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Abstract 

Tissue engineering approaches to developing functional substitutes are often highly complex, 

multivariate systems where many aspects of the biomaterials, bio-regulatory factors or cell 

sources may be controlled in an effort to enhance tissue formation. Furthermore, success is 

based on multiple performance criteria reflecting both the quantity and quality of the tissue 

produced. Managing the trade-offs between different performance criteria is a challenge. A 

“windows of operation” tool that graphically represents feasible operating spaces to achieve 

user-defined levels of performance has previously been described by researchers in the bio-

processing industry. This paper demonstrates the value of “windows of operation” to the 

tissue engineering field using a perfusion-scaffold bioreactor system as a case study. In our 

laboratory, perfusion bioreactor systems are utilised in the context of bone tissue engineering 

to enhance the osteogenic differentiation of cell-seeded scaffolds. A key challenge of such 

perfusion bioreactor systems is to maximise the induction of osteogenesis but minimise cell 

detachment from the scaffold. Two key operating variables that influence these performance 

criteria are the mean scaffold pore size and flow-rate. Using cyclooxygenase-2 and 

osteopontin gene expression levels as surrogate indicators of osteogenesis, we employed the 

“windows of operation” methodology to rapidly identify feasible operating ranges for the 

mean scaffold pore size and flow-rate that achieved user-defined levels of performance for 

cell detachment and differentiation. Incorporation of such tools into the tissue engineer’s 

armoury will hopefully yield a greater understanding of the highly complex systems used and 

help aid decision making in future translation of products from the bench top to the market 

place. 
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Introduction 

Tissue engineering is “an interdisciplinary field that applies the principles of engineering and 

life sciences toward the development of biological substitutes that restore, maintain, or 

improve tissue function or a whole organ" (Langer and Vacanti, 1993). The methods utilised 

are often highly complex, multivariate procedures, where many aspects of the biomaterials 

(e.g. composition, stiffness, and degradation rates), bio-regulatory factors (e.g. chemical 

reagents, mechanical stimuli) or cell sources may be controlled in an effort to enhance tissue 

formation. The choices made with respect to these input (independent) variables will 

ultimately determine the type, quality and quantity of tissue produced, which is typically 

assessed as a function of numerous output (dependent) variables or performance endpoints 

(e.g. cell viability and gene/protein expression level). Thus a major challenge for researchers 

concerns determining the optimal operating conditions that will yield the desired levels of 

tissue performance or functioning. Furthermore, it is also important to understand the 

feasibility and ease with which these specifications can be met; where the boundaries of the 

operating ranges lie that yield the desired levels of tissue performance or functioning.  

“Windows of operation” plots are two-dimensional maps showing regions of feasible 

operating ranges for input variables after applying user defined constraints indicative of a 

required level of performance or functioning for measurable output variables. The 

construction of such two-dimensional maps has previously been described by researchers in 

the bio-processing industries where they were applied in the optimisation of large scale 

protein/antibody manufacturing processes (Salte et al., 2006; Woodley and Titchener-Hooker, 

1996; Zhou and Titchener-Hooker, 1999). For example, the performance levels of different 

centrifuge types were assessed with respect to their clarification, dewatering and product 

yield capabilities based on the limits of their individual operating capacities (Salte et al., 

2006). In addition to rapidly deducing feasible operating regions, the strength of these 



graphical visualisation methods lies in their ability to gain greater understanding regarding 

the influence of key operating variables on the overall system behaviour.  

The purpose of this paper is to firstly introduce the windows of operation concept to the 

tissue engineering community and secondly, using a perfusion bioreactor case study, to show 

how it may be conceptually applied to a specific problem. In our laboratory, perfusion 

bioreactor systems are utilised in the context of bone tissue engineering whereby highly 

porous cell-seeded collagen glycoaminoglycan (GAG) scaffolds are perfused with media to 

mechanically stimulate cells and thereby enhance osteogenic differentiation (Jaasma and 

O’Brien, 2008; Keogh et al., 2011; Partap et al., 2009; Plunkett et al., 2010). This perfusion-

scaffold bioreactor system has been used as a model to illustrate the formulation, 

development and application of “windows of operation”. Two key variables of perfusion-

scaffold systems are the mean scaffold pore size and the perfusion flow rate (mean shear 

stress), both of which have been shown to influence successful tissue engineering. Altering 

the mean pore size has been shown to influence initial cell attachment levels (Murphy et al., 

