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Objective: Estimating calibration performance of clinical prediction rules (CPRs) in system-

atic reviews of validation studies is not possible when predicted values are neither published 

nor accessible or sufficient or no individual participant or patient data are available. Our aims 

were to describe a simplified approach for outcomes prediction and calibration assessment and 

evaluate its functionality and validity.

Study design and methods: Methodological study of systematic reviews of validation stud-

ies of CPRs: a) ABCD2 rule for prediction of 7 day stroke; and b) CRB-65 rule for prediction 

of 30 day mortality. Predicted outcomes in a sample validation study were computed by CPR 

distribution patterns (“derivation model”). As confirmation, a logistic regression model (with 

derivation study coefficients) was applied to CPR-based dummy variables in the validation 

study. Meta-analysis of validation studies provided pooled estimates of “predicted:observed” 

risk ratios (RRs), 95% confidence intervals (CIs), and indexes of heterogeneity (I2) on forest 

plots (fixed and random effects models), with and without adjustment of intercepts. The above 

approach was also applied to the CRB-65 rule.

Results: Our simplified method, applied to ABCD2 rule in three risk strata (low, 0–3; intermedi-

ate, 4–5; high, 6–7 points), indicated that predictions are identical to those computed by univari-

ate, CPR-based logistic regression model. Discrimination was good (c-statistics =0.61–0.82), 

however, calibration in some studies was low. In such cases with miscalibration, the under-

prediction (RRs =0.73–0.91, 95% CIs 0.41–1.48) could be further corrected by intercept adjust-

ment to account for incidence differences. An improvement of both heterogeneities and P-values 

(Hosmer-Lemeshow goodness-of-fit test) was observed. Better calibration and improved pooled 

RRs (0.90–1.06), with narrower 95% CIs (0.57–1.41) were achieved.

Conclusion: Our results have an immediate clinical implication in situations when predicted 

outcomes in CPR validation studies are lacking or deficient by describing how such predictions 

can be obtained by everyone using the derivation study alone, without any need for highly 

specialized knowledge or sophisticated statistics.

Keywords: clinical prediction rules, derivation, validation, meta-analysis, primary care

Background
What is new? 
A new, simplified method for computation of predicted number of outcomes in 

validation studies of clinical prediction rules (CPRs), for assessment of calibration 

performance in systematic reviews, is described. Our approach employs the frequency 

distribution pattern of the outcome in the derivation study (so called “derivation 

model”). Two CPRs (ABCD2 and CRB-65) are used as examples.
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The new approach is tested and further confirmed in 

terms of functionality and validity. We created dummy vari-

ables and applied univariate, CPR-based logistic regression 

(LR) model and its coefficients from the derivation study to 

a sample validation study thus producing virtually identical 

predicted values as obtained by our new method.

Predicted values from the validation studies are computed 

and pooled estimates of “predicted:observed” risk ratios 

(RRs) with their 95% confidence intervals (CIs) are obtained 

for the first time in a meta-analysis by using a “derivation 

model”. Beyond discrimination assessment, as part of the 

overall predictive performance, forest plots are used to 

illustrate how our new method contributes to the evaluation 

of calibration and how the latter may vary across different 

strata of risk or population sub-groups.

The implication is that, when predicted outcomes in 

validation studies are neither published nor accessible or 

sufficient or no individual patient data (IPD) are available, 

such predicted values can be easily obtained by our simpli-

fied method. Our new approach describes and justifies how 

this can be achieved by everyone, when using data from a 

derivation study alone, without any further requirements 

for highly specialized knowledge or sophisticated statistical 

software.

introduction to CPrs
CPRs are recognized as important tools for optimization of 

diagnostic processes, management, and treatment, especially 

in primary care. Known by various terms, “risk score”, 

“scorecard”, “algorithm”, and “guide”, CPRs are clinical 

techniques that quantify the contribution of a patient’s history, 

physical examination, and diagnostic tests to stratify patients 

and predict probability for a specific disorder or outcome 

(diagnosis, prognosis, referral, treatment). Although not 

designed to replace clinical knowledge or experience, CPRs 

offer additional, “smart” ways to assist doctors and providers 

in the diagnostic and prognostic processes.1

Phases of CPRs, derivation, and validation
Three obligatory phases exist in CPR development before 

it can be implemented in clinical practice: derivation, 

validation (narrow and broad), and clinical impact analysis 

(Figure A1.1 in the Supplementary materials).2,3 While the 

narrow validation can be either internal or external in the view 

of the derivation sample, the broad validation can be only an 

external one. Certain methodological standards are followed 

for CPR development and validation.4 At present, most CPRs 

are at the stage of initial development (derivation, mainly), 

fewer are validated and even less still were subject to impact 

analysis.

The derivation of CPRs is usually based on multivariable 

regression modeling by assessing a continuous outcome or 

the presence/absence of the target disorder and enabling the 

CPR development according to different sources of diag-

nostic or prognostic information.5 The resulting model may 

stratify patients into subgroups (low, intermediate or high 

risk) or compute predicted probabilities for the outcome. 

