
Royal College of Surgeons in Ireland

repository@rcsi.com

A novel collagen scaffold supports human osteogenesis--applications for
bone tissue engineering.

AUTHOR(S)

Michael B. Keogh, Fergal O'Brien, Jacqueline Daly, Jacqueline Daly

CITATION

Keogh, Michael B.; O'Brien, Fergal; Daly, Jacqueline; Daly, Jacqueline (2010): A novel collagen scaffold
supports human osteogenesis--applications for bone tissue engineering.. Royal College of Surgeons in
Ireland. Journal contribution. https://hdl.handle.net/10779/rcsi.10765247.v2

HANDLE

10779/rcsi.10765247.v2

LICENCE

CC BY-NC-ND 4.0

This work is made available under the above open licence by RCSI and has been printed from
https://repository.rcsi.com. For more information please contact repository@rcsi.com

URL

https://repository.rcsi.com/articles/journal_contribution/A_novel_collagen_scaffold_supports_human_osteogen
esis--applications_for_bone_tissue_engineering_/10765247/2

mailto:repository@rcsi.com
https://hdl.handle.net/10779/rcsi.10765247.v2
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://repository.rcsi.com
mailto:repository@rcsi.com
https://repository.rcsi.com/articles/journal_contribution/A_novel_collagen_scaffold_supports_human_osteogenesis--applications_for_bone_tissue_engineering_/10765247/2


For Peer Review

 
 
 

 
 

 
 

A novel collagen scaffold supports human osteogenesis – 
applications for bone tissue engineering 

 
 

Journal: Cell and Tissue Research 

Manuscript ID: CTR-09-0327.R1 

Manuscript Type: Regular Article 

Date Submitted by the 
Author: 

 

Complete List of Authors: Keogh, Michael; Royal College of Surgeons in Ireland, Anatomy 
O' Brien, Fergal; Royal College of Surgeons in Ireland, Anatomy 
Daly, Jacqueline; Royal College of Surgeons in Ireland, Anatomy 

Keywords: 
Bone Tissue Engineering, Osteoblast, Collagen, Scaffold, 
Transforming Growth Factor-ß 

  
 
 

 

Cell and Tissue Research



For Peer Review

Title 

A novel collagen scaffold supports human osteogenesis – applications for bone tissue 

engineering   

 

M.B. Keogh
a,b∗∗∗∗, F.J. O’ Brien

b
, J.S. Daly

a,b 

a
 Division of Biology, 

b
Department of Anatomy, Royal College of Surgeons in Ireland,  

123 St. Stephen’s green, Dublin 2, Ireland
  

  

                                                 
∗
Corresponding author. Present address: Division of Biology, Department of Anatomy, Royal College of 

Surgeons in Ireland, 123 St. Stephen’s green, Dublin 2, Ireland. Tel.: +353(0)1-402-2147; fax: +353(0)1-

402-2355 

E-mail address: mkeogh@rcsi.ie 

 

Page 1 of 25 Cell and Tissue Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Abstract 

Collagen glycosaminoglycan (CG) scaffolds have been clinically approved as an application 

for skin regeneration. The goal of this study was to examine if a CG scaffold is a suitable 

biomaterial for generating human bone tissue. Specifically, can the scaffold support human 

osteoblast growth and differentiation and how recombinant human transforming growth factor-

beta (TGF-β1) may enhance long term in vitro bone formation. We show human osteoblast 

attachment, infiltration and uniform distribution throughout the construct, reaching the centre 

within 14 days of seeding. We identified the fully differentiated osteoblast phenotype categorised 

by the temporal expression of alkaline phosphatase, collagen type 1, osteonectin, bone sialo 

protein, biglycan and osteocalcin. Mineralised bone formation was identified from 35 days post-

seeding using von Kossa and Alizarin S Red staining. Both gene expression and mineral staining 

suggest the benefit of introducing an initial high treatment of TGF-β1 (10ng/ml) followed by a low 

continuous treatment (0.2ng/ml) to enhance human osteogenesis on the scaffold. Osteogenesis 

coincided with a reduction in scaffold size and shape (up to 70% that of original).  A notable 

finding was that after 49 days of culture, core degradation was identified at the centre of the 

tissue engineered construct. This was not observed at earlier time points therefore a maximum of 

35 days in culture to be an appropriate end point for in vitro studies of these scaffolds. We 

conclude that the CG scaffold shows excellent potential as a biomaterial for human bone tissue 

engineering.   

