluster) and a more mutated low 

VAF subclone. 

Figure 3.4.1.2 – TCHL 3 Pre-treatment subclonal architecture 
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Driver analysis 

Table 3.4.1.1 – Known or predicted driver SNVs and indels for TCHL 3 Pre- 

treatment. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

 

input 

 

gene 

 

cdna 

 

gdna 

 

protein 

 

gene_role 

Driver 

statement 

 

 

 

 

3|178952085|A|G 

 

 

 

 

PIK3CA 

 

 

 

 

c.3140A>G 

 

 

 

chr3:g.178952085 

A>G 

 

 

 

 

p.H1047R 

 

 

 

 

Act 

known in: 

COREAD;BR 

CA;OV;NSCL C 

 

9|37015055|G|A 

 

PAX5 

 

c.349C>T 

chr9:g.37015055G 

>A 

 

p.R117W 

 

Act 

predicted 

driver: tier 1 

 

7|148544312|T|T 

TAACATTATAC 

 

 

 

EZH2 

 

c.78_79insGTATAAT 

GTTA 

chr7:g.148544312_ 

148544313insTAA 

CATTATAC 

 

 

 

p.R27Vfs*2 

 

 

 

LoF 

 

predicted 

driver: tier 1 

 

6|26250542|C|A 

 

HIST1H3F 

 

c.292G>T 

chr6:g.26250542C 

>A 

 

p.E98* 

ambiguou s predicted 

driver: tier 2 

 

5|14492844|G|A 

 

TRIO 

 

c.7801G>A 

chr5:g.14492844G 

>A 

 

p.A2601T 

 

Act 

predicted 

driver: tier 1 

 

4|83745799|AT|A 

 

SEC31A 

 

c.3319delA 

chr4:g.83745807de 

lT 

p.I1107Lfs*1 

3 

 

LoF 

predicted 

driver: tier 1 

 

3|180688118|T|T 

TCTGTATTATC 

 

 

 

FXR1 

 

c.1575_1576insTCT 

GTATTATC 

chr3:g.180688118_ 

180688119insTCT 

GTATTATC 

 

p.T526Sfs*1 3 

 

 

 

LoF 

 

predicted 

driver: tier 1 

3|130454792|T|T 

TTTAATAGGAT 

 

 

 

c.787_788insTAGAT 

chr3:g.130454792_ 

130454793insTTT 

 

p.Q263Lfs*2 1 

 

ambiguou s 

 

predicted 
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CTA  

PIK3R4 

CCTATTAAA AATAGGATCTA driver: tier 2 

1|94668513|T|TA 

AAATATTGTCTT 

AACTA 

 

 

 

ARHGAP29 

 

c.914_915insTAGTT 

AAGACAATATTTT 

chr1:g.94668513_9 

4668514insAAAAT 

ATTGTCTTAACTA 

 

 

 

p.K305Nfs*3 

 

 

 

LoF 

 

predicted 

driver: tier 1 

 

1|51323662|G|G 

AAGTTTA 

 

 

 

FAF1 

 

 

 

c.52_53insTAAACTT 

chr1:g.51323662_5 

1323663insAAGTT 

TA 

 

 

 

p.T18Ifs*6 

 

 

 

LoF 

 

predicted 

driver: tier 1 

 

1|51323661|A|AT 

ATCTTTAATAT 

 

 

 

FAF1 

 

c.53_54insATATTAA 

AGATA 

chr1:g.51323661_5 

1323662insTATCT 

TTAATAT 

 

 

 

p.G19Yfs*2 

 

 

 

LoF 

 

predicted 

driver: tier 1 

 

1|44086781|C|T 

 

PTPRF 

 

c.5533C>T 

chr1:g.44086781C 

>T 

 

p.R1845C 

 

Act 

predicted 

driver: tier 1 

 

1|182850743|C|G 

 

DHX9 

 

c.2875C>G 

chr1:g.182850743 

C>G 

 

p.Q959E 

 

Act 

predicted 

driver: tier 2 
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input 

 

gene 

 

cdna 

 

gdna 

 

protein 

 

gene_role 

Driver 

statement 

 

7|42966228|T|TGT 
AA 

 

PSM A2 

 

c.157_158insT 
TAC 

chr7:g.42966228 

_42966229insGT 

AA 

 

p.K53Ifs*7 

 

ambiguous 

 

predicted 
driver: tier 2 

 

19|12812429|G|A 

TNP O2  

c.2569C>T 

chr19:g.12812429 
G>A 

 

p.R857W 

 

ambiguous 

predicted 
driver: tier 1 

 

17|7577556|CAGG 

AACTGTTACACA 
TGT|C 

 

 

TP53 

 

c.707_724delA 

CATGTGTAAC 
AGTTCCT 

chr17:g.7577559_ 
7577576delGAAC 
TGTTACACATGT 

AG 

 

p.Y236_S24 

1delYMCNS S 

 

 

LoF 

 

 

predicted 
driver: tier 2 

 

17|37949145|C|G 

 

IKZF3 

 

c.205G>C 

chr17:g.37949145 

C>G 

 

p.E69Q 

 

ambiguous 

predicted 

driver: tier 2 

 

17|37922110|C|T 

 

IKZF3 

 

c.1463G>A 

chr17:g.37922110 
C>T 

 

p.R488Q 

 

ambiguous 

predicted 
driver: tier 2 

 

17|30521113|T|TA 
AAGTAA 

 

RHO T1 

 

c.857_858insA 
AGTAAA 

chr17:g.30521114 

_30521115insAA 
GTAAA 

 

p.Y286*fs*1 

 

ambiguous 

 

predicted 
driver: tier 2 

 

The TCHL 3 Pre-treatment sample shows a large number of predicted driver 

events - 20, to be exact, which as noted in the introduction is on the higher end 

of the number of driver events seen in any cancer. However the only event 

conclusively known to be a driver is PIK3CA H1047R, a driver mutation known 

to be common in breast cancer and to be associated with trastuzumab and 

lapatinib resistance (141). We know this mutation is conclusively known to be 

oncogenic because it was marked as such by CGI, and because it appears in 

the literature as a validated driver mutation (142).  

Mutations in the following genes are likely oncogenic (i.e. promote cellular 

proliferation): PIK3CA, PAX5, TRIO,PTPRF, DHX9. 
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Mutations in the following genes are likely tumour suppressor mutations (i.e. the 

mutations disable normal cellular breaks on unchecked cellular proliferation): 

EZH2, SEC31A, FXFR1, ARHGAP29, FAF1, TP53. 

It is unclear whether mutations in the following genes are oncogenic or tumour 

suppressor mutations: PSMA2, HIST1H3F, PIK3R4, TNPO2, IKZF3, RHOT1. 
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3.4.1.2 TCHL 3 Post treatment 

 

Mutational Signatures 

 

Figure 3.4.1.3 – Mutational signatures for the TCHL 3 Post treatment sample 

 

The TCHL 3 Post treatment sample shows a mutational spectrum with a similar 

level of Aging signature influence and DNA damage signature influence to the 

corresponding Pre-treatment sample, but a much higher level of APOBEC 

signature proportion. Since referring to the table in section 3.5.1 shows us that 

the post treatment sample has fewer indels and SNVs than the Pre-treatment 

sample, this may be in part due to very heavily mutated cells being killed by 

treatment, leaving the APOBEC signature as a higher proportion of the overall 

mutational landscape of the sample. 
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SciClone Data 

 

 

 
Figure 3.4.1.4 – Subclonal architecture of the TCHL 3 Post treatment sample 

 

The clonality plot for TCHL 3 shows a single cluster per copy number, 

suggesting that there are no significant subclones in this sample. 
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Driver analysis 

Table 3.4.1.2 – Known or predicted driver SNVs and indels for TCHL 3 Post- 

treatment. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

 

input 

 

gene 

 

cdna 

 

gdna 

 

protein 

 

gene_role 

Driver statement 

 

 

 

3|178952085|A|G 

 

 

 

PIK3CA 

 

 

 

c.3140A>G 

 

chr3:g.1789520 

85A>G 

 

 

 

p.H1047R 

 

 

 

Act 

known in: 

COREAD;NSCL 

C;BRCA;OV 

 

6|26250542|C|A 

 

HIST1H3F 

 

c.292G>T 

chr6:g.2625054 

2C>A 

 

p.E98* 

 

ambiguous 

predicted driver: 

tier 2 

5|131944381|C|C A  

RAD50 

 

c.2801dupA 

chr5:g.1319443 

89dupA 

 

p.N934Kfs*10 

 

ambiguous 

predicted driver: 

tier 2 

 

2|44123829|C|T 

 

LRPPRC 

 

c.3844G>A 

chr2:g.4412382 
9C>T 

 

p.E1282K 

 

LoF 

predicted driver: 
tier 1 

 

1|182850743|C|G 

 

DHX9 

 

c.2875C>G 

chr1:g.1828507 

43C>G 

 

p.Q959E 

 

Act 

predicted driver: 

tier 2 

 

17|7577556|CAG 

GAACTGTTACA 

CATGT|C 

 

 

 

 

TP53 

 

c.707_724delACA 

TGTGTAACAGTT 

CCT 

chr17:g.757755 

9_7577576delG 

AACTGTTACAC 

ATGTAG 

 

 

 

p.Y236_S241del 

YMCNSS 

 

 

 

 

LoF 

 

 

 

predicted driver: 

tier 2 

 

17|37949145|C|G 

 

IKZF3 

 

c.205G>C 

chr17:g.379491 

45C>G 

 

p.E69Q 

 

ambiguous 

predicted driver: 

tier 2 

 

17|37922110|C|T 

 

IKZF3 

 

c.1463G>A 

chr17:g.379221 

10C>T 

 

p.R488Q 

 

ambiguous 

predicted driver: 

tier 2 

The TCHL 3 Post treatment sample shows fewer predicted drivers than the Pre- 

treatment sample. Given that the Post treatment sample has fewer SNVs and 
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indels than the Pre-treatment sample, as mentioned in the Mutational 

Signatures section, this implies that more heavily mutated cells in this patient 

succumbed to treatment, and the surviving cells after treatment started had a 

lower mutational burden and fewer driver mutations. The validated driver 

PIK3CA H1047R, associated with trastuzumab and lapatinib resistance (141), is 

also present in the post treatment sample. The predicted driver genes in this 

sample are all present in the Pre- treatment sample, with the exception of the 

RAD50 predicted driver mutation and the LRPPRC predicted driver mutation.  

Mutations in the following genes are likely oncogenic: PIK3CA, DHX9. 

Mutations in the following genes are likely tumour suppressor inactivating: 

LRPPRC, TP53.  

It is ambiguous whether mutations in the following genes are oncogenic or 

tumour suppressor mutations: HISTH1H3F, RAD50, IKZF3. 
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3.4.1.3 TCHL 3 Surgery treatment Mutational Signatures 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.1.5 – Mutational signatures for the TCHL 3 Surgery sample 

 

The TCHL 3B surgery sample shows a mutational spectrum dominated by the 

Aging signature. Since the Pre-treatment sample showed a much smaller 

proportion of the Aging signature, this suggests that as the treatment continued 

cells with a heavier mutational load were killed, leaving the Aging signature as a 

higher overall proportion of the mutational spectrum in the cells that survived in 

the tumour this sample was taken from. Referring to the table in section 3.1.1 

supports this idea, as the 3B surgery sample has fewer SNVs and indels than 

the other samples from the TCHL 3 patient. The sample is still influenced by 

APOBEC, DNA damage, and unknown aetiology signatures. There is also a 

small environmentally associated signature, in Signature 29. Since Signature 29 

is associated with tobacco chewing in mouth cancer, it is likely that this 

assigning this signature to this sample is an error due to the details of the 

deconstructSigs algorithm (see Intro section 1.6) as opposed to that signature 

genuinely having influenced this sample. The reasoning for this is that the 

mouth and lung are quite different environments biochemically – although the 
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exact chemical mechanism causing signature 29 is not known, it seems unlikely 

that the chemical reaction that causes signature 29 in a mouth environment 

would also be occurring in a lung environment. However, the possibility that the 

signature is genuinely present in this sample rather than just being an artifact of 

DeconstructSigs cannot be ruled out entirely.  
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SciClone Data 

 

 

 
Figure 3.4.1.6 – Subclonal architecture for the TCHL 3 Surgery sample 

 

The clonality plot for the TCHL 3 surgery sample shows a single cluster per 

copy number, suggesting that there are no significant subclones in this sample. 

The plot is centred at a lower VAF than the Post treatment sample Sciclone 

plot. 
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Driver analysis 

Table 3.4.1.3 – Known or predicted driver SNVs and indels for TCHL 3 Surgery 

treatment. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

input gene cdna gdna protein gene_role Driver statement 

 

 

 

3|178952085|A|G 

 

 

 

PIK3CA 

 

 

 

c.3140A>G 

 

chr3:g.1789520 

85A>G 

 

 

 

p.H1047R 

 

 

 

Act 

known in: 

NSCLC;BRCA;COR 

EAD;OV 

 

19|12814290|C|T 

 

TNPO2 

 

c.2161G>A 

chr19:g.128142 
90C>T 

 

p.V721I 

 

ambiguous 

predicted driver: 
tier 1 

 

17|7577556|CAG 

GAACTGTTACA 

CATGT|C 

 

 

 

 

TP53 

 

c.707_724delAC 

ATGTGTAACA 

GTTCCT 

chr17:g.757755 

9_7577576delG 

AACTGTTACAC 

ATGTAG 

 

 

 

p.Y236_S241 

delYMCNSS 

 

 

 

 

LoF 

 

 

 

predicted driver: tier 2 

 

17|37949145|C|G 

 

IKZF3 

 

c.205G>C 

chr17:g.379491 

45C>G 

 

p.E69Q 

 

ambiguous 

predicted driver: tier 2 

 

17|37922110|C|T 

 

IKZF3 

 

c.1463G>A 

chr17:g.379221 

10C>T 

 

p.R488Q 

 

ambiguous 

predicted driver: tier 2 

As mentioned in the Mutational Signatures section, the surgery sample for 

TCHL 3 shows fewer SNVs and indels than the Pre- and Post- treatment 

samples. This carries through to the driver genes predicted by CGI: there are 

fewer driver genes here than there are in the Pre or Post treatment samples. All 

the predicted driver genes in the surgery sample are shared with the Pre- and 

Post- treatment samples, with the exception of the TNPO2 V721I predicted 

driver mutation.  

Mutations in the following genes are likely oncogenic: PIK3CA  

Mutations in the following genes are likely tumour suppressor inactivating: TP53 
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It is ambiguous whether mutations in the following genes are oncogenic or 

tumour suppressor mutations: IKZF3, TNPO2 
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3.4.2 TCHL 6 samples 

The TCHL 6 patient was not given lapatinib (TCH patient). They were a non- 

responder to initial therapy and ultimately showed relapse in the bone. 

3.4.2.1 TCHL 6 Pre-treatment 

Mutational Signatures 

 

Figure 3.4.2.1 – Mutational signatures for the TCHL 6 Pre-treatment sample 

 

The TCHL 6 Pre-treatment sample shows a mutational spectrum dominated by 

DNA damage based signatures, specifically signatures 3 and 6. Signature 3 is 

associated with failure of double-strand break (DSB) repair by homologous 

recombination, while signature 6 is associated with failure of DNA mismatch 

repair. The heavy influence of these signatures on the mutational spectrum 

creates a picture of a tumour in which the driver mutations have been caused 

primarily by a breakdown in the cellular processes usually responsible for 

repairing DNA damage. There is also a small contribution from the Aging 

signature and from a signature of unknown aetiology.
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SciClone Data 

 

 
Figure 3.4.2.2 – Subclonal architecture for the TCHL 6 Pre-treatment sample 

 

The TCHL 6 Pre-treatment sample shows a complicated clonality plot, with 2 

main clusters, one at a lower VAF and much higher density than the other. This 

suggests the presence of a less mutated founder clone and a more mutated low 

VAF subclone.
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Driver analysis 

Table 3.4.2.1 – Known or predicted driver SNVs and indels for TCHL 6 Pre- 

treatment. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

Input gene cdna gdna protein gene_role Driver statement 

 

3|33543233|G|A 

 

CLASP2 

 

c.4369C>T 

 

chr3:g.33543233G>A 

 

p.R1457W 

 

LoF 

predicted driver: 

tier 1 

 

2|48033673|C|A 

 

MSH6 

 

c.3884C>A 

 

chr2:g.48033673C>A 

 

p.P1295H 

 

LoF 

predicted driver: 

tier 2 

 

1|247062816|T|TA 

 

AHCTF1 

 

c.1460-3dupT 

 

chr1:g.247062824dupA 

 

. 