These probabilities serve to estimate, using a cut-off, the 

presence or absence of the outcome. CPRs can be based on 

and/or presented as equations with exact regression coeffi-

cients or as a more user-friendly, linear format like a simple 

score.6,7 Ideally, CPRs should be based on a small number 

of variables – in practice, few variables with strong effects 

usually explain most of the variance and account for most 

of the prognostic power. Although some loss of prognostic 

power is inevitable, the simplified rules often perform equally 

well compared to the more complex models. Once the CPR is 

derived, its overall performance (discrimination, calibration) 

is assessed. A reason for good performance might be that a 

simple rule, with a small number of highly predictive vari-

ables, is much less likely to be over-fitted (over-optimistically 

estimated) than complex models including also additional 

but weak predictors.8

The validation of a CPR can be done by using derivation 

study data (narrow internal validation), new data from the 

same source as the derivation study or other, similar popu-

lations (narrow external validation), but a true evaluation 

of predictive performance and generalizability (also called 

“transportability”) requires an evaluation in a heterogeneous 

population and another clinical setting/s (broad external 

validation).9,10 The proper validation implies that a fully 

specified, originally existing model (both the derivation study 

variables and coefficients) is used to compute the probability 

and obtain predicted outcomes and then compare the esti-

mates to the actual outcomes in the validation study.11

Unfortunately, the predictive performance often 

decreases when a model is tested in new patients, differ-

ent from those in the original model. Therefore, the CPR 

can be further adjusted or updated by combining the initial 

information (derivation study) and the new data (valida-

tion study).12–14

Predictive performance of a CPr
The predictive performance, or accuracy and reliability of a 

CPR in both derivation and validation studies should always 

be assessed in two aspects: discrimination and calibration.15 
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Discrimination (accuracy) refers to the ability of CPR to 

correctly distinguish between presence and absence of 

the outcome, while calibration (reliability) is the agree-

ment between predicted probabilities of occurrence and 

observed proportions of the outcome. Discrimination of 

binary outcomes, for instance, is evaluated by concordance 

(c-statistic or receiver operating characteristic [ROC] curve). 

Good calibration refers to a good agreement between pre-

dicted probabilities and observed frequencies, eg, overall 

or across different strata by various CPR levels (ie, cut-off 

points). It is quantified by the comparison between, or ratio 

of the predicted to observed outcomes, usually verified by 

Hosmer-Lemeshow goodness-of-fit test, however, this test 

has low power to identify miscalibration in small samples.16 

Other tests of calibration are also applicable when IPD from 

validation studies do exist, however, without real IPD we 

used the Hosmer-Lemeshow test on “mimicked” IPD only 

as an illustration of some aspects of our methodological 

approach, eg, a (relative) change in the model calibration 

after an intercept adjustment. Another approach to assess 

calibration when IPD are not available is a direct compari-

son between the outcomes distribution (frequencies) in the 

original derivation sample and the outcome distribution in 

validation samples.

The latter technique is well illustrated by the association 

between the prognostic features of the CRB-65 rule (levels) 

and the risk distribution (%) for 30 day mortality among the 

derivation study and a single validation study (Figure 1).17 

There is a clearly increasing risk with the increasing CRB-

65 score (from 0 to 3). Although with a lower percentage 

of the outcome in the highest risk (4 points), the increasing 

trends are quite similar in both samples, in terms of both 

the score distribution and outcome distribution. While 

with good discrimination (area under the curve [AUC] 
ROC

 

= 0.79; 95% CI, 0.65–0.92), the calibration in terms of 

outcome frequency (%) at each of the score levels is not 

perfect. This one-to-one comparison indicates that CRB-

65 rule tends to under-predict mortality in the validation 

sample as compared to the derivation one (eg, CRB-65 

score of 2 points relates to mortality of 8.2% versus 11.8%, 

Figure 1).

Discrimination should be prioritized when judging a 

set of predictions or an overall CPR performance because 

if discrimination is poor, no calibration adjustment or other 

similar refinements of reliability can correct such weak 

discrimination. If discrimination is good, the CPR reliability 

(calibration) can be improved by adjustment, without com-

promising discrimination.18 Different techniques are known 

to adjust a CPR for improving its predictive performance 

during the validation (eg, recalibration, remodeling, etc).14 

For example, the Framingham score predicting 10-year 

cardiovascular disease (CVD) risk has been derived in the 

US population.19,20 Although with good discrimination and 

well calibrated to predict CVD events in populations from 

the USA, Australia, and New Zealand, it overestimates 

(over-predicts) the absolute risk in European cohorts and 

its direct implementation in the latter populations requires 

recalibration.20 An algorithm of CPR derivation and vali-

dation, including updating, is suggested (Figure A1.2 in 

Supplementary materials).