 

Key words 

Bone Tissue Engineering, Osteoblast, Collagen, Scaffold, Transforming Growth Factor-ß1  

 

Introduction 

Currently, there exists a need to develop new bone graft substitutes as an alternative to 

conventional autografting and allografting treatments due to disadvantages like cost, scarcity of 

tissue, multiple surgical procedures and the risk of infection (Heng et al., 2004). Within bone 

tissue engineering, many scaffolds have been used to promote extracellular matrix formation and 
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mineralisation including bioactive glass, ceramics, titanium and polymers in an effort to substitute 

autologous bone for bone tissue engineering (Jones et al., 2007; Sun et al., 2006; Bokhari et al., 

2005; Itthichaisri et al., 2007). None of which however, may be classified as a bone graft 

substitute gold standard. An ideal scaffold should provide a suitable environment for tissue 

development. It should be highly porous allowing for protein absorption to facilitate cell 

attachment, infiltration and differentiation, be biocompatible, biodegradable, sterilizable, easily 

formed, shaped and stored. The use of various scaffolds for bone tissue engineering is increasing 

in clinical appeal and success.  

One potential substitute is type 1 collagen glycosaminoglycan (CG) based scaffolds which 

have been successfully used in a clinical setting as viable treatments for conjunctiva and 

epithelial regeneration (Yannas, 2001; Hsu et al., 2000; Compton et al., 1998). Much of this 

success is due to a number of useful properties including low antigenicity, biodegradability, high 

porosity and a high ligand density (O’ Brien et al., 2005). CG scaffolds are typically composed of 

type 1 collagen, an abundant connective protein in bone, and the glycosaminoglycan, chondroitin-

6 sulfate: a proteoglycan commonly found in bone matrix. Both components have been shown to 

be important factors for cell attachment, proliferation and differentiation (Pieper et al., 1999). The 

combination of these biologics, provide a more physiological substrate than that of synthetic 

polymer, ceramic and metal based scaffolds. These scaffolds are typically fabricated by 

lyophilising collagen based slurries to form a highly porous sterile scaffold.  

Recently, the CG scaffold has been successfully shown to support attachment and 

proliferation of various animal cell types including fibroblasts, chondrocytes, and neurons 

(Freyman et al., 2001a; McMahon et al., 2008). Studies in this laboratory have also shown that 

CG scaffolds may support in vitro osteogenesis (differentiation process of a progenitor cell into a 

mature bone forming osteoblast) of rat mesenchymal stem cells and mouse osteogenic cell line 

MC3T3 (Jaasma et al., 2008; Byrne et al., 2008). To date however, no studies have examined the 

ability of this scaffold to support long term human osteogenesis.  

The process of osteogenesis may be characterised by identifying temporally regulated bone 

formation markers; alkaline phosphatase, collagen type 1, osteopontin, bone sialoprotein, 
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osteonectin, biglycan and osteocalcin. Alkaline phosphates and collagen type 1 may be described 

as early bone formation markers and can appear in vitro within approximately 2 weeks of 

culturing under osteogenic conditions (Donahue et al., 2000).  Mid stage markers include 

osteopontin, bone sialo protein and osteonectin, these are often involved with the onset of crystal 

nucleation.  Late stage markers include osteocalcin and the small leucine rich proteoglycan, 

biglycan, and are expressed in bones and teeth and are important in regulating mineralization 

(Setzer et al., 2009).  

In order to assess human osteogenesis, a homogenous cell phenotype with controlled growth 

rate is beneficial which is a limitation of using primary human bone cell cultures. Expanding a 

primary cell population in vitro can result in them losing their ability to differentiate (Ter Brugge 

and Jansen, 2002). An alternative is to use osteosarcoma cell lines due to their homogeneity; 

however, they may be limited phenotypically by responding differently to growth hormones and 

factors (Subramaniam et al., 2002). The clonal human osteoblast cell line hFOB offers another 

alternative to reflect human bone biology. hFOB is a conditionally  immortalised cell line 

developed and described by Harris et al. (1995). The immortalized cells were transfected with a 

temperature sensitive plasmid (tsA58) of the SV40 large T antigen. This allows hFOB to be 

controlled between states of cellular growth; at 34.5
o
C the SV40 TAg gene is optimally expressed 

providing a proliferative phenotype whereas at 39
o
C it is not expressed, preventing proliferation 

but initiating differentiation.  hFOB have been shown to express high levels of alkaline 

phosphatase, collagen type 1, osteopontin, osteonectin, bone-sialo protein and osteocalcin. In 2D 

cultures, once confluent, they can form mineralized nodules and because of this they are a model 

cell line for studying human osteogenesis on our support scaffold (Donahue et al., 2000; Harris et 

al., 1995).  