 

ambiguous 

predicted driver: 
tier 2 

 

19|3119297|G|A 

 

GNA11 

 

c.829G>A 

 

chr19:g.3119297G>A 

 

p.D277N 

 

Act 

predicted driver: 

tier 1 

 

The TCHL 6 Pre-treatment sample shows a small number of predicted driver 

mutations, with no mutations that are definitively known to act as drivers. 

Mutations in these genes are found in few other samples in the cohort, 

suggesting that the cancer in patient 6 may have been driven by distinct 

biological pathways from the cancers in other individuals in the cohort. Since, 

as mentioned in the Intro, cancer cells usually bear around 6-7 driver mutations, 

the small number of drivers here may indicate that some driver mutations were 

filtered by the stringency tests in the variant calling pipeline (see Intro section 

1.5), or were not picked up by CGI. However, it may instead indicate that the 

biological pathways that caused the cancer in TCHL patient 6 simply require 

fewer driver mutations to become cancerous. 

Mutations in the following genes are likely oncogenic: GNA11 

Mutations in the following genes are likely tumour suppressor inactivating: 

MSH6, CLASP2 

It is ambiguous whether mutations in the following genes are oncogenic or 
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tumour suppressor mutations: AHCTF1 
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3.4.2.2 TCHL 6 Post treatment 

Mutational Signatures 

 

Figure 3.4.2.3 – Mutational signatures for the TCHL 6 Post-treatment sample 

 

The TCHL 6 Post treatment sample shows a mutational landscape where DNA 

damage based signatures are still the largest influence, but are not nearly as 

high a proportion as they were in the Pre-treatment sample. Since the table in 

section 3.4.1 shows that the post treatment sample has fewer SNVs and indels 

than the Pre-treatment sample, this suggests that treatment may have killed the 

cells most heavily mutated by the defects in DNA damage repair mechanisms, 

leaving behind cells where DNA damage signatures were a smaller proportion 

of the overall spectrum. There is also a small proportion APOBEC based 

signature, which may mean that APOBEC enzymes were dysregulated in the 

tumour during therapy. 
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SciClone Data 

 

Figure 3.4.2.4 –Subclonal architecture for the TCHL 6 Post-treatment sample 

The TCHL 6 Post Treatment sample shows 2 clusters, like the Pre-treatment 

sample. However the peaks of the clonality plot are at lower VAFs than the Pre- 

treatment sample, suggesting that the mutations present are being reduced in 

overall frequency by more mutated cells being killed during the process of 

therapy. 
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Driver analysis 

Table 3.4.2.2 – Known or predicted driver SNVs and indels for TCHL 6 Post 

treatment. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

 

Input 

 

gene 

 

cdna 

 

gdna 

 

protein 

 

gene_role 

Driver statement 

 

3|33543233|G|A 

 

CLASP2 

 

c.4369C>T 

chr3:g.33543233G> A  

p.R1457W 

 

LoF 

predicted driver: 

tier 1 

 

19|3119297|G|A 

 

GNA11 

 

c.829G>A 

chr19:g.3119297G> A  

p.D277N 

 

Act 

predicted driver: 

tier 1 

 
The TCHL 6 Post treatment sample shows only 2 predicted driver mutations, 

both shared with the Pre-treatment sample. Since, as mentioned above, the 

Post treatment sample has fewer SNVs and indels overall than the post 

treatment sample, this likely indicates that more heavily mutated cells bearing a 

greater number of driver mutations were killed during the process of therapy. 

Mutations in the following genes are likely oncogenic: GNA11 

Mutations in the following genes are likely tumour suppressor inactivating: 

CLASP2 
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3.4.2.3 TCHL 6CFF - Relapse sample Mutational 

Signatures 

 

 

 

 

 

 

 

 

Figure 3.4.2.5 – Mutational signatures in the TCHL 6 relapse sample 

 

The TCHL 6 CFF Relapse sample shows a signature landscape dominated by 

DNA damage based signatures. Interestingly, this is much closer to the Pre- 

treatment sample than the post treatment sample. This suggests that some 

cells heavily mutated by the DNA damage repair defaults may have survived 

subclonally during treatment, and that the mutations in these cells caused the 

relapse. Looking at the table in section 3.1, we can see that the number of 

SNVs and indels in the relapse sample is similar to the number in the Pre- 

treatment sample and much greater than the number in the post treatment 

sample, lending support to the idea that the relapse was caused by cells that 

existed subclonally in the Pre-treatment tumour. The fact that the Sciclone plots 

for the Pre and Post treatment samples both show 2 main clusters supports the 

idea that therapy failed to totally eradicate the subclonal population in the Pre- 

treatment sample, and it is likely that this subclonal population acted as a 

reservoir of genetic diversity that allowed ultimately allowed a relapse to occur. 

The Aging signature and a signature of unknown aetiology compose a similar 

proportion of the mutational spectrum in this sample as they do in the Pre- 
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treatment sample. 
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SciClone Data 

 

Figure 3.4.2.6 –Subclonal architecture for the TCHL 6 Relapse sample 

The TCHL 6CFF relapse sample shows 3 clusters, suggesting a dominant 

clone centred at a VAF of 20, then a less mutated subclone centred at a VAF of 

10 and a more heavily mutated subclone centred at a VAF of 5. 
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Driver analysis 

Table 3.4.2.3 – Known or predicted driver SNVs and indels for TCHL 6 

Relapse. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

Input gene cdna gdna protein gene_role driver_statement 

 

5|131931451|TA|T 

 

RAD50 

 

c.2165delA 

chr5:g.13193 

1460delA 

 

p.K722Rfs*14 

 

ambiguous 

predicted driver: 

tier 2 

 

19|3119297|G|A 

 

GNA11 

 

c.829G>A 

chr19:g.31192 

97G>A 

 

p.D277N 

 

Act 

predicted driver: tier 

1 

 
The TCHL 6 CFF relapse sample shows only 2 predicted driver mutations. As 

mentioned in the Driver analysis section for the corresponding Pre-treatment 

sample, it is unlikely that an active cancer cell would show so few driver 

mutations, so we consider it possible that some driver mutations in this sample 

were either filtered at some point in the variant calling workflow or missed by 

the variant calling software entirely. We bring in the possibility of false negatives 

such as this because even the most advanced variant calling software 

workflows are known in the literature to have a non-zero false positive rate 

(143). Another possibility is that there are driver mutations in this sample that 

are not known in the CGI database and were not predicted by the CGI 

prediction algorithm. The presence of a RAD50 mutation, not present in the 

other 2 samples from the same patient, may be notable, as there is also a 

RAD50 mutation in the TCHL 39 relapse sample, as well as the TCHL 3 Post 

treatment sample. 

Mutations in the following genes are likely oncogenic: GNA11 

It is ambiguous whether mutations in the following genes are oncogenic or 

tumour suppressor mutations: RAD50 
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3.4.3 - TCHL 12 samples 

The TCHL 12 patient was given lapatinib (TCHL patient) and was a non- 

responder to initial therapy (no pCR). 

3.4.3.1 - TCHL 12 Pre-treatment Mutational 

Signatures 

 

 

 

 

 

 

 

 

Figure 3.4.3.1 – Mutational signatures in the TCHL 12 Pre-treatment sample 

The TCHL 12 Pre-treatment sample shows a mutational landscape heavily 

influenced by the APOBEC signature. This implies that this sample, prior to or 

during carcinogenesis, experienced a dysregulation of the APOBEC enzymes 

active in the cancer founder cell, and this faulty APOBEC activity may have 

contributed to the presence of the driver mutations that caused the cancer. 

There is also some influence of the Aging signature, and of a DNA damage 

signature - specifically Signature 3, a signature associated with failure of DSB 

repair by homologous recombination.
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SciClone Data 

 

Figure 3.4.3.2 – Subclonal architecture in the TCHL 12 Pre-treatment sample 

The TCHL 12 Pre-treatment sample shows 3 main clusters, suggesting a 

founder clone centred at a VAF of 40, then two subclonal populations with much 

heavier mutational burdens centred at VAFs of 5 and 15, respectively. 



124	

 

 

Driver analysis 

Table 3.4.3.1 – Known or predicted driver SNVs and indels for TCHL 12 Pre- 

treatment. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

Input gene cdna gdna protein gene_role Driver statement 

 

17|7577120|C|T 

 

TP53 

 

c.818G>A 

chr17:g.757712 

0C>T 

 

p.R273H 

 

LoF 

known in: THCA;CANCER- 

PR;AML 

 

8|103311746|C|G 

 

UBR5 

 

c.3136G>C 

chr8:g.1033117 

46C>G 

 

p.A1046P 

 

ambiguous 

 

predicted driver: tier 2 

 

7|81372698|C|T 

 

HGF 

 

c.836G>A 

chr7:g.8137269 
8C>T 

 

p.R279H 

 

Act 

 

predicted driver: tier 2 

 

3|141678557|G|A 

 

TFDP2 

 

c.1010C>T 

chr3:g.1416785 

57G>A 

 

p.A337V 

 

LoF 

 

predicted driver: tier 2 

22|43213779|A|A T  

ARFGAP3 

 

c.896dupA 

chr22:g.432137 

87dupT 

p.N299Kfs* 3  

LoF 

 

predicted driver: tier 1 

 

21|40604418|G|A 

 

BRWD1 

 

c.2773C>T 

chr21:g.406044 

18G>A 

 

p.R925W 

 

Act 

 

predicted driver: tier 2 

 

1|182850527|T|C 

 

DHX9 

 

c.2753T>C 

chr1:g.1828505 
27T>C 

 

p.L918P 

 

Act 

 

predicted driver: tier 2 

 

17|38792691|C|T 

SMARCE 1  

c.325G>A 

chr17:g.387926 

91C>T 

 

p.D109N 

 

ambiguous 

 

predicted driver: tier 2 

 

15|42003344|G|T 

 

MGA 

 

c.2881G>T 

chr15:g.420033 
44G>T 

 

p.E961* 

 

LoF 

 

predicted driver: tier 1 

 
The TCHL 12 Pre-treatment sample shows 9 predicted driver events, of which 1 

is a validated driver: the R273H mutation in TP53, a cancer driver gene 

common in many cancer types and seen in many other samples in this cohort. 

Many of the other predicted driver mutations in this sample are in genes unique 

to this sample, though mutations in UBR5, MGA and DHX9 do appear in some 

other samples in the cohort. None of the predicted driver mutations are shared 
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with the corresponding Pre-treatment sample. 

Mutations in the following genes are likely oncogenic: HGF, BRWD1, DHX9 

Mutations in the following genes are likely tumour suppressor inactivating: 

TP53, TFDP2, AFRGAP3, MGA 

It is ambiguous whether mutations in the following genes are oncogenic or 

tumour suppressor mutations: UBR5, SMARCE1 
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 3.4.3.2 - TCHL 12 Post treatment Mutational Signatures 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.3.3 – Mutational signatures in the TCHL 12 Post treatment sample 

 

The TCHL 12 Post treatment sample has a mutational landscape composed of 

only two signatures - Signature 5, a Signature of unknown aetiology found in all 

cancers, and signature 1, the Aging signature, present in all cancers and indeed 

all somatic cells. It is not clear why the APOBEC signature so influential in the 

Pre-treatment sample is totally absent here, as the post treatment sample has a 

similar number of SNVs and indels to the Pre-treatment sample (see section 

3.5.1)
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SciClone Data 

 

Figure 3.4.3.4 – Subclonal architecture in the TCHL 12 Post treatment sample 

The clonality analysis for TCHL 12 Post Treatment sample shows 3 clusters, 

with the most dense by far centred at a VAF of 50. This suggests that one of the 

low VAF subclones in the Pre-treatment sample expanded greatly during the 

therapy process, while the remaining subclonal populations survived at lower 

frequencies. 
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Driver analysis 

Table 3.4.3.2 – Known or predicted driver SNVs and indels for TCHL 12 Post 

treatment. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

Input gene cdna gdna protein gene_role Driver statement 

 

 

 

3|178952085|A|G 

 

 

 

PIK3CA 

 

 

 

c.3140A>G 

 

 

 

chr3:g.178952085A>G 

 

 

 

p.H1047R 

 

 

 

Act 

known in: 
NSCLC;BRCA;COREA 
D;OV 

10|123258034|A| T  

FGFR2 

 

c.1650T>A 

 

chr10:g.123258034A>T 

 

p.N550K 

 

Act 

 

known in: EDA;ED 

6|117704649|G|A ROS1 c.2327C>T chr6:g.117704649G>A p.T776M Act predicted driver: tier 2 

2|128044322|C|G ERCC3 c.1299G>C chr2:g.128044322C>G p.Q433H LoF predicted driver: tier 2 

19|58386285|G|A ZNF814 c.473C>T chr19:g.58386285G>A p.A158V Act predicted driver: tier 1 

 
None of the predicted driver mutations in the TCHL 12 Post treatment sample 

are shared with the corresponding Pre-treatment sample. This, along with the 

very different mutational signature landscape in the post treatment sample (no 

APOBEC signature) and the clonal architecture of the the two samples, 

suggests the following: that the original tumour harboured subclones at a low 

number with a distinct biology from the rest of the tumour, and that these 

subclones survived therapy and expanded in the space left by the cells killed by 

the therapy. The presence of a PIK3CA mutation, associated with trastuzumab 

resistance (see Intro section 1.3 and (83)) lends credence to this hypothesis. 

The other validated mutation is the FGFR2 oncogene activating Q433H 

mutation. Apart from the PIK3CA mutation, the predicted driver mutations in this 

sample all affect genes not predicted to act as drivers in any other sample in 

this cohort. 

Mutations in the following genes are likely oncogenic: PIK3CA, FGFR2, ROS1, 

ZNF814 
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Mutations in the following genes are likely tumour suppressor inactivating: 

ERCC3 
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3.4.4 TCHL 29 samples 

The TCHL 29 sample was given lapatinib (TCHL patient) and was a non- 

responder to initial therapy (no pCR). 

3.4.4.1 TCHL 29 Pre-treatment 

Mutational Signatures 

 

Figure 3.4.4.1 – Mutational signatures in the TCHL 29 Pre-treatment sample 

 

The TCHL 29 Pre-treatment sample shows a mutational landscape influenced 

by a diverse array of signature types. The most influential is the aging 

signature, suggesting that a relatively high proportion of mutations in this 

sample were generated by the somatic mutational processes that occur in all 

cells as humans age and that the drivers mutations in this sample were mostly 

generated by this natural and unavoidable process. The second most impactful 

group is the DNA damage signatures, in this case Signature 3 and Signature 6. 

Signature 3 is associated with deficiency in DSB repair by homologous 

recombination, while Signature 6 is associated with defective DNA mismatch 

repair. There is also a small influence of the APOBEC dysregulation related 

Signature 2. Finally, there is a small influence of Signature 5, a signature of 
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unknown cause found in all cancer types. 
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SciClone Data 

 

 
Figure 3.4.4.2 – Subclonal architecture in the TCHL 29 Pre-treatment sample 

 

The TCHL 29 Pre-treatment shows 2 clusters, with the more dense cluster 

centred at a VAF of 5 and the less dense cluster centred at a VAF of 20. This 

suggests a founder clone at a VAF of 20 and a more mutated subclone at a 

VAF of 5. 
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Driver analysis 

Table 3.4.4.1 – Known or predicted driver SNVs and indels for TCHL 29 Pre- 

treatment. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

 

Input 

 

gene 

 

cdna 

 

gdna 

 

protein 

 

gene_role 

Driver statement 

 

3|178917478|G|A 

 

PIK3CA 

 

c.353G>A 

chr3:g.178917478 

G>A 

 

p.G118D 

 

Act 

known in: 

CANCER 

 

X|76938973|G|GTGAT 
AAT 

 

 

 

ATRX 

 

c.1774_1775ins 
ATTATCA 

chrX:g.76938973_ 
76938974insTGAT 
AAT 

 

p.P592Hf 

s*8 

 

 

 

LoF 

 

predicted driver: 
tier 1 

 

 

X|76849320|C|CATAT 

TTAT 

 

 

 

ATRX 

 

 

c.5957-2_5957- 

1insATAAATAT 

chrX:g.76849320_ 
76849321insATAT 

TTAT 

 

 

 

. 