systematic reviews and  
meta-analyses of CPrs
The number of derived or validated CPRs has been increas-

ing recently.21 Several rules may predict the same outcome 

and, in parallel, a single rule may be validated in mul-

tiple populations and settings. Systematic reviews and, if 

appropriate, meta-analyses are the preferred tools to assess 

the prediction and level of evidence supporting the practical 

use of CPRs.22

Meta-analysis is used to summarize, evaluate, and 

present overall results of CPRs’ performance (pooled 

analysis) but most frequently in terms of discrimination23,24 

rather than calibration.25,26 Pooled, symmetrical summary 

ROC or hierarchical summary ROC curves27,28 are used to 

assess discrimination (with a “gold standard” for observed 

outcomes) at a particular CPR threshold. To evaluate cali-

bration, however, predicted number of outcomes should be 

published or possibly derivable from within each valida-

tion study. A good example of such calibration assessment 

with published or accessible predicted values (expressed as 

“predicted to observed ratio”) was reported in 200625 for 

the Framingham Anderson and Wilson scores for 10-year 

Original data set by Lim
et al,34 n (%)

(N=932)
CRB-65
score Total

0a

4a

1
2
3

212 (22.7)

14 (1.5)

344 (36.9)
251 (26.9)
111 (11.9)

2 (0.9)

3 (21.4)

18 (5.2)
30 (11.8)
36 (32.4)

0

0

230 (73.2)
61 (19.4)
23 (7.3)

0

0

2 (0.9)
5 (8.2)
4 (17.4)

Mortality MortalityTotal

Original data by Bont et al,17

n (%)
(N=314)

Figure 1 An example of the comparison of prognostic features of CRB-65 rule in 
the view of predicting 30 day mortality from pneumonia between the derivation and 
a validation study.
Notes: aAll patients in the present study were 65 years or older. Therefore, there 
were no patients with a CRB-65 score of 0. Also, no patients had a score of 4 or 
higher. Reproduced with the written permission from Bont et al.17

Abbreviation: CrB-65, confusion, respiratory rate 30/minute or higher, low blood 
pressure (90 mmhg systolic or 60 mmhg diastolic), age 65 years or older.
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CVD risk (Figure A1.3). Interestingly, when all validation 

studies are ordered by the increasing observed CVD risk 

(top to bottom), a clear pattern of changing calibration, 

from over-prediction to under-prediction (from right to left) 

emerges.25

However, such calibration assessment cannot be done 

if no predicted values are published or accessible from 

validation studies. In principle, one possible approach 

in such situations is to estimate outcomes by using, for 

instance, the CPR as a predictor in a validation study. 

The predicted probabilities and the number of predicted 

outcomes can be computed by univariable (only CPR as 

predictor) or multivariable models (including also other 

covariates). Such computation of individual probabilities 

is not always an immediate procedure – it often requires 

high-level statistical knowledge and sophisticated software 

or, at least, that the model equations and coefficients are 

published or accessible. If the latter are available, then even 

simple calculations with the coefficients is sufficient to pro-

duce the predicted probabilities. The main problem, when 

neither predicted values are published nor enough data are 

available (including IPD), is that none of above techniques 

can be used. Therefore, another, new approach is needed 

to predict probabilities and outcomes for the assessment of 

calibration levels of CPRs in systematic reviews.

The aim of our present study was to introduce and describe 

a new, simple methodological approach which, using infor-

mation from derivation study (eg, referred to as “derivation 

model”) allowed a calculation of the predicted values in 

validation studies. It is mainly applicable when individual 

participant, or patient data (database, IPD) are not available 

from all validation studies. The approach implies exploration 

of “predicted:observed” ratios in the usual meta-analytic way 

to assess CPR calibration (on a forest plot) and is illustrated 

by two rules: ABCD2 and CRB-65.29,30–31 The first objective 

was to employ the frequency distribution (%) of the observed 

outcomes in the derivation study and to apply it to predict 

the outcomes in a sample validation study. As a second 

objective, we aimed at confirming the functionality of the 

approach by using LR model coefficients from the derivation 

study to the validation study data. As a third objective, we 

aimed at assessing the role of different outcome incidences 

(a priori probabilities) from different validation studies, 

adjusting the original model intercept13 and examining the 

CPR performance and pooled estimates from the meta-

analysis. Only the main ABCD2 rule results are reported in 

the main text (the remaining, including those on the CRB-65  

rule, are shown in the Supplementary materials only).

Methods
To develop and illustrate our new approach, we utilized data 

from ABCD2 rule to predict stroke in transient ischemic attack 

patients and CRB-65 rule to predict mortality in pneumonia 

patients. With the purpose of simulating IPD sets, we selected 

only validation studies with available numbers of patients and 

outcome distribution (%) at each scoring point. Also, both CPRs 

were derived from LR models without complex interaction 

terms,33,34 ie, only with single predictors (variables). It means 

that the numerical “weights” of the components (predictors) 

in the CPRs were based only on fitted LR model coefficients, 

therefore, the patients had the same ranking in the models as 

in the CPRs (both related to predicted probability).