Our bone tissue engineering triad principle consists of a CG scaffold seeded with hFOB cells 

exposed to osteogenic growth factors. Osteogenic growth factors typically include ascorbic acid 

to aid collagen synthesis and some form of phosphate donor which has been shown to be 

beneficial for in vitro mineralisation (Laurencin et al., 1996).  To this, vitamins D3 and K3 and 

recombinant human TGF-β1, key regulators of bone formation, were added as this combination 
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gave optimal results in our 2D culture studies (data not shown). TGF-β1 is the most abundant 

growth factor found in human bone. It alters osteoblast growth and differentiation by encouraging 

bone formation during maturation phases. TGF-β1 is quite potent with studies using 

concentrations in the range of 0.1-20ng/ml in vitro (Lieb et al., 2004). However conflicting 

evidence exists within the literature regarding optimal dosage of TGF-β1 in vitro. Studies have 

shown that best results for human bone formation occur with either a low continuous dose e.g. 

0.2ng/ml or one containing a single high concentration to induce osteogenesis e.g. 10ng/ml (Lieb 

et al., 2004; Zang et al., 2003).  

As no studies have examined long term human osteogenesis on CG scaffolds; the aim of this 

study was to investigate the potential of the CG scaffold as a suitable biomaterial to support 

human osteogenesis with applications for bone tissue engineering.  We examine the dose 

dependent response of TGF-β1 within our tissue engineered constructs due to the aforementioned 

conflicting evidence. Furthermore, we identify any structural changes that occurred within our 

scaffold as a result of long term osteogenic cultures. 

Initially an attachment, infiltration and distribution study of hFOB cells on CG scaffold was 

assessed up to 35 days (Study A). Subsequently, in order to determine if the scaffold can support 

human osteogenesis with the intention of developing a bone graft substitute hFOB cells were 

seeded onto CG scaffolds and cultured in osteogenic conditions up to 49 days (Study B). In this 

study we compare the effects of TGF-β1 on osteogenesis using two treatment concentrations; 

either a continuous low dosage (0.2ng/ml) or one single high dose (10ng/ml) followed by low 

continuous on human osteogenesis. 

 

Materials and methods 

Scaffold fabrication 

CG scaffolds were fabricated using a lyophilisation technique as described previously 

(O’Brien et al., 2005). Briefly, CG slurry was prepared by blending 0.5 wt % bovine collagen type 

1 (Integra Life Sciences, Plainsboro, NJ) with 0.05M acetic acid pH 3.2 containing 0.05 wt % 

shark cartilage derived chondroitin-6 sulfate  (Sigma-Aldrich, Germany). The slurry was blended 
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(Ultra turrax) then degassed in a vacuum oven prior to lyophilisation at -40
o
C, 50 mTorr for 24 

hours. Scaffolds were then cross linked by de-hydro thermal crosslinking at 105
o
C for 24 hours 

(VacuCell 22). Sheets of the finished product (thickness = 3.5mm; mean pore diameter = 96µm; 

porosity =99.5%; open interconnecting pores (O'Brien, 2005) were aseptically cut to size 

(10x10mm). 

 

Cell culture  

hFOB (ATCC, MA) pre-osteoblastic cells were cultured under standard conditions (5% CO2, 

37
o
C). Cells were routinely grown to 80% confluency in T175 culture flasks (Sarstedt, Ireland) 

containing culture media; a 1:1 ratio of Hams F12 and Dulbecco’s modified Eagle’s medium 

(without phenol red) (Gibco, UK), 10% fetal bovine serum (Sigma-Aldrich), 1% 

penicillin/streptomycin 10mg/ml (Sigma-Aldrich).  