 

 

 

LoF 

 

 

predicted driver: 

tier 1 

 

8|30938665|T|TTCTGA 
AATATCCTTTA 

 

 

 

WRN 

c.1122_1123ins 
TCTGAAATATC 
CTTTA 

chr8:g.30938665_ 
30938666insTCTG 
AAATATCCTTTA 

 

p.E375Sfs 

*32 

 

 

 

LoF 

 

predicted driver: 
tier 1 

 

8|103289348|C|CT 

 

UBR5 

 

c.6360dupA 

chr8:g.103289356d 

upT 

p.E2121Rf 

s*13 

ambiguou s predicted driver: 

tier 2 

 

6|157524998|A|G 

 

ARID1B 

 

c.4895-2A>G 

chr6:g.157524998 

A>G 

 

. 

 

LoF 

predicted driver: 

tier 1 

 

 

 

5|56161678|A|AAGAA 

CACATTATAGTTT 

 

 

 

 

MAP3K1 

 

c.1175_1176ins 

AGAACACATTA 
TAGTTT 

chr5:g.56161678_ 
56161679insAGA 

ACACATTATAGT 
TT 

 

 

 

p.Y392*fs 

*1 

 

 

 

 

LoF 

 

 

 

predicted driver: 

tier 1 

   chr5:g.131944389 p.N934Ifs ambiguou 

s 

predicted driver: 

tier 2 
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5|131944381|CA|C RAD50 c.2801delA delA *6 

 

3|180685928|C|T 

 

FXR1 

 

c.1288C>T 

chr3:g.180685928 

C>T 

 

p.R430* 

 

LoF 

predicted driver: 

tier 1 

 

3|105389149|T|TTATT 
CATTATATAATTTAA 

TGA 

 

 

 

 

CBLB 

 

c.2616_2617ins 
TCATTAAATTA 

TATAATGAATA 

chr3:g.105389149 

_105389150insTA 
TTCATTATATAAT 

TTAATGA 

 

 

 

p.R873Sf 

s*13 

 

 

 

 

LoF 

 

 

 

predicted driver: 

tier 1 

 

1|120497815|A|AAACT 
GTAC 

 

 

 

NOTCH2 

 

c.2066_2067ins 
GTACAGTT 

chr1:g.120497815 

_120497816insAA 
CTGTAC 

 

p.N689Kf 

s*16 

 

ambiguou 
s 

 

predicted driver: 
tier 2 

 

19|12813672|C|T 

 

TNPO2 

 

c.2270G>A 

chr19:g.12813672 

C>T 

 

p.R757Q 

ambiguou 

s 

predicted driver: 

tier 2 
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Input 

 

gene 

 

cdna 

 

gdna 

 

protein 

 

gene_role 

Driver statement 

 

17|7577103|CA|C 

 

TP53 

 

c.834delT 

chr17:g.7577104de 

lA 

p.R280Efs 

*65 

 

LoF 

predicted driver: 

tier 1 

 

17|30521113|T|TAAAG 

TAA 

 

 

 

RHOT1 

 

c.857_858insAA 

GTAAA 

chr17:g.30521114_ 

30521115insAAGT 

AAA 

 

p.Y286*fs* 

1 

 

ambiguou s 

 

predicted driver: 

tier 2 

 

17|30521110|G|GA 

 

RHOT1 

 

c.855dupA 

chr17:g.30521112d 

upA 

p.Y286Ifs* 

11 

ambiguou s predicted driver: 

tier 2 

 

17|15989696|G|GTAAT 
AAATAATAA 

 

 

 

NCOR1 

c.3076_3077ins 
TTATTATTTATT A 

chr17:g.15989697 

_15989698insAAT 
AAATAATAAT 

 

p.T1026If 

s*49 

 

 

 

LoF 

 

predicted driver: 
tier 1 

 

11|94219172|A|AATAT 
CATT 

 

 

 

MRE11A 

 

c.231_232insAA 
TGATAT 

chr11:g.94219172 

_94219173insATA 
TCATT 

 

p.L78Nfs* 5 

 

ambiguou 
s 

 

predicted driver: 
tier 2 

 

10|62023637|C|T 

 

ANK3 

 

c.655G>A 

chr10:g.62023637 

C>T 

 

p.A219T 

 

Act 

predicted driver: 

tier 1 

 

The TCHL 29 Pre-treatment sample shows 18 predicted driver mutations, a 

large number of driver mutations for a breast cancer sample. The only mutation 

definitively known to act as a driver is PIK3CA G118D. Several other samples in 

the cohort also show PIK3CA mutations. There is also a predicted driver 

mutation in TP53. Several other samples in the cohort bear predicted driver 

TP53 mutations. The remaining predicted driver genes are either unique to the 

TCHL 29 samples or are only seen in one or two other samples in the cohort. 

Mutations in the following genes are likely oncogenic: PIK3CA, ANK3 Mutations 
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in the following genes are likely tumour suppressor: ATRX, WRN, ARID1B, 

MAP3K1, CBLB, TP53, NCOR1 

It is ambiguous whether mutations in the following genes are oncogenic or 

tumour suppressor mutations: UBR5, RAD50, NOTCH2, TNPO2, RHOT1, 

MRE11A 
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3.4.4.2 - TCHL 29 Post treatment 

Mutational Signatures 

 

Figure 3.4.4.3 – Mutational signatures in the TCHL 29 Post-treatment sample 

The TCHL 29 Post treatment sample shows a similar mutational landscape to 

the corresponding pre-treatment sample, though the proportion of the aging 

signature is reduced in comparison to that sample. It is hard to tell why this is 

the case, as referring to the table in section 3.5.1 shows that the Post treatment 

sample has far fewer SNVs and indels than the pre-treatment sample. As with 

the pre-treatment sample, DNA damage based signatures play a significant 

role, though in the post treatment sample only signature 3, the DSB repair 

deficiency signature, is present, and signature 6 is no longer present. The 

remainder of the mutational landscape in this sample is composed of APOBEC 

based signatures and signatures of unknown aetiology. 
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SciClone Data 

 

Figure 3.4.4.4 – Subclonal architecture in the TCHL 29 Post-treatment sample 

The TCHL 29 Post-treatment sample shows 1 cluster at each copy number, 

implying there are no significant subclonal populations. This implies that only 

one of the subclonal populations from the pre-treatment sample survived 

treatment. 
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Driver analysis 

Table 3.4.4.2 – Known or predicted driver SNVs and indels for TCHL 29 Post 

treatment. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

 

Input 

 

gene 

 

cdna 

 

gdna 

 

protein 

 

gene_role 

driver_stateme 
nt 

3|178917478|G| 

A 

 

PIK3CA 

 

c.353G>A 

 

chr3:g.178917478G>A 

 

p.G118D 

 

Act 

known in: 

CANCER 

8|103289348|C| 

CT 

 

UBR5 

 

c.6360dupA 

chr8:g.103289356dup T p.E2121Rfs*1 3  

ambiguous 

predicted driver: 

tier 2 

6|157524998|A| 

G 

 

ARID1B 

c.4895- 2A>G  

chr6:g.157524998A>G 

 

. 

 

LoF 

predicted driver: 

tier 1 

6|114292039|C| 
CT 

 

HDAC2 

 

c.33dupA 

chr6:g.114292048du pT  

p.V12Sfs*8 

 

LoF 

predicted driver: 
tier 1 

19|49458970|T 

G|T 

 

BAX 

 

c.121delG 

chr19:g.49458978del G  

p.E41Rfs*19 

 

LoF 

predicted driver: 

tier 1 

17|7577103|CA| 

C 

 

TP53 

 

c.834delT 

 

chr17:g.7577104delA 

 

p.R280Efs*65 

 

LoF 

predicted driver: 

tier 1 

15|91304138|G 

|GA 

 

BLM 

 

c.1544dupA 

chr15:g.91304147du 
pA 

 

p.N515Kfs*2 

 

LoF 

predicted driver: 
tier 1 

10|62023637|C| T  

ANK3 

 

c.655G>A 

 

chr10:g.62023637C>T 

 

p.A219T 

 

Act 

predicted driver: 

tier 1 

 
The TCHL 29 Post treatment sample shares the validated G118D driver 

mutation in PIK3CA seen in the Pre-treatment sample. Since PIK3CA mutations 

are associated with trastuzumab resistance, this may indicate that cells bearing 

this mutation were more likely to survive treatment longer than cells without this 

mutation in this sample. There are overall fewer predicted drivers in this sample 

than the corresponding Pre-treatment sample. Given that the Post treatment 

sample has fewer SNVs and indels than the Pre-treatment sample, as 

mentioned in the Mutational Signatures section, this implies that more heavily 
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mutated cells in this patient succumbed to treatment, and the surviving cells 

after treatment started had a lower mutational burden and so fewer driver 

mutations. Most of the predicted driver genes in this sample are shared with the 

Pre-treatment sample, though HDAC2, BAX and BLM are not shared. This may 

indicate that these predicted driver mutations occurred in cells in the tumour 

during therapy, possibly due to genotoxic effects of therapy.  

Mutations in the following genes are likely oncogenic: PIK3CA, ANK3 Mutations 

in the following genes are likely tumour suppressor inactivating: ARID1B, 

HDAC2, BAX, TP53, BLM 

It is ambiguous whether mutations in the following genes are oncogenic or 

tumour suppressor mutations: UBR5 
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3.4.5 - TCHL 32 samples 

The TCHL 32 sample was not given lapatinib (TCH patient) and was a 

responder to initial therapy (showed pCR). The patient ultimately showed 

relapse in the brain. 

3.4.5.1 - TCHL 32 Pre-treatment 

Mutational Signatures 

 

Figure 3.4.5.1 – Mutational signatures in the TCHL 32 Pre-treatment sample 

 

The TCHL 32 Pre-treatment sample shows a mutational landscape completely 

dominated by the DNA damage repair deficiency signatures, specifically 

Signature 3 (DSB repair deficiency) and Signature 6 (DNA mismatch repair 

deficiency). There is also a small contribution by Signature 16, a signature of 

unknown aetiology. The fact that Signature 1 is entirely absent must be an error 

of the deconstructSigs algorithm, as Signature 1 is present in all somatic cells 

(see section 1.7 for an explanation of how deconstructSigs can mis-assign 

signatures). 
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SciClone Data 

SciClone was unable to find any clusters in the data provided from this sample. 
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Driver analysis 

Table 3.4.5.1 – Known or predicted driver SNVs and indels for TCHL 32 Pre- 

treatment. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

Input gene cdna gdna protein gene_role Driver statement 

 

 

 

3|178952085|A|G 

 

 

 

PIK3CA 

 

 

 

c.3140A>G 

 

chr3:g.1789520 

85A>G 

 

 

 

p.H1047R 

 

 

 

Act 

known in: 

COREAD;NSCLC; 

OV;BRCA 

 

17|7578212|G|A 

 

TP53 

 

c.637C>T 

chr17:g.757821 

2G>A 
 

p.R213* 

 

LoF 

known in: CANCER-

PR 

 
The TCHL 32 Pre-treatment sample shows validated driver mutations in 2 

genes that are mutated in many samples in this cohort: the H1047R mutation in 

PIK3CA, and the R123* mutation in TP53. This is a very low number of driver 

mutations for a tumour, possibly indicating that some driver mutations in this 

sample may have been filtered by the variant calling pipeline. As was said when 

a similar issue arose with the TCHL 6 relapse sample, we consider the 

possibility of mutations being erroneously filtered due to the fact that even the 

most advanced variant calling pipelines known today are known in the literature 

to have a non-zero false negative rate, potentially removing as high as 3% of 

genuine variants (144) . Also, as with TCHL 6 relapse, this result may indicate 

that there are driver mutations in this sample that are not known in the CGI 

database. All driver mutations in this sample are shared by the corresponding 

relapse sample. 

Mutations in the following genes are likely oncogenic: PIK3CA 

Mutations in the following genes are likely tumour suppressor inactivating: TP53 
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3.4.5.2 - TCHL 32C - Relapse sample 

Mutational Signatures 

 

Figure 3.4.5.2 – Mutational signatures in the TCHL 32 Relapse sample 

 

The 32C Relapse sample, like the Pre-treatment sample, shows a heavy 

influence of DNA damage based signatures 3 and 6. However, in the relapse 

sample there is a small influence of Signature 1 (which is probably also present 

in the Pre-treatment sample but not picked up by the deconstructSigs 

algorithm). The relapse sample also shows a sizable influence of Signature 5, a 

Signature of unknown cause found in all cancer types. These results suggest 

that whatever process causes signature 5 was active during the process of 

treatment and may have caused the driver mutations that lead to the cancer 

recurring. The fact that the relapse sample has many more SNVs and indels 

than the Pre- treatment sample (see the table in section 3.5.1) is further 

evidence that a mutagenic process was active between treatment starting and 

relapse occurring, generating a host of new mutations. These results implicate 

signature 5 as the likely cause of the new mutations seen in the relapse 

sample. 
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SciClone Data 

 

 

 
Figure 3.4.5.3 – Mutational signatures in the TCHL 32 Relapse sample 

 

The 32C relapse sample shows a complicated subclonal architecture with 4 

clusters. The graph implies a founder clone with a low mutational burden with a 

VAF centred at 40, then 3 subclonal populations with VAFs centred at 35, 20 

and 5 respectively. The subclonal population with a VAF of 5 is the most heavily 

mutated part of the tumour (highest density). 
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Driver analysis 

Table 3.4.5.2 – Known or predicted driver SNVs and indels for TCHL 32 Pre- 

treatment. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

Input gene cdna gdna protein gene_role Driver statement 

 

 

 

3|178952085|A|G 

 

 

 

PIK3CA 

 

 

 

c.3140A>G 

 

chr3:g.178952085A 

>G 

 

 

 

p.H1047R 

 

 

 

Act 

known in: 

BRCA;NSCLC;OV;CORE 

AD 

 

17|7578212|G|A 

 

TP53 

 

c.637C>T 

chr17:g.7578212G> A  

p.R213* 

 

LoF 

 

known in: CANCER-PR 

9|135772957|T|T 

ATTAAGTGGAA 
CTTC 

 

 

 

TSC1 

c.2665_2666i 

nsGAAGTTC 
CACTTAAT 

chr9:g.135772957_ 

135772958insATTA 
AGTGGAACTTC 

 

p.E889Gf 

s*5 

 

 

 

LoF 

 

 

 

predicted driver: tier 1 

6|87970733|A|AC 
TTAT 

 

ZNF292 

c.7386_7387i 
nsCTTAT 

chr6:g.87970733_8 
7970734insCTTAT 

p.R2463Lf 

s*24 

 

LoF 

 

predicted driver: tier 1 

6|87970731|T|TT 

ATGG 

 

ZNF292 

c.7384_7385i 

nsTATGG 

chr6:g.87970731_8 

7970732insTATGG 
p.S2462Lf 

s*25 

 

LoF 

 

predicted driver: tier 1 

 

6|87970203|A|AG 

TTCAAATATGT 

 

 

 

ZNF292 

c.6856_6857i 
nsGTTCAAA 

TATGT 

chr6:g.87970203_8 
7970204insGTTCA 

AATATGT 

 

p.K2286S 

fs*5 

 

 

 

LoF 

 

 

 

predicted driver: tier 1 

 

6|87968495|A|AA 
GTCACTT 

 

 

 

ZNF292 

c.5148_5149i 
nsAGTCACT T 

chr6:g.87968495_8 
7968496insAGTCA 
CTT 

 

p.A1717S 

fs*6 

 

 

 

LoF 

 

 

 

predicted driver: tier 1 

 

5|96360338|A|AG 

 

 

c.2675_2676i 
nsGAAAATA 

chr5:g.96360338_9 
6360339insGAAAA 

 

p.I893Kfs 

 

ambiguou 
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AAAATATTCTG  

LNPEP 

TTCTG TATTCTG *4 s  

predicted driver: tier 2 

 

5|67569784|C|CC 
TACTATTAA 

 

 

 

PIK3R1 

c.445_446ins 
CTACTATTA 

A 

chr5:g.67569784_6 
7569785insCTACT 

ATTAA 

 

p.L149Pfs 

*21 

 

 

 

LoF 

 

 

 

predicted driver: tier 1 

 

5|131930712|A|A 

GTTCC 

 

 

 

RAD50 

 

c.1945_1946i 

nsGTTCC 

chr5:g.131930712_ 
131930713insGTTC C 

 

p.I649Sfs* 

27 

 

ambiguou 

s 

 

 

 

predicted driver: tier 2 

5|112176256|A|A 
GGTGGAGGTAA 

TTT 

 

 

 

APC 

c.4965_4966i 
nsGGTGGAG 

GTAATTT 

chr5:g.112176256_ 
112176257insGGT 

GGAGGTAATTT 

 

p.S1656G 

fs*7 

 

 

 

LoF 

 

 

 

predicted driver: tier 1 

 

2|48059522|C|CC 
AAATTATCT 

 

 

 

