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Abstract 

Currently, lung disease and major airway trauma constitute a major global healthcare burden with 

limited treatment options. Airway diseases such as chronic obstructive pulmonary disease (COPD) 

and cystic fibrosis (CF) have been identified as the fifth highest cause of mortality worldwide and are 

estimated to rise to fourth place by 2030. Alternate approaches and therapeutic modalities are 

urgently needed to improve clinical outcomes for chronic lung disease. This can be achieved through 

tissue engineering of the respiratory tract. Interest is growing in the use of airway tissue engineered 

constructs as both a research tool to further our understanding of airway pathology, validate new 

drugs and pave the way for novel drug therapies, and also as regenerative medical devices or as an 

alternative to transplant tissue. This review provides a concise summary of the field of respiratory 

tissue engineering to date. An initial overview of airway anatomy and physiology is given, followed 

by a description of the stem cell populations and signalling processes involved in parenchymal 

healing and tissue repair.   We then focus on the different biomaterials and tissue engineered 

systems employed in upper and lower respiratory tract engineering, and give a final perspective of 

the opportunities and challenges facing the field of respiratory tissue engineering. 
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1. Introduction 

Currently, lung disease and major airway trauma constitute a major global healthcare burden with 

limited treatment options. Airway diseases such as chronic obstructive pulmonary disease (COPD) 

and cystic fibrosis (CF) have been identified as the fifth highest cause of mortality worldwide and are 

estimated to rise to fourth place by 2030 (1). Additionally, tracheal, bronchial and other lung cancers 

are predicted to become the sixth leading cause of mortality by the same year. In spite of recent 

advances in the development of novel therapeutic agents and surgical interventions, treatment 

options for such conditions are primarily palliative, with restoration or replacement of damaged lung 

tissue ultimately required for success. Unfortunately, lung transplantation has several limitations of 

its own, with a 5 year mortality rate of approximately 50% post-transplantation in addition to the 

complications of lifelong immunosuppression (2). In cases of extensive tracheobronchial injury due 

to cancer, stenosis, infection or congenital abnormalities, allografts or prosthetic devices are 

indicated; unfortunately, allograft transplantation is also marred by the complications of 

immunosuppressive treatment, while artificial prosthesis is associated with numerous complications 

including device migration and dislodgement, material degradation and failure, tissue granulation 

and tracheal stenosis (3). Bacterial colonisation and chronic infection of the implantation site is a 

further life-threatening complication adding to the severity of the clinical case (4, 5). A new 

approach is therefore needed urgently to address this medical crisis. 

Regarding drug therapy regimens for COPD and CF, the majority of medicines today principally 

alleviate symptoms of the failing airways and retard disease progression until transplantation is 

indicated. Current cell-based in vitro models of the respiratory tract employed in drug development 

of these medicines lack physiological relevance, hindering successful generation of new therapeutic 

agents. Common cell-based models, for example, consist of two-dimensional (2D) monolayers of a 

single tracheobronchial epithelial immortalised cell line cultured on a semi-permeable membrane 

insert at an air-liquid interface (ALI) to induce cell polarisation, differentiation and mucus 
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production. Although such models are useful as a tool for drug transport studies (6), they fall short in 

toxicity studies as they lack the physiological complexity of the airways (7, 8). 

Respiratory tissue engineering is one such approach that has the potential to improve clinical 

outcomes for chronic lung disease through tissue regeneration or through improved in vitro 

modelling. In a landmark case in 2008, a 30 year old patient with end-stage bronchomalacia received 

a tissue-engineered tracheal segment from decellularised donor tissue that had been re-seeded with 

autologous chondrogenic mesenchymal stem cells (MSCs) and primary tracheal epithelial cells to 

become the first recipient of a tissue-engineered airway transplant (9). The success of this ex vivo 

engineered tracheobronchial tissue has provided impetus for exploration of more advanced tissue-

engineered airway constructs in the laboratory that can be used as successful surgical medical 

devices, including methods to recellularise the entire lungs (10, 11). However, it is not the first 

example of a tissue engineered-airway construct. Indeed, procedures incorporating other acellular 

material and polymeric scaffolds have been reported since the turn of the millennium, while 

engineered three-dimensional (3D) in vitro models of the respiratory tract can be seen in the 

literature dating back to the 1970s (12). Recent advances in our understanding of lung stem cell 

biology have also identified potential pools of cell types that could be utilised for regenerative 

purposes in line with tissue engineered biomaterials (13). 

This review serves to summarise the field of respiratory tissue engineering to date. An explanation of 

lung and airway anatomy and physiology is provided, including the stem cell populations involved in 

parenchymal healing and tissue repair and signalling factors modulating these processes. Finally, this 

review focuses on the different materials and tissue engineered systems employed in upper and 

lower respiratory tract engineering, with a final perspective of the opportunities and challenges 

facing the field of respiratory tissue engineering provided. 
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2. Anatomy and physiology of the airways 

The lungs are the essential organs of the respiratory tract that enable animals to exchange oxygen 

and carbon dioxide with the environment to facilitate respiration within cells and tissue. The human 

respiratory tract contains nearly 50 different cell types along its hierarchical structure (14) in distinct 

proximal (conducting) and distal (respiratory) zones (8). The larger proximal airways include the 

trachea, bronchi and bronchioles of greater than 2mm in diameter; these regions are reinforced by 

cartilaginous rings to prevent collapse (Fig. 1; (15)). The distal airways, composed of non-

cartilaginous conducting airways with an internal diameter of less than 2mm, include the 

bronchioles that terminate at the alveoli, the structural units responsible for gas exchange in the 

respiratory zone. The diverse range of cell types spread across the airways is primarily separated into 

these defined regions as a reflection of their functionality, and thus, from a tissue engineering 

perspective, it is crucial to consider the pertinent cells, extracellular matrix (ECM) composition and 

architecture required for successful in vitro mimicry of a particular airway section and for proximal 

or distal tissue regeneration in vivo. 

2.1. Anatomy and physiology of the conducting region of the respiratory tract 

Within the tracheobronchial region, a pseudostratified epithelial layer composed of three main cell 

types- ciliated epithelial cells, goblet cells and basal cells- is supported by the ECM of pulmonary 

interstitium and cartilage in a specific three-dimensional (3D) structure (16). These cells perform an 

essential role in innate host defence by providing a physical barrier and by producing mucus and 

serous secretions that allow the body to clear environmental toxins and infectious agents entering 

the conducting apparatus following inhalation. The respiratory epithelium operates as an interface 

between the host and its external environment (17, 18); in this regard, cells present along the walls 

of the tract have a barrier function, preventing the easy passage of potentially pathogenic 

substances. Mucus-producing cells assist in this defensive activity, trapping foreign bodies so that 

they can be removed by the ciliary action of the pseudostratified columnar epithelium. The presence 
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of a mucus layer also acts as a diffusional buffer to protect the cells from noxious gases that may be 

inhaled. In addition to mucus expression, the epithelium can secrete a host of other signalling 

molecules and inflammatory mediators to recruit immune cells that elicit an appropriate response to 

pathogen infection or invasion, including IL-1, IL-8 and leukotrienes (reported in (17)). Descending 

further down the proximal region through the branching bronchioles towards the alveoli, the 

pseudostratified epithelial layer is replaced by a simple cell monolayer composed of Clara cells (also 

known as club cells) and neuroendocrine cells with a concomitant reduction in the density of mucus-

secreting cells and ciliated epithelia. 