 

Study A: Attachment, infiltration and distribution up to 35 days  

A total of 4x10
6
 cells were seeded onto each scaffold in a dropwise manner and cultured in 

5mls of media for 24hrs. Scaffolds were replaced into new 6-well plates and cultured at 34.5
o
C for 

35 days; replenishing 2/3 of the media every 3 days. Cellular viability and histological analysis 

was determined up to 35 days of culture. 

 

Study B: Human osteogenesis study on CG scaffold up to 49 days 

4x10
6
 cells were seeded onto CG scaffolds as described above; however culturing took place 

at 34.5
o
C for 14 days to allow for proliferation to the centre of the scaffold and at 39

o
C thereafter 

to allow for optimal differentiation. After 14 days constructs were replenished with osteogenic 

media to induce cellular differentiation: standard media containing 100µg/ml ascorbic acid, 10mM 

β-glycerolphosphate, recombinant human TGF-β1 (R&D Systems), 50nM Vitamin D3 (Sigma-

Aldrich)  and 10nM Vitamin K3 (Sigma-Aldrich).  

Two treatment groups were analysed based on TGF-β1 concentration: low continuous 

contained 0.2ng/ml TGF-β1 throughout exposure period. High TGF-β1 contained 10ng/ml TGF-β1 
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for 7 days then 0.2ng/ml for the remainder of the experiment. Two time points were assessed: 35 

days and 49 days (21 days and 35 days post exposure respectively). Histological analysis, 

chemical staining for mineralisation, gene expression and cell mediated scaffold contraction and 

mechanical testing was carried out on these samples. 

 

Viability of hFOB cells on CG scaffold 

Metabolic viability on the scaffold was determined by replacing media surrounding the cell 

seeded constructs and replenished with that containing 10% alamar blue dye (Bioscience). 

Scaffolds up to 35 days of culture were incubated on an orbital shaker for 4 hours (n=6). 100µl of 

media was read using a spectrophotometer at 570nm and 610nm. The percentage of reduced 

dye was calculated in accordance with manufacturer’s recommendations.  

 

Histological and chemical staining 

Hematoxylin & Eosin staining (H&E): Tissue engineered constructs were fixed in 4% 

paraformaldhyde for 30 minutes.  Dehydration and paraffin embedding was carried out using an 

automated tissue processor (ASP300, Leica) and cut into 10µm sections (RM2255, Leica). All 

stained sections were taken in a horizontal plain between 25-50% from the surface of the 

scaffold.  Standard H&E staining was carried out on de paraffinised sections. Images were 

captured on a digital microscope (NIS Elements, Nikon).  

Alizarin S Red staining: In order to stain calcium deposits, 10µm sections of scaffold was 

deparaffinised and stained with 2% Alizarin red (Sigma-Aldrich) filtered solution for 2 minutes. 

Sections were rinsed several times with dH20, dehydrated in xylene and mounted with DPX. 

Von Kossa staining: To determine the presence of phosphate based mineral, 10µm sections 

of scaffold was deparaffinised and brought to water.  Sections were stained by applying 2% silver 

nitrate (Sigma-Aldrich) solution for 1 hour under bright light. The reaction was stopped by adding 

the developing solution 1% sodium thiosulphate (Sigma-Aldrich) for 1 minute. Sections were 

counterstained with 0.5% Nuclear fast red (Sigma-Aldrich), dehydrated in xylene and mounted 

with DPX. 
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Gene expression  

RNA isolation: Cell seeded constructs were flash frozen in liquid nitrogen at each time point 

and stored at -80
o
C (n=3). RNA isolation from the constructs by homogenisation in RLT lysis 

buffer (Qiagen) using a rotor-stator homogeniser (Omni International). Cell lysates were 

centrifuged using QI Shredder columns (Qiagen) and RNA extracted using the RNeasy Mini Kit 

(Qiagen) according to the manufacturer’s instructions. RNA was concentration quantified was 

determined using a spectrophotometer (abs 260nm). 

Gene expression: Following RNA extraction Real time reverse transcription PCR was carried 

out for gene expression analysis.  Trace DNA was removed and RNA reverse transcribed using 

400ng total RNA with an RT kit (QuantiTect RT Kit, Qiagen) according to the manufacturer’s 

instructions. Realtime PCR was then carried out using the 7500 Real-Time PCR System (Applied 

Biosystems). The QuantiTect SYBR Green PCR Kit (Qiagen) was used, according to the 

manufacturer’s instructions, with QuantiTect Primers (Qiagen). Results were quantified for 

collagen type I, alkaline phosphatase, osteopontin/bone-sialo protein precursor, osteonectin, 

biglycan, and osteocalcin. Expression levels were assessed using the relative quantification ∆∆Ct 

method. β-actin acted as a house keeping control.  

