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Abstract 

Biomaterial scaffolds that support cell infiltration and tissue formation can also function as platforms 

for the delivery of therapeutics such as drugs, proteins and genes. As burst release of 

supraphysiological quantities of recombinant proteins can result in adverse side effects, the objective 

of this study was to explore the potential of a series of collagen-based scaffolds, developed in our 

laboratory, as gene-activated scaffold platforms with potential in a range of tissue engineering 

applications.  The potential of chitosan, a biocompatible material derived from the shells of 

crustaceans, as a gene delivery vector was  assessed using  mesenchymal stem cells (MSCs). A 

transfection efficiency of >45% is reported which is similar to what is achieved with polyethyleneimine 

(PEI), a non-viral gold standard vector, without causing cytotoxic side effects. When the optimised 

chitosan nanoparticles were incorporated into a series of collagen-based scaffolds, sustained 

transgene expression from MSCs seeded on the scaffolds was maintained for up to 28 days and 

interestingly the composition of the scaffold had an effect on transfection efficiency. These results 

demonstrate that by simply varying the scaffold composition and the gene (or combinations thereof) 

chosen; the system has potential for a myriad of therapeutic applications. 

 

 

Table of Contents Graphic: Chitosan-pDNA nanoparticles combined with collagen scaffolds form a 
gene-activated scaffold platform for tissue engineering applications 
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1. Introduction 

While the use of biomaterial scaffolds for the treatment of bone and cartilage defects has shown some 

promise, the addition of bioactive molecules such as growth factors can significantly enhance healing, 

particularly in large defects [1, 2]. For example, absorbable collagen sponges are used clinically to 

deliver recombinant human bone morphogenetic protein-2 (rhBMP-2) in spinal fusion procedures 

(Medtronic’s INFUSE ®) [3]. However, as rhBMP-2 has a very short half-life, supraphysiological 

amounts of rhBMP-2 must be delivered in order to be effective. This can have adverse effects [4]. The 

delivery of genes-encoding growth factors, rather than the protein itself, offers a means of controlling 

the expression of protein at the defect site and prolonging the timeline of expression without needing 

repeated doses. Viral vectors are commonly used for gene therapy; however, there are many safety 

issues associated with their use such as immunogenicity and risk of insertational mutagenesis [5, 6]. 

On the other hand, non-viral gene delivery vectors have great potential in tissue engineering as they 

have a much better safety profile. However, non-viral vectors have not achieved the same levels of 

transgene expression (in a process termed transfection) as their viral counterparts, making vector 

design crucially important [7-10].  

The ideal gene delivery vector must be biocompatible, biodegradable, minimally cytotoxic and 

capable of effective intracellular delivery of DNA [10]. It must also allow for sustained expression of 

the target protein for the required amount of time. Non-viral gene delivery vectors are typically 

formulated from two main groups of materials: 1) cationic lipids, for example, Lipofectamine 2000™, 

and 2) cationic polymers, for example, polyethyleneimine (PEI) [11-13]. However, both Lipofectamine 

2000™ and PEI can be cytotoxic [14, 15] which has motivated research into more biocompatible 

materials. 

Chitosan is a versatile biomaterial derived from the exoskeleton of many crustaceans which can be 

used in the formulation of microparticles and nanoparticles suitable for drug delivery [15-19]. The 

amine groups on the chitosan chain are positively charged and can bind to negatively charged DNA 

and condense it into positively charged nanoparticles. The use of chitosan for gene delivery is not a 

new concept, Mumper et al. (1995) first reported the use of chitosan for in vitro gene delivery 20 years 

ago [20]. However, to date the transfection efficiency reported using chitosan gene delivery vectors 

has been poor, especially in primary cells. Up to now, there have been only two reports detailing the 



use of chitosan vectors  to delivery genes to MSCs and the highest transfection efficiency reported 

was 18% [15, 21]. 

To facilitate endocytosis by cells and subsequent transfection, it is generally accepted that chitosan 

nanoparticles must be 100-200nm in diameter and carry an overall positive zeta potential (ZP) [15, 

22]. Molecular weight (MW) is one of the main parameters affecting chitosan-mediated transfection as 

it influences nanoparticle size, complexation efficiency between chitosan and pDNA, rate and extent 

of endocytosis and eventual dissociation or ‘unpacking’ of the pDNA from chitosan [16, 23-25]. While 

high MW chitosan can form more stable nanoparticles, particularly when cross-linked, they may not 

release the pDNA efficiently thus limiting transfection. Conversely, low MW chitosan forms less stable 

complexes with pDNA but can result in more efficient release intracellularly [23]. Recently very low 

MW, water soluble oligochitosan (OCS: 7.3 kDa) has shown high transfection efficiency in a kidney 

cell line commonly used as a gene delivery model cell (HEK293 cells) [26]. This type of chitosan, 

which has not been used to transfect MSCs previously, was chosen for investigation as a non-viral 

vector in this study and compared to the more traditionally used polychitosan (PCS: 160 kDa) [15, 21]. 

The idea of combining therapeutic genes with biomaterial scaffolds was first proposed in the late 

1990’s and termed a ‘gene-activated matrix’ [27]. The theory is that when implanted in vivo, cells 

infiltrate the scaffold and internalise the gene delivery vector. The DNA is transcribed and translated 

to the target protein resulting in controlled release of the target protein at the site where it is required. 

Depending on the material composition of the scaffold, it might also support cell proliferation and 

differentiation and act to retain the genes at the defect site for longer, thereby delaying clearance. A 

series of porous collagen-based scaffolds, with the composition, pore structure and stiffness tailored 

to promote regeneration of individual tissues, have been developed for specific tissue engineering 

applications within our laboratory [28, 29]. Tissue healing induced by these scaffolds can be further 

enhanced by the incorporation of genes known to induce MSC osteogenesis or chondrogenesis and 

extracellular matrix deposition. PEI and nanohydroxyapatite (nHA) particles have been developed 

previously in our laboratory to deliver plasmids encoding bone morphogenetic protein-2 (pBMP-2) and 

vascular endothelial growth factor (pVEGF) on these collagen-based scaffolds and have resulted in 

almost complete repair of critical sized defects after just 4 weeks [30] post-implantation in vivo. 