The fibro-cartilaginous ECM found below the epithelium hosts a range of cellular and non-cellular 

components. Smooth muscle cells, fibroblasts, chondrocytes, and inflammatory cells constitute the 

cellular content, mediating muscle contraction, matrix composition, and signalling processes. Non-

cellular molecules such as collagen, elastin and various glycosaminoglycans (GAGs) modulate 

structural support and morphogenesis in tandem with growth factors and morphogens such as 

epidermal growth factor, bone morphogenetic proteins and fibroblast growth factors (19-22), which 

can dictate cell differentiation when engineering an in vitro tissue engineered tracheobronchial 

model. A continuous network of fibrillar collagen I and III supports the epithelium and airway 

smooth muscle (20),reinforced by a series of C-shaped cartilage rings located along the outside of 

the upper respiratory tract. This cartilage is hyaline in nature, composed predominantly of type II 

collagen and proteoglycans including aggregans, decorin, biglycan and fibromodulin (23, 24); it 

conveys increased structural integrity to the trachea and bronchi, preventing airway collapse and 

ensuring transit of inhaled air to the alveoli (19). The ECM architectural design in the conducting 

region allows for longitudinal flexibility but lateral rigidity (25), a combination that must be 

incorporated into any engineered construct that is implanted for tracheobronchial regeneration in 

order to preserve large airway patency and functionality. 

2.2. Anatomy and physiology of the alveolar region of the respiratory tract 
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Exchange of oxygen and carbon dioxide that is essential for survival occurs in the alveolar region in 

the distal airways. The alveolar sacs themselves are populated by squamous type I pneumocytes to 

mediate gas exchange and surfactant-secreting cuboidal type II pneumocytes (26). Type I 

pneumocytes occupy approximately 93% of the surface area of the alveoli; this cell population has 

adapted to maximise rapid gas transfer to and from the bloodstream by adopting a thin squamoid 

shape and by residing at a close proximity to capillaries, reducing the gaseous diffusion barrier to 

approximately 1m in thickness . The surfactant produced by type II cells is critical for reducing 

surface tension within the alveolar sacs from 70mN/m to 22-23mN/m, preventing their collapse 

during breathing (27, 28). 

The ECM of the alveolar region complements the cellular functionality, consisting of thin fused 

capillary and alveolar epithelial basement membranes to maximise gas exchange between the 

respiratory tract and blood (20). This membrane is rich in fibronectin and the proteoglycan perlecan 

which can influence type II pneumocyte behaviour (29, 30). The ECM protein composition changes in 

the distal airways relative to the conducting region, with an increased elastin component providing 

more recoil in the airway walls in response to influx and efflux of air. Collagen, elastin and 

glycosaminoglycans provide the lower parenchymal region of the airways with a viscoelastic 

behaviour to withstand expansion and contraction during tidal ventilation (31, 32). As elastin fibres 

are stretched during tidal breathing, collagen fibres coiled around them uncrimp and reduce 

excessive strain on the elastin, preventing excessive stretch during alveolar expansion and ensuring 

elastic recoil following exhalation (33); again, from a tissue engineering perspective, incorporation of 

such ECM components and arrangements is paramount to maximise correct modelling of the 3D in 

vivo milieu for in vitro research applications. 

3. Stem cell populations of the airways 

In order to implement a successful tissue engineering-based approach to heal or replace 

physiological tissue, constructs should ideally include progenitor cell populations for ex vivo culture 
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or recruit them following implantation so that a regenerative response can be recapitulated and 

enhanced in vivo. Respiratory epithelial cells have a low rate of cell turnover but following injury to 

the surface of the tract, a rapid response is initiated to restore the epithelial barrier (34). Distinct 

groups of progenitors appear to marshal reparative processes in distinct regions of the lungs, while 

some evidence also points to the recruitment of a universal stem cell population that can assist in 

the repair along the entire respiratory tract (35). 

Stem cells involved in airway development and repair processes can be broadly divided into two 

classifications: endogenous progenitor cells specific to an upper or lower respiratory region and 

exogenous stem cells that arise from other adult tissue or embryonic stem cells. Within the first set 

(Fig. 2), basal cells have been identified as the progenitors of the tracheal and bronchial epithelium 

(36, 37), a variant Clara cell subpopulation in the bronchus and bronchioles (38) and type II alveolar 

cells in the alveolar regions (39); the capacity to act as progenitors appears to be an additional role 

along with the basic cellular functions outlined earlier and evidence suggests that following injury to 

the lung, mechanisms are triggered to activate this regenerative capacity (40). A controversial 

multipotent lung stem cell has also been claimed to exist (35). Exogenous sources of stem cells that 

have been proposed for use include bone marrow-derived nonhaematopoietic or mesenchymal 

stem cells (41-43), embryonic stem cells (ESCs) (44-47), human amniotic fluid-derived stem cells (48) 

and induced pluripotent stem cells (49). Endogenous mesenchymal progenitors include fibroblast 

growth factor 10-releasing mesenchymal cells (reported in (50)), but knowledge of these cells is 

limited and the literature is focused on airway epithelial progenitors at present. All cell sources are 

of interest from a tissue-engineering perspective as whether the cell population desired is derived 

from a pool of stem cell progenitors, currently residing epithelia or a combination of both, the result 

is the same: regeneration of respiratory tissue that can perform adequate re-epithelialisation, and 

possible prevention of remodelling at the site that contributes to fibrosis, loss of lung function and 

potentially respiratory disease (51). 
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3.1. Endogenous lung stem cell populations of the conducting region of the respiratory tract 

Basal cells have the capacity to act as multipotent progenitors of the tracheobronchial region of the 

respiratory tract. These cells occupy approximately 30% of the pseudostratified epithelium of the 

lung (52) and facilitate ciliated columnar epithelial attachment to the basement membrane, in 

addition to other potential roles in inflammatory processes and neurogenic signalling (53). 