 

Cell mediated scaffold contraction mechanical testing   

Scaffold contraction was measured using a vernier callipers up to 49 days culture. Cell 

seeded constructs post 49 days culture were analysed for mechanical stiffness using a Z050 

mechanical testing machine (Z050, Zwick/Reoll) fitted with a 5-N Load cell (n=6). Constructs were 

immersed in PBS and tested to 10% strain/minute unconfined wet compression testing. The 

modulus was calculated as the slope of a linear fit to the stress-strain curve over 2%-5% strain.   

 

Statistical analysis 

Statistical analysis was determined using sigma statistical software package SigmaStat 3.0. 

The statistical differences between 2 groups were calculated using the Students t test and 
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multiple groups were calculated using Kruskal-Wallis One Way Analysis of Variance on Ranks 

(ANOVA). Statistical significance was declared at p<0.05. 

 

Results 

 

Study A: attachment, infiltration and distribution up to 35 days 

hFOB cells were found to attach and infiltrate the scaffold with time (Fig. 1 a-h). Between 4 

and 7 days cells resided on the scaffold edge increasing in number (Fig. 1 a-b). Cells were 

observed at the scaffold centre after 14 days (Fig. 1 d). Scaffold pores contained numerous cells 

and matrix deposition was evident at 21 days along the surface of the tissue engineered 

construct. Scaffold size and pore structure changed with time particularly between 28 and 35 

days; a reduction in size was observed (Fig. 1 f-h). Constructs appeared confluent with cells at 35 

days both at the periphery and centre of the construct (Fig. 1 g-h); extra cellular matrix (ECM) 

deposition increased with time which coincided with a reduction in porosity particularly at 35 days. 

Alamar blue results gave a consistent 15% reduction of dye at all time points up to 35 days 

indicating a consistent cellular metabolic viability within the tissue engineered constructs.  

Study B: Human osteogenesis study on CG scaffold up to 49 days  

Histological results showed clear cell attachment, infiltration and uniform distribution 

throughout the constructs at 35 and 49 days (Fig. 2 a-d). An external layer or capsule of cells 

developed on the surface of the cell seeded construct becoming more prominent with time. There 

was no histological difference between low continuous or high TGF-β1 exposure between time 

points. ECM deposition and reduction in the original shape and porosity of the scaffold was 

observed at 35 and 49 days. After 35 and 49 days incubation positive mineralisation staining was 

observed in both TGF-β1 treatment groups however, high TGF-β1 treatment resulted in greater 

mineral staining than low continuous (Fig. 2 e, f, k, l).  

A notable finding of the study was the level of degradation and contraction within the 

construct over time. The homogenous pore structure was obsolete after 35 days of culture, 

replaced with cell matrix and contracted scaffold struts. By 49 days constructs became hollow at 
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the centre irrespective of treatment groups (Fig. 3 a-c). Cell viable regions (Fig. 3 a) of the 

construct surrounded the degraded core, however, mineralization remained evident on the 

construct (Fig. 3 b-c). 

Another interesting finding was the change in the amount of scaffold contraction with time 

(Fig. 4). Unseeded control scaffolds contracted in overall size by 50% of the original size 

however, this was more pronounced in cell seeded constructs (by 70% of the original size) at 49 

days incubation. Similarly, the scaffolds shape changed over time with the construct becoming 

more oval at 49 days (~3.5x3mm) from their original rectangular shape (10x10x3mm). 

Comparable changes in scaffold size and shape were observed in both low and high TGF-β1 

treatment groups.  

Collagen type 1 a marker for early stage osteogenesis was expressed in all cultured 

constructs. Low continuous TGF-β1 groups at day 35 and day 49 gave greater expression levels 

than treatments with high TGF-β1; this difference was significant at 35 and 49 days reducing by 

54% and 60% (p= 0.023; p= 0.026) (Fig. 5 a). Another marker of early osteogenesis, alkaline 

phosphatase showed similar trends to that of collagen type 1. There was a statistically significant 

difference in alkaline phosphatase expression between treatment groups; at 35 days an initial 

high treatment of TGF-β1 reduced expression levels relative to low treatment of TGF-β1 by 60% 

(p<0.024). This trend followed at 49 days where both treatments were statistically significantly 

reduced by 80% (low TGF-β1) and 100% (high TGF-β1) when compared to day 35 low TGF-β1 

(p= 0.021, p= 0.005) (Fig. 5 b).  