The outcome in ABCD2 rule was “stroke at 7 days” 

while that for the CRB-65 rule was “30 day in-hospital 

mortality”.30,31 The results, in terms of calibration, are shown as 

“predicted:observed” RRs with 95% CIs. The RR 1 indicates 

under-prediction (under-estimation) of stroke or death (observed 

number is greater than predicted number); RR .1 indicates over-

prediction (over-estimation) of the outcome (observed number 

is less than the predicted number) while RR =1 indicates perfect 

calibration between observed and predicted values. Pooled esti-

mates were calculated by fixed and random effect models while 

heterogeneity across studies was quantified by the I2-index.

New, simplified approach to derive 
predicted values in a validation study
The outcome distributions in derivation33 and validation 

studies of ABCD2 rule, overall and according to three strata 

of stroke risk (scores 0–3, 4–5, and 6–7), are presented in 

Figure A1.4 and Table A1.1 (Supplementary materials). 

The distribution in the original derivation study (column 3, 

Table 1) was used as a “predictive model” to which a valida-

tion study was to be related. To calculate the predicted number 

of strokes in the validation cohort,33 the proportionate risk 

estimate from the derivation cohort was applied according 

to each separate stratum of risk: low (stroke risk =1.35%), 

intermediate (6.51%), and high (11.30%) (column 5, Table 1). 

The number of strokes across the strata of risk in the valida-

tion cohort as predicted by ABCD2 rule “derivation model” 

(column 6, Table 1) was then compared to the observed strokes 

(column 7, Table 1). It should be noted that our new simplified 

approach is applicable not only to the whole sample (range) 

of such CPR score, overall, but if sufficient data exist (as in 

the example in Figure 1) – also to each one of the individual 

levels of the scoring (point) system of such CPR.

Respectively, outcome distributions in derivation and 

validation studies of the CRB-65 rule are presented in 

www.dovepress.com
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Figure A2.1 and Table A2.1A (Supplementary materials) 

while the results from the application of the new approach 

to compute predicted deaths in sample validation study35 are 

presented in Tables A2.1B-C (Supplementary materials).

Predicted values from the coefficients  
of the regression model
The next step was to confirm our findings in terms of feasibility, 

functionality, and agreement with other existing approaches 

or models (ie, to test construct or convergent validity) by 

using predicted outcomes by ABCD2 rule.33 We constructed a 

univariate saturated LR prediction model and its coefficients 

from the derivation study data. Since we did not have the 

original IPD, the only technique was to assume a dichotomous 

outcome (binary variable for stroke at 7 days: present = Yes =1 

and absent = No =0) and include the ABCD2 rule as a single, 

independent predictor. The ABCD2 score (range 0–7) is not a 

true continuous variable and thus we avoided an assumption 

of linearity by including ABCD2 rule in the model as a set 

of discrete independent categorical variables, with score in 

the low-risk ABCD2 stratum (0–3) as a reference category.36 

We converted the ABCD2 variable into two dummy, related 

dichotomous variables (one related to intermediate risk, 

4–5 score and the other to high risk, 6–7 score) and included 

them into multiple regression model as two single predic-

tors from the derivation study (Figure 2: panel A). The same 

technique for dummy variables was also successfully applied 

to the risk-stratified data from ABCD2 validation study33 

(Figure 2: panel B) to use these data to apply the “derivation 

study” model and its coefficients (see below).

Table 1 Observed and predicted number of strokes in the validation sample using the distribution patterns of strokes in the derivation 
sample as a predictive model*

Stroke risk by ABCD2  
rule (score levels)

Derivation study Validation study

Patients  
(N)

Observed strokes 
n (%)

Patients  
(N)

Predicted  
incidence (%)**

Predicted  
number (n)

Observed  
number (n)***

Low risk (0–3 points) 520 7 (1.35) 426 1.35 5.8 (≈6) 2
Intermediate risk (4–5 points) 921 60 (6.51) 397 6.51 25.8 (≈26) 17
High risk (6–7 points) 469 53 (11.30) 139 11.30 15.7 (≈16) 10

Notes: *Validation sample (California Clinic [n=962] cohort, Johnston et al 2007),33 derivation sample (California ED [n=1,707] and Oxford population-based [n=209] 
cohorts, Johnston et al, 2007)33; **stroke incidence in each risk stratum of the validation study (data from California, USA) according to the distribution patterns of stroke in 
the original, derivation study (as used as a predictive model); ***actual number of strokes as reported in each stratum of risk.
Abbreviation: ED, emergency department.
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Dummy INT
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Dummy INT
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Dummy HIGH
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(xHIGH)N NPatient PatientStroke  Stroke
Stroke at
7 days

Stroke at
7 days

  