2010; O’Brien et al., 2005) as well as the ratio of cell morphology attachment types (McCoy 

et al., 2012). In these highly porous scaffolds, cells can attach in one of two morphologies, 

flat (akin to 2D monolayer culture) or bridging (where the cell spans the void space of the 

pore) (Annaz et al., 2004; McCoy et al., 2012; McMahon, 2007). In scaffolds with very large 

mean pore sizes, cells are not capable of spanning across the void space and thus a flat 

morphology type dominates. As mean pore size decreases, the ease of spanning the void 

space increases, and thus the proportion of cells adapting a bridging morphology type 

increases. The relevance of cell attachment morphology type becomes important when flow 

perfusion is applied to the cell-seeded scaffold.  

Flow perfusion creates shear stresses within the scaffold that are sensed by the cells. 

Translation of these physical forces to a biological signal is termed mechanotransduction, 



with cytoskeletal deformation being one of the primary mechanisms. If a cell adapts a 

bridging morphology type it will undergo greater levels of cytoskeletal deformation than a 

flat cell when subjected to the same flow conditions (Jungreuthmayer et al., 2009) and 

therefore also experience a greater degree of mechanical stimulation and hence 

differentiation; the cell alignment to the direction of flow creates a greater level of resistance 

leading to a larger deformation, like a sail in the wind. However, when the physical forces 

acting on the cell exceed the adhesion strength of the cell, then instead of deforming the cell 

and causing mechanical stimulation resulting in cellular differentiation, the cell is detached 

from the scaffold. Therefore bridging cells are also more susceptible to cell detachment than 

flatly attached cells when subjected to the same flow conditions (McCoy et al., 2012). Thus a 

key challenge of such perfusion bioreactor systems is to maximise the induction of 

osteogenic differentiation but minimise cell detachment from the scaffold. Cell detachment 

commonly occurs in flow-perfusion culture strategies (Plunkett et al., 2010; McCoy et al., 

2012; Cartmell, S. et al., 2003; Alvarez-Barreto and Sikavitsas, 2007; Alvarez-Barreto et al., 

2007) and should be minimised as it is an undesirable artefact having multiple implications 

from economic (cell culture costs) and clinical efficacy (loss of cell to cell communication 

and loss of bioactivity) perspectives. Maximising the induction of cell differentiation is the 

fundamental purpose in any tissue engineered product derived from progenitor cells. Cell 

differentiation however is a complex phenomenon, temporal in nature, having numerous 

markers indicative of different maturation stages.  

To demonstrate the application of “windows of operation”, the levels of cell detachment and 

cell differentiation were quantified for osteoblast seeded collagen GAG (CG) scaffolds with a 

range of mean pore sizes (85, 120 or 325µm) when subjected to mean shear stresses of 

0.0009, 0.0176 and 0.0879Pa using a perfusion bioreactor system. Cell differentiation was 

measured using cyclooxygenase-2 (COX2) and osteopontin (OPN) gene expression levels, 



which essentially act as surrogate indicators of osteogenesis. The “windows of operation” 

approach was then applied to these data to identify feasible operating ranges with respect to 

mean pore size and mean shear stress that allowed pre-defined performance levels for cell 

detachment and differentiation to be achieved.      

Materials and Methods 

Creating “Windows of Operation” 

“Windows of operation” are constructed by initially representing data for a single output 

variable in the form of a contour plot. Contours plots allow 3D (x, y, z) data to be plotted in a 

2D (x, y) format where the third dimension is represented as a series of contour lines where 

combinations of the input variables (x, y) have equal z values. In this study the axes x and y 

represent mean pore size (in the range of 85 - 325µm) and mean shear stress (in the range of 

0 – 0.879Pa) respectively. The third dimension z is represented by either the percentage of 

cell detachment, the fold change in COX2 gene expression levels or the fold change in OPN 

gene expression levels. More specifically, each contour line can be considered as a function 

of two independent variables (mean pore size and mean shear stress) where the function has a 

constant output value (z) for the dependent variable, for example, 10% cell detachment. By 

overlaying multiple contour plots for different dependent variables, while keeping the 

independent variables ranges constant, overlapping regions can be viewed rapidly allowing 

the user to swiftly and easily identify operating ranges, “windows of operation”, where both 

dependent variables are feasible. “Windows of operation” were created by constructing 

individual contour plots based on user defined constraints using SigmaPlot Version 11.2 

(Systat Software Inc., CA, USA) and manually overlaying them prior to colouring the 

“window of operation” using Adobe Photoshop Elements 7.0 (Adobe Systems Incorporated, 

San Jose, CA, USA).   