Osteonectin an important matrix protein expressed during osteoblast maturation shows 

similar trends to that of the early stage markers alkaline phosphatase and collagen type 1. 

Expression levels of osteonectin decrease by 70% and 84% with high TGF-β1 over low TGF-β1 

treatment at 35 and 49 days respectively (p= 0.012; p= 0.025) (Fig. 5 c). Both bone-sialo protein 

and the TGF-β1 regulated matrix protein biglycan showed trends of increasing expression levels 

by 38% and 57% respectively, for high TGF-β1 treatment over low continuous treatment at 49 

days (Fig. 5 d-e). Osteocalcin, a marker of late stage osteogenesis and mineralisation, showed a 

statistically significant increase in expression with time (p< 0.05). The higher dose of TGF-β1 
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resulted in a 40% increase in the expression of osteocalcin over that of the low dose at 49 days 

and a 700% increase between day 35 and day 49 with high TGF-β1 treatment (Fig. 5 f).  

Mechanical testing after 49 days of culture found a 5 fold increase in the stiffness of the 

tissue engineered constructs for both low (p= 0.01) and high (p< 0.0291) treatments of TGF-β1 

when compared to unseeded control scaffold (Fig. 6).   

 

Discussion 

The aim of this study was to investigate the potential of the CG scaffold as suitable 

biomaterial to support human osteogenesis with applications for bone tissue engineering.  

Furthermore, we examined the effects of recombinant human TGF-β1 within our tissue 

engineered constructs. 

In study A we showed hFOB cell infiltration from the scaffold edge to the centre by 14 days 

post-seeding with uniform distribution throughout the construct. As a result of this we incorporated 

a 14 day preculture in our subsequent long term study to provide the construct with the best start 

prior to the induction of osteogenesis. A fully confluent construct was found at 35 days of culture 

with maintained cell viability. Previous studies examining animal osteoblasts on scaffold have not 

shown such levels of confluency throughout the scaffold (Farrell et al., 2006; Tierney et al., 2008). 

We noted structural changes within our scaffold, such as a reduced porosity and overall scaffold 

size. This appeared to increase with higher cellular density and matrix deposition but did not 

affect cellular viability. This study illustrated that our CG scaffold is a good support structure for 

3D osteoblast attachment and growth.   

In study B, we examined the potential of our scaffold to support human osteogenesis. As 

osteogenesis proceeds following the onset of confluency; it was therefore decided to examine 

hFOB cells under osteogenic conditions containing TGF-β1 within the scaffold up to 49 days.  

TGF-β1 is linked with embryogenesis, tissue repair and bone regulation. Studies have shown 

its importance in bone formation by increasing osteoblast populations and their maturation (Zang 

et al., 2003). Given the conflicting literature pertaining to concentrations of TGF-β1 for human 

cultures, we assessed human osteogenesis on the scaffold using a previously optimised 
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osteogenic based media containing either a low continuous treatment of TGF-β1 (0.2ng/ml) or 

high TGF-β1 treatment  which consisted of an initial stimulating treatment (10ng/ml) followed by 

low continuous treatment.  

 The hFOB cell line has been described as a model cell line for osteogenesis with an ability to 

form mineralised nodules (Harris et al., 1995). However, not all studies using the hFOB cell line 

have produced mineral staining (Dhurjati et al., 2006; Subramaniam et al., 2002).  Our 

histological and chemical staining identified cell distribution and mineralization in the CG 

construct up to 49 days. We found that osteogenesis on the scaffold proceeded under both TGF-

β1 treatments; however, high TGF-β1 yielded a more mature osteoblastic phenotype capable of 

mineralising our scaffold in vitro. 

