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Summary. Chronic inflammatory lung diseases such as cystic fibrosis and 

emphysema are characterised by higher than normal levels of pulmonary proteases. 

Whilst these enzymes play important roles such as bacterial killing, their dysregulated 

expression or activity can adversely impact on the inflammatory process. The 

existence of efficient endogenous control mechanisms that can dampen or halt this 

overexuberant protease activity in vivo is essential for the effective resolution of 

inflammatory lung disease. The function of pulmonary antiproteases is to fulfil this 

role. Interestingly, in addition to their antiprotease activity, protease inhibitors in the 

lung also often possess other intrinsic properties that contribute to microbial killing or 

termination of the inflammatory process. This review will outline important features 

of chronic inflammation that are regulated by pulmonary proteases and describe the 

various mechanisms by which antiproteases attempt to counterbalance exaggerated 

protease-mediated inflammatory events. These proteases, antiproteases and their 

modifiers represent interesting targets for therapeutic intervention. 
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Proteinases (herein referred to colloquially as proteases) have a key role in the 

lung in health and disease. In the healthy lung proteases fulfil basic homeostatic roles 

and regulate processes such as regeneration and repair. Chronic inflammatory lung 

diseases are associated with higher than normal levels of proteases. Functionally this 

can positively impact on both infection and inflammation. However unless a perfect 

balance can be struck between the protective and harmful effects of pulmonary 

proteases by an appropriate antiprotease protective screen, damage can occur. Thus 

effective resolution of inflammation in the lung is associated not only with protease 

activity but also with appropriate antiproteolytic control mechanisms. Here we will 

focus on the mechanisms by which pulmonary proteases regulate innate immunity and 

the role of specific antiproteases in fine tuning these responses. 

The principal classes of protease present in the human lung are the serine, 

cysteinyl, aspartyl and metalloproteases. These can function either intracellularly or 

extracellularly to regulate processes as diverse as tissue remodelling, mucin 

expression, neutrophil chemotaxis and bacterial killing. Members of these protease 

classes orchestrate a diverse range of changes with respect to infection and 

inflammation in the lung, with the serine protease neutrophil elastase (NE) occupying 

an important position at the apex of a specific protease hierarchy. NE has a number of 

important intrinsic proteolytic properties. However it can also directly control the 

inducible expression and biological properties of other pulmonary proteases. For 

example NE regulates expression of cathepsin B and MMP-2 in alveolar macrophages 

(Geraghty et al., 2007b) and also activates proMMP-2, MMP7 and MMP-9 (Ferry et 

al., 1997; Imai et al., 1995; Shamamian et al., 2001). Thus in addition to being a 

protease NE also behaves as a proinflammatory mediator. In certain circumstances 

NE also controls elegant signalling mechanisms regulating innate immunity (Bergin et 
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al., 2008; Devaney et al., 2003; Kohri et al., 2002; Nakamura et al., 1992; Shao et al., 

2005a; Shao et al., 2005b; Walsh et al., 2001); its pluripotency distinguishes it as a 

unique factor controlling many aspects of infection and inflammation in the lung. 

 

Neutrophil elastase 

NE, as its name suggests, is a neutrophil-derived elastolytic protease. It is 

expressed as a 267 amino acid pre-proenzyme that is packaged in a processed and 

activated form in neutrophil primary (azurophilic) granules. Substrates of NE fall into 

many categories and include elastin and other extracellular matrix proteins, plasma 

proteins, cell surface receptors, cytokines protease inhibitors and proteases (Table 1). 

Other serine protease stored in the primary granules of neutrophils are proteinase 3 

and cathepsin G. Similar to NE, these enzymes are released by activated and 

disintegrating neutrophils and are detectable at higher than normal levels in the 

airways during chronic inflammation (Witko-Sarsat et al., 1999) (Goldstein et al., 

1986). 

Whilst neutrophils play an important role in many inflammatory lung diseases, 

cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) are 

considered to be the classical chronic neutrophil-dominated diseases of the airways. 