However, as PEI can be cytotoxic and nHA is an osteoinductive biomaterial, a more biocompatible, 



versatile delivery vector, namely chitosan, is required that could be used to create gene-activated 

matrices with potential use in a wide range of regenerative applications.  

The objectives of this study was firstly, to develop chitosan-based nanoparticles with properties that 

facilitate MSC transfection and secondly, to create a series of gene-activated scaffolds by 

incorporating the optimised chitosan-pDNA nanoparticles into collagen-based scaffolds. Specifically, 

two types of chitosan were investigated as MSC transfection agents: a polymeric chitosan (PCS) of 

medium molecular weight (160 kDa) which has been used for MSC transfection and, while limited 

success was reported [15, 21], potential for gene delivery was shown. NovaFect™, an oligomeric 

chitosan (OCS) with a very low molecular weight (7.3 kDa) was also tested. This type of chitosan has 

not been tested on MSCs previously but has shown potential in cell lines such as HEK293 cells and 

cervical cancer (HeLa) cells as well as in vivo in corneal and retinal applications [26, 31, 32]. The 

optimal chitosan nanoparticle formulations were then applied to three different collagen-based 

scaffolds; collagen, collagen hydroxyapatite (CHA) and collagen hyaluronic acid (CHyA) which have 

previously been developed within our lab for  repair of bone and cartilage [33-36] and the transfection 

efficiencies of the gene-activated scaffolds were determined.  

2. Materials and Methods 

All materials were supplied by Sigma Aldrich, Ireland unless otherwise stated. 

2.1 Plasmid propagation 

Plasmids encoding the genes Gaussia Luciferase (pGLuc; New England Biolabs, Massachusetts, 

USA) and green fluorescent protein (pGFP; Amaxa, Lonza, Cologne AG, Germany) under the control 

of the cytomegalovirus promoter were propagated by transforming One Shot® TOP10 Chemically 

Competent E. coli bacterial cells according to the manufacturer’s protocol. pDNA was purified and 

collected using the Endotoxin free Maxi-prep kit (Qiagen, UK). Plasmid was dissolved in TE Buffer at 

a concentration of 0.5mg/mL and stored at -20oC.  

2.2 Chitosan-pDNA nanoparticle formulation 

PCS (MW 160kDa; DD 85%) and OCS (Mw 7.3kDa; DD >97%) were supplied by Novamatrix, FMC 

Biopolymer, Norway. Nanoparticles were formulated by electrostatic interaction between cationic PCS 



or OCS and anionic pDNA. Sodium tripolyphosphate (TPP) was used to further crosslink the PCS-

pDNA particles. Nanoparticles were allowed to equilibrate for 30 min at room temperature before use. 

The ratio of chitosan to pDNA (N/P ratio) was varied as shown in Table 1. Branched PEI (MW 25 kDa)   

complexes were formulated as described previously [12] and used as a positive control in transfection 

experiments. Briefly, PEI was added to 2µg pDNA at an N/P ratio of 7. The formulation was mixed 

and allowed to complex for 30 mins at room temperature before use. 

2.3 Physicochemical characterisation of chitosan-pDNA nanoparticles 

2.3.1 Effect of MW on nanoparticle morphology 

Nanoparticle size and morphology was determined using atomic force microscopy (Olympus IX51, 

Asylum Research MP3D, Gwyddion software) whereby, PCS-pDNA and OCS-pDNA nanoparticles 

were made as described in Section 2.2 and dropped onto a silicone substrate. Excess water was 

purged with nitrogen gas and samples were viewed immediately. 

2.3.2 Effect of MW and N/P ratio on nanoparticle size and zeta potential and complexation 

efficiency 

Dynamic light scattering (DLS) was also used to determine nanoparticle size and polydispersity and 

electrophoretic light scattering (ELS) was used to measure the zeta potential of the nanoparticles 

(Zetasizer 3000 HS, Malvern, UK). PCS-pDNA and OCS-pDNA nanoparticles were made as 

described above in Section 2.2 and the volume was brought up to 1 mL using molecular grade water 

and transferred to a zeta-cell (Malvern, UK) for analysis. Measurements were triplicated for three 

batches of nanoparticles and results are the average of three measurements. A SYBR® Safe (Life 

Technologies, Ireland) exclusion assay was used to assess how effectively OCS and PCS binds to 

pDNA. SYBR® Safe fluoresces strongly upon intercalation between the base pairs of pDNA and upon 

complete and stable binding of chitosan to pDNA there should be no free pDNA available for 

intercalation with the probe and the fluorescent signal is quenched [37, 38]. PCS-pDNA and OCS-

pDNA nanoparticles were prepared as in Section 2.2 and then diluted to 1.5mL with molecular grade 

20mM NaCl. 0.75µL of SYBRSafe DNA stain (Gibco, Ireland) was then added and the fluorescence 

signal read, in triplicate, on a spectrofluorimeter (Perkin Elmer LS 50B, Fisher Scientific, Ireland) at an 

excitation wavelength of 488nm and an emission wavelength of 522 nm.  

 



2.3.3 Effect of MW and N/P ratio on nanoparticle stability 

For efficient transfection, the vector must be capable of protecting the pDNA cargo from degradation 

in vivo by DNase enzymes.  To examine the stability of chitosan-pDNA nanoparticles at both MW, 

PCS-pDNA and OCS-pDNA nanoparticles were made as described in Section 2.2 at a range of N/P 

ratios. MgSO4 was added to give a final concentration of 0.1µM and the samples were incubated at 

37oC for 30 minutes with 8 units of DNase I per 1µg of DNA. Subsequently, 42µL of each sample was 

added to 6µL of 6X loading dye and 15µL of each was run on a 1% agarose gel for 1 hour, along with 

three controls; undigested nanoparticles, pDNA alone, and DNase-digested pDNA and a 1kB ladder. 

The gels were viewed under a UV transilluminator (Fisher Scientific, Ireland) and imaged using 

Syngene Genesnap technology (UK). 

 

2.4 Development of an MSC transfection protocol using chitosan-pDNA nanoparticles 

2.4.1 Stem cell isolation and expansion 

Mesenchymal stem cells (MSCs) were isolated from 8 week old male Sprague Dawley rats with the 

approval of the Research Ethics Committee of the Royal College of Surgeons in Ireland (REC 

Approval No. 237). The MSCs were cultured in growth media which contained Dulbecco's Modified 

Eagles Medium supplemented with 2% penicillin/streptomycin, 1% L-glutamine, 10% FBS (Labtech, 

UK), 1% glutamax (Biosciences, Ireland) and 1% non-essential amino acids (Biosciences, Ireland). 