An important finding of this study for people trying to engineer bone in vitro with any scaffold 

was identifying core degradation at 49 days culture. The issue of core degradation of in vitro 

engineered tissues has been observed in other studies (Shea et al., 2000). In this study it was 

possibly due to a lack of diffusion of sufficient nutrients from the surrounding media as a result of 

extensive matrix and mineral deposition that formed in vitro. As this effect was not observed at 

the earlier time points, it suggests that 35 days might serve as an end point for in vitro cultures of 

these scaffolds. In order to overcome capsule formation and the development of core 

degradation, custom designed bioreactors may be used to encourage cellular infiltration at early 

stages of culture so that scaffolds may become confluent with cells earlier, thus shortening the 

duration for the onset of osteogenesis. Perfusion flow bioreactors can also be used to enhance 

nutrient diffusion throughout the scaffold (Jaasma et al., 2008). 

A significant reduction in scaffold size was observed during long term incubations. Scaffold 

contraction may result in loss of contact between the implanted graft and the surrounding host 

tissue making integration of the repair tissue difficult (Lee et al., 2001). Contraction therefore 

could be limited by increasing the initial stiffness of the scaffold using crosslinking methods which 

should reduce scaffold contraction during culture. It should be noted that some scaffold 

contraction may however, be beneficial to promote osteogenesis by providing mechanical stimuli 

to cells during contraction (Freyman et al., 2001b).  
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In accordance with our mineral staining, we further identified stages of osteogenesis using 

Real Time PCR. Osteogenic markers were expressed in a temporal manner, similar to that found 

in both in vitro and in vivo studies (Stein et al., 1993; Bilezikian et al., 2001). Early markers of 

bone formation like collagen type 1 and alkaline phosphatase reduced in expression with time. 

Similarly, the late stage marker osteocalcin increased in expression with time. These expression 

patterns are consistent with the accepted model of osteogenesis indicating the development of a 

fully differentiated osteoblast phenotype on the CG scaffold (Stein et al., 1993). The timing of the 

expression of these osteogenic markers mimicked that more of in vivo osteogenesis than in vitro 

studies (Donahue et al., 2000; Stein et al., 1993). We expect this to be associated with levels of 

confluency in 3D structures and hypothesise this should be more relevant for in vivo clinical 

studies.  

Importantly, cell seeded constructs increased in mechanical strength; this increase in 

stiffness during culturing may be attributed to a) matrix formation following the induction of 

osteogenesis on the scaffold and b) contraction of the scaffold assisted by the action of the 

osteoblasts.  

 

Conclusions 

The CG scaffold supports attachment, infiltration and viability of human osteoblast cells. We 

have successfully demonstrated the ability of a CG scaffold to support human osteogenesis and 

form mineralised tissue in vitro. We show the importance of cellular infiltration and confluency of 

the scaffold as an important factor to allow osteogenesis to proceed, we identify the benefit of 

introducing an initial high dose of TGF-β1 for one week over a continuous low dose to enhance 

human osteogenesis and we determine 35 days in vitro culture as an end point for these 

scaffolds where later timepoints result in construct core degradation. Given these findings we 

conclude that CG scaffolds show excellent potential as a biomaterial for human bone tissue 

engineering applications.  
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Fig. 1 H&E staining of the cell seeded CG scaffold shows a clear infiltration and augmentation of 
hFOB cells within the scaffold over time (a-h) (10x magnification). At 4 and 7 days (a, b) cells 

reside along the scaffold edge. By 14 days (c) cells increase in number along the edge infiltrating 
into the centre of the construct (d); further cell proliferation and distribution was observed at 21,28 

and 35 days (e-g) resulting in a  fully confluent construct from edge (g) to centre (h)  
64x32mm (600 x 600 DPI)  
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Fig 2. Histological and mineral staining of the cell seeded collagen GAG scaffold (magnification 4x). 
Sections illustrate (a-d) H&E staining (e-h) Alizarin red and (i-l) von Kossa staining for 

mineralisation. Low TGF-β1 (a, e, i) and high TGF-β1 (b, f, j) represent 35 day cultures with 49 days 
represented as low TGF-β1 (c, g, k) and (d, h, l) high TGF-β1.   