Figure 2 Creation of dummy variables for the ABCD2 rule to perform logistic regression analysis at individual level.
Notes: “…” indicates an interruption of the columns to prevent listing all simulated data (an appropriate example is given for each risk stratum, ie, for each point in the 
aBCD2 score range from 0 to 7 points). 
Abbreviation: inT, intermediate.
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The equation of the prediction model in the derivation 

study of the ABCD2 rule is:

 

Log
risk of  stroke

1  risk of  stroke

linear predictor 

−






= YY

X XINT INT HIGH HIGH

 

 = α + β β+  (1)

where a is the intercept and β
INT

 and β
HIGH

 are the regression 

coefficients of the dummy variables “intermediate risk” and 

“high risk”, respectively. The predicted probability of stroke 

for each simulated individual patient can be calculated as:

 P =
+
e

e

Y

Y( )1

 

(2)

We obtained the regression equation with the predictors and 

their coefficients as:

 Y 4.29 X XINT HIGH=− + +1 63 2 23. .  (3)

For instance, if a patient ABCD2 score in the derivation study 

has been computed as either 0, 1, 2 or 3 points (low-risk, score 

0–3), this patient would get Y=−4.29 resulting in a probability 

of 1.35% (95% CI 0.6–2.8) to have a stroke in 7 days. A patient 

ABCD2 score of 4 or 5 points would get Y=−4.29+1.63=−2.66 

resulting in 6.51% (95% CI 5.1–8.3). Similarly, a patient 

ABCD2 score of 6 or 7 will get Y=−4.29+2.23=−2.06 result-

ing in 11.3% (95% CI 8.7–14.5).

As mentioned, we used above “derivation study” 

 coefficients to predict probabilities and number of strokes in 

the validation study (ie, using dummy variables as in Figure 2: 

panel B). The linear estimate Y
VAL

 in the validation study33 

(column 6, Table 2) was calculated as:

 
Y X XVAL DER= + +α β βINT,DER INT,VAL HIGH,DER HIGH,VAL (4)

where a
DER 

(−4.29) is the intercept and β
INT,DER

 (1.63) and 

β
HIGH,DER

 (2.23) are the coefficients from the derivation study 

(see equation (3) above). The X
INT,VAL

 and X
HIGH,VAL

 are the 

ABCD2 values as dummy variables data (“intermediate risk” 

and “high risk” strata) from the validation study (Figure 2: 

panel B). In this way, the predicted probability of stroke at 

individual level P (last column, Table 2), ie, for each simu-

lated patient, was computed as:

Table 2 individual patient probability P for stroke in the validation sample* as computed by the logistic regression equation (intercept 
and coefficients) from the derivation study

Patient Stroke ABCD2 Dummy  
intermediate (XINT)

Dummy  
high (XHIGH)

YVAL P**

1 0 0 0 0 −4.29 0.0135
… … … … … … …
15 0 0 0 0 −4.29 0.0135
16 0 1 0 0 −4.29 0.0135
… … … … … … …
80 0 1 0 0 −4.29 0.0135
81 1 2 0 0 −4.29 0.0135
… … … … … … …
228 0 2 0 0 −4.29 0.0135
229 1 3 0 0 −4.29 0.0135
… … … … … … …
426 0 3 0 0 −4.29 0.0135
427 1 4 1 0 −2.66 0.0651
… … … … … … …
656 0 4 1 0 −2.66 0.0651
657 1 5 1 0 −2.66 0.0651
… … … … …
823 0 5 1 0 −2.66 0.0651
824 1 6 0 1 −2.06 0.113
… … … … … … …
936 0 6 0 1 −2.06 0.113
937 1 7 0 1 −2.06 0.113
… … … … … … …
962 0 7 0 1 −2.06 0.113

Notes: *Validation sample (California clinic data, Johnston et al, 2007)33; **individual level probability (last column) in each of the risk strata of the ABCD2 score is later used 
to compute the predicted number of strokes. “…” indicates an interruption of the columns to prevent listing all simulated data (an appropriate example is given for each risk 
stratum, ie, for each point in the ABCD2 score range from 0 to 7 points).
Abbreviations: inT, intermediate, Val, validation.
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P =

+( )
e

e

Y

Y

VAL

VAL1
.  (5)

Then we added up the individual probabilities P in 

Table 2 (last column) to predict the number of strokes within 

each separate stratum of risk: low-risk 0–3 (expected =5.7), 

intermediate risk 4–5 (25.9) and high risk 6–7 (15.7). When 

rounded, these expected values give 6, 26 and 16 predicted 

strokes (last column, Table 3).

The same algorithm, confirming the validity of our new 

approach to predict 30 day mortality by CRB-65 rule, is pre-

sented in the Supplementary materials (Tables A2.2A-D).