Cells were passaged at 70-90% confluency and expanded to passage 5 for all experiments. MSCs 

were seeded at a density of 5X104 cells per well in 6 well adherent plates (Corning, Costar, Ireland) 

24 h prior to transfection. Media was removed from cells 1 h prior to transfection and cells were 

washed in PBS. 1 mL of growth media was added to the PCS-pDNA groups and 1 mL of OptiMEM 

(Gibco, Ireland) was added to the OCS-pDNA groups.  Nanoparticles were made as described in 

Section 2.2 and, following complexation, media was added in a 1:1 ratio to the nanoparticle mixture to 

produce the transfection medium of which 500 µL was added to each well. N/P ratio and pDNA dose 

were varied to determine the optimum conditions for transfection. After 4 h, transfection media was 

removed, cells were washed twice in PBS and growth media was replenished.  

 

 



2.4.2 Effect of MW, N/P ratio and pDNA dose on MSC transgene expression 

A reporter plasmid containing the gene for Gaussia Luciferase (pGLuc) was used in this study. The 

transfection efficiency of PCS-pGLuc nanoparticles formulated at N/P 10, 50, 100 and 150 and OCS-

pGLuc nanoparticles made at N/P 10, 20, 30, 40, 50 and 60 were tested. The optimal pDNA dose was 

assessed by delivering 0.5, 1, 2 and 5µg/well. At pre-determined time points, samples of media were 

removed from the transfected cells and luciferase content was assessed using a Pierce™ Gaussia 

Luciferase Flash Assay kit (Thermo Scientific, Ireland) as per manufacturer’s instructions.  

2.4.3 Effect of MW on MSC transfection efficiency 

The reporter plasmid containing the gene for green fluorescent protein (pGFP) was used in this study. 

PCS-pGFP nanoparticles were formulated at N/P 10 carrying 2µg of pGFP and OCS-pDNA 

nanoparticles were formulated at N/P 20 carrying 2µg of pGFP. At pre-determined time-points, 

fluorescent microscopy was also used to visualise cells expressing GFP using a Leica DMIL 

microscope (Leica Microsystems, Switzerland) and version 3.8 Leica software. The cells were then 

trypsinised and fixed in 5% formalin before being re-suspended in 200 µL of PBS.  The suspension 

was then analysed for GFP fluorescence and a percentage of GFP positive over GFP negative cells 

gauged the transfection efficiency of the complex using FACS Canto 11 DIVA software.  

 

2.4.4 Assessment of chitosan-pDNA nanoparticle toxicity 

MSCs were transfected as described in Section 2.4.1 and an MTT Cell Growth assay kit (Millipore™, 

Ireland) was carried out at 1, 3 and 7 days post-transfection. This is a metabolic assay where active 

cellular enzymes reduce the MTT dye to formazan crystals. Briefly, 10 µL of MTT reagent was added 

to the cells in 90 µL of media and incubated for 4 h at 37°C. The supernatant was removed and 50 µL 

of dimethyl sulfoxide (DMSO) was added to dissolve the formazan crystals, formed by metabolically 

active cells, leaving behind a purple colour.  The intensity of the resulting colour was read at an 

absorbance of 570 nm using a reference wavelength of 630 nm using a Varioskan Flash multimode 

plate reader (Fisher Scientific, Ireland).  

 

 



2.5 Incorporation of chitosan-pDNA nanoparticles into collagen-based scaffolds to produce gene-

activated scaffolds 

2.5.1 Scaffold fabrication 

Three different collagen-based scaffolds – collagen alone, collagen-hydroxyapatite (CHA) [35] and 

collagen-hyaluronic acid (CHyA) [36] were fabricated using a lyophilisation technique developed by 

O’Brien et al. [39].  The collagen slurry was made by adding 1.8 g of bovine tendon collagen (Integra 

Life Sciences, USA) to 360 mL of 0.5M glacial acetic acid (HOAc) and blending at 15,000 rpm for 90 

mins using an overhead blender (Ultra Turrax T18 Overhead Blended, IKA Works Inc., USA) at a 

constant temperature of 4°C. The CHA scaffold was made using a patented protocol [28], briefly, 1.8g 

of bovine tendon collagen (Integra Life Sciences, USA) was added to 320mL of 0.5M HOAc and 

blended at 15,000rpm for 90 mins as described above. Two hundred wt%of hydroxyapatite (Captal ‘R’ 

Reactor Powder, Plasma Biotal, UK) was dissolved in 40 mL of 0.5M HOAc and added slowly to the 

collagen slurry (10mL/h) while maintaining dispersion at 15,000 rpm. After all hydroxyapatite has been 

added, the slurry was blended for a further 60 mins. The CHyA scaffold was made by blending 1.8g 

on bovine tendon collagen (Integra Life Sciences, USA) in 300mL of 0.5M HOAc for 90 mins. A total 

of 0.16g of hyaluronic acid sodium salt, derived from streptococcus equi, was dissolved in 60mL of 

0.5M HOAc and added to the collagen slurry at a rate of 5mL/10 mins while blending at 15,000 rpm. 

The slurry was blended for a further 60 mins following the addition of all of the hyaluronic acid. Gas 

was removed from the slurries using a vacuum pump prior to freeze-drying (Advantage EL, Vis-Tir 

Co., Gardiner NY) to a final temperature of either -10°C (CHyA) or -40°C (Collagen and CHA) using a 

previously optimised freeze-drying profile [33]. The different freeze-drying temperatures used 

determine the resulting pore size with larger pores (~300µm) forming in scaffolds freeze-dried at -

10°C compared to -40°C (~120µm) [40]. The scaffolds were crosslinked dehydrothermally (DHT) at 

105 °C for 24 h at 0.05 bar in a vacuum oven (Vacucell 22; MMM, Germany) [41], followed by 

chemical cross-linking using a mixture of 6 mM N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimide 

hydrochloride (EDC) and 5.5 mM N-Hydroxysuccinimide (NHS). Cylindrical scaffolds (10 mm 

diameter) were used in transfection experiments. 