 

Scaffold Fabrication 

Collagen GAG (CG) scaffolds were fabricated in accordance with a previously developed 

protocol (O’Brien et al., 2004). Briefly, a CG suspension was created by blending micro-

fibrillar bovine tendon collagen (Integra Life Sciences, Plainsboro, NJ) with chondroitin-6-

sulphate sodium salt, isolated form shark cartilage (Sigma-Aldrich, Dublin, Ireland) in 0.05M 

acetic acid (Fisher Scientific Loughborough, Leicestershire, UK), the CG suspension was 

degassed under vacuum and freeze-dried (Advantage EL, VirTis Co., Gardiner, NY). A final 

freezing temperature of -10
o
C, -40

o
C and -60

o
C yielded mean pore sizes of 325, 120 and 

85µm respectively. Post lyophilisation scaffold sheets were dehydrothermally cross-linked at 

105
o
C for 24h in a vacuum oven at 50mTorr (VacuCell, MMM, Germany). 

Individual scaffold discs (diameter 12.7mm; depth 3-4mm) were punched out of the sheets 

and further strengthened through chemical cross-linking; scaffolds were submersed within an 

aqueous solution of 14mM N-(3-dimethylaminopropyl)-N0-ethylcarbodiimide hydrochloride 

(EDAC) (Sigma-Aldrich) and 5.5mM N-Hydroxysuccinimide (NHS) (Sigma-Aldrich) for 2h 

at room temperature before being washed and stored in PBS. 

Bioreactor Experiments 

The pre-osteoblastic cell line, MC3T3-E1 (<passage 30), was cultured in alpha-minimum 

essential media (α-MEM) (Sigma-Aldrich) supplemented with 10% foetal bovine serum 

(Biosera, East Sussex, UK), 1% L-glutamine (Sigma–Aldrich) and 2% 

penicillin/streptomycin (Sigma–Aldrich). The cells were maintained as sub-confluent 

monolayers in T175 flasks under standard conditions (37
o
C, 5% CO2). Cells were detached 

with Trypsin–EDTA (Sigma–Aldrich) and re-suspended at a concentration of 1x10
7
 cells/mL. 

Scaffolds (with mean pore sizes of either 85, 120 or 325 µm) were seeded with a total of 



2x10
6
 cells as previously described (McCoy et al., 2012) and pre-cultured statically for 6 days 

(media change on day 3). Seeded scaffolds were then either cultured statically or exposed to a 

steady state fluid flow regime (0.05, 1 or 5mL/min equating to 0.0009, 0.0176 and 0.0879Pa 

respectively (McCoy et al., 2012)) in the perfusion bioreactor for 48h; conditions that have 

been previously shown to enhance osteogenesis of MC3T3 cell-seeded scaffolds by our 

group, but resulted in cell detachment of up to 40% (Jaasma and O’Brien, 2008). During 

bioreactor culture, six constructs were cultured simultaneously, but each had a separate 

syringe scaffold chamber reservoir system. Given that the bioreactor system does not form a 

looped fluid circuit, the syringe requires re-filling to maintain continuous flow through the 

construct. Thus, the direction of medium flow through the bioreactor system was reversed 

periodically; every 300 min for 0.05mL/min, every 15 min for 1mL/min and every 3 min for 

5mL/min. Constructs for the static culture group were transferred to a new 6-well plate and 

cultured in 5mL of fresh medium. Post-culture constructs were flash frozen in liquid nitrogen 

and stored at -80
o
C until analysis. 