H&E staining (a-d) illustrate highly infiltrated cell seeded constructs at all time points. Alizarin red 

and von Kossa staining showed greater staining for groups containing high treatment of TGF-β1 (f, j 
at 35 days and h, l at 49 days respectively)  

128x156mm (600 x 600 DPI)  
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Fig. 3 Sections of the scaffold centre following a 49 day culture under high TGF-β1 conditions 
showing necrotic core region (illustrated by white arrows) surrounded by (a) H&E stained cellular 
capsule that stained positive for mineralised tissue formation (b) Alizarin red and (c) Von Kossa 

(magnification 4x).    
43x14mm (600 x 600 DPI)  
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Fig. 4 Cells seeded onto scaffolds and cultured under high TGF-β1 osteogenic conditions up to 49 
days reduced in size by ~70%. Low and high TGF-β1 treatments showed similar levels of 

contraction  
39x18mm (600 x 600 DPI)  
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Fig. 5 Gene expression levels of osteogenic markers for cells seeded on CG scaffold at 35 and 49 
days culture (a-f). Higher TGF-β1 treatment resulted in greater expression of late stage osteogenic 
markers than low TGF-β1 treatments. A reduction in expression was observed for early markers of 
bone formation collagen type 1 (P<0.026) and alkaline phosphatase (p<0.024) with dosage and 
duration. Whereas mid and late stage markers increased with high TGF-β1 dosage at 49 days 
indicating a more differentiated osteoblastic phenotype; osteocalcin shows a 7 fold increase in 

expression between 35 and  49 days high TGF-β1 treatment groups  

96x72mm (600 x 600 DPI)  
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Fig. 6 Mechanical stiffness of cells seeded on scaffolds for 49 days under high osteogenic TGF-β1 
conditions. A 5 fold increase in stiffness was observed in low and high TGF-β1 treatment groups 

when compared to unseeded scaffolds (*p=0.01, **p<0.0291). No difference was observed 

between treatment groups of TGF-β1  
54x34mm (600 x 600 DPI)  
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Figure captions 

Fig. 1 a-h H&E staining of the cell seeded CG scaffold shows a clear infiltration and 

augmentation of hFOB cells within the scaffold over time (10x magnification). a At 4 and b 7 days 

cells reside along the scaffold edge. c By 14 days cells increase in number along the edge 

infiltrating into d the centre of the construct; e-f further cell proliferation and distribution was 

observed at 21 and 28 days. g At 35 days a fully confluent construct  was observed from the 

edge to h the centre of the construct  

 

Fig. 2 a-l Histological and mineral staining of the cell seeded collagen GAG scaffold 

(magnification 4x). Sections illustrate a-d H&E staining e-h Alizarin red and i-l von Kossa staining 

for mineralisation. Low TGF-β1 a, e, i and high TGF-β1 b, f, j represent 35 day cultures with 49 

days represented as low TGF-β1 c, g, k and high TGF-β1 d, h, l. 

H&E staining a-d illustrate highly infiltrated cell seeded constructs at all time points. Alizarin red 

and von Kossa staining showed greater staining for groups containing high treatment of TGF-β1; 

f, j at 35 days and h, l at 49 days respectively 

 

Fig. 3 a-c Sections of the scaffold centre following a 49 day culture under high TGF-β1 conditions 

showing necrotic core region (illustrated by white arrows) surrounded by a H&E stained cellular 

capsule that stained positive for mineralised tissue formation, b Alizarin red and c Von Kossa 

(magnification 4x).    

 

Fig. 4 Cells seeded onto scaffolds and cultured under high TGF-β1 osteogenic conditions up to 49 

days reduced in size by ~70%. Low and high TGF-β1 treatments showed similar levels of 

contraction  

 

Fig. 5 a-f Gene expression levels of osteogenic markers for cells seeded on CG scaffold at 35 

and 49 days culture. Higher TGF-β1 treatment resulted in greater expression of late stage 

osteogenic markers than low TGF-β1 treatments. A reduction in expression was observed for 
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early markers of bone formation collagen type 1 (p<0.026) and alkaline phosphatase (p<0.024) 

with dosage and duration. Whereas mid and late stage markers increased with high TGF-β1 

dosage at 49 days indicating a more differentiated osteoblastic phenotype; osteocalcin shows a 7 

fold increase in expression between 35 and  49 days high TGF-β1 treatment groups 

 

Fig. 6 Mechanical stiffness of cells seeded on scaffolds for 49 days under high osteogenic TGF-

β1 conditions. A 5 fold increase in stiffness was observed in low and high TGF-β1 treatment 

groups when compared to unseeded scaffolds (*p=0.01, **p<0.0291). No difference was 

observed between treatment groups of TGF-β1  
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