 

2.5.2 Gene-activated scaffold functionalization using optimised chitosan-pDNA nanoparticles 



Scaffolds were manufactured as described in Section 2.5.1 and nanoparticles were made as 

described in Section 2.2. PCS-pDNA nanoparticles were formulated at an N/P ratio of 10 carrying 2 

µg of while OCS-pDNA nanoparticles were formulated at an N/P ratio of 20 containing a 2 µg load of 

pDNA. Scaffolds were hydrated in PBS before use and nanoparticles were soak-loaded onto them by 

pipetting.  

2.5.3 Assessment of gene-activated scaffold architecture 

To visualise the nanoparticles on the scaffolds using SEM, 25 µL of the nanoparticle solution was 

added to each side of the scaffold. The samples were alcohol dehydrated in stages from 30%-50%-

70%-90%-95%-100% alcohol leaving the samples for 30 minutes at each step. The samples were 

then placed on porous pots in a critical point dryer and the alcohol was slowly replaced with liquid 

CO2. Once the alcohol was completely replaced, the pressure and temperature increased to the 

critical point for CO2. At this point the liquid turns to gas and is vented off leaving dried samples. The 

samples were then mounted onto metallic studs using carbon cement before being sputtered with 

gold/palladium alloy and imaged using a Zeiss Ultra Plus scanning electron microscope (SEM) (Zeiss, 

Germany). 

 

2.5.4 Measurement of transgene expression from MSCs seeded on gene-activated scaffolds 

To assess the ability of chitosan nanoparticles to transfect MSCs on the collagen scaffolds, 

nanoparticles were made as described in Section 2.2. After complexation, 50 µL media containing 

5X105 cells were added to the nanoparticles and 50 µL of this was loaded onto each side of the 

scaffold. After 10 mins, 2mL of growth media was added. After 24h the scaffolds were moved to fresh 

24 well non-adherent plates in fresh growth media. 3D transfections were performed with pGLuc and 

pGFP plasmids to quantify transgene expression on the scaffold. Samples of media were taken at 

days 7, 14, 21 and 28 and assessed for luciferase content using a Pierce™ Gaussia Luciferase Flash 

Assay kit (Thermo Scientific, Ireland). At the same time-points scaffolds with nanoparticles containing 

pGFP were imaged using a Leica DMIL microscope (Leica Microsystems, Switzerland) whereby GFP 

expression indicated positive transfection. 

 

 



2.6 Statistical analysis 

Results are expressed as mean ± standard deviation. In Figure 3 A-D, 4 D, 5 and 8 A and B, 

statistical significance was assessed using two-way ANOVA analysis followed by Bonferoni post-hoc 

analysis. The sample size was n=3 and p≤0.05 values were considered statistica lly significant where * 

p<0.05, ** p<0.01 and *** p<0.001. 

 

3. Results 

3.1 Physicochemical characterisation of chitosan-pDNA nanoparticles 

3.1.1 Effect of MW on nanoparticle morphology 

Nanoparticle morphology was visualized using Atomic Force Microscopy (Figure 1A and 1B). These 

images showed that the cross-linked PCS forms consistent homogeneous nanoparticles when 

complexed with pDNA (Figure 1A) and have an average diameter of 188.3 ± 16.5 nm while the OCS-

pDNA nanoparticles have a much less defined structure, appearing like toroid and rod shaped 

complexes (Figure 1B). The OCS-pDNA nanoparticles also have a smaller diameter with an average 

of 119.9 ± 22.9 nm. 

 

Figure 1: Effect of MW on chitosan-pDNA nanoparticle morphology. Representative AFM images 
of PCS-pDNA (A) and OCS-pDNA (B) nanoparticles. Average size of PCS-pDNA nanoparticles at N/P 
10 was 188.3 ± 16.48 and OCS-pDNA nanoparticles at N/P 20 was 119.96 ± 22.94 which was in 
agreement with DLS measurements shown in Table 1.  
 

3.1.2 Effect of MW and N/P ratio on nanoparticle size,  zeta potential and complexation efficiency 

Nanoparticles were also analysed for size as well as zeta potential using a Zetasizer 3000 HS 

(Malvern, UK) . PCS-pDNA nanoparticles formulated at N/P 10, 50, 100 and 150 met the size 



(<200nm), zeta potential (+) and complexation criteria while at N/P 1 the nanoparticles were >200nm, 

negatively charged and did not encapsulate the pDNA sufficiently (70%) (Table 1) and at N/P ratios 

higher than 150, the nanoparticles were >200nm (Table 1) which may prevent cell uptake [42, 43]. 

Overall, the OCS-pDNA nanoparticles were smaller than the PCS-pDNA nanoparticles with an 

average diameter of 95.6 nm for OCS compared to 247.9 nm for PCS, a result which was expected 

due to the shorter length of the OCS chain [26]. The zeta potential of the OCS-pDNA nanoparticles 

did not vary much with increasing N/P ratio; however, the PCS-pDNA nanoparticle ZP ranged from -

6.52mV up to +52.7mV. A SYBR®Safe exclusion assay was employed to demonstrate the 

complexation efficiency between chitosan and pDNA shown in Table 1. OCS form complexes with 

pDNA with a higher encapsulation efficiency (average of 93.5%) than PCS (average of 84.5%).  

 

Table 1. Physicochemical characterisation of PCS-pDNA and OCS-pDNA nanoparticles. 
 

Type of 
Chitosan 

N/P Ratioa) Size (nm)b) Polydispersity 
Indexb) 

Zeta Potential 
(mV)b) 

Encapsulation 
Efficiency (%)c) 