Transgenic lineage labelling studies have demonstrated that following naphthalene and sulphur 

dioxide-induced injury to the airways, basal cells give rise to both ciliated cells and Clara cells in the 

subsequent reparative responses (36, 37). Interestingly, different ratios of ciliated cells: Clara cells 

are derived from the basal progenitors depending on the different type of insult to the upper 

respiratory tract, with more basal cells differentiating into Clara cells following their selective 

depletion with naphthalene. This group has since identified a molecular pathway by which basal cells 

preferentially differentiate into ciliated cells via IL-6 and JAK/STAT3 signalling (54). Clara cells in their 

own rite, as well as a subpopulation of naphthalene-resistant variant Clara cell, are capable of 

renewing the tracheobronchial and bronchiolar epithelium (38). From these studies, it is 

hypothesised that Clara cells provide a transiently amplifying population in response to injury while 

basal cells are longer-term progenitors of ciliated, secretory and Clara cell types. More recent work 

by Chen et al. that identified three pools of proximal conducting, distal conducting and alveolar 

progenitors mirrors this pattern of different progenitor responses to different forms of injury (55). In 

this study, it was shown that bleomycin administration selectively depleted epithelial cell types 

present within the distal lung cell fractions as well as reducing the colony-forming ability by 

remaining progenitor cells within each of the three progenitor pools. This suggested that the 

combined loss of epithelial cells and colony-forming ability in distal airways may account for the 

preferential effect of bleomycin on distal lung tissue remodelling. In response to the injury, 

preferential expansion of the subset of relatively undifferentiated distal progenitors occurred. Such 

variation in cellular response is important to consider for recapitulating fibrotic disease and tissue 
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remodelling using respiratory tissue engineered constructs, impacting on cell selection and the 

method of inducing airway damage. 

3.2. Endogenous lung stem cell populations of the alveolar region of the respiratory tract 

 In the alveolar region of the respiratory tract, type II alveolar epithelial cells are widely referred to 

as the progenitor for type I cells. It has been shown to be the case that in addition to their 

surfactant-producing function, these cells can give rise to type I pneumocytes both under 

homeostatic conditions and in response to bleomycin-induced injury (56, 57). Indeed, surfactant 

protein C+ (SPC+) type II cells have been recently confirmed as alveolar progenitors and as long-term 

stem cells in the adult lung (58). This new study builds on that of Rock and colleagues (57) by 

showing that in addition to their propensity to repopulate the alveolar region following bleomycin 

administration these cells have clonal properties, with long-term self-renewal described for over a 

year. Outside of the alveoli, a putative bronchioalveolar stem cell niche population has been 

proposed for both bronchiolar and alveolar regeneration in rodents (59), though at present, no 

corresponding cell type has been discovered in humans (60). More recently, a previously 

unidentified alveolar epithelial subpopulation expressing 46 integrin and no surfactant activity 

has been identified as a possible unique distal progenitor stem cell (61). This study showed that 

following administration of bleomycin to induce a progenitor response to alveolar injury, the 

damaged epithelium in the murine alveoli were replaced primarily with cells derived from non-SPC-

expressing progenitor cells present at the time of injury. While the results in this work point to the 

46 integrin-expressing subpopulation as this source, further lineage tracing data specific to this 

cell type is required for absolute confirmation. Finally, a Krt5+/p63+ pneumocyte-forming distal 

airway progenitor cell with has been reported after sublethal H1N1 virus administration (62); further 

investigation might yield yet another source for restoring the respiratory zone of the airways. 

3.3. Other lung stem cell populations 
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In contrast to the multitude of progenitor cells described above that have regional restrictions, a 

report by Kajstura et al. has claimed to identify a multipotent lung stem cell with not only the 

potential to differentiate into any cell of epidermal origin, but also of mesodermal origin (35). This 

study assessed a c-kit+ population for the properties of clonality, self-renewal and engraftment 

through serial transplantation into mouse lungs. The ramifications of this paper could be 

revolutionary, not only for respiratory tissue engineering and regeneration but also for stem cell 

biology, as a multipotent cell capable of differentiating down two different germ lineages has never 

been discovered. As such, this work has been met with some consternation over the choice of 

controls, lack of lineage tracing and the choice of cellular markers (63); further investigation is 

warranted to confirm their identity and potential before their extensive interaction with tissue 

engineered constructs can be considered. 

The role of extrapulmonary sources of lung stem cells in tissue repair to injury is one that is still 

inconclusive, but from a tissue engineering perspective, these cells hold potential for exploitation in 

in vitro or in vivo applications. Current evidence has identified bone marrow as a possible source of 

such cells. Repopulation of alveolar regions with bone marrow-derived stem cells has been reported 

from analysis of sex-mismatched transplant tissue in humans, whereby male-derived cells detected 

in lungs from female donors exhibited variable differentiation into type II cells within some samples 

(41). More recent work suggests that the source of these cells is non-haematopoietic in origin and 

may point to a primitive stem cell population residing in bone marrow (42), while surgeries using 

aortic allografts as tracheal replacements provide evidence of mesenchymal stem cell involvement 

(43). Embryonic stem cells (ESCs), popular for their pluripotency, have naturally been tested for 

induction into epithelial cells by various methods, with studies deriving alveolar epithelium from 

murine (45, 47) and human (44) ESCs in addition to proximal epithelial cells (46). At present, the 

ethical sensitivity of embryonic cells limits their widespread use in the clinical setting. Two 

alternative sources of pluripotent cells that can differentiate into lung cell epithelial cell lineages but 

have no ethical ambiguity are human amniotic fluid stem cells (hAFSCs) and induced pluripotent 
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stem cells (iPSCs) (48, 49). iPSCs were recently developed by transduction of 4 transcription factors 

and show great promise as a tool for tissue regeneration and as a means of creating disease-specific 

drug development tools (64, 65). However, this extrapulmonary stem cell source has current 

limitations that require resolution, including concerns of tumorigenesis (66), the method of 

transcription factor transfection and efficiency of iPSC production, and genotoxicity issues (67). 

Future studies will reveal their potential for respiratory tissue regenerative strategies, such as with 

the clinical trial investigating the derivation of iPSCs from the skin fibroblasts of patients with end-

stage lung disease currently underway (68). hAFSCs have shown broad multilineage potential with 

derivation down six cell lineages across all three germ layers (69) and have been described to 

differentiate into alveolar epithelial cells (48), though further research to clearly characterise the 

stem cell and the degree of its “broad multipotency” are warranted before they are considered for 

use in lung regenerative trials (70). 

While lung stem cell populations continue to be identified in vivo or developed in vitro (Table 1), the 

majority of endogenous progenitors have not been studied in isolation using three-dimensional (3D) 

culture on tissue engineered constructs. This might be largely due to the fact that most 

characterisation studies have been conducted using animal models with inherent differences 

between human and rodent cellular markers and anatomical distribution (71-73), in addition to a 

lack of standardisation of protocols for isolation of significant quantities of human progenitor cells. 

Optimisation of biomaterial composition, structure and mechanical properties for endogenous cell 

recruitment carried out in vitro with these cell types could pave the way for superior scaffold 

implant design for tissue regeneration or enhanced understanding of embryological processes. Most 

respiratory 3D studies to date have instead utilised primary tracheobronchial or alveolar epithelial 

cells which inadvertently in themselves are mixed cell populations containing the endogenous 

progenitors that might contribute to earlier proliferation observed on the constructs (74). These 

studies incorporate a wide range of acellular and polymeric, natural and synthetic components with 

different formulations and scaffold structure, which are discussed in Section 5. Like the endogenous 
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progenitors, extrapulmonary sources of stem cells such as ESCs and iPSCs are also difficult to obtain 

in large numbers, require careful in vitro maintenance in order to retain their stemness and also 

pose a risk of tumorigenesis in vivo (75). MSCs are an alternative cell source that is easier to obtain 

in larger numbers, less difficult to culture in vitro and has a more favourable safety profile. With 

improved standardisation of cell isolation and maintenance practice (reviewed in (76)), MSCs could 

be a universally successful therapeutic option for respiratory tissue engineering strategies. 