The abundance of neutrophils in the CF and COPD lung generates a milieu rich in NE 

(Doring, 1994; Griese et al., 2008). Neutrophil accumulation is believed to be due in 

part to their inability to effectively clear pathogens and thus accumulate and undergo 

secondary necrosis. This leads to the liberation of NE and other intracellular 

components (Griese et al., 2008). Foreign organic molecules that have been 

phagocytosed by neutrophils are degraded by NE intracellularly. NE also contributes 

not only to the intracellular killing of Gram-negative bacteria by neutrophils but also, 
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once released extracellularly, can play a role in bacterial killing by comprising a key 

component of neutrophil extracellular traps (NETs). NETs are involved in host 

defense (Brinkmann et al., 2004). They bind Gram-positive and Gram-negative 

bacteria and allow neutrophils to deliver high concentrations of serine proteases that 

degrade virulence factors and kill bacteria. Recently, bacterial virulence factors that 

counteract NETs have been identified. The mechanisms identified include the 

expression of DNAses that degrade the NET-backbone, expression of capsule which 

can reduce bacterial trapping and modulation of cell-surface charge (Buchanan et al., 

2006; Wartha et al., 2007).  

In addition to direct killing of microbes, NE has important roles in innate 

immunity and inflammation in the lung particularly in the processes of neutrophil 

recruitment and mucin gene expression (Bergin et al., 2008; Shao et al., 2005b). 

Interestingly both of these processes are controlled via similar mechanisms. NE also 

regulates the expression of other classes of proteases. 

 

Hierarchy of protease expression 

Bronchoalveolar lavage fluid sampled from individuals with chronic 

inflammatory lung disease almost invariably contains significant quantities of 

proteases. The primary families to be released into the extracellular space following 

cell activation are the serine, MMP and cysteinyl cathepsin groups. There is evidence 

demonstrating that NE, and possibly other serine proteases, can transcriptionally 

regulate expression of other classes of proteases. In human macrophages, for example, 

transcription of both MMP-2 and cathepsin B has been shown to be increased in 

response to NE in an NFκB-dependent manner (Geraghty et al., 2007b). This is one 

mechanism contributing to the positioning of serine proteases at the apex of one 
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hierarchy of protease regulation.   Toll-like receptor 4 (TLR4) has also been 

implicated in NE-induced expression of MMP-2 and cathepsin B however its precise 

role in NE-induced changes in gene expression is less clear in macrophages than in 

airway epithelial cells (see below).  In addition to its ability to induce the transcription 

of specific proteases, NE and other serine proteases can also activate MMPs.  For 

example NE, proteinase 3 and cathepsin G can activate the latent 72 kDa MMP-2 

zymogen via membrane type I MMP (Ferry et al., 1997; Imai et al., 1995; Shamamian 

et al., 2001). NE can also activate proMMP-7, MMP-9 and procathepsin B and 

members of the ADAM (a disintegrin a metalloprotease) and meprin families (Bergin 

et al., 2008; Dalet-Fumeron et al., 1993; Ferry et al., 1997; Imai et al., 1995; Kohri et 

al., 2002). 

 

Regulation of mucin production and neutrophil recruitment. 

The epidermal growth factor receptor (EGFR, alternatively known as Erb1 or 

HER1) is a receptor tyrosine kinase that can regulate expression of mucin and IL-8 

gene expression. In human airway epithelium EGFR forms homodimers or 

heterodimers with Erb2 or Erb3 in response to activation by a range of diverse 

stimuli, including NE (Bergin et al., 2008; Holbro et al., 2004; Kohri et al., 2002). 

EGFR is directly activated by binding of the EGFR ligands epidermal growth factor 

(EGF), transforming growth factor-α (TGF-α), heparin binding (HB)-EGF, 

amphiregulin, betacellulin or epiregulin. These ligands are expressed as membrane-

tethered proligands on airway epithelial cells, eosinophils, neutrophils, mast cells and 

macrophages and are released as bioactive molecules in a metalloprotease-dependent 

manner. Whilst TNF-α converting enzyme (TACE/ADAM17) was originally thought 

to be uniquely responsible for EGFR ligand generation it is now clear that there is 
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redundancy between TACE, other MMPs, ADAMs and the metzincin meprin-α in 

this regard (Choudry et al., 1991; Merlos-Suarez et al., 2001; Schlondorff et al., 

2001). To date several cis-acting enzymes including ADAM10, ADAM12, ADAM15, 

ADAM17, MMP2, MMP9 and meprin-α, amongst others, have been implicated in 

EGFR ligand generation (Ohtsu et al., 2006). 

 In the airways NE has been shown to activate EGFR via generation of TGF-α. 