Quantification of Cell Detachment 

DNA was isolated from the constructs by homogenisation in RLT lysis buffer (Qiagen, 

Crawley West Sussex, UK) supplemented with β-mercaptoethanol (1%v/v) (Sigma-Aldrich) 

in a rotor-stator homogeniser (Omni International, Kennesaw, GA, USA). Cell lysates were 

centrifuged using QI Shredder columns (Qiagen) and the resulting supernatant stored at -

80
0
C. DNA quantification was performed using a Quant-iT™ PicoGreen dsDNA kit 

(Invitrogen, Bio-sciences, Dublin, Ireland) in accordance with manufacturer’s instructions. 

Fluorescence of the samples was measured (excitation 480nm, emission 538nm) using a 

fluorescent plate reader (Varioskan Flash 100-240V, Thermo Scientific) and DNA 

concentration was deduced using a standard curve. DNA concentrations at 48h were 

normalised to a 0hr control to determine the levels of cell detachment.  



Quantification of COX2and OPN Gene Expression 

COX2 and OPN gene expression levels were chosen for quantification as they have been 

previously shown to be significantly up-regulated in our laboratory by osteoblast seeded 

collagen GAG scaffolds in response to perfusion bioreactor culture (Jaasma and O’Brien, 

2008; Partap et al., 2009). Furthermore, COX2 is a key osteogenic marker that has been 

studied extensively in the literature and shown to be up-regulated significantly in response to 

mechanical stimulation during the early stages of mechanically induced osteogenesis 

(Forwood, 1996; Klein-Nulend et al., 1997; Wadhwa et al., 2002a; Wadhwa et al., 2002b). 

COX2 plays a key role in the production of prostaglandin E2 (PGE2), which is critical for 

bone formation and furthermore, COX2 knockout mice have been shown to exhibit decreased 

mesenchymal progenitor cell differentiation into osteoblasts (Zhang et al., 2002). OPN is also 

typically expressed during the early stages of osteogenic differentiation and is believed to 

play a significant role in bone remodelling through aiding the attachment of osteoclasts (bone 

reabsorbing cells) to the bone matrix. 

RNA was extracted from the supernatants harvested during DNA extraction using an RNeasy 

mini kit (Qiagen) according to manufacturer instructions. The quality and concentration of 

RNA was quantified by measuring absorbance at 260nm (GeneQuant Pro RNA/DNA 

calculator, Biochrom Ltd., UK). Reverse transcription was performed on 400ng of total RNA 

using the QuantiTect RT Kit (Qiagen) according to the manufacturer’s instructions on an 

Eppendorf thermal cycler (Mastercycler Personal, Eppendorf, Cambridge, UK). RT–PCR 

was subsequently performed using a 7500 Real-Time PCR System (Applied Biosystems, 

Foster City, CA) using the QuantiTect SYBR Green PCR Kit (Qiagen) according to the 

manufacturer’s instructions with Quanti-Tect Primers designed by Qiagen. Results were 

quantified for COX2 (NM_017232) and OPN (NM_012881) via the relative quantification 

(∆∆Ct) method (Livak and Schmittgen, 2001) using 18-S rRNA (M11188) as the endogenous 



reference. For each gene, results are expressed relative to a 0h control group. All PCR 

reactions were conducted in duplicate for each sample. 

Statistics 

Statistical analysis was conducted using a two-way ANOVA followed by a post hoc Holm-

Sidak test for pairwise comparisons using Sigmaplot Version 11.2 (Systat Software Inc., CA, 

USA). 

 

Results 

To illustrate the power of “windows of operation”, this paper investigated the trade-off 

between mechanically induced osteogenic differentiation (as measured by COX2 and OPN 

gene expression levels) and cell detachment in a perfusion-scaffold bioreactor system. 

Osteoblast-seeded (MC3T3) CG scaffolds having different mean pore sizes (85, 120 and 

325µm) were subjected to steady flow regimes with continuous inlet flow-rates of 0 (static), 

0.05, 1 and 5mL/min, which equate to mean shear stresses within the scaffold of 0, 0.0009, 

0.0176 and 0.0879Pa respectively (McCoy et al., 2012), for a culture period of 48h.  