4. Signalling factors in airway growth and development 

Healing processes in the airways require complex coordination of a range of growth factors for 

processes such as proliferation, differentiation, and vascularisation of tissue to restore functionality 

(reported in (77)). In the airways, bone morphogenetic proteins (BMPs), notably BMP4, have been 

identified for their roles in lung development and airway healing following acute injury (78, 79). 

BMPs regulate a variety of proliferation, differentiation, angiogenesis, apoptosis, and regeneration 

across the body (80) and this has been exploited for tissue regeneration purposes; for example, 

recombinant BMP2 is available as a commercial bone graft substitute (81); investigations into their 

use for respiratory regeneration are currently limited.  

Members of the fibroblast growth factor family have also been linked with respiratory epithelial 

proliferation and differentiation, as has hepatocyte growth factor (HGF) and epidermal growth factor 

(46, 82, 83). HGF, in particular, is under investigation as a possible therapeutic agent for the 

treatment of pulmonary fibrosis. This growth factor has been detected at higher levels in patients 

suffering from pulmonary fibrosis (84), and plays a role in the modulation of alveolar epithelial and 

endothelial apoptosis, as well as fibroblast differentiation into pro-fibrotic myofibroblasts (85). 

Increasing the levels of HGF in the respiratory tract, either by gene transfection or by intratracheal 

administration, reduced lung fibrosis in bleomycin-induced models of pulmonary fibrosis (86-89). 

Mechanisms of reparative action determined in these studies confirmed an anti-apoptotic effect on 

alveolar epithelial cells, reduction of pro-inflammatory molecules, a decrease in transforming growth 
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factor beta-1 (TGF1)-mediated epithelial-mesenchymal transition and reduction in collagen 

deposition. Indeed, recognition of HGF’s role in regenerating respiratory tissue has instigated several 

clinical trials for the use of small molecule HGF-mimetics for the treatment of acute lung injury and 

pulmonary fibrosis (reviewed in (90)). Recent evidence suggests that HGF can be supplied to the 

damaged airways by bone marrow-derived MSCs (91), suggesting yet another benefit of the use of 

such stem cells for 3D respiratory tissue modelling in vitro or tissue regeneration. 

A small molecule, all-trans retinoic acid, is a media supplement often added to primary airway 

epithelial cell culture (92), and has shown mixed potential for reversal of COPD-induced alveolar 

injury in human and animal trials (93-97). From a tissue engineering perspective, the inclusion of 

such a molecule within an in vitro 3D culture system could enhance maintenance of airway cell 

culture (98, 99). Further delineation of specific growth factors in the respiratory tract, their 

mechanisms of action, as well as their temporal release in morphogenesis, tissue development and 

responses to injury, could be incorporated into tissue modelling or regenerative medicine strategies 

for the airways in future. 

5. Respiratory tissue engineering approaches: Biomaterial and cell sheet technologies 

The majority of respiratory tissue engineering research has focused on the use of biomaterial 

scaffolds for 3D airway in vitro modelling or for the fabrication of regenerative implants. Scaffolds 

employed are typically composed of natural polymeric materials (e.g. collagen) or donor ECM 

(decellularised tissue), synthetic polymeric materials (e.g. poly--caprolactone (PCL)) and composites 

of synthetic and natural materials (e.g. decorin-gelatin-PCL). All three categories have been 

employed in engineering both the conducting region and alveolar region of the airways in a variety 

of formulations, including hydrogels, porous polymeric sponges, and decellularised/ECM-based 

constructs. The choice of scaffold type has often reflected the tissue engineering application in mind, 

with most 3D in vitro modelling applications investigating hydrogel-based formulations and ex vivo 

culture and other regenerative approaches favouring the use of acellular ECM material and porous 
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polymeric scaffolds. Cell sheet tissue engineering has also been investigated as a “scaffold-free” 

means of repairing damaged lung tissue. Careful examination of the source material, biomaterial 

scaffold and potential application of the engineered construct is critical in order to enhance the field 

of respiratory tissue engineering. 

5.1. Tissue engineering of the conducting region of the respiratory tract 

Tissue-engineered constructs of the conducting region have been created and investigated for either 

developing an improved in vitro analogue of the tracheobronchial region for disease modelling and 

drug development, or for the manufacture of tubular or patch scaffolds to regenerate diseased or 

compromised airways to restore access to the lower regions of the lung for effective respiration. For 

the former application, hydrogel scaffolds have had widespread use (Table 2), while for the latter, 

decellularised (DC) tissue has risen to prominence since the clinical report of 2008 (9). Porous 

polymeric scaffolds have also been manufactured for this purpose (Table 3). 

Hydrogels 

Tracheobronchial cells cultured at an air-liquid interface (ALI) upon a type I collagen gel, either as a 

gel alone or as a set gel suspension containing fibroblasts, can enhance cellular proliferation and 

differentiation to yield a physiologically similar pseudostratified epithelia (100-103). The 3D 

multicellular environment can have a prominent influence on respiratory epithelial cells, including 

the composition and mechanical properties of the hydrogel. Pageau et al., for example, discovered 

that a collagen concentration range of 2mg/ml-3mg/ml was optimal for the co-culture model to 

prevent excessive fibroblast-induced contraction (103). This study also identified that the change of 

fibroblast cell type affected the epithelial cell phenotype and contractile properties. Additionally, 

other studies have shown that Matrigel®, a basement membrane analogue derived from mouse 

sarcoma cells (104), induced the formation of spheroid-like structures from human bronchial 

epithelial cells within the gel and displayed alveolar and pulmonary acinar characteristics when used 
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as the cellular substrate, similar to its effects on type 2 pneumocytes (105, 106). Further 

improvements have been made to hydrogel models by introducing physical strain and 

immunological components to better mimic the airways and understand inflammatory disease (107, 

108). 

It is worth noting that in the majority of upper airway co-culture studies involving collagen hydrogels 

(101, 103, 105, 107), the human foetal lung fibroblast IMR-90 cell line was used as the secondary cell 

for culture with airway epithelium (109). The origin of the fibroblast has been observed to modulate 

cell  morphology and differentiation and should always warrant consideration for any airway tissue 

engineered system, as prominently demonstrated through the use of different primary sources of 

fibroblasts by Kobayashi and colleagues in culture with tracheal epithelial cells (110), as well as 

through the observed cancerous change in epithelial cells in the presence of lung cancer-associated 

fibroblasts (103). When taken into consideration with scaffold composition effects on cell signalling 

and behaviour, the importance of selection of the appropriate source of cells for successful in vitro 

tissue engineering applications is re-emphasised. 