This event involves activation of TACE or meprin-α by NE and leads to intracellular 

signalling cascades that culminate in the enhanced expression of the mucin genes, 

MUC2 and MUC5AC, or the neutrophil chemokine IL-8. Hypersecretion of mucus is 

a common pathophysiological feature of CF and other inflammatory lung diseases. In 

CF, asthma and chronic bronchitis mucus obstruction of the airways contributes 

significantly to mortality and morbidity in these conditions. Consisting mostly of 

water and ions, mucus also comprises approximately 5% protein. It plays an important 

role in host defence by binding bacteria and ensuring their removal via the 

mucociliary escalator to the upper airways and oesophagus for expectoration or 

ingestion. To date nine MUC genes have been described in the lung – MUC1, 2, 4, 

5AC, 5B, 7, 8, 13 and 19 (Chen et al., 2004; Rose et al., 2001). MUC2, 5AC and 5B 

are secreted, gel-forming mucins. MUC5AC represents the most prominent mucin in 

normal airway secretions and its expression is increased in nasal epithelium of 

individuals with CF and allergic rhinitis (Voynow et al., 1998). In airway 

inflammation mucin gene expression can be activated by IL-9 via the human calcium-

activated chloride channel, hCLCA1 (Hauber et al., 2004) but also by NE via TACE 

and EGFR (Fischer et al., 2002; Kohri et al., 2002). Other stimuli that regulate 

MUC5AC or MUC2 expression via the TACE-EGFR pathway include cigarette 
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smoke, lipopolysaccharide (LPS) (Dohrman et al., 1998; Shao et al., 2004) and Gram-

positive lipoteichoic acid (LTA) (Lemjabbar et al., 2002).   

 

Mechanisms regulating NE-induced IL-8 production. 

IL-8 is a neutrophil chemokine and consequently represents a key factor 

present in the lungs during neutrophil-dominated inflammatory disease. Elevated 

levels of IL-8 are typically present in the bronchoalveolar lavage fluid of patients with 

COPD, emphysema and CF. Early studies identified a link between high 

concentrations of IL-8 and NE in the airways in CF (McElvaney et al., 1992; 

Nakamura et al., 1992). The mechanism by which this correlation exists has been 

studied in detail leading to the elucidation of the molecular mechanism by which NE 

can regulate the transcriptional induction of the IL-8 gene in airway epithelial cells. 

Preliminary investigations to determine how this may be occurring identified three 

important features of the regulatory cascade (Walsh et al., 2001). Firstly in order for 

NE to induce IL-8 expression from airway epithelial cells it must retain its biological 

activity; inactivation of its protease activity with specific serine protease inhibitors 

abrogated the effect. Secondly, as the effect could be blocked using actinomycin D, 

NE was affecting the transcription of IL-8. Thirdly, and most surprisingly, NE was 

shown to induce IL-8 via the transcription factor NFκB in a manner that was 

dependent on MyD88, IRAK and TRAF6 – known transducers involved in TLR and 

interleukin-1 type 1 receptor (IL-1R) signalling. Subsequent studies revealed that a 

dominant-negative version of MyD88 (∆MyD88) could inhibit the expression of 

multiple NFκB-dependent cytokines in response to NE. Furthermore the adaptor 

protein Mal, known to be involved in TLR2/TLR4 signalling, had similar inhibitory 

capacity as ∆MyD88 when expressed as an inactive transgene (Carroll et al., 2005; 
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Greene et al., 2005). Taken together these data implicated TLR2 and/or TLR4 in NE-

induced IL-8 expression. Geraghty and colleagues (Geraghty et al., 2007b) observed a 

similar phenomenon in macrophages in their studies on NE induction of MMP2 and 

cathepsin B. Others (Koff et al., 2008) also recently provided evidence for a role for 

TLRs in EGFR-mediated signalling whilst Bergin et al demonstrated a direct 

association between EGFR and TLR4 in response to stimulation with NE (Bergin et 

al., 2008). The mechanism by which NE regulates IL-8 expression in human 

bronchial epithelial cells is depicted in Figure 1.  