Initially individual contour plots were created for cell detachment (10% intervals) and COX2 

(15 fold intervals) gene expression levels across the entire range of scaffold mean pore sizes 

and mean shear stresses that were included in our evaluation (Figure 1). By specifying 

required performance limits for the output variables of interest (cell detachment and COX2 

gene expression), the acceptable operating ranges for the input variables (mean pore size and 

shear stress) can be visualised by examining the contour graph. For example, if a cell 

detachment level of less than 20% is required (light grey in Figure 2a), then at lower mean 

shear stress levels (<0.03Pa) the scaffold mean pore size should exceed ~100 µm. As the 



mean shear stress is increased (>0.03), detachment levels similarly increase at these lower 

scaffold mean pore sizes and thus an increase in scaffold mean pore size to >~175µm is 

necessary to maintain the detachment level below 20%. Likewise, to achieve a 60 fold 

increase in COX2 gene expression (dark grey in Figure 2b), the scaffold mean pore size 

should be less than 140µm and cells should be exposed to mean shear stresses between 0.25 

and 0.65Pa. When individual contour plots are constructed with the same mean pore size and 

mean shear stress axis ranges, they can be overlaid and the feasible operating ranges for cell 

detachment and COX2 gene expression can be visualised simultaneously, allowing the user 

to determine if both performance criteria are achievable at once. For example, when contour 

plots representing performance criteria of <20% cell detachment and >60 fold increase in 

COX2 gene expression (Figure 2c) are overlaid, it is clearly seen that there are no operating 

conditions (mean pore size and shear stress) where both performance criteria can be achieved 

simultaneously.  

Relaxing the user defined constraints in performance criteria for COX2 gene expression to 

>45 fold increase, yields an enlargement in the potential operating range (Figure 3b). 

Combining this contour plot with the contour plot representing <20% decrease in cell 

detachment now yields a single region (black in Figure 3c) on the graph where both operating 

targets can be achieved simultaneously; a single “window of operation”.  

If the user defined performance criteria are relaxed further then the feasible operating space, 

the window of operation (black region in Figure 4), expands accordingly. Relaxation of 

performance criteria to facilitate a larger feasible operating range may seem illogical as the 

“optimal” operating conditions are sought. However, so far we have only considered 2 

dependent variables, cell detachment and COX2. As additional dependent variables are 

included in the analysis, it is likely that relaxation of the user defined performance criteria 

will be necessary in order to obtain a feasible operating region that incorporates all the 



dependent variables. For example, the extent of cell differentiation may also be analysed 

based on the level of OPN gene expression. An individual contour plot representing OPN 

gene expression levels at 0.4 fold intervals is shown in Figure 5a for the range of mean shear 

stresses and mean pore sizes investigated in this study. If a performance criteria of greater 

than 2 fold increase in OPN is set, then it is observed that only a small viable operating range 

exists for small mean pore sized scaffolds (~<120µm) subjected to the lower range of mean 

shear stresses (<~0.04Pa) (Figure 5b). If the “optimal” window of operation from Figure 3c is 

utilized (the feasible operating range for which the highest COX2 gene expression, >45 fold, 

and lowest cell detachment levels, <20%, could be achieved) and this is overlaid with the 

feasible operating space for a >2 fold increase in OPN, then there is no “window of 

operation” in which all three measures of performance can be achieved simultaneously 

(Figure 5c). However, if we use the feasible operating range studied before (for example, 

from Figure 4d), where the performance criteria had been relaxed to >15 fold increase in 

COX2 gene expression and a cell detachment level <40%, we can see that a feasible “window 

of operation” now exists (cross-hatched area in Figure 5d).  

In attempting to manage trade-offs in difference performance criteria it is important to 

consider the effect of reducing performance limits with respect to all variables. Thus, it may 

be preferential to sacrifice the level of OPN gene expression with respect to cell detachment 

and COX2 gene expression. For example, if the performance level for OPN is reduced from a 

2 fold increase to a 1.5 fold increase,  then in this instance a viable window of operation now 

comes into existence (cross-hatched area in Figure 6) when using the “optimal” cell 

detachment/COX2 gene expression performance levels (Figure 3c). Thus a 0.5 fold reduction 

in OPN gene expression performance level has allowed COX2 gene expression levels to be 

maintained 30 fold higher and cell detachment levels to be 20% lower.  