PCS 1 295.03 ± 1.40 0.220 -6.52 ± 5.72 70.97 ± 2.57 
 10 191.67 ± 7.49 0.250 26.67 ± 1.05 88.77 ± 0.60 
 50 137.80 ± 42.29 0.247 48.30 ± 0.44 86.57 ± 0.24 
 100 109.40 ± 10.15 0.252 49.30 ± 1.75 87.28 ± 0.15 
 150 143.30 ± 16.46 0.290 52.70 ± 2.23 85.17 ± 0.45 
 200 248.92 ± 16.34 0.359 48.43 ± 1.25 86.50 ± 0.33 
 300 609.13 ± 13.73 0.208 51.03 ± 0.84 96.74 ± 0.37 
OCS 10 98.63 ± 16.28 0.296 34.50 ± 3.66 92.80 ± 0.21 
 20 109.26 ± 16.82 0.252 33.50 ± 2.60 93.57 ± 0.02 
 30 76.87 ± 1.47 0.256 27.63 ± 0.59 93.36 ± 0.27 
 40 125.87 ± 13.27 0.294 26.70 ± 2.55 94.80 ± 0.07 
 50 73.70 ± 3.55 0.217 27.23 ± 3.59 93.71 ± 0.06 
 60 89.46 ± 8.57 0.276 26.73 ± 5.68 92.60 ± 0.11 
a) Nanoparticles were formulated at these N/P ratios carrying 2µg of pDNA 
b) Size, polydispersity and zeta potential were assessed using a Malvern Zeta Sizer Nano Series 3000 
c) Encapsulation efficiency was determined using a SYBRSafe exclusion assay 
 

3.1.3 Effect of MW and N/P ratio on nanoparticle stability 

The gels in Figure 2A and 2B compare pDNA complexed with both types of chitosan to naked pDNA 

and undigested chitosan nanoparticle controls. Exposure to DNase I for just 30 minutes completely 

destroys the naked pDNA as evidenced by the lack of fluorescence from that well, while the pDNA 

that was complexed with PCS and OCS remains intact. In the PCS-pDNA gel, there appears to be 

less pDNA at higher N/P ratios which indicates complete encapsulation at these ratios with a 

significant excess PCS compared to pDNA. No banding is seen on the gel in the PCS-pDNA group 



(Figure 2A) which indicates that the pDNA is still strongly encapsulated by the PCS after DNase I 

treatment, however, in Figure 2B, evidence of faint bands can be seen at all N/P ratios in the OCS-

pDNA group, but more so at lower N/P ratios, which suggests that the pDNA is beginning to be 

released from the OCS.  

 

Figure 2: Effect of MW and N/P ratio on chitosan-pDNA nanoparticle stability. A DNase I 
degradation assay run on a 1% agarose gel. (A) shows PCS-pDNA nanoparticles at N/P 1-300 along 
with a 1kb ladder, undigested naked pDNA, digested naked pDNA and undigested PCS-pDNA 
nanoparticles (N/P 150). (B) shows the OCS-pDNA nanoparticles at N/P 10-60 along with a 1kb 
ladder, undigested naked pDNA, digested naked pDNA and undigested OCS-pDNA nanoparticles 
(N/P 20). DNase I cause degradation of naked pDNA while pDNA complexed with chitosan is 
protected from degradation and retained in the well – an indication of stability. 

 

3.2 Development of an MSC transfection protocol using chitosan-pDNA nanoparticles 

3.2.1 Effect of MW, N/P ratio and pDNA dose on MSC transgene expression 

The results shown in Figure 3A clearly demonstrate that N/P 10 is the optimal N/P ratio for 

PCS-pDNA nanoparticles as it leads to significantly higher luciferase expression compared to N/P 50, 

100 and 150 at days 7, 10 and 14 with peak expression occurring at day 10 post-transfection (6 X 105 

RLU). Conversely, N/P 20 is the optimal N/P ratio for OCS-pDNA nanoparticles as it leads to 

significantly higher luciferase expression compared to other N/P ratios at days 10 and 14 (6 X 105 

RLU) (Figure 3B). PCS-pGLuc nanoparticles carrying a 2 or 5µg/well dose achieved the highest levels 

of transfection producing a peak luciferase expression of 6X105 RLU at day 10 (Figure 3C). The 



2µg/well pDNA dose is highest at day 14 so this formulation – N/P 10 carrying 2µg of pDNA was 

chosen as the optimal formulation for MSC transfection. Figure 3D depicts what happens when the 

pDNA dose carried by OCS nanoparticles was increased from 0.33µg (manufacturers’ instructions) to 

0.5, 1, 2 and 5µg/well using the optimal N/P ratio (N/P 20). There was a significant increase in 

luciferase expression with the 2µg/well dose leading to significantly higher luciferase expression than 

other pDNA doses at days 10 and 14 (1X107). Taken together, the OCS group produced a two-fold 

higher expression level compared to PCS-pGLuc.  

 

Figure 3: Effect of MW, N/P ratio and pDNA dose on MSC transgene expression. Gaussia 
Luciferase gene expression was observed over time in rMSCs transfected with PCS-pDNA (A and C) 
and OCS-pDNA (B and D). Nanoparticles at a range of N/P ratios (A and B) and pDNA dose (C and 
D) were assessed. PCS-pDNA nanoparticles formulated at N/P 10 carrying 2µg of pDNA prove to 
optimal for MSC transfection with luciferase expression of 6X105 RLU while OCS-pDNA nanoparticle 
formulated at N/P 20 carrying 2µg of pDNA caused MSCs luciferase expression to reach 1X107 RLU. 
Data plotted shows mean ± standard deviation (n=3) and * p<0.05, ** p<0.01 and *** p<0.001. 

 

 



3.2.2 Effect of MW on MSC transfection efficiency 

Luciferase expression gives an indication of overall transgene expression from the cell population but 

in order to definitively quantify the proportion/number of cells transfected and to visualize transfected 

cells, MSCs were transfected with the gene for green fluorescent protein (pGFP). PCS-pGFP and 

OCS-pGFP nanoparticles were produced using optimal N/P ratios (N/P 10 for PCS and N/P 20 for 

OCS) and pDNA doses (2µg) established from the results presented in Figure 3 and compared to PEI 

at N/P 7 carrying 2µg of pDNA from results established within our laboratory previously [12]. Images 

taken 7 days post-transfection show cells expressing GFP on their surface, indicating successful 

transfection (Figure 4A-C). When quantified, the transfection efficiency achieved using PCS-pGFP 

nanoparticles was very low at about 1.6%; however over 45% of cells transfected with OCS-pGFP are 

expressing GFP by day 7 and expression is sustained over 14 days (Figure 4D). When compared to 

the positive control, PEI led to a higher transfection initially; however, the OCS-pGFP nanoparticles 

cause significantly higher GFP expression by the MSCs at days 7, 10 and 14.  