 

Generation of bioactive molecules by pulmonary proteases 

In addition to their roles in EGFR trans-activation MMPs have also recently 

been implicated as important factors regulating the expression of the novel 

proinflammatory chemotactic peptide proline-glycine-proline (PGP) in both CF and 

COPD. PGP is a breakdown product of the extracellular matrix protein collagen and 

shares sequence and structural homology with alpha chemokines (Weathington et al., 

2006). Indeed there is mounting evidence that fragments of a number of extracellular 

matrix proteins, including those derived from collagen and elastin, are important in 

regulating the recruitment of inflammatory cells to the lung. PGP (and N-acetylated 

PGP) has been shown to act as a neutrophil chemoattractant via CXC receptors 1 and 

2 on neutrophils. PGP is generated from collagen via the combined activities of 

MMP-8, MMP-9 and the serine protease prolyl endopeptidase (Gaggar et al., 2008; 

Lin et al., 2008). In addition to higher than normal levels of NE in the CF and COPD 

lung, there is evidence that MMP-8, MMP-9 and prolyl endopeptidase are also 

elevated and that together these enzymes can degrade collagen in vivo to generate the 

PGP tripeptide. CF sputum has been shown to contain detectable levels of both PGP 
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and N-Ac-PGP. In addition to being chemotactic for human neutrophils, PGP has 

been linked to neutrophil superoxide production, alveolar enlargement and right 

ventricular hypertrophy which contribute to the pulmonary inflammatory 

manifestations of CF. Recent elegant studies have demonstrated that the 

corresponding tripeptide Arginine-Threonine-Arginine (RTR) can bind to PGP 

sequences, neutralize their effect and inhibit neutrophil infiltration in a model of 

COPD (van Houwelingen et al., 2008). Furthermore, RTR completely inhibits PGP-

induced lung emphysema assessed by changes in alveolar enlargement and right 

ventricular hypertrophy. Thus PGP antagonism via RTR is also likely to have 

therapeutic potential for CF.  This represents another example of how protease 

interactions with structural proteins have an important effect on regulating innate 

immunity.  

  

Pulmonary proteases and antimicrobial peptides 

Important antimicrobial polypeptides of innate pulmonary host defense 

include lactoferrin, secretory leucoprotease inhibitor (SLPI), lysozyme, the defensins 

and the cathelicidin family (Zanetti, 2005). The human cathelicidin precursor protein, 

designated 18-kDa cationic antimicrobial protein (hCAP18) is expressed as a pro-

protein composed of a conserved N-terminal pro-domain and a C-terminal 

antimicrobial peptide domain. In human neutrophils hCAP18 is processed to an active 

form by proteinase 3 to generate the cationic α-helical peptide LL-37 (Sørensen et al., 

2001; Zanetti et al., 1995). Further proteolytic degradation of LL-37 can lead to the 

generation of peptide fragments with altered antimicrobial activity and reduced 

immunomodulatory potential. In addition to degradation of LL-37 a selection of 

pulmonary proteases have also been shown to be responsible for the degradation and 
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inactivation of other antimicrobial effector molecules, including human β-defensins 2 

and 3, SLPI and lactoferrin (Rogan et al., 2004; Taggart et al., 2003; Taggart et al., 

2001). In particular the cysteinyl cathepsins B, L and S are implicated in cleavage and 

inactivation of innate immunity proteins in vivo during inflammatory lung disease. 

Human β-defensins 1, 2, and 3 (HBD-1, -2, and -3) are antimicrobial peptides 

produced by epithelial cells lining the respiratory tract. They are active against Gram-

positive and Gram-negative bacteria. In CF the antimicrobial activity of defensins is 

compromised therefore predisposing to bacterial colonization of the lung by 

Pseudomonas aeruginosa and other species. Whilst inactivation of HBDs by the high 

salt levels present in the CF lung represents one potential mechanism for the 

decreased antimicrobial protection (Goldman et al., 1997), there also exists a 

protease-mediated mechanism which contributes significantly to this phenomenon.  

HBD-2 and HBD-3 have been shown to be susceptible to degradation and inactivation 

by the cysteine proteases cathepsins B, L, and S, with all three cathepsins present and 

active in CF bronchoalveolar lavage fluid (Taggart et al., 2003). In addition to 

degrading HBDs these enzymes also cleave and inactivate human lactoferrin in CF, 

which plays an important role in inhibition of biofilm formation (Rogan et al., 2004). 