While collagen-based hydrogels are undoubtedly the most prominent choice of biomaterial for in 

vitro respiratory tissue engineering applications, other natural polymers and composites have been 

considered. Risbud and colleagues, for example, validated the immunocompatibility of a chitosan-

gelatin hydrogel through a 7-day culture period with macrophages and found that the biocompatible 

material supported the growth of human primary respiratory epithelial cells (111). Cornelissen et al. 

directly compared fibrin hydrogels to those made from collagen in a bid to create a biomaterial that 

could be derived from autologous blood in a patient (112); fibrin was found to be non-inferior to 

collagen as a material for tracheal epithelial cell culture, highlighting its potential as a substrate for 

engineering the conducting region. Overall, hydrogel models of the conducting respiratory region 

have demonstrated efficacy as an ECM mimic of the proximal airways. 
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In spite of their widespread use as an ECM mimic of the upper respiratory tract, gel scaffolds suffer 

from one major disadvantage- their high water content (113). Due to this property, gel materials are 

viscoelastic in nature and are awkward to handle as a material; furthermore, they suffer from weak 

mechanical properties, requiring extended ex vivo culture periods and combinations with synthetic 

polymers to reduce scaffold collapse in vivo (114-117). Thus, their role in the design of 

tracheobronchial constructs for in vivo regeneration is quite limited and their use is generally 

restricted to in vitro airway reconstruction for disease modelling. That said, employing hydrogels as a 

cell delivery agent could be a promising regenerative approach for the airways in the future. In this 

role, the material might act to enhance delivery and retention of mesenchymal stem cells to the 

damaged tissue (118-120), providing an in situ reservoir of growth factor-secreting cells that can 

repair damaged respiratory tissue by paracrine action (121, 122). 

Decellularised Tissue 

As an alternative to hydrogel materials for regenerating the conducting airways, the use of 

decellularised (DC) tissue has increased significantly since the clinical report of Macchiarini et al. (9, 

123). Donor tissue can have its antigenic components removed by various steps of detergent 

addition to leave a natural scaffold maintaining tissue architecture and embedded signalling factors 

(124), allowing for the re-seeding of the material with the recipient’s cells; in the case above, 

autologous bronchial epithelial cells and bone-marrow derived MSCs differentiated into 

chondrocytes were seeded on the DC trachea and cultured in a dual-chamber bioreactor with 

oxygen exposure. Proof-of-concept with a cell-seeded tissue-engineered patch of porcine jejunal 

segment was performed and demonstrated that the presence of both cell types were necessary to 

prevent stenosis and infection in the graft (125, 126). More recent work has delivered success with 

intraoperative-based seeding and eliminating the use of a bioreactor through use of pharmacological 

cell boosting agents (127, 128).  
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DC trachea engineered as outlined above can still be subject to a lack of vascular supply, ultimately 

resulting in an avascular scaffold core unable to support viable tissue growth. To address this 

limitation, a case study by Delaere et al. adopted a different approach using untreated donor 

trachea with a “pre-vascularisation” period within the recipient patient’s forearm to allow 

autologous vessel growth prior to implantation at the site of the tracheal defect which would 

become the first vascularised tracheal allotransplant (129). The patient received a course of 

immunosuppressive therapy to prevent rejection of the allogeneic tissue that was tapered to allow 

gradual replacement of the donor cells with patient cells. This procedure was very successful, with 

the initial process leaving a vascularised scaffold rich in patient-derived mucosa that integrated well 

into host trachea. No stents were required and the patient was discharged within one week of the 

tracheal transplant procedure. This procedure has since been performed in five other patients (130). 

Another approach towards tracheal regeneration using donor tissue of note is the use of allogeneic 

aortas as a means to induce in situ tracheal regeneration in the body. Following on from pioneering 

studies with autologous and allogeneic aortic tissue in animals (131-133), Martinod and colleagues 

conducted three clinical cases to some degree of clinical success with stent insertion (134, 135). 

Further studies have been conducted with cryopreserved aorta as an alternative to fresh aorta (136, 

137), though at the time of writing, these await human trials. While this procedure does not strictly 

involve a tissue engineered scaffold, the processes of guided healing and directed regeneration 

mirrors that which is sought with airway constructs and is important to note. 

DC trachea is not without its drawbacks, however. Ultimately, the use of tissue-based scaffolds 

suffers from the same major limitation as transplantation- the requirement for donors. For 

widespread clinical application, mass-production of this type of material becomes an implausible 

challenge at present. Furthermore, donor tissue segments may be limited in their dimensions, which 

may not fit all recipients depending on the location and size of the injury. For acellular trachea, the 

process of decellularisation can weaken the tissue mechanical properties in spite of retention of 
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architecture, increasing the risk of graft collapse following implantation in vivo (138). The ideal 

method of decellularisation remains to be determined, with differences seen in structural integrity 

and ECM composition between the three most popular protocols (139). Tissue heterogeneity due to 

long-term storage prior to surgical implantation is another caveat that must be taken into account 

(140). Finally, there is the risk of disease transmission between donor and recipient. Thus, although 

they show great promise, acellular material is not the conclusive solution for tracheobronchial tissue 

regeneration just yet. 

Porous polymeric scaffolds 

Porous polymeric scaffolds hold the potential to address the supply and compatibility issues of 

donor tissue and to further improve the in vitro representation of the tissue architecture and 

composition of the conducting region, creating more fibrous structures that are reminiscent of the 

tissue architecture outlined in Section 2. These scaffolds are typically sponge-like materials that 

composed of either naturally-occurring polymers, synthetic polymers, or a composite of natural and 

synthetic material (141). Synthetic and semi-synthetic polymeric materials have been explored as 

biomaterials in tissue engineering because of their potential to produce constructs with more 

customisable biocompatible and biodegradable properties than some natural substrates, with 

manufacturing techniques such as freeze-drying, electrospinning and 3D printing involved in scaffold 

production. 

As with hydrogels, collagen is a popular choice for porous polymeric scaffolds. Non-woven collagen 

scaffolds can sustain growth of human nasal epithelium in 3D in vitro culture (142); in the same 

study, Hyaff®, a hyaluronic acid derivative membrane compared to the collagen scaffold, was found 

to be non-adhesive for respiratory epithelial cells, a finding that has been disputed elsewhere (98, 

143), with differences in primary cell isolation as the possible reason for differences in cell 

adherence. Other in vitro work by Pfenninger and colleagues has also validated the use of collagen 

for tracheal engineering through analysis of a collagen membrane (144). Concerning the use of 
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porous collagen scaffolds for in vivo regeneration of partial tracheal defects, collagen sponges 

coated with a type I collagen vitrigel can reproducibly induce in vivo formation of rat tracheal 

epithelium, as well as supporting tissue repair by ex vivo culture of epithelial cell and fibroblast co-

culture prior to implantation (145-147). Vitrification of the hydrogel involves drying a “traditional” 

collagen hydrogel in order to form a more robust glass-like material that can be subsequently 

rehydrated and utilised for tissue engineering applications (148). 