As the number of measured performance criteria increases, it is obvious to see the power of 

the “windows of operation” approach in rapidly identifying feasible operating spaces based 

on user defined requirements for the level of performance. Furthermore, it allows the user to 

swiftly grasp an understanding of the levels of trade-off between individual performance 

criteria that may be necessary in order to achieve an “optimal” window of operation.       

 

Discussion  

This study illustrates the benefits of a methodology termed “windows of operation” that has 

previously been employed by the bio-processing community to assist optimisation of large 

scale protein/antibody manufacture (Salte et al., 2006; Woodley and Titchener-Hooker, 1996; 

Zhou and Titchener-Hooker, 1999). The “windows of operation” methodology allows 

visualisation of data to aid decision making by mapping out the feasible operating space for 

achieving a user-defined level of performance. A simplified perfusion-scaffold bioreactor 

case study consisting of two independent (scaffold mean pore size and mean shear stress) and 

three dependent variables (cell detachment, COX2 gene expression and OPN gene 

expression) was applied to illustrate how this methodology may be applied within the tissue 

engineering community. Initially using just two of the dependent variables, cell detachment 

and COX2 gene expression, we illustrated how this tool allowed the rapid identification of 

feasible operating regions (if they existed) (Figures 2-4) based on the severity of user-defined 

limitations for the performance criteria. By incorporating a third dependent variable (OPN 

gene expression) we then demonstrated how this tool could quickly allow the user to examine 

trade-offs in the performance criteria across multiple variables in order to attain a feasible 

operating space (Figures 5 and 6). 



As previously highlighted this study sought to illustrate how the “windows of operation” tool 

could be applied within the context of the tissue engineering field. However, it should be 

noted that prior to such tools being utilised by researchers, the data used must be subjected to 

a rigorous statistical evaluation and the resulting “window of operation” validated. For 

example, to generate significantly meaningful contour plots, there must be some degree of 

covariance between the dependant variable of interest (e.g. cell detachment) and at least one 

of the independent variables (e.g. mean pore size). If the co-variance between both 

independent variables (e.g mean pore size and mean shear stress) and the dependent variable 

is minimal, then in essence the contours could be drawn anywhere through the data set. One 

potential means to control this is to ensure that the levels of covariance meet a minimum 

threshold level. However, the magnitude of covariance is not an easily interpretable value as 

its units are dependent on the variables being studied, but this can be overcome by 

normalising the covariance to the standard deviations of the data. The resulting value is 

termed the correlation (a dimensionless number), which always lies on a scale between 1 and 

-1, where 0 represents no correlation and a negative value implies the variation in the data is 

inversely related. Strong correlations are considered to exist for data sets having a value 

between 0.8 and 1 or -0.8 and -1, whilst weak correlations exist between -0.5 and 0.5. In this 

study, whilst statistical significance within the data was achieved for cell detachment as a 

function of mean pore size (85 micron vs 325 micron, P < 0.006) and for COX2 gene 

expression as a function of mean shear stress (0.0879Pa vs 0.009Pa, P < 0.035), the overall 

nature of the correlations between the dependent and independent variables ranged from -

0.58 and 0.38. This level of general variability within the data, whilst allowing the authors to 

illustrate how the “windows of operation” may be applied, it is not conducive to subsequent 

validation of the optimal “windows of operation” described.   



In this study we were limited to 2 independent variables (mean pore size and mean shear 

stress) as the primary focus was to examine trade-offs between multiple dependent variables 

(cell detachment and measures of cell differentiation). However, for some systems or 

applications related to tissue engineering there may only be 2 indicators of performance that 

are of interest, but multiple independent variables that can contribute to changes in these 

variables. It is important to note therefore that the “windows of operation” tool may also be 

used in this reverse context, where the user would define operational limits associated with 

the independent variables to determine what the resulting level of performance would be for 

the dependent variables. For example, the performance of a process such as tissue 

decellularization, used in many tissue engineering approaches to provide a starting 

extracellular matrix for tissue cultivation (Gilbert et al., 2006), may be dependent on the 

concentration of decellularizing agents reagents (Schaner et al., 2004) or the exposure time of 

the sample to these agents/procedures, which in essence could be infinite in length. However, 

often it is desired to complete this process within a set period of time, for example before the 

extracellular matrix begins to break down and lose its mechanical properties (Sheridan et al., 

2012). Thus the user could constrain the operating limits with respect to the independent 

variables e.g. time, reagent concentrations, temperature etc and examine what the final 

performance level (decellularization/mechanical properties) would be. The limitations 

associated with the number of dependent or independent variables studied are reflective of 

the need to be able to visualise the data graphically. Of course if the user has multiple 

dependent variables that show a strong positive covariance or more specifically correlation 

(>0.8), then they may be considered to behave similarly and thus only one of the variables 

needs be depicted.  