 

Figure 4: Effect of MW on MSC transfection efficiency. Transfection efficiency of PCS-pGFP (N/P 
10, 2µg pGFP) and OCS-pGFP (N/P 20, 2µg pGFP) nanoparticles was compared using fluorescent 
microscopy and flow cytometry. Images A-C were taken 7 days post-transfection using a Leica 
Systems microscope.Green cells signify positive transfection. The percentage of cells expressing 
GFP was quantified using flow cytometry (D). Data plotted shows mean ± standard deviation (n=3), ** 
p<0.01 and *** p<0.001.  

 



3.2.3 Assessment of chitosan-pDNA nanoparticle toxicity 

As well as efficiently transfecting cells, an essential characteristic of a successful gene delivery vector 

is biocompatibility. While chitosan is considered to be relatively non-toxic, the PCS-pDNA and OCS-

pDNA nanoparticles used in this study had an overall cationic surface charge at the N/P ratios used 

for transfection which may have an adverse effect on cell viability. To investigate this, an MTT assay 

was carried out. The effect of the PCS-pDNA and OCS-pDNA nanoparticles on MSCs at 1, 3 and 7 

days post-transfection was compared to the cytotoxic effects of PEI-pDNA nanoparticles, a non-viral 

gene delivery vector gold standard. The results demonstrated that neither of the chitosan vectors are 

cytotoxic as neither PCS nor OCS-pDNA nanoparticles caused a drop in cell viability up to 7 days 

post-transfection (Figure 5A). Conversely, the MSCs transfected using PEI-pDNA nanoparticles suffer 

a 40% loss in cell number over 7 days. This result reiterates previous studies on chitosan which show 

that it is biocompatible causing negligible cytotoxicity [14]. 

 

Figure 5: Assessment of cell viability post transfection. MSCs were transfected with PCS-pDNA 
(N/P 10, 5µg pDNA) and OCS-pDNA (N/P 20, 2µg DNA) nanoparticles and cell viability was assessed 
1, 3 and 7 days post-transfection using MTT metabolic activity assay. Results were compared to PEI-
pDNA (N/P 7, 2µg pDNA) transfected cells and untransfected cells served as a 100% control. Neither 
chitosan vector was cytotoxic while PEI causes a 40% reduction in cell viability. Data plotted shows 
mean ± standard deviation (n=3) and * p<0.05, ** p<0.01 and *** p<0.001.  

 

 



3.3 Incorporation of chitosan-pDNA nanoparticles into collagen-based scaffolds to produce gene-

activated scaffolds 

The scaffolds used in this study include a collagen scaffold and collagen-hydroxyapatite (CHA) 

scaffold for bone repair, and a collagen-hyaluronic acid (CHyA) with properties optimised for cartilage 

regeneration [29, 36]. The optimised PCS- and OCS-pDNA nanoparticles from the previous 

experiments were soak-loaded onto each scaffold and the effect of the composition of each scaffold 

on transfection efficiency was monitored. 

3.3.1 Assessment of gene-activated scaffold architecture 

Analysis following loading revealed that the PCS-pDNA nanoparticles are evenly distributed 

throughout the scaffold but appear to be embedded in the scaffold struts in the CHyA scaffold 

suggesting that the nanoparticles are tightly bound to the scaffold (Figure 6A). Conversely, the OCS-

pDNA nanoparticles appear to be more evenly distributed throughout the each scaffold with more 

limited evidence of embedding within the scaffold structure (Figure 6B).  

 

 



 

Figure 6A: Assessment of PCS-pDNA-activated scaffold architecture. PCS-pDNA nanoparticles 
were incorporated into three scaffolds; collagen alone (A-C), CHA (D-F) and CHyA (G-I) and imaged 
at various magnifications using scanning electron microscopy. Nanoparticles are homogenously 
dispersed within the pores but appear to be embedded within the CHyA matrix.  
 

 



 

Figure 6B: Assessment of OCS-pDNA-activated scaffold architecture. OCS-pDNA nanoparticles 
were incorporated into three scaffolds; collagen alone (A-C), CHA (D-F) and CHyA (G-I) and imaged 
at various magnifications using scanning electron microscopy. Nanoparticles appear homogenously 
dispersed within the pores.   
 
 

3.3.2 Measurement of transgene expression from MSCs seeded on gene-activated scaffolds 

As N/P ratio and pDNA dose were such important factors in influencing transfection efficiency in 

monolayer, these experiments were initially repeated on the 3D collagen only scaffolds (PCS-pDNA 

nanoparticles at N/P ratios of 1-300 and OCS-pDNA nanoparticles at N/P ratios of 10-60 (results not 

shown)). The results informed us that transfection was very low at all N/P ratios with PCS particles 

and varying the pDNA dose from 0.5µg-20µg showed no improvement with luciferase levels peaking 

at 2.5X104 RLU, a result lower than that achieved in monolayer (Figure 3C). When PCS-pDNA 

nanoparticles were applied to CHA and CHyA scaffolds, even lower transgene expression was 

recorded (Figure 7A); luciferase expression from MSCs on the CHA scaffold was just 1X103 RLU 

while the CHyA was approximately 1X104 RLU. The reason for this decrease in transfection efficiency 

between 2D and 3D systems may be due to interactions between PCS and collagen in the scaffold 



preventing uptake of PCS-pDNA nanoparticles by the cells as was indicated in the SEM images 

(Figure 6A).  

In contrast, OCS-pDNA nanoparticles performed as positively on 3D collagen scaffolds, as they had 

in monolayer culture. Preliminary transfection studies testing N/P ratios (10-60) and pDNA dose (0.5-

20µg/scaffold) (results not shown) indicated that nanoparticles formulated at N/P 20 carrying a pDNA 

dose of 2µg resulted in the highest levels of transgene expression. When compared to the CHA and 

CHyA (Figure 7B), gene expression from the cells was initially significantly higher on the collagen only 

gene-activated scaffold, but interestingly, gene expression from the CHyA scaffold peaks later, at day 

21, becoming significantly higher than collagen alone and CHA at the later time-points.  

 

Figure 7: Measurement of transgene expression from MSCs seeded on gene-activated 
scaffolds. Relative Gaussia Luciferase gene expression was monitored over time from MSCs 
transfected with PCS-pGLuc at N/P 10 carrying 2µg pGLuc (A) and OCS-pGLuc at N/P 20 carrying 
2µg pGLuc (B) incorporated into three scaffolds of different composition; collagen, CHA and CHyA. 
OCS-pGLuc nanoparticles produce higher levels of luciferase than PCS-pGLuc nanoparticles and 
transgene expression varies with scaffold composition. Data plotted shows mean ± standard deviation 
(n=3) and * p<0.05, ** p<0.01 and *** p<0.001.  