 

Porous natural materials are more robust than hydrogels in general but still suffer from weak 

mechanical properties; therefore, combination with synthetic materials can benefit from the synergy 

of natural cell-binding ligands and greater synthetic mechanical properties. Poly--caprolactone 

(PCL) is an example of a polymer that can support respiratory cells with the advantage of being 

suitable for a range of fabrication methods and different cell types in conjunction with natural 

polymers. Electrospun mixtures of decorin, gelatin and PCL, for example, created a highly fibrillar 

network that supported primary human airway epithelial cells expressing markers and 

morphological features of a differentiated airway epithelium (149). Freeze-dried PCL-type II collagen 

scaffolds cultured with chondrocytes in a bioreactor were grafted into rabbits and maintained for a 

mean of 52 days (150). Certain combinations of natural materials can also reinforce the mechanical 

properties of one natural material alone, such as the incorporation of electrospun silk fibroin into a 

dense collagen tubular construct (151). In this study, the inclusion of the silk mesh not only provided 

increased mechanical strength, but also introduced a fibrous component that can mimic 

tracheobronchial architecture; such a scaffold holds great promise for future ex vivo bioreactor 

culture for large airway regenerative purposes. 

 

Synthetic materials have been tested alone as the source material for tracheobronchial scaffolds for 

both in vitro modelling and in vivo regeneration applications. A novel approach of individually 

manufacturing electrospun layers of polyethylene terephthalate (PET) for culture of epithelial, 
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fibroblastic and dendritic cellular components of the scaffold before stacking them to create a 

combined immunocompetent “triculture” system with appropriate cell localisation has been 

designed (152). Initial findings have indicated that 3D co-culture with the fibroblasts has enhanced 

epithelial cell functionality, while immune responses following allergen exposure showed favourable 

dendritic cell migration; such a tissue engineering-inspired model could pave the way for 

pharmacological and toxicological screening of novel therapeutics for respiratory delivery. In vivo 

regeneration of a segmental tracheal defect has shown potential with pre-vascularisation of a 

chondrocyte-seeded polyglycolic acid-silicone construct in the sternohyoid muscle prior to 

implantation in the trachea (153), while a well-characterised electrospun PET-polyurethane scaffold 

pre-cultured with mesenchymal stem cells demonstrated cell attachment and expression of markers 

of epithelial differentiation in a rodent model (154). Furthermore, Jungebluth and colleagues have 

performed a proof-of-concept study in a 36 year old male with a polyhedral 

oligomericsilsesquioxane (POSS)-poly-(carbonate-urea)urethane (PCU) scaffold processed by an 

extrusion-phase inversion method (155). Computed tomography scans and virtual imaging of the 

patient’s airway were employed to match the construct dimensions to the site of implant to 

ultimately achieve the first in vivo implantation of a synthetic graft in man. 

5.2. Overall, solid polymeric scaffolds can offer a balance between improved handling and 

mechanical properties and the ability for tailoring scaffolds to customisable sizes and shapes to 

match different airway dimensions, potentially surpassing the limitations of hydrogels and DC 

tissue encountered with tissue engineering of the conducting region of the respiratory tract. 

However, synthetic materials are not without their limitations. Firstly, these polymers can lack 

suitable ligands that are required for initial cell adherence and repopulation of constructs, as 

well as subsequent growth and differentiation. This drawback can be typically overcome through 

coating the material with ECM proteins to enhance cell attachment, such as with the integrin 

ligand RGD peptide (156). Of greater concern, perhaps, are issues with the biocompatibility and 

biodegradability of synthetic materials, where the presence of foreign material or its by-
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products in vivo can induce damaging pro-inflammatory responses. Implantation of a synthetic 

scaffold can induce a foreign body reaction that encapsulates the biomaterial in a fibrotic 

capsule, rendering it useless for tissue regeneration (157), while for materials like poly(lactic-co-

glycolic acid) (PLGA), acidic metabolic products can elicit tissue damage in its local environment 

in the body (158). Finally, prolonged or absent rates of material degradation in tandem with 

replacement with host tissue can be a challenge for implanted synthetic scaffolds; in the case of 

tissue engineering and the conducting region of the respiratory tract, however, non-degradable 

natural and synthetic implants appear to yield favourable clinical outcomes and thus might be of 

greater benefit in this application (123, 155).Tissue engineering of the alveolar region of the 

respiratory tract 

The alveolar region is one of great interest for pharmaceutical drug delivery research and for chronic 

lung disease, for which a tissue engineering approach could be applied for improved 3D in vitro 

modelling. Firstly, it is in this area where an aerosolised therapeutic is absorbed into the 

bloodstream in order to elicit a systemic effect (159), and thus drug transport of novel agents can be 

adequately assessed with improved in vitro tools. Secondly, the pathophysiology of severe and 

incurable lung conditions like COPD and pulmonary fibrosis is linked with dysfunction in ECM 

structure and composition (29), a physiological component that a scaffold system can incorporate 

into a disease model. Furthermore, there is potential to further develop these constructs into 

functional units that can restore respiratory function in damaged alveolar segments or provide an 

alternative to lung transplantation. Alveolar tissue engineering has seen a similar trend in research 

to that of the conducting region, where earlier work focused on hydrogels with some porous solid 

scaffolds and more recent research has expanded on the use of acellular whole lungs to preserve 

alveolar architecture (Table 4). 

Hydrogels 
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Hydrogel scaffolds have been investigated as an environment for forming 3D alveolar structures for 

distal airway modelling, where epithelial cells have been cultured within the gel matrix. One of the 

first studies reporting the use of a gel scaffold for the support of airway cell culture by Blau et al. 

described the culture of foetal rabbit type 2 pneumocytes with reconstituted basement membrane 

(Matrigel®) (160). When gels of a sufficient thickness were manufactured, the cells had sufficient 

space within the material to form spherical clusters around a central lumen, as well as polarise and 

differentiate to maintain their arrangement for up to 22 days. The propensity for type 2 alveolar cells 

to form these alveolar-like structures in vitro has been replicated with other species (161, 162) and 

with type I collagen gels (163), with expression of markers of differentiation such as pro-surfactant 

protein C and loss of cytokeratin 18 observed, suggesting transition from type II alveolar cells to 

flattened type I cells. 

These studies have demonstrated the feasibility of reproducibly culturing and maintaining distal 

airway constructs in different research laboratories with great potential to enhance understanding 

of processes such as alveolar morphogenesis and progression of disease. In this regard, hydrogel 

materials can facilitate alveolar sac formation by suspending the embedded cells in such a 3D 

arrangement. However, their use for respiratory drug development applications is limited as this 

system has no means of exposing the apical side of the alveolar barrier to a drug formulation and 

conversely, no method of collecting transported drug on the basolateral side of the alveolar bundle 

to assess drug absorption through the airways and epithelial barrier permeability; such an 

assessment is a standard measure used in current two-dimensional airway in vitro models (6) that 

would have to be carried forward into 3D models. Additionally, encased alveolar units described 

above are infeasible for in vivo tissue regeneration or replacement as their successful integration 

with the surrounding airway branches is unlikely. Ex vivo culture of cells for regenerative purposes is 

a possibility, provided that a routine method of hydrogel digestion and viable cell isolation is 

present. With all matters considered, the utility of hydrogel scaffolds of the alveolar region lies 

principally in its role as a tool for basic research. 



 
24 

Porous polymeric scaffolds 

Porous scaffold materials can remedy the regenerative limitations of hydrogel scaffolds by providing 

a structure in which the struts of the pores can provide a framework for alveolar cells to grow on 

and a hollow pore to develop in to the luminal airway on the apical side of the cells, with the correct 

tailoring of pore size and interconnectivity within the construct.  