Meta-analysis, performance  
measures, and adjustment of intercept 
(updating) in validation studies
The predicted number of strokes and predicted:observed 

RRs in validation studies of ABCD2 rule are computed 

and subjected to meta-analysis with fixed and random-

effects models. The results are presented as pooled 

estimates of RRs, together with measures of discrimina-

tion, calibration, and heterogeneity (Tables 4 and 5 and 

forest plots in Figures 3–5). Updating the intercept of 

original LR model corrects the calibration “at large”, 

that is, it “adjusts” the mean predicted probability for 

the latter to become equal to frequency of the observed 

outcome. Only the intercept of the original model (deri-

vation study) is adjusted. This can be achieved by fitting 

LR model in validation study with the intercept a as 

the only free parameter and the linear estimate Y
VAL

 as 

an offset variable (ie, the slope is fixed at unity).14 The 

following equation illustrates the adjustment procedure:

 

Log
risk of  stroke

1 risk of  stroke−






= linear predictor YCALL

CAL VALY= +α .

 

(6)

Then, the predicted probability of stroke for each separate 

validation study of the ABCD2 rule was calculated with the 

usual equation:

 P
e

e

Y

Y

CAL

CAL
=

+




1

. (7)

Once the probabilities with the adjusted intercepts are 

obtained for each simulated patient, the adjusted results 

from the meta-analysis with fixed effects can be presented 

for comparison purposes, in the same way, with the measures 

of performance and heterogeneity (Tables 4 and 5 and forest 

plots in Figures 3–5: panel C) as described in more detail in 

the section “Results”.

The same computations from a meta-analysis (without 

and with adjustment) on the estimates of 30 day mortality 

by CRB-65 rule in validation studies are presented only in 

Supplementary materials (forest plots in Figures A2.3.1, 

A2.3.2, and A2.3.3, Table A2.4 and Table A2.5).

Results
The main result of our current methodological work was 

the introduction of a new, simplified approach to compute 

predicted values and derive “predicted:observed” ratio of out-

comes and assess calibration in validation studies of CPRs. 

This was achieved by using information from the derivation 

study (eg, referred to as “derivation model”) (Table 1).

As the main example we used the ABCD2 rule to predict 

the number of strokes and the approach was confirmed in 

terms of construct and congruent validities of predicted esti-

mates. Using simulated IPD with dummy variables, we fitted 

a CPR-based LR model with its coefficients from the deriva-

tion study to data from sample validation study (Figure 2 and 

Table 2). We obtained the same number of predicted outcomes 

(Table 3) as computed by our new, simplified approach 

(Table 4). The identical results obtained by the new simplified 

approach (using a linear scale distribution from derivation 

sample onto the validation sample, ie, as from 0 to 7 points) 

and by the non-linear, more complex logistic relationship 

with the dummy variables to get individual predicted prob-

abilities, is confirmation of its validity. Our current analysis 

included derivation and validation studies that ranged in size 

from 136 to 1,054 patients (ABCD2 rule) and from 137 to 

1,100 patients (CRB-65 rule) (Supplementary materials: 

Figure A1.4, Table A1.1, Figure A 2.1, Table A 2.1A). Addi-

tional information on the validation studies and further details 

were reported earlier.30,31

To further illustrate usefulness of our new approach 

in assessing the CPR predictive performance in terms 

of calibration, we obtained predicted outcomes and 

Table 3 Observed and predicted numbers of strokes in the 
vali dation study* as computed by the use of the individual level 
proba bilities P from the logistic regression equation with dummy 
variables

Risk for stroke by the  
ABCD2 rule (score levels)

Observed 
strokes (n)

Patients 
(N)

Predicted 
strokes (n)**

Low risk (0–3 points) 2 426 5.7 (≈6)
Intermediate risk (4–5 points) 17 397 25.9 (≈26)
High risk (6–7 points) 10 139 15.7 (≈16)

Notes: *Data from the validation study (California Clinic [n=962] cohort, Johnston 
et al 2007)33; **the probability in each risk stratum of the ABCD2 rule is added up to 
obtain the number of predicted stokes.
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“predicted:observed” ratios in the validation studies and sub-

jected them to formal meta-analysis. We thoroughly assessed 

the discrimination and calibration in each included validation 

study of the ABCD2 rule (Table 4) and we also illustrated with 

forest plots the summary estimates of calibration (pooled RRs 

with their 95% CIs), together with levels of heterogeneity 

(Figures 3–5). Notably, beyond overall good discrimination 

across all included studies (c-statistics 0.608–0.819), calibra-

tion levels in some of the studies were low, with a tendency 

of under-estimation (under-prediction). The latter tendency 

can be more clearly observed when illustrated by the level 

of assumed risk of stroke as defined by different levels of 

ABCD2 rule score (low: 0–3, intermediate: 4–5 and high: 

6–7 points, Table 5).

The slight under-prediction (RR from 0.73 to 0.91, 95% 

CIs include 1.00), possibly due to increased heterogene-

ity (18.8%–66.1%) in some of the risk strata, could be 

further corrected by adjustment of the original intercept 

to take into account the different incidence rates (a priori 

probabilities). In this way our new, simplified approach was 

able to identify low calibration levels (eg, under- prediction) 

which could be further refined. While discrimination does 

not improve further by such intercept adjustment (Table 4), 

better calibration coefficients (Table 4, last column) and 

improved pooled estimates (RR 0.90–1.06, Table 5), with 

narrower 95% CIs and zero heterogeneity were achieved.