In whichever context that “windows of operation” are used, the researcher still needs to 

conduct the experimental evaluation. The “windows of operation” tool merely models the 



existing system, aiding visualisation of the complex data set based on the user defined 

constraints.  

Thus the beneficial application of the information derived from these plots is pre-dominantly 

associated with two areas; sighting studies or design of experiment (DoE) style experimental 

set-ups during fundamental research investigations and process development decision making 

for products pre-commercialisation. 

For DoE style studies or sighting studies, researchers at early investigatory stages may have 

an extensive range for a parameter that they wish to study. Application of “windows of 

operation” may help narrow down future operating ranges so that more subtle differences in 

performance criteria can be examined. For example in this study, the shear stress range 

initially studied was between 0 and ~0.1Pa, having applied “windows of operation”, future 

studies may now be conducted between 0.04 and 0.08Pa range (Figure 6), as this is the 

optimal zone for the performance criteria evaluated (COX2 gene expression, OPN gene 

expression and cell detachment) based on the trade-offs made between these performance 

criteria.  

In terms of process development decision making, in paradigms such as tissue engineering, 

the biological product (the tissue) is defined by the respective manufacturing process and 

hence the product and process cannot be considered independently of each other – as shown 

in this study. This is an important fact to consider as the tissue engineering field matures and 

researchers shift their focus from fundamental research towards clinical application of the 

developed tissues. Whilst clinical success is by no doubt the single biggest factor for a new 

product, current regulatory and industrial thinking also requires product quality to be 

designed into the manufacturing process; through a systematic development programme 

generally termed ‘‘Quality by Design” (Q8 ICH Draft Guidance on Pharmaceutical 

Development). To undertake this successfully, it is important to begin considering its 



relevance at early stages of the development programme. These process-dependent 

programmes are concerned with controlling the manufacturing conditions to ensure tissues of 

an expected quality are delivered. They are typically based on risk analysis approaches 

founded on the knowledge-design-control concept. In this concept, the knowledge space 

represents the broader understanding of the relationship between the process operation and 

product quality, the design space represents the established range of process parameters that 

have been demonstrated to yield an assurance of quality (a specific level of performance) and 

the control space is a constrained set of tighter operating conditions within the design space. 

“Windows of operation” tools applied to the comprehensive data sets generated during the 

research stages of the project, provide a simple way of embodying the first two levels of this 

philosophy (Figure 7), where the total area of the plot generated would be representative of 

the knowledge space, and the window of operation or feasible operating space is then 

representative of the design space. Having established a feasible operating space, the 

researcher then needs to determine where the control space should be located within this 

design space. If the feasible operating space is small in nature or tightly constrained, then 

there may be a limited choice. However, if the operating space is large in nature, such as in 

Figure 4d or if there are multiple feasible operating spaces, as shown in a hypothetical 

window of operation diagram in Figure 8, then in these instances other factors such as 

economics or time may contribute to the decisions made regarding allocation of the control 

space. For example in the context of the current study, to fabricate 85µm mean pore size 

scaffolds, more power and longer freeze-dryer running cycles are needed in comparison to 

325µm scaffolds, leading to higher electricity bills. Thus in the instance of the hypothetical 

window in Figure 8, where scientific evaluation has determined that multiple feasible 

operating windows exist, it may be a business decision that drives location of the control 

space. 