FBXO11 

c.1363_1364i 
nsAGATAAT 

TTG 

chr2:g.48059522_4 
8059523insCAAAT 

TATCT 

 

p.R455Qf 

s*5 

 

 

 

LoF 

 

 

 

predicted driver: tier 1 
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Input gene cdna gdna protein gene_role Driver statement 

 

21|35147307|A|A 

ATTCCAAAGTC 
TTTTTCTTT 

 

 

 

 

ITSN1 

c.1491_1492i 
nsATTCCAA 

AGTCTTTTT 
CTTT 

chr21:g.35147307_ 
35147308insATTC 

CAAAGTCTTTTTC 
TTT 

 

 

 

p.D498Ifs 

*13 

 

 

 

 

LoF 

 

 

 

 

predicted driver: tier 1 

21|35094909|C|C T  

ITSN1 

 

c.147dupT 

chr21:g.35094918d 

upT 

p.Q50Sfs* 

17 

 

LoF 

 

predicted driver: tier 1 

 

1|51323662|G|GA 

AGTTTA 

 

 

 

FAF1 

 

c.52_53insTA 

AACTT 

chr1:g.51323662_5 
1323663insAAGTT 
TA 

 

 

 

p.T18Ifs*6 

 

 

 

LoF 

 

 

 

predicted driver: tier 1 

 

1|51323661|A|AT 
ATCTTTAATAT 

 

 

 

FAF1 

c.53_54insAT 

ATTAAAGAT 
A 

chr1:g.51323661_5 

1323662insTATCTT 
TAATAT 

 

p.G19Yfs* 
2 

 

 

 

LoF 

 

 

 

predicted driver: tier 1 

 

1|21205985|A|G 

 

EIF4G3 

 

c.2303T>C 

chr1:g.21205985A> G  

p.L768S 

 

Act 

 

predicted driver: tier 2 

 

1|120612018|C|T 

 

NOTCH2 

 

c.3G>A 

chr1:g.120612018C 

>T 

 

. 

ambiguou 
s 

 

predicted driver: tier 2 

17|40370235|TG| T  

STAT5B 

 

c.1102delC 

chr17:g.40370243d 

elG 

p.Q368Rf 

s*2 

ambiguou 

s 

 

predicted driver: tier 2 

17|15968913|T|T 
TTCGTAGAATTT 

ATTA 

 

 

 

NCOR1 

c.4836_4837i 
nsTAATAAA 

TTCTACGAA 

chr17:g.15968914_ 
15968915insTCGT 

AGAATTTATTAT 

 

p.I1613*fs 

*1 

 

 

 

LoF 

 

 

 

predicted driver: tier 1 

16|67645475|G|G 

TGGC 
 

CTCF 

c.741_742ins 

GGCT 

chr16:g.67645476_ 

67645477insGGCT 
p.N248Gf 

s*2 

 

LoF 

 

predicted driver: tier 1 
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16|50813937|G|G 

TTTAGCTCTTC 

 

 

 

CYLD 

c.1500_1501i 
nsTTTAGCTC 

TTC 

chr16:g.50813937_ 
50813938insTTTAG 

CTCTTC 

 

p.L501Ffs 

*32 

 

 

 

LoF 

 

 

 

predicted driver: tier 1 

15|91304138|G|G A  

BLM 

 

c.1544dupA 

chr15:g.91304147d 

upA 

p.N515Kf 

s*2 

 

LoF 

 

predicted driver: tier 1 

13|32914971|A|A 
CGAGGAAGTAT 

TTTTG 

 

 

 

BRCA2 

c.6479_6480i 
nsCGAGGAA 

GTATTTTTG 

chr13:g.32914971_ 
32914972insCGAG 

GAAGTATTTTTG 

 

p.Q2160H 

fs*21 

 

 

 

LoF 

 

 

 

predicted driver: tier 1 

12|99060116|A|A 
TACATAACACC 

TAG 

 

 

 

APAF1 

c.1343_1344i 
nsTACATAA 

CACCTAG 

chr12:g.99060116_ 
99060117insTACA 

TAACACCTAG 

 

p.K448Nf 

s*3 

 

 

 

LoF 

 

 

 

predicted driver: tier 1 

11|63964969|A|A 
ATGTAAGTCAT 
GT 

 

 

 

STIP1 

c.804_805ins 
ATGTAAGTC 
ATGT 

chr11:g.63964969_ 
63964970insATGT 
AAGTCATGT 

 

p.Y269Mf 

s*2 

 

 

 

LoF 

 

 

 

predicted driver: tier 1 

 

The TCHL 32C relapse sample shows 26 predicted and validated driver 

mutations, a far higher number of than the corresponding Pre-treatment 

sample. There are so many predicted driver mutations in this sample that it is 
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unlikely they are all genuinely contributing to the cancer. The presence of so 

many new predicted driver mutations in the relapse sample suggests that the 

tumour in this patient underwent heavy mutagenesis during the treatment 

process, possibly due to whatever process causes COSMIC Signature 5 (see 

Mutational Signatures section). The fact that there are many more SNVs and 

indels in this sample than in the corresponding Pre-treatment sample lends 

credence to this hypothesis. The TP53 and PIK3CA mutations are shared with 

the Pre-treatment sample, and many other samples in the cohort show 

predicted driver mutations in these genes. The remaining predicted driver 

mutations in this sample are in genes that either only show predicted driver 

mutations in this sample, or genes that show predicted driver mutations in only 

one or two other samples in the cohort. It is also interesting to note that the vast 

majority of predicted driver mutations in this sample appear to be tumour 

suppressor inactivating mutations. 

Mutations in the following genes are likely oncogenic: PIK3CA, EIF4G3 

Mutations in the following genes are likely tumour suppressor inactivating: 

TP53, TSC1, ZNF292, PIK3R1, APC, FBXO11, ITSN1, FAF1, NCOR1, CTCF, 

CYLD, BLM, BRCA2, APAF1, STIP1 

It is ambiguous whether mutations in the following genes are oncogenic or 

tumour suppressor mutations: LNPEP, RAD50, NOTCH2, STAT5B 
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3.4.6 TCHL 39 samples 

The TCHL 39 patient was not given lapatinib (TCH patient) and was a non- 

responder to initial therapy (no pCR). The patient ultimately showed relapse in a 

lymph node. 

3.4.6.1 - TCHL 39 Pre-treatment 

Mutational Signatures 

 

Figure 3.4.6.1- Mutational signatures in the TCHL 39 Pre-treatment sample 

 

The TCHL 39 Pre-treatment sample shows a mutational landscape with a 

variety of signature groups present, though DNA damage signatures and 

APOBEC signatures are predominant. The DNA damage signatures present are 

Signature 3 (DSB repair deficiency), Signature 6 (DNA mismatch repair 

deficiency) and Signature 15 (DNA mismatch repair). The APOBEC signatures 

are Signature 2 and 13. Signatures of unknown aetiology also show an impact 

in the form of Signature 5 (found in all cancer types, seen in several other 

samples in this cohort). Finally, the Aging Signature, Signature 1, makes a 

minor contribution. Overall, this mutational spectrum paints the picture of a 
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cancer whose mutational spectrum (and therefore, probably, its driver 

mutations) was created mostly by the breakdown in normal cellular processes 

for maintaining the integrity of the DNA. 
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SciClone Data 

 

 

 
Figure 3.4.6.2- Subclonal architecture in the TCHL 39 Pre-treatment sample 

 

The TCHL 39 Pre-treatment sample shows one cluster per copy number, 

implying that there are no significant subclonal populations. 
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Driver analysis 

Table 3.4.6.1 – Known or predicted driver SNVs and indels for TCHL 39 Pre- 

treatment. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

Input gene cdna gdna protein gene_role Driver statement 

 

4|83785564|A|AT 

 

SEC31A 

 

c.1384dupA 

chr4:g.8378557 

3dupT 

 

p.I462Nfs*2 

 

LoF 

predicted driver: tier 1 

 

3|52582227|G|A 

 

PBRM1 

 

c.4601C>T 

chr3:g.5258222 
7G>A 

 

p.S1534L 

 

LoF 

predicted driver: tier 1 

 

18|20529651|G|A 

 

RBBP8 

 

c.223G>A 

chr18:g.205296 

51G>A 

 

p.E75K 

 

LoF 

 

predicted driver: tier 1 

 
The TCHL 39 Pre-treatment shows 3 predicted driver mutations and no 

definitively known driver mutations. These mutations are all likely tumour 

suppressor inactivating and occur in genes that show predicted driver mutations 

in few other samples in the cohort. 

Mutations in the following genes are likely tumour suppressor inactivating: 

SEC31A, PBRM1, RBBP8 
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3.4.6.2 - TCHL 39 Post treatment 

Mutational Signatures 

 

Figure 3.4.6.3 - Mutational signatures in the TCHL 39 Post-treatment sample 

 

The TCHL 39 Post Treatment sample shows a mutational spectrum composed 

mostly of DNA damage and APOBEC related signatures. As with the 

corresponding Pre-treatment sample, the DNA damage related signatures 

include Signature 3 (DSB repair deficiency) and Signature 15 (DNA mismatch 

repair deficiency), though Signature 6 is now absent. The APOBEC signatures 

2 and 13 are present in fairly similar proportions to the Pre-treatment sample. 

The aging signature is present to a slightly larger degree than the Pre-treatment 

sample. Signature 5 (aetiology unknown) is absent entirely from this sample, 

despite making a substantial contribution to the Pre-treatment sample. 
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SciClone Data 

 

 
Figure 3.4.6.4- Subclonal architecture in the TCHL 39 Post-treatment sample 

 

The TCHL 39 Post treatment sample shows a subclonal architecture with 3 

clusters. The highest VAF cluster, corresponding to the least mutated subclonal 

population, is centred at a VAF of 35. The next highest VAF cluster, 

corresponding to the second most mutated subclonal population, is centred at a 

VAF of 15. Finally, the most mutated subclonal population is centred at a VAF 

of 5. 
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Driver analysis 

Table 3.4.6.2 – Known or predicted driver SNVs and indels for TCHL 39 Post 

treatment. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

Input gene cdna gdna protein gene_role Driver statement 

 

6|157522410|G|A 

 

ARID1B 

c.4682G> A chr6:g.157522410G 

>A 

 

p.R1561H 

 

LoF 

 

predicted driver: tier 1 

 

18|51013310|G|A 

 

DCC 

c.3880G> A chr18:g.51013310G 

>A 

 

p.G1294R 

 

LoF 

 

predicted driver: tier 2 

 

18|20529651|G|A 

 

RBBP8 

 

c.223G>A 

chr18:g.20529651G 

>A 

 

p.E75K 

 

LoF 

 

predicted driver: tier 1 

 

11|93526897|C|G 

 

MED17 

 

c.641C>G 

chr11:g.93526897C 

>G 

 

p.S214C 

 

Act 

 

predicted driver: tier 2 

 
The TCHL 39 Post treatment sample shows 4 predicted driver mutations, one of 

which is shared with the Pre-treatment sample (the RBBP8 E75K mutation). 

The other mutations are new to the Post treatment sample. The fact that the 

Post treatment sample shows a greater number of SNVs and Indels than the 

Pre- treatment sample (see the table in section 3.5.1), that the Post treatment 

sample shows a different mutational signature spectrum to the Pre-treatment 

sample (with the absence of Signature 5) and that the Post treatment samples 

shows a very different subclonal architecture to the Pre-treatment sample 

suggests that these new predicted driver mutations are the result of the cells 

that survived therapy up to the point the Post treatment sample was 

The predicted driver mutations present in the Pre-treatment sample but absent 

in this sample (the SEC31A and PBRM1 mutations) may be associated with 

vulnerability to therapy, while the mutations seen only in this sample and not in 

the Pre-treatment sample (the DCC, MED17 and ARID1B mutations) may be 

associated with enhanced survival of therapy. 
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Mutations in the following genes are likely oncogenic: MED17 

Mutations in the following genes are likely tumour suppressor inactivating: DCC, 

RBBP8, ARID1B 
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3.4.6.3 - TCHL 39C - Relapse sample 

Mutational Signatures 

 

Figure 3.4.6.5 - Mutational signatures in the TCHL 39 Relapse sample 

The TCHL 39 C sample (the relapse sample) shows a striking absence of 

Signature 1 compared to the Pre or Post treatment samples, as well as the 

presence of an environmental signature, signature 7, which is not present in the 

pre or post treatment samples. Since, as explained above, Signature 1 is 

necessarily present in all somatic cells, the absence of it on this spectrum is 

likely the result of an error of the deconstructSigs program rather than a 

genuine absence of that signature in this sample. The presence of Signatures 

2, 5, 6 and 13 is shared with the Pre-treatment sample. The relapse sample has 

fewer SNVS and indels than the other samples from the TCHL 39 patient (see 

section 3.5.1) and deconstructSigs tends to be less accurate the fewer 

mutations are present, possibly explaining the odd mutational spectrum 

assigned to this sample. 
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SciClone Data 

SciClone was unable to find any clusters in the data provided from this sample. 
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Driver analysis 

Table 3.4.6.3 – Known or predicted driver SNVs and indels for TCHL 39 

Relapse. Predicted or known driver genes that are not shared with other 

samples from the same patient are highlighted in bold. 

 

Input 

 

gene 

 

cdna 

 

gdna 

 

protein 

 

gene_role 

Driver statement 

 

7|6017386|G|T 

 

PMS2 

 

c.2278C>A 

chr7:g.6017386 

G>T 

 

p.P760T 

 

LoF 

predicted driver: 

tier 2 

 

2|25458646|C|T 

 

DNMT3A 

 

c.2527G>A 

chr2:g.25458646 

C>T 

 

p.G843S 

 

LoF 

predicted driver: 

tier 2 

 

12|57501959|C|G 

 

STAT6 

 

c.103G>C 

chr12:g.5750195 
9C>G 

 

p.E35Q 

 

Act 

predicted driver: 
tier 2 

 

11|93526897|C|G 

 

MED17 

 

c.641C>G 

chr11:g.9352689 

7C>G 

 

p.S214C 

 

Act 

predicted driver: 

tier 2 

 
The TCHL 39 relapse treatment sample shows 4 predicted driver mutations. 

The MED17 S214C mutation is shared by the 39 Post treatment sample. The 

other predicted driver genes in this sample are in genes that do not show 

predicted driver mutations in any other sample in this cohort. The relapse 

sample shows far fewer SNVs and Indels overall than the Pre or Post treatment 

samples. 

Overall these facts suggest that heavily mutated cells in this tumour were killed 

by the treatment, but surviving cells with a lower mutational burden underwent 

mutagenesis during the treatment process, generating the new predicted driver 

mutations seen here, which may be responsible for the relapse. 

Mutations in the following genes are likely oncogenic: STAT6, MED17 

Mutations in the following genes are likely tumour suppressor inactivating: 

PMS2, DNMT3A 
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3.4.7 TCHL 45 

Mutational Signatures 

 

The TCHL 45 Pre-treatment sample shows a mutational spectrum dominated 

by signatures of unknown origin. It is therefore hard to say what caused the 

majority of mutations in the tumour and what caused the driver mutations that 

lead to tumourigenesis. We can see some evidence of DNA mismatch repair 

errors playing a role, due to the presence of Signatures 6 and 20. There is also 

a relatively minor environmental influence in the form of signature 24, a 

signature associated with aflatoxin exposure. 

  

Figure 3.4.7.1 – TCHL 45 Mutational Signatures 
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SciClone Data 

 

 

Figure 3.4.7.2 – TCHL 45 SciClone clonality plot. 

 

Driver analysis 
 

 
input 

 
gene 

 
cdna 

 
gdna 

 
protein 

 
gene_role 

Driver 

statement 

 
13|25671267|C|T 

 
PABPC3 

 
c.931C>T 

chr13:g.25671 

267C>T 
 
p.R311W 

 
ambiguous 

predicted 

driver: tier 2 

 
12|6692411|C|A 

 
CHD4 

 
c.4013G>T 

chr12:g.66924 

11C>A 
 
p.R1338I 

 
Act 

predicted 

driver: tier 1 

The TCHL 45 Pre-treatment sample shows only 2 predicted driver mutations, 

both of which are shared with few other samples in the cohort. As discussed for 
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other samples with a similar number of predicted driver mutations, this seems a 

low number of driver mutations for a cancer to have, suggesting that there are 

further driver mutations in the sample that were either filtered out during variant 

calling or were not recognised by the CGI algorithm. 