Discussion
CPRs are a valuable tool in supporting clinicians, especially 

in primary care, in making evidence-based decisions when 

relying on clinical history, physical examination, and basic 

investigations. We employ a pragmatic approach to introduce 

new, simplified methodology of computing the predicted 

number and “predicted:observed” ratio of outcomes in valida-

tion studies of CPRs for assessing calibration in systematic 

reviews.

Main results
In the context of previous research on CPR validation where 

preference was always given to discrimination rather than 

calibration, our current results indicate the usefulness, fea-

sibility, and validity (construct and congruent) of our new 

approach for calibration assessment. Producing predicted 

outcomes and pooled estimates of calibration, based on the 

frequency distribution pattern (%) of the outcome in the CPR 

derivation study, is denoted as a “derivation model”.

Table 4 Performance of the ABCD2 rule in validation studies

Study ID Discrimination (c-statistic) Calibration (H-L P-value*)

No adjustment 
(original CPR)

Adjustment  
of intercept

No adjustment 
(original CPR)

Adjustment  
of intercept

asimos et al (2007)41 0.677 0.677 0.002 0.593
ay et al (2009)42 0.650 0.650 0.791 0.922
Johnston et al (2007), California clinic43 0.722 0.722 0.045 0.873
Johnston et al (2007), California ED43 0.623 0.623 0.099 0.100
Cucchiara et al (2009)44 0.673 0.673 0.253 0.421
Fothergill et al (2009)45 0.608 0.608 0.001 0.527
Ong et al (2010)46 0.649 0.649 0.001 0.298
Rothwell et al (2007), Oxford clinic47 0.763 0.763 0.476 0.713
Rothwell et al (2007), Oxford population47 0.819 0.819 0.001 0.004
song et al (2009)48 0.741 0.741 0.001 0.900
Tsivgoulis et al (2007)49 0.720 0.720 0.213 0.882
Tsivgoulis et al (2010)50 0.724 0.724 0.174 0.875

Note: *H-L, Hosmer-Lemeshow “goodness-of-fit” P-value (a non-significant P-value means good fit – the higher the P-value, the better the fit).
Abbreviation: CPr, clinical prediction rule; ED, emergency department.

Table 5 Meta-analysis with pooled RRs and 95% CIs from the validation studies of the ABCD2 rule – comparison between our new 
approach (original CPR) and an updated logistic regression model

Stroke risk by ABCD2  
rule (score levels)

No adjustment (original CPR) Adjustment of intercept

I2 Fixed effects Random effects I2 Fixed effects

Low risk (0–3 points) 18.3% 0.73 (0.45–1.20) 0.78 (0.41–1.48) 0.0% 0.90 (0.57–1.41)
Intermediate risk (4–5 points) 66.1% 0.91 (0.75–1.11) 0.88 (0.61–1.28) 0.0% 1.06 (0.88–1.28)
High risk (6–7 points) 52.6% 0.85 (0.68–1.06) 0.79 (0.55–1.15) 0.0% 0.95 (0.77–1.17)

Abbreviations: RRs, risk ratios; CIs, confidence intervals; I2, coefficient of heterogeneity; CPR, clinical prediction rule.
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The clinical need for assessing calibration of CPR, and 

possibly improving it, has been clearly shown by discrepancies 

in the application of the Framingham score for 10-year CVD 

risk in European populations.19,20 While being calibrated in 

populations from the USA, Australia, and New Zealand, it 

overestimates (over-predicts) the absolute risk in Europe 

and requires further recalibration.20 A systematic review of 

validation studies even indicated that an interesting, newly 

detected dynamic pattern from over-prediction to under-

prediction emerges with the increase of the observed risk.25 
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Figure 3 Forest plots of the ABCD2 rule (low risk).
Notes: (A) No adjustment (the original prediction rule) – fixed effects; (B) no adjustment (the original prediction rule) – random effects; (C) adjustment of the intercept – 
fixed effects.
Abbreviations: RR, risk ratio; CI, confidence interval.
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However, the above conjectures about calibration could never 

have been made if the predicted outcomes had not existed in 

CPR validation studies or were not accessible.