In summary, in this study we have shown how “windows of operation” may be employed by 

the tissue engineering community using a perfusion-scaffold bioreactor system as a case 

study. Incorporation of such tools into the tissue engineer’s armoury will hopefully yield a 

greater understanding of the highly complex systems used and help aid decision making in 

future translation of products from the bench top to the market place.    
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Figure Legends  

 

Figure 1: Contour plot representations of (A) cell detachment and (B) fold change in COX2 

gene expression levels for osteoblast cell-seeded scaffolds having a range of mean pore sizes 

(85, 120 or 325 µm) after being subjected to various levels of mean shear stress (0.0009, 

0.0176 and 0.0879Pa) for 48h in a perfusion bioreactor. Cell detachment contour lines 

represent the percentage of cells detached and are spaced at 10% intervals. COX2 gene 

expression contours represent fold change in comparison to static controls at 0h and are 

spaced at 15 fold intervals.  

 

Figure 2: Creating a “window of operation”. Based on user-defined performance levels for 

(A) cell detachment (<20%) and (B) COX2 gene expression (>60 fold increase), contour 

plots illustrating the operating regions in which these can be achieved are displayed either 

individually (A+B) or combined (C). Combining contour plots allows rapid and easy 

visualisation of operational areas where the user-defined performance levels for both outputs 

can be achieved simultaneously. In this instance (C) there is no region on the graph where 

both operating targets can be achieved simultaneously i.e no “window of operation”. 

 

Figure 3: Creating a “window of operation”. Based on user-defined performance levels for 

(A) cell detachment (<20%) and (B) COX2 gene expression (>45 fold increase), contour 

plots illustrating the operating regions in which these can be achieved are displayed 

individually (A+B) or combined (C). Combining contour plots allows rapid and easy 

visualisation of operational areas where the user-defined requirements for both outputs can be 

achieved. In this instance there is a single region (black) on the graph (C) where both 

operating targets can be achieved simultaneously; a single “window of operation”. 



 

Figure 4: Assessing changes in the feasible operation space as a function of changes in user-

defined performance criteria. (A) The initial window of operation (black) based on the user-

defined specifications for cell detachment of <20% (light grey) and COX2 gene expression 

(dark grey) of >45 fold increase. (B) Relaxation of the performance level for cell detachment 

to <25%. (C) Relaxation of the performance level for cell detachment to <25% and for COX2 

gene expression levels to >25 fold increase. (D) Relaxation of the performance levels for cell 

detachment to <40% and for COX2 gene expression levels to >15 fold increase. As the 

performance levels are relaxed, changes in the size and shape of the window of operation 

(black) leading to larger feasible operating ranges are clearly visible.  

 

Figure 5: Effect of a 3
rd

 measure of performance (OPN gene expression level) on the feasible 

operating space. (A) Contour plot showing changes in OPN gene expression level compared 

to 0h control. (B) Feasible operating space (grey) for a performance level representative of 

>2fold increase in OPN gene expression level. (C) Based on the “optimal” window of 

operation for cell detachment and COX2 gene expression (Figure 4a) no feasible window of 

operation exists where all three performance criteria can be achieved. (D) Relaxation of cell 

detachment and COX2 gene expression performance criteria to the levels in Figure 4d yields 

a small feasible window of operation (cross-hatched) where all three performance criteria can 

be achieved.    

 

Figure 6: Evaluating trade-offs in performance criteria. Figure 5 highlighted how large 

sacrifices in user-defined performance criteria for COX2 gene expression and cell 

detachment were necessary in order to find a viable operating space that also included the 

required performance level (>2 fold) for OPN. Alternatively, a small sacrifice in OPN gene 



expression to >1.5 yields a result where all three performance criteria (cross-hatched) can be 

achieved within the original “optimal” window of operation for COX2 gene expression and 

cell detachment.    

 

Figure 7: Knowledge-Design-Control space paradigm. On the left is a diagrammatic 

representation of the Knowledge-Design-Control space paradigm, where the knowledge 

space represents the broader understanding of the relationship between the process operation 

and product quality, the design space represents the established range of process parameters 

that have been demonstrated to yield an assurance of quality (a specific level of performance) 

and the control space is a constrained set of tighter operating conditions within the design 

space. “Windows of operation” tools, as depicted on the right, provide a simple way of 

embodying the first two levels of this philosophy, where the total area of the plot generated is 

representative of the knowledge space and the window of operation or feasible operating 

space is then representative of the design space. 

 

Figure 8: Hypothetical contour plot having two feasible windows of operation (black).  
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