Mutations in the following genes are likely oncogenic: CHD4 

It is ambiguous whether mutations in the following genes are oncogenic or 
tumour suppressor mutations: PABPC3 
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3.5 SciClone time point comparisons 

3.5.1 TCHL 3 Sample comparisons 

TCHL 3 Pre vs Post 

 

 

 
Figure 3.5.1 – Subclonal architecture in the TCHL 3 Pre and Post treatment samples. The graph shows the 
Variant allele frequencies (VAF) of mutations shared by the two samples, grouped into clusters of 
mutations predicted to originate from the same subclone. 

 

The comparison of the clonal architecture of the TCHL 3 pre and post treatment 

samples shows 3 clusters, compared to the 2 clusters discovered when 

analysing the Pre-treatment sample by itself. The first and third cluster (purple 

crosses and green circles) show similar VAFs in both samples, suggesting that 

therapy has little effect on these subclones. The middle cluster (orange 
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triangles) shows a reduced VAF in the Post treatment sample, suggesting that 

therapy is successfully killing some cells in this subclone. 
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TCHL 3 Post vs Surgery 

 

 

Figure 3.5.2 – Subclonal architecture in the TCHL 3 Post treatment and surgery samples. The graph 
shows the Variant allele frequencies (VAF) of mutations shared by the two samples, grouped into clusters 
of mutations predicted to originate from the same subclone. 

 

The comparison of the clonal architecture of the TCHL 3 post treatment and 

surgery samples shows one cluster, with similar VAFs in both samples. This 

suggests that only one subclonal population survives the full therapy process, 

but that said subclone does not reduce in population between the time the post 

treatment sample was taken and the time the surgery sample was taken. 
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TCHL 3 Pre vs Surgery 

 

Figure 3.5.3 – Subclonal architecture in the TCHL 3 Pre-treatment and surgery samples. The graph shows 
the Variant allele frequencies (VAF) of mutations shared by the two samples, grouped into clusters of 
mutations predicted to originate from the same subclone. 

The Pre-treatment sample vs post treatment sample comparison shows two 

clusters, suggesting two subclone in common between the two samples. 

Cluster 2, the orange triangles, is comprised of a small number of mutations at 

a very low VAF, suggesting a small-sized subclone with a low mutational 

burden that may have survived therapy due to its small size. The other cluster 

shows consistently lower VAFs in the surgery sample than the Pre-treatment 

sample, showing how the treatment process reduces the VAFs of the mutations 

in the cluster by killing cells with those mutations. 
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3.5.3 TCHL 6 sample comparisons 

TCHL 6 Pre vs Post 

 

Figure 3.5.4 – Subclonal architecture in the TCHL 6 Pre and Post treatment samples. The graph shows the 
Variant allele frequencies (VAF) of mutations shared by the two samples, grouped into clusters of 
mutations predicted to originate from the same subclone. 

The TCHL 6 pre vs post treatment comparison shows 2 clusters, suggesting 

two subclonal populations shared by the samples, consistent with the results 

from the solo sample Sciclone analyses above. Cluster 2 (orange triangles) is 

comprised of a small number of mutations at a very low VAF, suggesting a 

small-sized subclone with a low mutational burden that may have survived 

therapy due to its small size. Cluster 1 shows lower VAFs overall in the Post 

treatment sample, showing that the treatment process has diminished the size 

of the subclone and its associated mutations.
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TCHL 6 Pre vs Relapse 

 

Figure 3.5.5 – Subclonal architecture in the TCHL 6 Pre-treatment and relapse samples. The graph shows 
the Variant allele frequencies (VAF) of mutations shared by the two samples, grouped into clusters of 
mutations predicted to originate from the same subclone. 

The TCHL 6 Pre-treatment vs Relapse comparison shows 3 clusters shared by 

the samples, suggesting 3 subclonal populations in common. All clusters show 

similar VAFs in both samples. In the context of some subclones showing lower 

VAFs in the Post treatment sample above, this suggests that some subclones in 

the tumour were diminished during treatment, but then grew back to their 

original frequency after treatment during relapse. 
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TCHL 6 Post vs Relapse 

 

Figure 3.5.6 – Subclonal architecture in the TCHL 6 Post-treatment and Relapse samples. The graph 
shows the Variant allele frequencies (VAF) of mutations shared by the two samples, grouped into clusters 
of mutations predicted to originate from the same subclone. 

The TCHL 6 Post treatment vs Relapse comparison shows 2 clusters shared 

between the samples, suggesting two subclonal populations shared by the 

samples. Both clusters, especially cluster 1 (orange triangles), show higher 

VAFs in the Relapse sample than the post treatment sample. This gives further 

credence to the hypothesis above, that some subclones in the tumour were 

diminished during treatment, but then grew back to their original frequency after 

treatment during relapse. Though TCHL 6 did not show pCR during therapy, 

these results suggest that therapy did initially succeed in reducing some 

subclonal populations, but that these populations grew back during the relapse. 
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3.5.3 TCHL 12 sample comparisons 

 

 

 

SciClone was unable to find any clusters in the data provided when comparing 

these samples. 
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3.5.4 TCHL 29 sample comparisons 

 

 

 

TCHL 29 Pre vs Post 

 

 
Figure 3.5.7 – Subclonal architecture in the TCHL 29 Pre and Post treatment samples. The graph shows 
the Variant allele frequencies (VAF) of mutations shared by the two samples, grouped into clusters of 
mutations predicted to originate from the same subclone. 

 

The TCHL 29 Pre-treatment vs Post treatment sample comparison shows two 

clusters, suggesting two subclonal populations shared between the cells. This is 

consistent with the results of the solo SciCLone analysis the TCHL 29 Pre- 

treatment sample. Both clusters show similar VAFs in both samples, suggesting 

that therapy was not very effective in this sample. This is potentially linked to 

the fact that TCHL 29 was a non-responder sample (i.e. did not show pCR 

during therapy). 
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3.5.5 TCHL 32 sample comparisons 

 

 

 

TCHL 32 Pre vs Relapse 

 

 
Figure 3.5.8 – Subclonal architecture in the TCHL 32 Pre-treatment and Relapse samples. The graph 
shows the Variant allele frequencies (VAF) of mutations shared by the two samples, grouped into clusters 
of mutations predicted to originate from the same subclone. 

The TCHL 32a Pre-treatment vs Relapse comparison shows 4 clusters, 

suggesting 4 subclonal populations shared between the samples. Clusters 3 

and 4 (purple crosses, red X’s)show similar VAFs in both samples, suggesting 

that they did not change in size during the therapy or relapse process. Clusters 

1 and 2 (green circles and orange triangles), however, show higher VAFs in the 

relapse sample, suggesting that these subclones grew in size over the course 

of the therapy and relapse process. Mutations in these subclones may have 

been triggered by the relapse.
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3.5.6  TCHL 39 sample comparisons 

TCHL 39 Pre vs Post 

 

Figure 3.5.9 – Subclonal architecture in the TCHL 39 Pre and Post treatment samples. The graph shows 
the Variant allele frequencies (VAF) of mutations shared by the two samples, grouped into clusters of 
mutations predicted to originate from the same subclone. 

The TCHL 39 Pre-treatment vs Post Treatment comparison shows 3 clusters. 

Cluster 1 and 2 (purple crosses and orange triangles) show similar VAFs in 

both samples, suggesting that they are not very affected by the therapy 

process. 

Cluster 1 (green circles) shows higher average VAFs in the Post treatment 

sample. Taken with the fact that the Post treatment sample shows a higher 

number of SNVs and indels than the Pre-treatment sample, this suggests that 

the subclone that the green circles correspond to was expanding during the 

therapy process, and acquiring new mutations as it grew, leaving the Post 
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treatment sample with a higher mutational burden than the Pre-treatment 

sample. 

SciClone was unable to find any clusters in the remaining pairs of TCHL 39 samples 

(Pre vs Relapse, Post vs Relapse) 
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3.6 Relapse sample analysis 

The only notable difference between the Relapse samples and the other 

samples in the cohort is the increased presence of RAD50 mutations in the 

relapse samples compared to the non-Relapse samples. For this reason, a 

fisher exact test is performed below to see whether the association of RAD50 

with the relapse samples is statistically significant. This test is done for RAD50 

only because no other gene has a notably increased/decreased frequency of 

being mutated in the relapse samples compared to the non-relapse samples. 

Table 3.6.1 – Contingency table, on which a Fisher Exact Test is performed to 

test the statistical significance of the association between RAD50 and Relapse 

samples 

RAD50 Samples with gene mutated Samples without gene 
mutated 

Relapse samples 2 (66.6%) 1 (33.3%) 

Other samples 3 27 

P-value of Fisher’s exact test is 0.05315. The result is not significant under a 

condition of p < 0.05 for significance. The p-value is very close to 0.05 however, 

suggesting that a larger scale study might uncover a genuinely statistically 

significant association between RAD50 mutation status and the relapse status 

of a tumour after therapy. 
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4. Discussion 
4.1 General comment/Overall landscape 

As mentioned in the Introduction section, targeted therapy for HER2 positive 

breast cancer has seen some great successes but frustratingly, tumours do not 

always respond to therapy. By analysing which driver mutations and mutational 

signature patterns are associated with response to therapy, we can hopefully 

build a model of the genetic landscape of the type of tumour most likely to show 

a clear response to known therapies. This will aid in selecting which therapies 

to give to a patient once the genotype of their tumour is identified, and will 

provide a framework around which to design new therapies for tumours that are 

unresponsive to the current selection of available therapies.  

Patient Treatment Response 
category 

TCHL 3 TCHL Non-responder 

TCHL 6 TCH Non-responder  

TCHL 12 TCHL Non-responder 

TCHL 29 TCHL Non-responder 

TCHL 32 TCH Responded to 
therapy initially. 
Later showed 
relapse in the 
brain 

TCHL 39 TCH Non-responder 

TCHL 45 TCH Responded to 
initial therapy 

Table 4.1 – Treatment category and responder status for all of the deep 

sequencing samples. 

In terms of small scale somatic mutations, the samples show a mean average 

of 784 SNVs, 413 indels, and 40 sequence alterations. In terms of CNVs, they 

show a mean average of 98 amplifications and 57 deletions. Table 4.1, above, 

shows the Treatment category and responder status for the deep sequencing 
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samples in order to put the following results in context: The TCHL 3, 6, and 29 

pre-treatment samples show more mutations than their post treatment 

counterparts, while the TCHL 39 pre-treatment sample shows fewer mutations 

than the post treatment counterpart. The TCHL 12 post-treatment sample 

shows slightly more SNVs and indels than the Pre-treatment sample but far 

fewer CNVs. As discussed in the Results section, the cases where the number 

of mutations decreases during treatment likely reflects therapy successfully 

killing highly mutated cells in the tumour, while the cases where the number of 

mutations increases over the course of therapy likely represents highly mutated 

subclone(s) carrying mutation(s) conferring resistance to the therapy 

proliferating during the course of therapy. 

The Non-Responder samples showed a higher average number of mutations 

(both median and mean average) than the Responder samples. However, as 

noted in the results section, this may be influenced by there being more Higher 

depth sequencing samples in the Non-Responder cohort than the Responder 

cohort. 



180	

 

 

 

4.2 Mutational signatures 

Based on the current literature, we would expect signatures 1, 5, 8, 3,2 and 13 

to feature most prominently in a breast cancer cohort	 (145).	 All of these 

signatures feature prominently in this cohort, implying that the mutational 

signatures found in a cohort of breast cancer samples taken from Irish women 

match those found in studies in other countries. This implies that roughly the 

same mutational processes drive breast cancer in the Irish population as in 

other populations. This in turn implies that any alleles more prevalent or less 

prevalent in the Irish population than in the other populations have little impact 

on the processes that are likely to drive breast cancer in an Irish population 

compared to other populations, and that the Irish population of breast cancer 

patients responds to therapy in the same way as other patients around the 

world. We cannot find a study in the literature that specifically compares the 

Irish population of breast cancer patients to the world population in terms of the 

mutational processes that drive HER2 positive breast cancer, or in terms of how 

these mutational processes evolve during treatment in breast cancer patients. 

Therefore, we consider this a novel finding of this project. We consider it 

reasonable to compare the Irish population under this treatment regime to other 

breast cancer patients around the world due to the fact that most breast cancer 

patients around the world will have a similar treatment regime. This is 

evidenced by the fact that carboplatin, docetaxel, and trastuzumab are all on 

the World Health Organization (WHO) list of essential medicines for a country to 

have (list is available at this URL: 

https://www.who.int/medicines/publications/essentialmedicines/en/ ). 

The signatures observed in this cohort rarely show an environmental influence, 

with the exception of a small number of samples carrying an aflatoxin 

associated signature (e.g. TCHL 11, 61, and 45). Most of the signatures 

observed are aging based, APOBEC based, or DNA damage based. This 

suggests that the mutational processes underlying breast cancer development 

in this cohort were a combination of mutations caused naturally by the aging 

process in the cells of the patients in the lead up to tumourigenesis, and a 
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dysregulation of enzymes that interact with DNA in those same cells. The DNA 

damage based signatures (mostly signatures 3 and 6) are more prevalent in the 

non-responder cohort than in the responder cohort, suggesting that dysfunction 

in the DNA damage repair enzymes in a cell could affect patient response to 

therapy. This suggests that checking patient genomes for signs of DNA damage 

repair dysfunction (e.g. the presence of signatures 3 and 6) could be a useful 

tool for predicting ahead of time which patients are likely to be non-responders 

and avoiding damaging the health of a patient with a treatment that is unlikely to 

help them.  

The other signature type that is more prevalent in the non-responders than the 

responders is the Aging based signature, suggesting that being older is 

associated with a worse chance of responding to therapy. Ageing is a known 

risk factor for breast cancer – see Figure 4.1, which shows a clear increase in 

both breast cancer incidence and mortality the older a woman is (146).  

 

Figure 4.1 – Risk of incidence of breast cancer and mortality from breast cancer in women. Taken from 
(146) 

Age is also known to be a prognostic factor in breast cancer – a prognostic 

factor is a factor that can be used to estimate the probability of disease 

recovery, or relapse. In the case of breast cancer overall, some studies have 

shown that younger age is actually a negative prognostic factor. This means 
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that in those studies, younger patients were shown to be more likely to die from 

the disease than older patients (younger being defined as being <40 years old 

at diagnosis) (147) (148) (149), though it is important to note that some other 

studies have found that, despite the distinct histopathological features of 

tumours in younger woman, there was no statistically significant difference in 

Overall Survival (OS) between younger and older patients in those studies 

(150). A potential resolution to this apparent contradiction is found in a 2015 

paper entitled “The prognostic impact of age in different molecular subtypes of 

breast cancer”, published in Breast Cancer Treatment and Research, in which 

the authors stratified by breast cancer subtype before testing for an association 

between OS and age. This study showed that the association between younger 

age and poorer OS differs by breast cancer subtype – the association is 

strongest for triple negative breast cancer, and is absent for the HER2 positive 

subtype (151). Since the cohort under examination is all of the HER2 positive 

subtype, the discovery of an association between the ageing signature and non-

response to therapy is not in contradiction with the existing literature. The final 

note to make about the association between age and breast cancer is that later 

age of menopause starting is associated with an increased risk of breast cancer 

(152). 

Age has been shown to have an effect on probability of responding to therapy in 

thyroid cancer	 (153), so these results, taken together with the facts explained 

above about the relationship between age and HER2 positive breast cancer, 

suggests that the same effects may apply in HER2 positive breast cancer as 

well. This result also suggests a mechanism by which older age would increase 

the chances of non-response to therapy: older cells will have more mutations 

caused by the ageing signature. The more mutations present, the higher the 

probability that one of these mutations will be a mutation that confers protection 

to a tumour that causes it to not respond to therapy. 

One other major signature shows up across the cohort - signature 5, a 

signature of unknown aetiology. As noted in the results section, this signature 

appears in many cancer types and may be responsible for the relapse observed 
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in patient 32. The prevalence of signature 5 in this cohort emphasises the 

importance of learning what causes this signature, so that in future whatever 

process is causing this signature can be avoided and therapy can be designed 

to reduce or reverse the impact that this process has on the genomes of 

somatic cells. 
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4.3 Driver gene analysis - SNVs and indels 

Apart from TP53 and PIK3CA, there are few driver genes that show predicted 

or known driver SNVs or indels in multiple different samples in the cohort. This 

shows that different tumours within the cohort, despite sharing a tissue type, 

utilise different biological pathways to achieve the uncontrollable cell division 

characteristic of cancer. Many of the samples show fewer than 6 known or 

predicted driver SNVs or indels, and some show none at all, suggesting that 

either driver SNVs and indels have been missed by the CGI algorithm, or that 

they were filtered in the variant calling stage, or that these tumours were driven 

by CNV mutations rather than SNVs or indels. We note at this stage, as was 

noted in the Results section, that even state-of-the-art software and pipelines 

show a false negative rate around 2-3% (144), and logically this false negative 

rate should increase at least by at least some amount as more filtration is 

applied to remove false positives from the dataset (unless the filtration is so 

accurate that it only removes false positives and does not remove any false 

negatives, which is highly improbable).  