One of the earliest reports concerning airway tissue engineering described foetal rat lung cells 

cultured on a gelatin sponge matrix that developed into alveolar bundles with microvilli and lamellar 

bodies (12, 164); Since then, these early studies have been expanded on through foetal lung cell 

culture on the purified gelatin product Gelfoam
® (165) and on other materials of a similar structure 

to achieve cell growth, ciliation and alveolar development, such as highly-porous lyophilised 

collagen-glycosaminoglycan (CG) scaffolds (166). Cell seeding on Gelfoam followed by insertion into 

healthy lung tissue in a rat model led to successful alveolar unit formation, vascularisation of scaffold 

segments and host remodelling of the construct into natural tissue. This promising study required 

pre-seeding with foetal lung cells- in their absence, the scaffolds integrated with surrounding tissue 

but failed to form alveoli. Should an appropriate human stem cell source be identified for human 

lungs, this scaffold system could develop into a regenerative procedure in cases of emphysema or 

other chronic lung disease affecting the lower respiratory tract. While the CG scaffolds were not 

implanted in vivo, foetal lung cells seeded not only formed alveolar structures and markers of 

alveolar surfactant production, but also deposited smooth muscle actin and elastin around the 

alveolar units, indicating enhanced functionality with potential for in vivo regeneration. 

The use of synthetically manufactured porous sponges have not been reported as much as natural 

materials for alveolar regeneration, with the most prominent study conducted by Cortiella et al. 

using two synthetic polymers in different formulations (167). In this study, a polyglycolic acid (PGA) 

mesh and a Pluronic F127 (PF127) thermoresponsive gel were compared as suitable substrates for 

isolated somatic lung progenitor cells and found that in spite of favourable in vitro findings, cell-
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seeded PGA mesh induced a foreign body reaction in vivo. Inclusion of PF127 with the PGA mesh led 

to the formation of alveolar-like structures, showing that alteration of the scaffold composition was 

critical in the success rate of the implant. Overall, porous scaffolds such as these can be 

manufactured to resemble alveolar architecture and provide a means of furthering alveolar 

regeneration through tissue engineering. 

Decellularised (DC) tissue 

The concept of DC whole lung has been the subject of recent interest since the publication of two 

studies outlining the preparation and transplantation of acellular rat lungs using primary epithelial 

and vascular cells and foetal airway cells (10, 11). Since then, parallel investigations have been 

conducted with murine (168, 169), primate (170), and more recently human tissue (171-173), as well 

as analysis with different stem cell populations such as bone marrow-derived MSCs (174). This 

emergent field could have great implications for transplant medicine, where the possibility of using 

acellular cadaveric donor tissue could reduce numbers of patients waiting to receive a transplant 

from viable sources (175). DC lung has also been utilised as a model for lung cancer (176), paving the 

way for improved disease modelling. 

While these studies do indicate the possibility of developing an entire, intact DC human lung that 

can be repopulated and grafted into patients as an alternative for transplantation, this form of 

therapy is still far from clinic-worthy. Firstly, to seed an entire organ such as the lungs alone would 

require vast quantities of cell types, the exact selection of which progenitor or progenitors is 

currently uncertain. As with DC tracheal tissue, there is a degree of disparity between the effects of 

different DC protocols on the resultant acellular lung (177, 178), and particularly in the case of using 

lungs that are deemed unsuitable for transplantation, organ storage, donor age and disease status 

can adversely affect mechanical properties of the resultant scaffold (173, 179, 180). For now, a more 

plausible and beneficial clinical application for these whole-organ constructs could be as a 

sophisticated in vitro drug delivery platform that could provide information on drug deposition fate 
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in the lungs following pulmonary administration, a critical factor in effective delivery to the lungs 

(181), and systemic absorption, given that the vascular and airway systems remain intact and 

independent of each other in the DC organ. Furthermore, the use of damaged lung tissue from 

patients with COPD or other chronic respiratory illness could advance our understanding of the 

pathogenesis and progression of disease. Indeed, a recent comparison of fibroblast culture on 

decellularised lung tissue slices from donor tissue of normal patients and those with idiopathic 

pulmonary fibrosis revealed that in the presence of stiffer, fibrotic tissue, the cells adopted a 

myofibrolastic phenotype that was independent of transforming growth factor-, suggesting that 

the mechanical properties of the lung tissue induced such a change (182). Additionally, prolonged 

fibroblast culture on DC lung tissue slices have been observed to develop fibrotic lung tissue in vitro, 

indicating that the use of an immortalised cell source or disruption of the tissue basement 

membrane could be exploited to develop a novel disease model (183). Use of such disease models 

for subsequent drug assessment could greatly boost the successful delivery of inhaled therapeutics 

to the diseased environment by improving in vitro-in vivo correlations in diseased status. 

5.3. Cell sheet culture and respiratory tissue engineering 

In a different approach to the abundance of biomaterials-based respiratory tissue engineering 

research that has developed in the field, cell sheet culture can develop intact cell layers for 

implantation without the requirement of a supporting scaffold. This method, pioneered by Okano 

and colleagues in 1993 (184), utilises cell culture plates coated with a thermoresponsive polymer 

that facilitates the removal of cell monolayers through reduction of the temperature from 37°C to 

below 32°C. In this manner, proteolytic cleavage of cell surface proteins and cell-cell contacts by 

trypsinisation is avoided, allowing cells to be transferred in a completely intact form, even with 

deposited ECM, for insertion into a site of injury. As well as offering this advantage, absence of the 

scaffold can reduce any potential inflammatory effects following implantation (185). 
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Cell sheet culture has been applied to both tracheobronchial and alveolar tissue engineering. For the 

upper airways, addition of an epithelial cell sheet to a pre-vascularised Dacron
®

 PET graft implanted 

in a rabbit trachea induced the development of a mature pseudostratified columnar epithelium 

along the luminal side at 4 weeks that did not fully form in its absence (186). This indicates that the 

combination of such an approach with other biomaterial constructs could maximise re-

epithelialisation of the tracheobronchial airway, an outcome critical for clinical success (4). Kanzaki 

et al. have also reported the sealing of intraoperative airway leaks in the lower lung tissue using skin 

fibroblast cell sheets (187, 188), and have recently developed a non-invasive method of delivering 

the cells via thoracoscopic surgery (189). Having considered these studies, we believe that there is 

an opportunity to combine both cell sheet and biomaterial scaffold-based respiratory tissue 

engineering. In addition to utilising cell sheets to repair possible defects and trauma in recellularised 

DC lungs, enhanced epithelialisation of tracheobronchial constructs and reduction of granulation at 

anastomoses (190) through the use of cell sheet sealing is possible. 