Our new approach is very useful in producing predicted 

outcomes by CPRs when needed for: i) assessment of calibra-

tion levels and/or subsequent inclusion of validation studies 

in meta-analysis; ii) signaling miscalibration and measuring 

improvements of calibration by updating (eg, adjustment of the 

intercept of derivation model); iii) comparison with predicted 

values as computed by other models and techniques (eg, confir-

mation of construct validity in ABCD2 and CRB-65 rules); and 

iv) further testing and, if necessary, refinement and improvement 
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Figure 4 Forest plots of the ABCD2 rule (intermediate risk).
Notes: (A) No adjustment (the original prediction rule) – fixed effects; (B) no adjustment (the original prediction rule) – random effects; (C) adjustment of the intercept – 
fixed effects.
Abbreviations: RR, risk ratio; CI, confidence interval.
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in terms of transportability with assessment and comparison 

of calibration between different but similar CPRs for the same 

outcome in same or different validation populations. To note, 

the same approach is also applicable to systematic reviews of 

validation studies for prediction of long-term risk of stroke 

after transient ischaemic attack.32

limitations
One limitation of our approach is that the pooled analysis 

does not consider the specific frequency of the outcomes in 

each separate study; however, such assessment of calibra-

tion may be seen also as a new way for preliminary analysis 

to quantify, beyond the discrimination, the level of CPR 

Note: Weights are from random effects analysis
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fixed effects.
Abbreviations: RR, risk ratio; CI, confidence interval.
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calibration and to decide whether or not a rule should be 

recalibrated (eg, intercept adjustment). This is especially 

useful when IPD from validation studies are neither available 

nor easily accessible. Second, the CPR calibration might be 

influenced by the incidence in a separate validation study. 

However, before any further advice is given for recalibration, 

the predicted values and estimated calibration (ie, predicted 

versus observed values with their 95% CIs) can be adjusted 

to or computed for a range of different incidences. The lat-

ter approach was successfully applied in meta-analysis of 

validation studies of Centor score.37 For instance, the post-

test probabilities of group A beta-hemolytic streptococcal 

pharyngitis were computed in a tabular form for a range of 

pre-test (prevalence) probabilities by the Poses’s method38 

using the likelihood ratio formulation of the Bayes’ theorem 

to adjust for different prevalence rates. Last but not least, 

in the current approach we used each of the tested CPRs as 

single (solely) predictor of the outcome, however, these rules 

had components (signs or symptoms) with more or less the 

same weight (1 or 2 points each) and the underlying models 

had no complex interaction terms.

Clinical relevance and future research
Our results have immediate clinical application in the view 

of summarizing best available evidence (systematic review) 

from validation studies of CPRs. They allow subjecting 

each study’s data to formal meta-analysis to produce pooled 

estimates not only of discrimination, but also of calibration 

by applying previously published models (derivation study) 

to a new, validation population. Unfortunately, currently 

only about half of the derived CPRs in primary care have 

been validated and only a few have been assessed for clini-

cal impact.39 As another recent study has also emphasized,40 

the use of appropriately validated and tested CPRs is one of 

the best ways of implementing evidence-based medicine for 

diagnosis and prognosis in the clinical practice. In this sense 

we suggest that all systematic reviews with meta-analysis 

of CPR, as well as all validation studies, always report both 

discrimination and calibration analyses. Finally, the poten-

tial gain in predictive accuracy and generalizability of CPR 

developed on combined datasets, with IPD from various 

studies on the same outcome (ie, IPD meta-analysis) is an 

area of recently intensified research that warrants further 

investigations.

Conclusion
In summary, our current study has presented a new, simplified 

method for computation of predicted number of outcomes 

in validation studies of CPRs for assessment of calibration 

performance. This method is based on the frequency distri-

bution pattern of derivation study outcomes. We illustrated 

the development and application of this new approach 

(ie, “derivation model”) on two clinically relevant and widely 

used CPRs (ABCD2 and CRB-65).

Our new approach was tested and further confirmed 

in terms of functionality and validity by original, univari-

ate, CPR-based LR modeling (ie, with dummy variables) 

using derivation study data. The application of coefficients 

from this regression model to a sample validation study 

produced virtually identical predicted values of stroke 

across the three risk strata of ABCD2 score (low, 0–3; 

intermediate, 4–5; high, 6–7 points). Then, by using our new 

method, we successfully computed predicted values in all 

included validation studies and obtained pooled estimates 

of “predicted:observed” RRs with their 95% CIs. Given the 

good discrimination performance, the slight under-prediction 

of strokes was further improved by intercept adjustment to 

show how different incidences of the outcome in each vali-

dation study can be considered and thus, providing further 

evidence on the usefulness of our approach. Once such 

miscalibration in a meta-analysis is signaled by our new 

approach, further refinements of the original intercept are 

possible by more sophisticated modeling exercises. Similarly, 

the successful application of our new method was also illus-

trated on the CRB-65 rule (Supplementary materials).

When predicted outcomes are neither published nor suf-

ficient as from within validation studies of CPRs, or no IPD 

are available, our simplified approach illustrates, for the first 

time, how predicted outcomes can be obtained by everyone, 

when using only derivation study, without any further require-

ments for highly-specialized knowledge or sophisticated 

analyses. Last but not least, our new results have immediate 

clinical implication in contributing to exploration of the 

best available evidence from validation studies of CPRs (ie, 

systematic reviews). They allow not only subjecting the data 

to meta-analysis for computation of discrimination but also 

to produce pooled estimates for evaluation of calibration in 

new, validation populations.
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