Furthermore all three cathepsins have also been shown to cleave and inactivate SLPI 

in the context of pulmonary emphysema (Taggart et al., 2001). The cleavage of SLPI 

by cathepsins B, L or S occurs between residues Thr(67) and Tyr(68). This cleavage 

results in loss of the active site of SLPI and the inactivation of its anti-neutrophil 

elastase capacity. Cathepsin L has also been shown to cleave and inactivate the serine 

antiprotease alpha-1 antitrypsin (A1AT) (Johnson et al., 1986). MMP-7 fulfils a 

similar role in the CF lung where its expression is markedly upregulated (Sires et al., 

1994). Together these findings provide ample evidence for the involvement of 
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cathepsins in damaging the antimicrobial and antiprotease protective screens in the 

lung. 

  

Bacterial proteases and inflammatory lung disease 

Elastolytic activity within the lungs in CF is largely accounted for by the 

significantly elevated levels of NE, with one report suggesting that up to 90% of the 

activity in CF sputum is attributable to NE. According to Rees et al. proteinase 3 

accounts for a further 7% of this activity whilst the remaining 3% derives from 

macrophage-derived metalloelastases but also elastolytic proteases expressed by Ps. 

aeruginosa (Rees et al., 1997). Although Ps. aeruginosa represents the classical 

pathogen associated with colonisation of CF airways, other opportunistic Gram-

negative and Gram-positive bacteria such as Haemophilus influenzae and 

Staphylococcus aureus, respectively, are also important (Ramsey, 1996). However 

more is known regarding the function and activity of the Pseudomonas-derived 

metalloproteases in CF. Both Pseudomonas elastase and alkaline protease are present 

in CF airway surface liquid (Suter, 1994). Pseudomonas elastase has a number of 

important biological properties. It promotes secretion of mucus (Adler et al., 1983), 

degrades surfactant proteins A and D (Mariencheck et al., 2003), cleaves and 

inactivates A1AT (Morihara et al., 1984), SLPI (Johnson et al., 1982), elafin (Guyot 

N, 2008), lysozyme (Jacquot et al., 1985) and LL-37 (Schmidtchen et al., 2002) and it 

also impairs the function of cilia (Amitani et al., 1991). Both Pseudomonas elastase 

and alkaline protease can inactivate lactoferrin (Britigan et al., 1993). These 

properties represent an ever-growing list and indicate that proteases expressed by 

bacterial pathogens colonising the airways should not be overlooked as important 

factors regulating the inflammatory process. 
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Pulmonary antiproteases 

In order to counterbalance overexuberant and often harmful effects of 

pulmonary proteases a battery of antiproteases, exists in the lungs. Alpha-1 antitrypsin 

(A1AT), secretory leucoprotease inhibitor (SLPI) and elafin are three serine 

antiproteases present, in descending abundance, in the lungs. Monocyte/neutrophil 

elastase inhibitor (MNEI) is another pulmonary serine protease inhibitor with activity 

against NE, cathepsin G and proteinase 3 (Cooley et al., 2001). The cysteinyl 

cathepsins are inhibited by the cystatins whilst the tissue inhibitors of 

metalloproteases (TIMPS) regulate the activities of MMPs and ADAMs.  

 

Alpha-1 antitrypsin (A1AT) 

A1AT is an acute phase 52kDa 418 amino acid glycoprotein that is primarily 

synthesised and secreted by hepatocytes (Rogers et al., 1983) although it is also 

actively transcribed and secreted in smaller amounts by cells including neutrophils, 

mononuclear phagocytes, and enterocytes (Molmenti et al., 1993). A1AT is also 

produced locally in the lung by bronchial epithelial cells (Cichy et al., 1997; Hu et al., 

2002; Mason et al., 1991; Mulgrew et al., 2004; Venembre et al., 1994). It is present 

in all tissues of the body and its primary role is to inhibit NE (Travis et al., 1985).  

A1AT can also inhibit a range of other proteases including trypsin, chymotrypsin, 

cathepsin G, plasmin, thrombin, tissue kallikrein, factor Xa, plasminogen and 

proteinase 3.   