In this project, we filtered stringently by having several filtration steps to ensure 

that our final callset had as few false positives as possible. However, in doing 

so, we may have removed a number of genuine mutations, and this could 

explain the low number of known or predicted driver mutations observed in 

some of the samples. An alternative possibility is that these tumours may have 

been driven by epigenetic changes rather than by genetic changes (see Intro 

section 1.1 for a description of what “epigenetic changes are”). It is known from 

the literature that epigenetic modifications that modify the rate of gene 

expression can drive cancer just as genetic changes can (154). Unfortunately 

there was no epigenomic data available for these patients, as this study was 

only designed to examine genomic changes. This suggests that analyzing 

epigenomic changes as genomic changes may be worthwhile in future studies. 

However obtaining this epigenomic data will of course make the study more 

expensive – the ideal of using more data to make our conclusions as 

scientifically accurate as possible must always be balanced with feasibility. 
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In contrast to the samples showing no driver mutations, some samples, such as 

the TCHL 29 Pre-treatment sample and the TCHL 39 relapse sample, show a 

very high number of predicted or known driver mutations. This emphasises the 

diversity in biology seen across the cohort. 

Since most of the predicted driver genes show predicted or known driver 

mutations in only a single sample across the cohort, it is not surprising that 

many predicted driver genes show predicted driver mutations in only one of the 

heatmaps in section 3.4, where the samples are divided into responders and 

non responders. It is also notable when looking at the Pre-treatment sample 

driver SNV and indel heatmap in section 3.3 that several of the genes that show 

predicted or known driver mutations in some part of the cohort do not show any 

predicted or known driver mutations in any other samples in the cohort. This 

demonstrates the distinct biology of the different samples in the cohort. 

The Fisher’s exact tests performed in the Results section show that none of the 

genes show a statistically significant association with the Responder or non- 

Responder section. However, as noted in the results section, this this may be 

due to the small sample size, and the results do suggest some genes as targets 

for more in depth study. 
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4.4 SciClone info 

Comparing the SciClone data for the samples across the cohort shows a wide 

diversity of subclonal architectures. For the patients with samples from multiple 

timepoints, the results section explains how the subclonal architecture revealed 

by the SciClone data, when combined with the mutational signature data and 

driver gene data for that sample, can be used to hypothesise the evolutionary 

path that that tumour took through treatment and why, in cases where the 

tumour ultimately relapsed, the relapse occurred. 

Based on the table in section 3.3, the responder cohort shows a mean average 

of 1.75 subclones per sample, while the non-responder cohort shows a mean 

average of 2.2105 subclones per sample. As noted in that section, the 

association does not reach statistical significance in this cohort, but this result 

does suggest this as a target for further research in future. After all, a tested 

potential association not reaching statistical signifigance does not mean that no 

association is non-existent: it simply means that it is plausible that the 

difference seen between the two populations is caused by chance rather than 

by a genuine biological phenomenon. 
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4.5 Final conclusions 

The overall picture painted by examining the cohort as a whole is that the 

tumours in the cohort often show a biology distinct from each other - many 

samples show predicted driver mutations in genes that do not show predicted 

driver mutations in any other sample in the cohort, and there are few consistent 

trends in the mutational signatures or subclonal architectures of the tumours in 

the cohort overall. The mutational signature patterns observed are consistent 

with the predictions in the literature for what the mutational signatures of a 

breast cancer cohort would be expected to look like.  

The results section of this thesis shows how knowing the subclonal architecture 

of the samples gives us an insight into the evolutionary history of a tumour and 

allows us to confirm or reject hypotheses formed about why the tumour 

developed the way it did. The results also suggest that more complex subclonal 

architecture may be associated with non-response to therapy, though a larger 

scale study would be needed to prove this in a statistically significant manner. 

The predicted and known driver SNVs and indels in each sample tend to be in 

genes that do not show predicted driver SNVs and indels in many other 

samples in the cohort. Often, a mutation in a predicted driver gene appears only 

once across the entire cohort. However, TP53 and PIK3CA mutations do 

appear frequently. The presence of a small number of very commonly mutated 

genes and a much larger number of infrequently mutated genes across a cohort 

shows that the genomic “landscape” of this cohort, and breast cancer cohorts in 

general is similar to cohorts of other cancer types (155).The small group of 

frequently mutated genes are called “mountains” and the larger group of 

infrequently mutated genes are referred to as “hills”. TP53 and PIK3CA are 

known in the literature to be “mountain” genes in breast cancer (156). 

None of the individual driver genes examined showed a statistically significant 

association with either the responder or non-responder cohorts. However, 

SNVs/indels in RAD50, ARID1B, DHX9, IZF3, TNPO2, UBR5 and TAOK1 did 

show an altered frequency between the two cohorts, suggesting that the 
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mutation status of these genes may have a genuine association with response 

status of a tumour, which could be uncovered by a larger scale study with more 

samples. 

The results did hint at a connection between RAD50 and relapse, though the 

association did not reach statistical signifigance (see Results section 3.6). 

RAD50 mutations are known to be associated with breast cancer, and also with 

genomic instability (157). Therefore, further study is required to uncover firstly, 

whether RAD50 mutations are genuinely more common in relapse samples 

than non-relapse samples at a statistically significant level, and secondly 

whether this association is actually caused by the RAD50 mutations or whether 

it is an artefact of the fact that greater genomic instability is associated with 

higher propensity for a tumour to relapse in general (158). 

Overall, this project has highlighted several promising areas for future research. 

However, to reach statistically significant findings that can confidently be used 

for the design of future therapies, larger scale cohorts with a greater number of 

samples will be needed
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TCHL	4	

	

	

Mutational	Signatures	

6 Supplementary materials 

	

	
	

The	TCHL	4	Pre-treatment	sample	shows	a	mutational	spectrum	with	a	variety	of	

influences.	As	with	all	somatic	cells,	the	Aging	signature,	signature	1	shows	an	

influence.	There	is	also	an	influence	of	DNA	damage	based	signatures	in	the	form	of	

Signature	3	(DSB	repair	deficiency)	and	Signature	15	(DNA	mismatch	repair	deficiency).	

APOBEC	dysregulation	also	shows	an	influence	in	the	form	of	Signatures	2	and	13.	The	

final	contribution	is	from	signature	5,	the	signature	of	unknown	aetiology	found	in	all	

cancer	types	and	seen	in	several	samples	in	this	cohort.	
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The	TCHL	4	Pre-treatment	sample	shows	6	predicted	driver	mutations.	As	with	many	

other	samples	in	the	cohort,	one	of	these	predicted	driver	mutations	is	a	loss	of	

function	event	in	TP53.	This	is	the	only	sample	with	predicted	driver	mutations	in	

MAP2K4	and	ATM.	The	remaining	predicted	driver	mutations	are	in	genes	that	also	

show	predicted	driver	mutations	in	a	small	number	of	other	samples	in	the	cohort.	

Mutations	in	the	following	genes	are	likely	oncogenic:	CSF1R,	CHD4	

Mutations	in	the	following	genes	are	likely	tumour	suppressor	inactivating:	TP53,	

MAP2K4,	ATM	

It	is	ambiguous	whether	mutations	in	the	following	genes	are	oncogenic	or	tumour	

suppressor	mutations:	NOTCH2	
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TCHL	7	

Mutational	Signatures	

	

	

The	TCHL	7	Pre-treatment	sample	shows	a	mutational	spectrum	dominated	by	DNA	

damaged	related	signatures,	specifically	Signature	3	(DSB	repair	deficiency),	Signature	

10	(altered	activity	of	the	error	DNA	polymerase	POLE,	aka	DNA	polymerase	epsilon)	

and	Signature	20	(defective	DNA	mismatch	repair).	As	with	all	somatic	cells,	it	is	also	

influenced	by	the	Aging	signature,	Signature	1.	Finally,	an	APOBEC	related	signature	

(Signature	13)	makes	a	small	contribution	to	the	mutational	landscape	of	this	sample.	
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The	TCHL	7	Pre-treatment	sample	shows	3	predicted	driver	mutations.	The	RAD50	

gene	also	shows	predicted	driver	mutations	in	several	other	samples	in	the	cohort	

(specifically	3	Post	treatment,	6	relapse,	29	Pre-treatment	and	32	relapse).	The	
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remaining	predicted	driver	mutations	are	in	genes	that	do	not	show	predicted	driver	

mutations	in	any	other	samples	in	the	cohort.	

Mutations	in	the	following	genes	are	likely	oncogenic:	ABL2	

Mutations	in	the	following	genes	are	likely	tumour	suppressor	inactivating:	CUL3	

It	is	ambiguous	whether	mutations	in	the	following	genes	are	oncogenic	or	tumour	

suppressor	mutations:	RAD50	
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TCHL	8	

Mutational	Signatures	

	

	
	

The	TCHL	8	Pre-treatment	sample	shows	a	mutational	landscape	most	heavily	

influenced	by	APOBEC	related	signatures	(Signature	2	and	13).	The	next	most	

influential	contribution	is	DNA	damage	related	signatures,	specifically	Signature	3	(DSB	

repair	deficiency),	Signature	10	(altered	activity	of	error-prone	polymerase	POLE),	and	

Signature	15	(defective	DNA	mismatch	repair).	The	remaining	contribution	to	the	

mutational	landscape	is	from	the	Aging	signature,	Signature	1,	and	there	is	also	a	small	

Environmental	signature	contribution	in	the	form	of	Signature	7.	Signature	7	is	the	UV	

light	associated	signature.	Signature	7	being	present	in	this	sample	may	indicate	the	

patient	was	exposed	to	UV	light	prior	to	tumourigenesis	(e.g.	from	sunlight)	or	it	may	

be	a	mis-assigned	signature	due	to	an	error	of	the	deconstructSigs	algorithm	(see	

section	1.7	for	an	explanation	of	how	this	occurs).	



223	

 

 

	

SciClone	Data	

	

	

Driver	analysis	

	

	

	

input	

	

gene	

	

cdna	

	

gdna	

	

protein	

	

gene_role	

Driver	statement	

X|47428122|C	

|T	

	

ARAF	

	

c.1082C>T	

	

chrX:g.47428122C>T	

	

p.T361M	

	

Act	

predicted	driver:	

tier	1	

17|7576889|C	 	 	 	 	 	 predicted	driver:	



224	

 

 

|A	 TP53	 c.957G>T	 chr17:g.7576889C>A	 p.K319N	 LoF	 tier	1	

17|7216565|T	

C|T	

	

GPS2	

	

c.769delG	

	

chr17:g.7216567delC	

	

p.E257Nfs*86	

	

LoF	

predicted	driver:	

tier	1	

17|27829680|	

C|T	

	

TAOK1	

	

c.1277C>T	

	

chr17:g.27829680C>T	

	

p.S426F	

	

ambiguous	

predicted	driver:	

tier	2	

15|43713344|	

TC|T	

TP53BP	1	c.4128del	

G	

chr15:g.43713347del	C		

p.T1377Rfs*51	

	

LoF	

predicted	driver:	

tier	1	



225	

 

 

	

The	TCHL	8	Pre-treatment	sample	shows	5	predicted	driver	mutations.	As	with	many	

other	samples	in	the	cohort,	one	of	these	predicted	driver	mutations	is	in	the	TP53	

gene.	TAOK1	shows	predicted	driver	mutations	in	2	other	samples	in	the	cohort	(37	

Pre-treatment	and	87	Pre-treatment).	The	remaining	predicted	driver	mutations	are	in	

genes	that	do	not	show	predicted	driver	mutations	in	many	other	samples	in	the	

cohort	Mutations	in	the	following	genes	are	likely	oncogenic:	ARAF	

Mutations	in	the	following	genes	are	likely	tumour	suppressor	inactivating:	TP53,	

GPS2,	TP53BP1	

It	is	ambiguous	whether	mutations	in	the	following	genes	are	oncogenic	or	tumour	

suppressor	mutations:	TAOK1	
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TCHL	11	

Mutational	Signatures	

	

The	TCHL	11	Pre-treatment	sample	shows	a	mutational	landscape	dominated	by	DNA	

damage	related	signatures,	specifically	Signature	3	(DSB	repair	deficiency)	and	

Signature	6	(DNA	mismatch	repair	deficiency).	The	next	most	important	influence	is	

Signature	19,	which	is	of	unknown	aetiology.	The	APOBEC	associated	Signature	13	

shows	a	similar	level	of	influence	to	Signature	19.	There	is	also	an	environmental	

influence	in	the	form	of	Signature	24,	which	is	associated	with	exposure	to	aflatoxin.	

No	Aging	Signature	(Signature	1)	is	present.	As	discussed	under	other	samples,	this	is	

presumably	due	to	an	error	in	how	deconstructSigs	assigns	signatures	rather	than	due	

to	the	signature	genuinely	not	having	affected	the	sample	(see	section	1.7	for	an	

explanation)	

SciClone	Data	
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Driver	analysis	

	

input	 gene	 cdna	 gdna	 protein	 gene_role	 Driver	statement	

	

	

17|7578442|T|C	

	

	

TP53	

	

	

c.488A>G	

	

chr17:g.7578442	

T>C	

	

	

p.Y163C	

	

	

LoF	

known	in:	

CANCER;CANCER-	

PR	

9|131339463|G|	

A	
	

SPTAN1	

	

c.841G>A	

chr9:g.13133946	

3G>A	
	

p.D281N	

	

LoF	

predicted	driver:	

tier	1	

2|230683100|TG	

|T	

	

TRIP12	

	

c.1434delC	

chr2:g.23068310	

1delG	

	

p.K479Rfs*7	

	

LoF	

predicted	driver:	

tier	1	
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The TCHL 11 Pre-treatment sample shows 3 predicted driver mutations. As 

with many other samples in the cohort, one of these predicted driver mutations 

is in the TP53 gene. The other predicted driver mutations are in genes that do 

not show predicted driver mutations in any other samples in the cohort. 3 driver 

mutations seems like a relatively low number of driver mutations for a tumour to 

have, suggesting that some of the driver mutations in this sample were either 

filtered during variant calling or not recognised by the CGI algorithm. 
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Mutations	in	the	following	genes	are	likely	tumour	suppressor	inactivating:	TP53,	

SPTAN1,	TRIP12	

	

TCHL	14	

Mutational	Signatures	

	

	

The	TCHL	14	Pre-treatment	sample	shows	a	mutational	landscape	predominantly	

caused	by	signatures	of	unknown	origin,	specifically	Signature	19	and	Signature	30	

(known	to	be	observed	in	some	breast	cancers).	The	DNA	damage	associated	Signature	

6	(DNA	mismatch	repair	deficiency)	and	the	APOBEC	associated	Signature	6	also	

contribute.	No	Aging	Signature	(Signature	1)	is	present.	As	discussed	under	other	

samples,	this	is	presumably	due	to	an	error	in	how	deconstructSigs	assigns	signatures	

rather	than	due	to	the	signature	genuinely	not	having	affected	the	sample	(see	section	

1.7	for	an	explanation)	
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SciClone	Data	

	

	

Driver	analysis	

	

	

input	

	

gene	

	

cdna	

	

gdna	

	

protein	

	

gene_role	

Driver	

statement	

	

	

3|178952085|A|G	

	

	

PIK3CA	

	

	

c.3140A>G	

	

	

chr3:g.178952085A>G	

	

	

p.H1047R	

	

	

Act	

known	in:	

BRCA;OV;COR	

EAD;NSCLC	

The	TCHL	14	Pre-treatment	sample	shows	1	validated	driver	mutation,	the	PIK3CA	

H1047R	mutation.	PIK3CA	is	also	mutated	in	several	other	samples	in	the	cohort.	Since	
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the	sample	must	have	more	than	1	active	driver	mutation	to	be	an	active	tumour,	this	

suggests	that	some	of	the	driver	mutations	in	the	sample	may	have	been	filtered	

during	variant	calling	or	not	recognised	by	the	CGI	algorithm.	