6. Future perspectives of respiratory tissue engineering: Opportunities and challenges 

Respiratory tissue engineering has advanced as a field significantly within the past decade and 

though this area of research is still quite nascent relative to other facets of tissue engineering such 

as skin, bone, and cartilage, it has the capacity to become the platform to advance treatment of 

chronic airway disease and adequately address the growing clinical need for novel treatments for 

these conditions. This can be achieved through two pathways- (i) utilisation of the constructs as a 

research tool for translational medicine to further our understanding of airway physiology and 

pathology, to validate new drugs and excipients and ultimately to pave the way for novel drug 

therapies; and/or (ii) utilisation of respiratory tissue engineered constructs as a regenerative medical 

device or as an alternative to transplant tissue. These applications have been alluded to throughout 

this review and are summarised here as the opportunities and challenges facing the future of 

respiratory tissue engineering. 
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6.1. In vitro respiratory drug development and disease models 

One avenue for respiratory tissue engineering research to pursue is the use of scaffolds as a means 

of enhancing in vitro disease models and the drug development process. As mentioned earlier, 

current cell-based in vitro models of the respiratory tract consist of 2D monolayers of primary 

tracheobronchial epithelial cells or an immortalised cell line cultured on a semi-permeable 

membrane insert at an air-liquid interface (ALI) to induce cell polarisation, differentiation and mucus 

production (6). ALI culture has played a significant role towards the in vitro recapitulation of the in 

vivo environment, presenting the cells with an apical side resembling the lumen of the respiratory 

tract and a basolateral side to represent vascular supply of nutrients (191), with increased 

expression of cilia in primary cells and differences in barrier and mucus-secreting properties of cell 

lines observed (192, 193). However, the absence of an extracellular component with co-cultured 

cells in a 3D environment can result in an over-simplification of the airway barrier, rendering this 

drug development tool lacking in physiological relevance. Inadequate data obtained from this 

system can increase the risk of drug candidate failure due to poor in vitro-in vivo correlation 

between the apparent pharmacokinetic and pharmacodynamic characteristics of the compound, 

culminating in great expense and time lost that delay the development process of new medicines. 

While the use of in vivo animal models can provide more toxicological information that might not be 

currently attainable with in vitro models, some animal species used in preclinical testing are not 

always suitable as in vivo models for human respiratory drug research because of structural and 

physiological differences between species (71-73). Therefore, combined with the drive to implement 

the reduction, refinement and replacement of animal models in research (194, 195), more 

sophisticated models based on 3D human normal and diseased tissue are required to provide in vitro 

models that improve predictive validity of drug compounds in humans and thus increase the number 

of successfully formulated therapeutics. Successful development of novel drugs that can actually 

target the pathophysiological source of the disease more directly will greatly improve treatment 

options for sufferers of chronic airway disease; for example, the recent revolutionary drug used to 
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treat cystic fibrosis, ivacaftor, was developed in line with improved in vitro culture using primary 

bronchial epithelial cells (196).  

Much of respiratory tissue engineering research can be linked to studies of three-dimensional (3D) 

airway modelling as an in vitro tool for basic research and drug development, which has seen a 

transition from single cell type culture on inserts towards co-culture and the inclusion of scaffold 

material (Fig. 3). Recognising the effects of mesenchymal cells on epithelial proliferation and 

differentiation from earlier work (197), Le Visage and colleagues expanded on epithelial cell insert 

culture by investigating the use of a tracheobronchial co-culture model in which human bronchial 

epithelial cells and human MSCs were cultured in monolayers on opposite sides of a Transwell® 

insert, akin to Fig. 3(b) (198). The presence of hMSCs altered the temporal pattern of mucin 

secretion by the epithelial monolayer, but the authors noted a prominent limitation in their model 

that when the MSCs were induced towards a chondrogenic lineage, they detached from the insert 

before any discernible effects on the bronchial epithelium could be observed, negating the co-

culture system. It was concluded that the inclusion of a biomaterial substrate might be more 

favourable in the future in order to provide a scaffold for MSC differentiation. In spite of this study, a 

triple co-culture system of the same style compromising alveolar epithelial cells, macrophages and 

dendritic cells has shown promise for studying immunological responses to inhaled particulates (199, 

200), but there is an overall consensus in the literature that introducing an ECM analogue into the 

co-culture environment, often through the use of a biomaterial scaffold, could enhance cell culture, 

cell-cell signalling and functionality(Fig. 3(c)). Accordingly, models in which the epithelium is cultured 

at an ALI over a scaffold substrate embedded with co-cultured cells are the subject of much interest 

and are even available now as commercial 3D research products, such as the MatTek EpiAirway-FT® 

technology (191). Use of airway tissue engineering provides the opportunity to develop long-lasting, 

reproducible, primary co-culture models for improved drug development and understanding of 

respiratory disease. 
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6.2. Respiratory regenerative medicine 

Considering the success of the human tracheal transplant cases (9, 129, 155, 201), it could be 

presumed that the prospect of a tissue engineered tracheal replacement device and possibly even a 

whole-lung construct is not far off the horizon; unfortunately, there is still much work to be done. Of 

the 14 patients who have received a tracheal DC allotransplant or synthetic scaffold, half have been 

reported to have died (190), although the scaffolds themselves may not be directly responsible for 

the deaths. The need for airway stents is another issue that has not yet been solved. Additional in 

vitro studies have been recommended to further elucidate the mechanisms of scaffold integration, 

healing and cartilage production prior to wide-scale clinical trials (202). Of course, it cannot be 

denied that the reported cases have shown excellent promise and proof of concept that such 

constructs can be translated to the clinic where they can affect change. For acellular tissue, the 

principal challenges lie in standardising donor tissue selection and long-term storage, 

decellularisation processes and, perhaps the most challenging aspect, the appropriate selection of 

cell sources for ex vivo recellularisation and restoration of functionality prior to implantation. 

DC tissue is not the only avenue forward for respiratory regenerative medicine. Natural polymeric 

and synthetic scaffolds offer potential to address the shortcomings of the need for donor tissue and 

their production is more often easier to reproduce, customise and scale-up for clinical production. 

Use of natural materials appropriately strengthened through crosslinking and advanced 

manufacturing techniques like electrospinning and 3D printing offer many advantages. These natural 

or semi-synthetic composite structures can act as an “off-the-shelf” device that is available on 

immediate demand in the clinic. The challenge lies in assessing whether these constructs can 

operate as cell-free implants, given the nature of the airways being an open interface that requires 

an epithelial barrier (4), or whether an ex vivo pre-seeded system would be better. The use of 

growth factor and gene-enriched scaffolds seen in other areas of tissue engineering (203, 204) could 

also provide new opportunities for using these scaffolds as regenerative implants. 
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7. Conclusions 

In conclusion, the field of respiratory tissue engineering has progressed significantly from the early 

experiments of Douglas et al. (12, 164), and holds great potential for the future of clinical therapies 

for chronic airway disease and respiratory drug development. The airways represent a complex 

system between the host and its environment, leading to challenges in effective in vitro 

representation or surgical treatment of the organ. As further knowledge accrues on airway and lung 

stem cells, signalling factors are revealed and further advances are made in biomaterial 

development, amalgamation of pulmonary stem cell biology research and tissue engineering can 

bring with it the development of in vitro systems and regenerative implants to address the 

significant burden of lung disease and major airway trauma. 
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