Although A1AT is principally a serine protease inhibitor other of its properties 

include the ability to inhibit TNFα and MMP in alveolar macrophages in response to 

thrombin and cigarette smoke extract (Churg et al., 2003), to impair LPS-induced 



 15 

monocyte activation and to block apoptosis (Daemen et al., 2000; Ikari et al., 2001; 

Ikebe et al., 2000). A1AT has also been reported to play an immunoregulatory role. It 

can inhibit neutrophil superoxide production, induce the release of macrophage-

derived IL-1 receptor agonist and increase hepatocyte growth factor production in 

human lung fibroblasts. A1AT can bind to the secreted enteropathogenic Escherichia 

coli proteins EspB and EspD thereby reducing their haemolysis of red blood cells 

(Knappstein et al., 2004). Thus A1AT may not only afford protection against 

proteolytic injury, but may also have the potential to neutralise microbial activities 

and to exert effects on the regulation of innate immunity.  There is growing evidence 

that A1AT may also possess the ability to impair LPS-induced inflammatory 

responses both in vitro and in vivo (Nita et al., 2005). 

With respect to apoptosis, A1AT has been shown to have a direct pro-survival 

effect in a model of apoptosis-dependent emphysema (Petrache et al., 2006b). The 

same group (Petrache et al., 2006b) demonstrated that A1AT can inhibit apoptosis in 

alveolar epithelial cells following transduction of an A1AT-expressing adeno-

associated virus in a mouse model of apoptosis-dependent emphysema. The 

mechanism by which A1AT mediates this effect is via direct inhibition of caspase-3 

binding to its substrate (Petrache et al., 2006a). Others have reported similar anti-

apoptotic effects of A1AT in porcine pulmonary endothelial cells (Aldonyte et al., 

2008).  

A1AT is susceptible to both cleavage and oxidative inactivation in vivo. 

Cathepsin L and Pseudomonas elastase are known to cleave A1AT (Johnson et al., 

1986; Morihara et al., 1984). A1AT contains nine methionines, two of which are 

readily oxidizable, Met(351) and Met (358). Met(358) is a key residue located in the 

active site of A1AT (Johnson et al., 1978). When oxidation occurs A1AT’s anti-NE 
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capacity is abolished and its association rate constant for NE is reduced 2000-fold.  

Cigarette smoke and inflammatory cells in the lower respiratory tract can oxidize 

Met(358). Studies by Taggart et al have demonstrated that Met(351) is also 

susceptible to oxidation, and site-directed mutants of A1AT with alanines substituted 

for these key methionines are resistant to oxidative inactivation (Taggart et al., 2000).  

Augmentation therapy with A1AT is the current treatment for the pulmonary 

manifestations of A1AT deficiency, a genetic form of emphysema. This approach has 

the potential not only to redress the protease/antiprotease imbalance and dampen the 

inflammatory response on the airway surface but also could potentially inhibit 

apoptosis associated with the development of emphysema by inactivating caspase-3. 

Hartl et al. recently described how CXCR1 fragments released from the 

surface of neutrophils in vivo in individuals with CF or COPD can act as bioactive 

molecules signalling via TLR2 in airway epithelial cells (Hartl et al., 2007). In vivo 

inhibition of proteases by inhalation of A1AT restored CXCR1 expression and 

improved bacterial killing in individuals with cystic fibrosis. These findings support a 

novel role for A1AT as a therapeutic for CF and possibly COPD.  

 

Secretory Leukoprotease Inhibitor (SLPI) 

SLPI is a 11.7 kDa cationic, non-glycosylated  serine proteinase inhibitor that 

is present in fluids lining mucosal surfaces (McElvaney, 1997).  It inhibits a variety of 

proteinases, including NE, cathepsin G, trypsin, chymotrypsin, chymase and 

tryptase (Doumas et al., 2005). The molecule is composed of two highly homologous 

cysteine-rich domains, and it is the C-terminal domain that contains the elastase-

inhibitory activity. SLPI is constitutively expressed at many mucosal surfaces and is 

produced by a number of cell types, including neutrophils, macrophages, and 



 17 

epithelial cells lining the respiratory and alimentary tracts. The physiological 

concentration of SLPI in lung epithelial lining fluid can be as high as 670 nM/ ELF 

(McNeely et al., 1995; Taggart et al., 2001). In the lung SLPI is expressed by clara 

cells and goblet cells of the surface epithelium and the serous cells of the submucosal 

glands (Hiemstra, 2002).   