Mutations	in	the	following	genes	are	likely	oncogenic:	PIK3CA	
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TCHL	20	

Mutational	Signatures	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

The	

TCHL	20	Pre-treatment	sample	shows	a	mutational	landscape	predominated	by	

Signature	5,	a	signature	of	unknown	aetiology	that	has	been	observed	in	all	cancer	

types.	The	next	most	influential	contribution	is	from	signature	1,	the	Aging	based	

signature	that	influences	all	somatic	cells.	Finally,	there	is	a	contribution	observed	

from	the	DNA	damage	associated	Signature	6	(DNA	mismatch	repair	associated)	and	
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the	APOBEC	associated	Signature	2.	
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SciClone	Data	

	

	

Driver	analysis	

	

	

input	

	

gene	

	

cdna	

	

gdna	

	

protein	

	

gene_role	

Driver	

statement	

	

7|151932949|C|A	

	

MLL3	

	

c.2722G>T	

chr7:g.151932949	

C>A	
	

p.G908C	

	

LoF	

predicted	

driver:	tier	1	

	

5|14394217|C|T	

	

TRIO	

	

c.4289C>T	

chr5:g.14394217C	

>T	

	

p.T1430M	

	

Act	

predicted	

driver:	tier	1	
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19|6743224|G|A	

	

TRIP10	

	

c.365G>A	

chr19:g.6743224	

G>A	
	

p.R122Q	

	

Act	

predicted	

driver:	tier	1	

	

18|48604751|A|G	

	

SMAD4	

	

c.1573A>G	

chr18:g.48604751	

A>G	
	

p.I525V	

	

LoF	

predicted	

driver:	tier	1	

	

18|20529651|G|A	

	

RBBP8	

	

c.223G>A	

chr18:g.20529651	

G>A	
	

p.E75K	

	

LoF	

predicted	

driver:	tier	1	

	

12|88487680|AT|A	

	

CEP290	

	

c.3175delA	

chr12:g.88487688	

delT	

	

p.I1059*fs*1	

	

LoF	

predicted	

driver:	tier	1	
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The	TCHL	20	Pre-treatment	sample	shows	6	predicted	driver	mutations.	TRIP10,	

CEP290	and	MLL3	do	not	show	predicted	driver	mutations	in	any	other	samples	in	the	

cohort.	The	remaining	predicted	driver	mutations	are	in	genes	that	show	predicted	

driver	mutations	in	a	small	number	of	other	samples	in	the	cohort.	

Mutations	in	the	following	genes	are	likely	oncogenic:	TRIP10,	TRIO	

Mutations	in	the	following	genes	are	likely	tumour	suppressor	inactivating:	MLL3,	

SMAD4,	RBBP8,	CEP290	
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TCHL	25A	–	Pre-treatment	sample	

Mutational	Signatures	

	

The	TCHL	25	Pre-treatment	sample	shows	a	mutational	landscape	dominated	by	

signatures	of	unknown	aetiology,	specifically	signatures	28	and	30.	There	is	also	a	

signature	of	DNA	damage	repair	deficiency	in	the	form	of	Signature	15	(DNA	mismatch	

repair	deficiency).	Finally,	there	is	an	environmentally	based	signature	in	the	form	of	

Signature	7,	the	UV	light	based	signature.	This	may	reflect	extended	exposure	to	UV	

light	(e.g.	from	sunlight)	in	the	patient	prior	to	tumourigenesis.	

SciClone	Data	

SciClone	was	unable	to	generate	data	from	the	TCHL	25	Pre-treatment	sample	because	

there	were	no	copy	number	2	regions	for	SciClone	to	operate	on.	

Driver	analysis	

	

input	 gene	 cdna	 gdna	 protein	 gene_role	 Driver	statement	

	

15|42057114|C|T	

	

MGA	

	

c.7775C>T	

chr15:g.4205	

7114C>T	
	

p.T2592I	

	

LoF	

predicted	driver:	tier	

1	
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The	TCHL	25	Pre-treatment	sample	shows	1	predicted	driver	mutation.	The	MGA	gene	

shows	a	predicted	driver	mutation	in	one	other	sample	in	the	cohort,	the	TCHL	12	Pre-	

treatment	sample.	Since	the	sample	must	have	more	than	1	active	driver	mutation	to	

be	an	active	tumour,	this	suggests	that	some	of	the	driver	mutations	in	the	sample	

may	have	been	filtered	during	variant	calling	or	not	recognised	by	the	CGI	algorithm.	
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Mutations	in	the	following	genes	are	likely	tumour	suppressor	inactivating:	MGA	

	

TCHL	31	

Mutational	Signatures	

	

	

The	TCHL	31	Pre-treatment	sample	shows	a	mutational	landscape	with	equal	

contributions	of	DNA	damage	based	signatures,	an	environmental	signature	and	

signatures	of	unknown	aetiology.	The	DNA	damage	based	Signatures	are	Signature	6	

and	Signature	20	(both	(DNA	mismatch	repair	deficiency	based).	The	Environmental	

signature	is	signature	4,	the	tobacco	smoke	associated	signature	-	this	may	indicate	

that	the	patient	smoked	tobacco	and	that	the	effect	spread	to	the	breast	tissue,	or	may	

be	a	signature	mis-assignment	on	the	part	of	deconstructSigs.	The	signatures	of	

unknown	aetiology	are	Signature	14	and	Signature	19.	As	discussed	for	other	samples,	

the	absence	of	Signature	1	is	most	likely	an	error	of	deconstructSigs	rather	than	a	

genuine	absence	of	the	signature	in	the	sample	(see	section	1.7)	
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SciClone	Data	

	

	

Driver	analysis	

None	of	the	SNVs	or	indels	present	in	this	sample	are	known	or	predicted	drivers,	

according	to	CGI.	This	suggests	that	some	of	the	driver	mutations	in	the	sample	may	

have	been	filtered	during	variant	calling	or	not	recognised	by	the	CGI	algorithm.	



241	

 

 

	

TCHL	37	

Mutational	Signatures	

	

	

The	TCHL	37	Pre-treatment	sample	shows	a	mutational	spectrum	comprised	entirely	

of	DNA	damage	associated	signatures	and	APOBEC	associated	signatures.	The	DNA	

damage	associated	signatures	are	Signature	3	(DSB	repair	deficiency	associated).	The	

APOBEC	associated	signatures	are	Signature	2	and	Signature	13.	As	discussed	for	other	

samples,	the	absence	of	Signature	1	is	most	likely	an	error	of	deconstructSigs	rather	

than	a	genuine	absence	of	the	signature	in	the	sample	(see	section	1.7)	

SciClone	Data	
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Driver	analysis	

	

	

input	 gene	 cdna	 gdna	 protein	 gene_role	 Driver	statement	

	

	

17|7578265|A|G	

	

	

TP53	

	

	

c.584T>C	

	

chr17:g.7578	

265A>G	

	

	

p.I195T	

	

	

LoF	

known	in:	

CANCER;CANCER-	PR	

	

8|68138293|G|A	

	

ARFGEF1	

	

c.4042C>T	

chr8:g.68138	

293G>A	
	

p.R1348C	

	

ambiguous	

predicted	driver:	tier	

1	
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7|2977543|G|T	

	

CARD11	

	

c.1141C>A	

chr7:g.29775	

43G>T	
	

p.Q381K	

	

Act	

predicted	driver:	tier	

2	

	

3|195507004|G|C	

	

MUC4	

	

c.11447C>G	

chr3:g.19550	

7004G>C	
	

p.S3816*	

	

ambiguous	

predicted	driver:	tier	

2	

	

17|27804710|C|T	

	

TAOK1	

	

c.338C>T	

chr17:g.2780	

4710C>T	
	

p.S113L	

	

ambiguous	

predicted	driver:	tier	

1	

The	TCHL	37	Pre-treatment	sample	shows	4	predicted	driver	mutations	and	1	validated	

driver	mutation.	As	with	many	other	samples	in	the	cohort,	the	validated	driver	
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mutation	in	this	sample	is	a	mutation	in	TP53.	TAOK1	shows	predicted	driver	mutations	

in	two	other	samples	in	the	cohort	(8	Pre-treatment	and	87	Pre-treatment).	The	

remaining	predicted	driver	mutations	in	this	sample	are	in	genes	that	do	not	shows	

predicted	driver	mutations	in	any	other	samples	in	this	cohort.	

Mutations	in	the	following	genes	are	likely	oncogenic:	CARD11	

Mutations	in	the	following	genes	are	likely	tumour	suppressor	inactivating:	TP53	

It	is	ambiguous	whether	mutations	in	the	following	genes	are	oncogenic	or	tumour	

suppressor	mutations:	ARFGEF1,	MUC4,	TAOK1	
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TCHL	42	

Mutational	Signatures	

	

	

The	TCHL	42	Pre-treatment	sample	shows	a	mutational	landscape	almost	entirely	

composed	of	DNA	damage	associated	signatures.	This	is	almost	all	due	to	the	heavy	

presence	of	Signature	3	(DSB	repair	deficiency	associated),	with	a	small	contribution	

by	Signature	6	(DNA	repair	deficiency	associated).	There	is	also	a	small	contribution	by	

the	APOBEC	associated	Signature	13.	As	discussed	for	other	samples,	the	absence	of	

Signature	1	is	most	likely	an	error	of	deconstructSigs	rather	than	a	genuine	absence	of	

the	signature	in	the	sample	(see	section	1.7)	

SciClone	Data	
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Driver	analysis	

	

	

input	

	

gene	

	

cdna	

	

gdna	

	

protein	

	

gene_role	

Driver	

statement	

	

	

17|7577120|C|T	

	

	

TP53	

	

	

c.818G>A	

	

	

chr17:g.7577120C>T	

	

	

p.R273H	

	

	

LoF	

known	in:	

AML;THCA;CA	

NCER-PR	

	

5|80074565|C|G	

	

MSH3	

	

c.2345C>G	

	

chr5:g.80074565C>G	

	

p.S782C	

	

LoF	

predicted	

driver:	tier	2	

4|153245503|ATTGA	 	 c.1678_1687del	 chr4:g.153245504_15324	 p.D560Sfs	 	 predicted	
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TGTATC|A	 FBXW7	 GATACATCAA	 5513delTTGATGTATC	 *15	 LoF	 driver:	tier	1	

18|48573663|CAGGT	

T|C	

	

SMAD4	

c.249+1_249+5	

delGTTAG	

chr18:g.48573666_48573	

670delGTTAG	
	

.	

	

LoF	

predicted	

driver:	tier	1	

The	TCHL	42	Pre-treatment	sample	shows	1	validated	driver	mutation	and	3	predicted	

driver	mutations.	As	with	many	other	samples	in	this	cohort,	the	validated	driver	

mutation	is	a	mutation	in	TP53.	SMAD4	shows	a	predicted	driver	mutation	in	one	

other	
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sample	in	the	cohort	(TCHL	42	PRE).	The	remaining	predicted	driver	mutations	were	in	

genes	that	do	not	show	predicted	driver	mutations	in	any	other	sample	in	the	cohort.	

Mutations	in	the	following	genes	are	likely	tumour	suppressor	inactivating:	TP53,	

MSH3,	FBXW7,	SMAD4	
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TCHL	44	

Mutational	Signatures	

	

	

The	TCHL	44	Pre-treatment	sample	shows	a	mutational	landscape	with	equal	

contributions	by	DNA	damage	associated	signatures	and	APOBEC	associated	

signatures.	The	DNA	damage	signature	contribution	is	mostly	Signature	3	(DSB	repair	

deficiency),	with	Signature	6	(DNA	mismatch	repair	deficiency)	making	a	smaller	

contribution.	

Signature	2	and	Signature	13	make	a	fairly	even	contribution	to	the	APOBEC	associated	

part	of	the	mutational	landscape	of	this	sample.	As	discussed	for	other	samples,	the	

absence	of	Signature	1	is	most	likely	an	error	of	deconstructSigs	rather	than	a	genuine	

absence	of	the	signature	in	the	sample	(see	section	1.7)	

SciClone	Data	
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Driver	analysis	

	

	

input	 gene	 cdna	 gdna	 protein	 gene_role	 Driver	statement	

	

3|178936091|G|	

A	

	

	

PIK3CA	

	

	

c.1633G>A	

	

	

chr3:g.178936091G>A	

	

	

p.E545K	

	

	

Act	

known	in:	

COREAD;NSCLC;OV;B	

RCA	

	

17|7577085|C|T	

	

TP53	

	

c.853G>A	

	

chr17:g.7577085C>T	

	

p.E285K	

	

LoF	

known	in:	CANCER-	

PR;CANCER	
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X|38146372|G|C	

	

RPGR	

	

c.1880C>G	

	

chrX:g.38146372G>C	

	

p.S627*	

	

LoF	

predicted	driver:	tier	1	

	

8|38133960|C|A	

	

WHSC1L1	

	

c.3926G>T	

	

chr8:g.38133960C>A	

	

p.R1309I	

	

Act	

predicted	driver:	tier	1	

5|112179771|G|	

A	
	

APC	

	

c.8480G>A	

	

chr5:g.112179771G>A	

	

p.G2827E	

	

LoF	

predicted	driver:	tier	1	

	

2|43452437|T|G	

	

ZFP36L2	

	

c.506A>C	

	

chr2:g.43452437T>G	

	

p.K169T	

	

LoF	

predicted	driver:	tier	1	
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19|13050425|CA	

G|C	

	

CALR	

c.379_380d	

elGA	

chr19:g.13050427_130	

50428delGA	

p.E127Ifs*3	

9	

ambiguou	

s	

predicted	driver:	tier	2	

13|33741754|C|	

T	
	

STARD13	

	

c.175G>A	

	

chr13:g.33741754C>T	

	

p.E59K	

	

Act	

predicted	driver:	tier	1	

10|43596088|G|	

C	
	

RET	

	

c.255G>C	

	

chr10:g.43596088G>C	

	

p.W85C	

	

Act	

predicted	driver:	tier	1	

	

The	TCHL	44	Pre-treatment	sample	shows	2	validated	driver	mutations	and	7	predicted	

driver	mutations.	As	with	many	other	samples	in	the	cohort,	the	predicted	driver	

mutations	are	in	TP53	and	PIK3CA.	APC	shows	a	predicted	driver	mutation	in	one	other	

sample	in	the	cohort	(TCHL	32	relapse).	RPGR	also	shows	a	predicted	driver	mutation	

in	one	other	sample	in	the	cohort	(TCHL	76	Pre-treatment).	The	remaining	predicted	

driver	mutations	in	this	sample	are	in	genes	that	do	not	show	predicted	driver	

mutations	in	any	other	sample	in	this	cohort.	

Mutations	 in	 the	 following	 genes	 are	 likely	 oncogenic:	 PIK3CA,	WHSC1L1,	 STARD13,	

RET	Mutations	in	the	following	genes	are	likely	tumour	suppressor	inactivating:	TP53,	

RPGR,	APC,	ZFP36L2	

It	is	ambiguous	whether	mutations	in	the	following	genes	are	oncogenic	or	tumour	

suppressor	mutations:	CALR	



253	

 

 

	

TCHL	50	

Mutational	Signatures	

	

The	TCHL	50	Pre-treatment	sample	shows	a	mutational	landscape	dominated	by	

APOBEC	associated	signatures,	specifically	Signature	2	and	13.	There	is	also	a	smaller	

contribution	from	DNA	damage	associated	signatures,	mostly	Signature	3	(DSB	repair	

deficiency),	with	a	minor	contribution	from	Signature	6	(DNA	mismatch	repair	

deficiency).	Finally,	the	Aging-based	Signature	1,	present	in	all	somatic	cells,	makes	a	

small	contribution.	

SciClone	Data	
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Driver	analysis	

	

	

input	 gene	 cdna	 gdna	 protein	 gene_role	 Driver	statement	

	

	

3|178936091|G|A	

	

	

PIK3CA	

	

	

c.1633G>A	

	

chr3:g.178936091G>	A	

	

	

p.E545K	

	

	

Act	

known	in:	

COREAD;BRCA;NSCLC	

;OV	

17|7576873|C|A	 TP53	 c.973G>T	 chr17:g.7576873C>A	 p.G325*	 LoF	 known	in:	CANCER-PR	

	

18|52921912|C|T	

	

TCF4	

	

c.1166G>A	

	

chr18:g.52921912C>T	

	

p.R389H	

	

Act	

predicted	driver:	tier	1	
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17|37680929|T|C	

	

CDK12	

	

c.3098T>C	

	

chr17:g.37680929T>C	

	

p.L1033P	

	

LoF	

predicted	driver:	tier	1	

	

17|29592291|T|G	

	

NF1	

	

c.4769T>G	

	

chr17:g.29592291T>G	

	

p.L1590*	

	

LoF	

predicted	driver:	tier	1	

The	TCHL	50	Pre-treatment	sample	shows	2	validated	driver	mutations	and	3	predicted	

driver	mutations.	As	with	many	other	samples	in	the	cohort,	the	validated	driver	

mutations	are	mutations	in	TP53	and	PIK3CA.	CDK12	shows	a	predicted	driver	

mutation	
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in	one	other	sample	in	the	cohort	(TCHL	87	Pre-treatment).	The	remaining	predicted	

driver	mutations	are	in	genes	that	do	not	show	predicted	driver	mutations	in	any	other	

samples	in	the	cohort.	