4. Discussion 

The objective of this study was firstly to develop methodology for formulating chitosan-pDNA 

nanoparticles with properties suitable for efficient MSC transfection, and secondly, to create a series 

of gene-activated scaffolds by incorporating the optimised chitosan-pDNA nanoparticles into collagen-

based scaffolds with properties previously optimized for tissue regeneration. The MW of chitosan 

proved to be important in the nanoparticle formulation process as was the N/P ratio which influenced 

nanoparticle size, zeta potential, encapsulation efficiency and ultimately, transfection efficiency. A 

transfection efficiency greater than 45% was achieved in MSCs in monolayer culture using 

oligochitosan-pDNA nanoparticles and this level of efficiency was translated to 3D experiments when 

the nanoparticles were incorporated into three types of collagen-based scaffold; collagen alone, 

collagen hydroxyapatite (CHA) and collagen hyaluronic acid (CHyA). Interestingly, the kinetics of 

gene expression varied significantly between scaffolds of different composition. Therefore, this work 

allowed for the development of a range of biocompatible platforms that can be functionalised for gene 

delivery in which a sustained but ultimately transient gene expression profile was obtained while still 

achieving transfection efficiencies in stem cells sufficient to elicit a therapeutic response [30].  

 

There is currently no ideal non-viral gene delivery vector. ‘Gold standard’ vectors include 

Lipofectamine 2000™ and polyethyleneimine (PEI) which can achieve high transfection efficiencies in 

many cell types, but can also cause cytotoxicity [14, 15, 44]. Chitosanis known to be non-toxic and 

good transfection efficiency has been reported in some cell lines [16, 25, 26, 45]. However, in this 

study, the cell type of interest was the mesenchymal stem cell (MSCs), a cell type of greater clinical 

significance  in tissue engineering applications due to its ability to differentiate into a number of 

mesoderm-derived cell types, but which is notoriously difficult to transfect [46]. Very little work has 

been done on chitosan mediated transfection of MSCs with the highest transfection efficiency 

reported was 18% with a medium molecular weight (MW) chitosan [21]. Recent studies indicate that 

low MW, highly deacetylated oligomeric chitosan can achieve >60% transfection efficiency in HEK293 

cells [26] and has been used in vivo in corneal [31] and retinal gene delivery [32]. It is clear therefore 

that molecular weight (MW) and degree of deacetylation (DD) have a major influence on transfection 

efficiency and in this study we sought to compare medium MW polymeric chitosan (PCS) with low MW 



oligomeric chitosan (OCS) and optimize a transfection protocol specifically for use on MSCs, a more 

clinically relevant cell type for orthopedic tissue engineering, than investigated previously.  

 

It is hypothesized that chitosan-based gene delivery vectors enter cells via charge-mediated 

endocytosis [47], therefore, chitosan-pDNA nanoparticles need to be positively charged to bind to the 

negatively charged cell membrane, and have a diameter of <200nm to enable endocytosis [43]. AFM 

images revealed that polymeric chitosan (PCS)-pDNA nanoparticles appear homogenous in size with 

an average diameter of ~190 nm while oligomeric chitosan- (OCS)-pDNA nanoparticles have a less 

defined shape and a smaller diameter of ~120 nm. The difference in morphology is likely due to the 

use of a cross-linker (sodium tripolyphosphate (TPP)) in the formulation on PCS-pDNA nanoparticles 

which causes a controlled ionotropic gelation of the nanoparticles [19, 48]. Without TPP PCS-pDNA 

nanoparticles were in the micron size range and therefore unsuitable for gene delivery [43, 47]. TPP 

did not cause changes in size in the formulation of OCS-pDNA nanoparticles and thus was not used 

which explains their irregular shape. This size analysis was supported with dynamic light scattering 

experiments where N/P ratios of 10-150 in the PCS group and all N/P ratios (10-60) in the OCS group 

were <200nm. The zeta potential (ZP) of the nanoparticles is governed by the amount of cationic 

material (chitosan) in the particle which explains why at N/P 1, PCS-pDNA nanoparticles carried a 

negative zeta potential, indicating that there was too little chitosan to fully complex with the pDNA. 

Complexation efficiency is also lowest at N/P 1 confirming this statement 

Chitosan was able to protect pDNA from DNase I degradation which may indicate nanoparticle 

stability in physiological conditions. There appears to be less pDNA fluorescence at higher N/P ratios 

in the PCS-pDNA group which is most likely due to over encapsulation of pDNA by excess PCS. OCS 

had greater complexation efficiency for pDNA than PCS (>90% compared to an average of 80% for 

PCS-pDNA), however, pDNA appears to be released from OCS faster than from PCS as evidenced 

by gel electrophoresis studies where there is evidence of faint bands seen at all N/P ratios, but more 

so at lower N/P ratios, suggesting that the pDNA is beginning to be released from the OCS. This 

result is in agreement with other reports which state that  low MW chitosan forms less stable 

nanoparticles with pDNA than with high MW [23, 25, 49, 50]. While stability is important extracellularly, 

release of the pDNA is critical in ensuring transfection so OCS-pDNA nanoparticles formulated at all 

the N/P ratios investigated were deemed suitable for transfection experiments.  