In addition to its antiprotease activity SLPI is well recognised as an 

antimicrobial factor. Its antimicrobial activity is encoded by the N-terminal domain of 

the protein (Hiemstra et al., 1996). It has been postulated that due to its high 

cationicity, SLPI can disrupt microbial cell membranes and that this is the mechanism 

by which it can inhibit such pathogens as Staphylococcus aureus, Staphylococcus 

epidermidis, Pseudomonas aeruginosa and Candida albicans (Wiedow et al., 1998; 

Williams et al., 2006). SLPI also displays anti-viral activity and can inhibit human 

immunodeficiency virus (HIV) replication in monocytes and interfere with HIV 

infection of macrophages via binding to annexin II (Ma et al., 2004; McNeely et al., 

1997).  

An important property of SLPI is its immunomodulatory activity. SLPI can 

regulate a variety of important inflammatory processes including decreasing the 

production of prostaglandin H synthase-2, prostaglandin E2, and MMP-1 and -9 by 

monocytes (Zhang et al., 1997), inhibiting interferon-γ-induced cathepsin S 

expression (Geraghty et al., 2007a) and antagonizing the pro-inflammatory activity of 

bacterial LPS (Ding et al., 1999; Jin et al., 1997). Whilst it has been reported that 

SLPI can interfere with the interaction between CD14 and LPS (Ding et al., 1999) 

other reports provide evidence for an intracellular role for SLPI (McNeely et al., 

1997; Taggart et al., 2005). It has been shown that SLPI can be internalised by 

monocytic cells and be distributed throughout the cytoplasm and nucleus. In addition 
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to its ability to impair the LPS response, SLPI can also inhibit lipoteichoic acid 

(LTA)-induced NFκB activation in monocytic cells (Greene et al., 2004; Taggart et 

al., 2002) . Overall the inhibition has been shown to occur via two mechanisms; 

firstly by preventing the proteolytic degradation of IRAK-1, IκBβ and IκBα and 

secondly as a direct result of binding of SLPI to NFκB consensus sequences and 

competing with p65 for occupancy of the promoters of NFκB-regulated genes 

(Taggart et al., 2005; Taggart et al., 2002).   

SLPI has been administered by aerosolisation to CF patients to suppress 

respiratory epithelial NE levels and reduce bronchoalveolar lavage fluid IL-8 levels 

(McElvaney et al., 1992).  A major drawback to its therapeutic potential however is 

its susceptibility to degradation by pulmonary proteases (Taggart et al., 2001).  

 

 

Elafin 

The peptide elafin, also known as SKALP (skin-derived antileukoprotease) or 

ESI (elastase-specific inhibitor), is a cationic 6-kDa non-glycosylated serine 

antiproteinase. Elafin belongs to the chelonianin family, a distinct group of canonical 

inhibitors also including SLPI (Zani et al., 2004). Its compact structure is 

characteristic of whey acidic proteins (WAPs) and is maintained by four conserved 

disulphide bonds. Elafin shares 40% sequence identity with SLPI.  Tryptase releases 

elafin from a larger pre-protein molecule called trappin-2 or pre-elafin (Guyot et al., 

2005). Trappin-2 possesses an N-terminal WAP domain and a cementoin domain 

containing repeating GQDPVK motifs that act as a transglutaminase substrate, 

facilitating the cross-linking of trappin-2 to extracellular matrix proteins.  

Elafin is a secreted protein principally expressed by epithelial surfaces such as 

skin (Alkemade et al., 1994; Nonomura et al., 1994; Pfundt et al., 1996) or lung 
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epithelium (Sallenave et al., 1994; van Wetering et al., 2000) but also by 

inflammatory cells including alveolar macrophages (Mihaila et al., 2001) and 

neutrophils (Sallenave et al., 1997). It is found in plasma (Alkemade et al., 1995), 

urine (Streit et al., 1995) and bronchial secretions (Nara et al., 1994; Sallenave et al., 

1992) and constitutes up to 20% of the total antielastase activity retrieved
 
from 

bronchoalveolar lavage fluid in healthy individuals.  

First identified by Hochstrasser, elafin was described as an acid-stable 

inhibitor present in human bronchial mucus that differed from SLPI in that it exerted 

inhibitory activity towards porcine pancreatic and human granulocytic elastase, but 

not against trypsin, chymotrypsin, or granulocytic cathepsin G (Hochstrasser et al., 

1981). Later the anti-protease spectrum of elafin was found to include activity against 

proteinase 3 (Wiedow et al., 1991).  Based on these properties elafin was thought to 

protect tissue from degradation by these enzymes.   