Mutations	in	the	following	genes	are	likely	oncogenic:	PIK3CA,	TCF4	

Mutations	in	the	following	genes	are	likely	tumour	suppressor	inactivating:	TP53,	

CDK12,	NF1	
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TCHL	54	

Mutational	Signatures	

	

	

The	TCHL	54	Pre-treatment	sample	shows	a	mutational	spectrum	completely	

dominated	by	DNA	damage	related	signatures.	The	most	prevalent	DNA	damage	based	

signature	present	is	Signature	3	(DSB	repair	deficiency),	followed	by	Signature	15	(DNA	

mismatch	repair	deficiency)	and	Signature	6	(DNA	mismatch	repair	deficiency.	There	is	

also	a	minor	contribution	by	Signature	1,	the	Aging	signature,	as	well	as	Signature	18	

(unknown	aetiology)	and	the	environment-based	Signature	29.	Signature	29	is	

associated	with	tobacco	chewing	in	mouth	cancer.	It	is	unlikely	that	the	process	that	

causes	Signature	29	is	actually	active	in	a	breast	cancer	cell,	so	this	is	probably	an	error	

of	deconstructSigs.	

SciClone	Data	
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Driver	analysis	

	

	

	

input	

	

gene	

	

cdna	

	

gdna	

	

protein	

	

gene_role	

Driver	

statement	

	

1|183536344|C|T	

	

NCF2	

	

c.850G>A	

	

chr1:g.183536344C>T	

	

p.G284R	

	

ambiguous	

predicted	driver:	

tier	1	

17|7577145|GTAG	

AT|G	
	

TP53	

c.788_792delATC	

TA	

chr17:g.7577148_7577	

152delGATTA	

p.N263Tfs	

*7	

	

LoF	

predicted	driver:	

tier	1	
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16|3830776|C|T	

	

CREBBP	

	

c.1780G>A	

	

chr16:g.3830776C>T	

	

p.E594K	

	

LoF	

predicted	driver:	

tier	1	

	

10|17271455|C|T	

	

VIM	

	

c.34C>T	

	

chr10:g.17271455C>T	

	

p.R12C	

	

ambiguous	

predicted	driver:	

tier	2	

The	TCHL	54	Pre-treatment	sample	shows	4	predicted	driver	mutations.	As	with	many	

oth3r	samples	in	the	cohort,	one	of	the	predicted	driver	mutations	is	a	mutation	in	

TP53.	The	remaining	predicted	driver	mutations	are	in	genes	that	do	not	show	

predicted	driver	mutations	in	any	other	samples	in	the	cohort.	
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Mutations	in	the	following	genes	are	likely	tumour	suppressor	inactivating:	TP53,	

CREBBP	

It	is	ambiguous	whether	mutations	in	the	following	genes	are	oncogenic	or	tumour	

suppressor	mutations:	VIM,	NCF2	
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TCHL	61	

Mutational	Signatures	

	

	

The	TCHL	61	Pre-treatment	sample	shows	a	mutational	landscape	dominated	by	DNA	

damage	related	signatures,	specifically	Signature	3	(DSB	repair	deficiency),	Signature	

15	(DNA	mismatch	repair	deficiency)	and	Signature	20	(DNA	mismatch	repair	

deficiency).	The	remainder	of	the	mutational	landscape	is	split	evenly	between	

signatures	of	unknown	aetiology	(specifically	Signatures	16,	18	and	23)	and	

Environmentally	based	signatures.	The	environmentally	based	signatures	are	Signature	

24	(aflatoxin	exposure	associated)	and	Signature	29	(associated	with	tobacco	

chewing).	As	discussed	previously	for	other	samples	showing	these	signatures,	

Signature	24	may	reflect	actual	exposure	to	aflatoxin,	whereas	Signature	29	is	unlikely	

to	genuinely	reflect	exposure	to	the	known	cause	of	the	signature	and	has	likely	been	

assigned	in	error.	As	discussed	for	other	samples,	the	absence	of	Signature	1	is	most	

likely	an	error	of	deconstructSigs	rather	than	a	genuine	absence	of	the	signature	in	the	

sample	(see	section	1.7)	

SciClone	Data	
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SciClone	was	unable	to	find	any	clusters	in	the	data	provided	from	this	sample.	



263	

 

 

	

Driver	analysis	

	

	

	

input	

	

gene	

	

cdna	

	

gdna	

	

protein	

	

gene_role	

Driver	

statement	

	

17|7578263|G|A	

	

TP53	

	

c.586C>T	

	

chr17:g.7578263G>A	

	

p.R196*	

	

LoF	

known	in:	

CANCER-PR	

	

9|32427317|C|G	

	

ACO1	

	

c.1367C>G	

	

chr9:g.32427317C>G	

	

p.A456G	

	

LoF	

predicted	

driver:	tier	1	

	

7|50450397|C|T	

	

IKZF1	

	

c.581C>T	

	

chr7:g.50450397C>T	

	

p.T194M	

ambiguou	

s	

predicted	

driver:	tier	1	

	

19|3110189|G|A	

	

GNA11	

	

c.179G>A	

	

chr19:g.3110189G>A	

	

p.R60H	

	

Act	

predicted	

driver:	tier	2	

The	TCHL	61	Pre-treatment	sample	shows	1	validated	driver	mutation	and	3	predicted	

driver	mutations.	As	with	many	other	samples	in	the	cohort,	the	validated	driver	

mutation	is	a	mutation	in	the	TP53	gene.	GNA11	also	shows	predicted	driver	

mutations	in	the	TCHL	6	Pre,	Post	and	Relapse	samples.	The	remaining	predicted	driver	

mutations	are	in	genes	that	do	not	show	predicted	driver	mutations	in	any	other	

samples	in	the	cohort.	

Mutations	in	the	following	genes	are	likely	oncogenic:	GNA11	

Mutations	in	the	following	genes	are	likely	tumour	suppressor	inactivating:	TP53,	

ACO1	It	is	ambiguous	whether	mutations	in	the	following	genes	are	oncogenic	or	

tumour	suppressor	mutations:	IKZF1	



264	

TCHL	66	

Mutational	Signatures	

 

 

	

	

The	TCHL	66	Pre-treatment	sample	shows	a	mutational	landscape	dominated	by	DNA	

damage	related	signatures,	specifically	Signature	6,	Signature	15	and	Signature	20	(all	

DNA	mismatch	repair	related).	There	is	also	an	environmental	signature	contribution,	

specifically	Signature	24,	the	aflatoxin	exposure	associated	signature.	This	may	reflect	

the	patient	having	had	exposure	to	aflatoxin.	The	remainder	of	the	mutational	

landscape	is	made	up	of	signatures	of	unknown	aetiology	(Signatures	18	and	23).	As	

discussed	for	other	samples,	the	absence	of	Signature	1	is	most	likely	an	error	of	

deconstructSigs	rather	than	a	genuine	absence	of	the	signature	in	the	sample	(see	

section	1.7)	

SciClone	Data	

SciClone	was	unable	to	find	any	clusters	in	the	data	provided	from	this	sample.	Driver	

analysis	

None	of	the	SNVs	or	indels	present	in	this	sample	are	known	or	predicted	drivers,	

according	to	CGI.	This	suggests	that	some	of	the	driver	mutations	in	the	sample	may	

have	been	filtered	during	variant	calling	or	not	recognised	by	the	CGI	algorithm.	
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TCHL	76	

Mutational	Signatures	

 

 

	

	

	

The	TCHL	76	Pre-treatment	samples	shows	a	mutational	landscape	completely	

dominated	by	the	APOBEC	associated	Signature	2	and	13.	The	only	other	contribution	

is	a	minor	contribution	by	Signature	5,	a	signature	of	unknown	aetiology	found	in	all	

cancer	types	and	seen	in	some	other	samples	in	this	cohort.	As	discussed	for	other	

samples,	the	absence	of	Signature	1	is	most	likely	an	error	of	deconstructSigs	rather	

than	a	genuine	absence	of	the	signature	in	the	sample	(see	section	1.7)	

SciClone	Data	
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Driver	analysis	

	

	

	

input	

	

gene	

	

cdna	

	

gdna	

	

protein	

	

gene_role	

Driver	statement	

12|112888166|A|	

G	
	

PTPN11	

	

c.182A>G	

chr12:g.112888166	

A>G	
	

p.D61G	

	

Act	

	

known	in:	MML	

	

X|38146499|C|T	

	

RPGR	

c.1754-	1G>A	chrX:g.38146499C>	T		

.	

	

LoF	

predicted	driver:	

tier	1	
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X|16870688|C|G	

	

RBBP7	

	

c.1081G>C	

chrX:g.16870688C>	

G	
	

p.D361H	

	

Act	

predicted	driver:	

tier	1	

	

9|113259100|C|T	

	

SVEP1	

	

c.1795G>A	

chr9:g.113259100C	

>T	

	

p.E599K	

	

ambiguous	

predicted	driver:	

tier	1	

7|152346219|CA|	C		

XRCC2	

	

c.350delT	

chr7:g.152346227d	

elA	

	

p.L117Wfs*17	

	

ambiguous	

predicted	driver:	

tier	2	

	

7|151874347|C|G	

	

MLL3	

	

c.8191G>C	

chr7:g.151874347C	

>G	

	

p.E2731Q	

	

LoF	

predicted	driver:	

tier	1	
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6|168348622|G|A	

	

MLLT4	

	

c.3622G>A	

chr6:g.168348622G	

>A	

	

p.E1208K	

	

Act	

predicted	driver:	

tier	1	

	

2|39505604|C|T	

	

MAP4K3	

	

c.1738G>A	

chr2:g.39505604C>	T		

p.E580K	

	

LoF	

predicted	driver:	

tier	1	

	

20|40111993|C|A	

	

CHD6	

	

c.2424G>T	

chr20:g.40111993C	

>A	

	

p.M808I	

	

Act	

predicted	driver:	

tier	1	

	

1|27105513|G|C	

	

ARID1A	

c.5125-	1G>C	chr1:g.27105513G>	

C	
	

.	

	

LoF	

predicted	driver:	

tier	1	

	

1|197057559|C|G	

	

ASPM	

	

c.9988G>C	

chr1:g.197057559C	

>G	

	

p.E3330Q	

	

Act	

predicted	driver:	

tier	1	

	

17|8052807|G|A	

	

PER1	

	

c.826C>T	

chr17:g.8052807G>	

A	
	

p.P276S	

	

Act	

predicted	driver:	

tier	2	

	

17|62552026|A|T	

	

SMURF2	

	

c.1522T>A	

chr17:g.62552026A	

>T	

	

p.F508I	

	

ambiguous	

predicted	driver:	

tier	2	

	

17|48268243|C|G	

	

COL1A1	

	

c.2278G>C	

chr17:g.48268243C	

>G	

	

p.D760H	

	

Act	

predicted	driver:	

tier	1	

	

17|40991365|C|T	

	

PSME3	

	

c.691C>T	

chr17:g.40991365C	

>T	

	

p.R231W	

	

LoF	

predicted	driver:	

tier	2	

	

16|2225359|G|T	

	

TRAF7	

	

c.1444G>T	

chr16:g.2225359G>	

T	
	

p.V482L	

	

LoF	

predicted	driver:	

tier	2	

	

15|28443879|C|T	

	

HERC2	

	

c.7753G>A	

chr15:g.28443879C	

>T	

	

p.E2585K	

	

ambiguous	

predicted	driver:	

tier	1	

	

14|95571531|C|T	

	

DICER1	

	

c.3146G>A	

chr14:g.95571531C	

>T	

	

p.R1049K	

	

LoF	

predicted	driver:	

tier	1	
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13|48881426|G|T	

	

RB1	

	

c.148G>T	

chr13:g.48881426G	

>T	

	

p.E50*	

	

LoF	

predicted	driver:	

tier	1	

The	TCHL	76	Pre-treatment	sample	shows	1	validated	driver	mutation	and	17	

predicted	driver	mutations.	As	mentioned	in	the	intro,	this	is	a	large	number	of	driver	

mutations	for	one	tumour	to	have,	suggesting	that	potentially	not	all	of	the	predicted	

driver	mutations	in	this	sample	are	contributing	to	the	cancer.	RPGR	also	shows	a	

predicted	driver	mutation	in	the	TCHL	44	Pre-treatment	sample,	while	MLL3	also	

shows	a	predicted	driver	mutation	in	the	TCHL	20	Pre-treatment	sample.	The	

remaining	driver	mutations	assigned	by	CGI,	including	the	validated	driver	mutation	in	

PTPN11,	are	mutations	in	genes	that	do	not	show	predicted	driver	mutations	in	any	

other	samples	in	the	cohort.	
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Mutations	in	the	following	genes	are	likely	oncogenic:	PTPN11,	RBBP7,	MLLT4,	ASPM,	

PER1,	CHD6,	COL1A1	

Mutations	in	the	following	genes	are	likely	tumour	suppressor	inactivating:	RGPR,	

MLL3,	MAP4K3,	ARID1A,	PSME3,	TRAF7,	DICER1,	RB1	

It	is	ambiguous	whether	mutations	in	the	following	genes	are	oncogenic	or	tumour	

suppressor	mutations:	SVEP1,	XRCC2,	SMURF2,	HERC2	
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TCHL	87	

Mutational	Signatures	

	

	

The	TCHL	87	Pre-treatment	sample	shows	a	mutational	spectrum	influenced	by	all	

signature	groups	other	than	the	aging	signature.	As	discussed	for	other	samples,	the	

absence	of	Signature	1	is	most	likely	an	error	of	deconstructSigs	rather	than	a	genuine	

absence	of	the	signature	in	the	sample	(see	section	1.7).	The	most	prevalent	individual	

signature	is	Signature	5,	a	signature	of	unknown	aetiology	found	in	all	cancer	types	

and	seen	in	several	other	samples	in	this	cohort.	The	next	most	prevalent	signature	

group	is	DNA	damage	based	signatures,	comprised	of	Signature	3	(DSB	repair	

deficiency)	and	Signature	15	(DNA	mismatch	repair	deficiency),	followed	by	APOBEC	

related	signature	(Signatures	2	and	13).	Finally,	there	is	a	minor	contribution	by	an	

environmentally	associated	signature,	Signature	29,	associated	with	tobacco	chewing	

in	oral	cancer.	As	discussed	under	other	samples	with	this	signature,	the	sample	in	

question	was	probably	not	actually	exposed	to	the	process	known	to	cause	this	

signature	and	the	signature	being	assigned	to	this	sample	is	probably	a	quirk	of	the	

deconstructSigs	algorithm.	
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SciClone	Data	
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Driver	analysis	

	

input	 gene	 cdna	 gdna	 protein	 gene_role	 Driver	statement	

	

4|119660367|G|A	

	

SEC24D	

	

c.2314C>T	

chr4:g.119660367G>	A		

p.Q772*	

	

LoF	

predicted	driver:	

tier	1	

	

17|37627538|G|T	

	

CDK12	

c.1453G>	T		

chr17:g.37627538G>T	

	

p.E485*	

	

LoF	

predicted	driver:	

tier	1	

	

17|37627298|G|T	

	

CDK12	

c.1213G>	T		

chr17:g.37627298G>T	

	

p.E405*	

	

LoF	

predicted	driver:	

tier	1	
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17|37627277|G|A	

	

CDK12	

c.1192G>	A	chr17:g.37627277G>	A		

p.E398K	

	

LoF	

predicted	driver:	

tier	1	

	

17|27807493|C|G	

	

TAOK1	

	

c.557C>G	

chr17:g.27807493C>	G		

p.P186R	

	

ambiguous	

predicted	driver:	

tier	1	

The	TCHL	87	Pre-treatment	sample	shows	5	predicted	driver	mutations.	TAOK1	shows	

a	predicted	driver	mutation	in	a	few	other	samples	in	the	cohort	(TCHL	8	Pre-

treatment	and	TCHL	37	Pre-treatment).	CDK12	shows	a	predicted	driver	mutation	in	

one	other	
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sample	in	the	cohort	(TCHL	50	Pre-treatment).	SEC24D	does	not	show	predicted	driver	

mutations	in	any	other	sample	in	the	cohort.	

Mutations	in	the	following	genes	are	likely	tumour	suppressor	inactivating:	CDK12,	

SEC24D	

It	is	ambiguous	whether	mutations	in	the	following	genes	are	oncogenic	or	tumour	

suppressor	mutations:	TAOK1
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