 

In the development of a transfection protocol, the N/P ratio proved to have a major impact on 

transgene expression by the cells with N/P 10 (PCS) and N/P 20 (OCS) transfected cells producing 

significantly higher amounts of luciferase than the other N/P ratios. Neither of the papers describing 

chitosan vectors for gene delivery to MSCs tested different N/P ratios [15, 21], however on HEK293 

cells transfection efficiency was highest at N/P 10 [51]. When OCS-pDNA nanoparticles were used to 

transfect HEK293 cells, luciferase expression increased along with increasing N/P ratio (10 up to 60) 

[25], while in this study, N/P 20, 30 and 40 led to higher transfection efficiencies than other N/P ratios 

showing differences in transfection efficiencies between different cell types. The pDNA dose also has 

a significant influence on chitosan-pDNA nanoparticle transfection efficiency with the 2µg pDNA dose 

causing the highest levels of luciferase expression while higher doses resulted in no increase or a 

reduction in transgene expression. This is a well documented phenomenon; one laboratory reported 

that increasing the dose of pDNA from 0.5µg-2.5µg/well increased transfection efficiency but any 

higher doses led to reduced transgene expression [52]. Overall, the best PCS-pDNA nanoparticle 

formulation had a transfection efficiency of just 1.6%. This result is in line with what has previously 

been published on using chitosan for gene delivery to MSCs [15].  On the other hand, the transfection 

efficiency achieved with the optimised OCS-pDNA nanoparticles led to a 45% transfection efficiency 

which was sustained over the course of the experiment. This is an excellent result as it has been 

shown that sustained expression of therapeutics over time at a defect site can enhance tissue healing 

when compared to defects treated with burst release of proteins or drugs [53]. A transfection 

efficiency of 45% efficiency is also comparable to that seen for PEI which is a gold standard non-viral 

vector [54] and this study represents the first time that a chitosan-based gene delivery system has 

caused comparable transfection efficiencies to PEI in MSCs.   

 

The reason behind the different transfection efficiencies seen with PCS and OCS may be explained 

by the mechanism of cell entry utilised by each vector. It has been shown that PCS-pDNA 

nanoparticles enter cells predominantly through the clathrin-mediated endocytosis pathway which 

carries cargo through the cytoplasm in acidic endosomes [47]. It is thought that polymers that are 

capable of buffering this acidic environment can cause an increase in osmotic pressure and rupture 

the endosome, liberating the delivery vector and its gene cargo. PEI is a delivery vector known to act 



in this way through what is termed the ‘proton sponge’ effect [11, 55]. However, the inability of PCS to 

act like a proton sponge may explain the low transfection efficiency achieved with this polymer in this 

and other studies [15, 21, 56]. Interestingly, OCS-pDNA nanoparticles are reported to enter cells via 

clathrin-independent pathways, namely the caveolae route of endocytosis. Much less is known about 

this route of entry but a different entry mechanism may explain the difference in transfection efficiency 

seen by the two types of chitosan [47].  

 

Even though chitosan is a biocompatible material, there has been some suggestion that cationic 

nanoparticles, such as the ones used in this study can be cytotoxic. Neither of the optimised 

formulations of chitosan nanoparticles tested caused a decrease in cell viability at any time-point up to 

7 days post transfection. On the other hand, PEI-pDNA polyplexes caused a 40% drop in cell viability 

3 days post-transfection. This result is in agreement with previously published reports a dose of just 

20 μg/mL of PEI was enough to cause cytotoxicity whereas 630 μg/mL of chitosan was required to 

induce a cytotoxic response [14, 57]. OCS has been investigated in a number of studies and has 

been shown to be even less cytotoxic than PCS [58-60]. 

 

Bonadio et al. was the first to describe the use of gene-activated matrices (GAM) for tissue 

engineering applications where a gene encoding a fragment of human parathyroid hormone (hPTH 1-

34) in a collagen scaffold was used to treat a 1cm bone defect in a canine model [27]. Union of the 

bone was seen after 8 weeks and a very high 1mg dose of pDNA was required per GAM (compared 

to 2µg in this study) to achieve an estimated transfection efficiency of 30% (determined by RTPCR). 

To overcome this low efficiency, gene delivery vectors may be used; work within our group has shown 

that nanohydroxyapatite (nHA) particles are efficient gene delivery vectors and contribute to 

enhanced calcium deposition both in 2D monolayer of MSCs and 3D collagen-based scaffolds [61]. 

Also within our group, PEI-pDNA polyplexes have been incorporated into a series of collagen based 

scaffolds to create a gene-activated scaffolds for bone regeneration [12] and the combination of both 

nHA and PEI for independent delivery of BMP-2 and VEGF respectively, can significantly enhance 

bone healing with complete bridging of a critical sized defect within 4 weeks [30]. In this study, 

transgene expression from MSCs on the OCS-pDNA activated scaffolds is comparable to what was 



reported in the PEI-pDNA study described above which indicates that this system also has potential 

for bone healing while avoiding the cytotoxicity associated with PEI [12, 30].   

 

OCS-pDNA nanoparticles caused significantly higher transgene expression than PCS-pDNA 

regardless of scaffold material; however, scaffold composition influenced transgene expression by 

MSCs with the lowest luciferase expression occurring from cells on the collagen hydroxyapatite 

scaffold. As transgene expression on the collagen scaffold was much higher, the hydrogen bonds 

forming between chitosan nanoparticles and the hydroxyapatite may reduce cell uptake of the 

nanoparticles [62].  Furthermore, prolonged expression of luciferase is seen in the collagen hyaluronic 

acid scaffold where luciferase expression peaked later than the collagen alone scaffold and was 

higher at day 28. This may be due to an electrostatic interaction between the free amine groups on 

the OCS-pDNA nanoparticles and the carboxylate and/or sulphate groups on hyaluronic acid causing 

a delayed uptake of the nanoparticles by the MSCs.  

5. Conclusion 

The objectives of this study was firstly, to develop chitosan-based nanoparticles with properties that 

facilitate MSC transfection and secondly, to create a series of gene-activated scaffolds by 

incorporating the optimised chitosan-pDNA nanoparticles into collagen-based scaffolds. Following a 

rigorous characterisation of both PCS-pDNA and OCS-pDNA nanoparticles, the optimal formulation 

was found to be OCS-pDNA nanoparticles at an N/P ratio of 20 carrying 2µg of pDNA. This 

formulation produced a transfection efficiency of 45% in MSCs in monolayer without causing any 

cytotoxicity. Upon incorporation into a series of MSC seeded collagen-based scaffolds, gene 

expression from MSCs was highest on the collagen only scaffold but high levels of luciferase was also 

expressed for longer by cells on the collagen hyaluronic acid scaffold. This study has led to the 

development of a platform system capable of gene delivery to MSCs. The scaffolds that were 

functionalised in this study have already been optimised for bone and cartilage tissue engineering so 

the next step is to deliver osteogenic or chondrogenic genes and assessing if this gene-activated 

scaffold platform can further enhance bone and cartilage repair. By simply varying the scaffold 

composition and the gene (or combinations thereof) chosen, the system has potential for a myriad of 

therapeutic applications. 
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