Several studies have demonstrated that expression of elafin is inducible and its 

expression is significantly upregulated by TNF-α or IL-1β in the airway epithelial cell 

lines NCI-H322 and A549 (Sallenave et al., 1994). Its expression is also induced in 

response to other proinflammatory stimuli such as LPS and NE (Reid et al., 1999; 

Simpson et al., 2001). In addition to its antiprotease properties, elafin also possesses 

both anti-inflammatory and anti-bacterial activities. Elafin/Trappin-2 can inhibit 

growth of both Pseudomonas aeruginosa (Gram-negative) and Staphylococcus aureus 

(Gram-positive) (Simpson et al., 1999) with reported significant killing of both 

organisms by doses of 2.5-25µM elafin, concentrations which are potentially 

achievable in the airway epithelial lining fluid. With respect to its anti-inflammatory 

activity, the elafin precursor trappin-2 has been shown to dose dependently reduce 

LPS-induced neutrophil influx into alveoli, to inhibit LPS-induced MMP-9 
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production and to prevent the generation of CXCL1 and CXCL2 (chemokine ligands 

1 and 2) (Simpson et al., 1999). Trappin-2 can also attenuate IL-8 secretion by 

endothelial cells and/or macrophages in response to TNF, LPS or oxidized low 

density lipoprotein via inhibition of NFκB (Henriksen et al., 2004). Recently, Butler 

et al reported that elafin also inhibits LPS-induced MCP- 1 production in monocytes 

by inhibiting both AP-1 and NFκB activation (Butler et al., 2006). 

Notwithstanding elafin’s favourable qualities as an antiprotease, anti-bacterial 

and anti-inflammatory molecule, in a milieu containing high levels of NE, elafin is 

known to undergo cleavage at Val(5)-Lys(6) and Val(9)-Ser(10). Although this does 

not impair elafin’s anti-NE capacity it does diminish its ability to be immobilised by 

transglutamination and also to bind LPS (Guyot et al., 2008). This has important 

implications for the immunmodulatory properties of elafin in vivo at sites 

characterised by a high-NE burden such as the CF lung. 

  

Cystatins and TIMPs 

The activity of cysteinyl cathepsins is regulated by endogenous protein 

inhibitors called cystatins. Three subfamilies exist based on sequence homology and 

structure; type 1, 2 and 3 (Rawlings et al., 2004). These are located predominantly 

intracellularly, extracellularly and intravascularly, respectively. The naturally-

occurring inhibitors of MMPs are the TIMPs. These are small proteins ranging from 

21 to 28 kDa in size which inhibit MMPs in a 1:1 stochiometry. TIMPs are also able 

to inhibit the metalloproteinase activity of several members of the ADAM family 

(Huovila et al., 2005). Readers are directed elsewhere for comprehensive reviews of 

the cysatins and TIMPs (Nagase et al., 2006; Turk et al., 2008). 
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Therapeutics targeting pulmonary proteases 

Considerable evidence for the importance of proteases in chronic 

inflammatory lung disease comes from knockout mouse studies. Both NE and MMP-

12 (macrophage metalloelastase) knock-out mice are more resistant to cigarette-

smoke induced emphysema (Hautamaki et al., 1997; Shapiro et al., 2003). Animal 

studies have also played a large part in developing our understanding of the 

therapeutic potential of antiprotease therapies. Cantin et al. performed a number of 

studies investigating the therapeutic potential of plasma-purified A1AT (Prolastin) 

and MNEI in rat agar bead models of chronic Ps. aeruginosa infection (Cantin et al., 

1999; Woods et al., 2005). For example, significantly decreased elastase activity, lung 

neutrophil counts, bacterial colony counts and a marked decrease in lung 

inflammation were evident in the A1AT-treated animals compared to controls (Cantin 

et al., 1999). Thiol-specific conjugation of A1AT with polyethylene glycol at Cys232 

markedly improved its in vivo pharmacokinetic profile (Cantin et al., 2002). Similar 

studies may prove useful in animal models of CF. Strangely CFTR knock-out mice 

show little signs of lung disease (reviewed by (Guilbault et al., 2007),  however mice 

with airway-specific overexpression of epithelial Na(+) channels (ENaC) show 

pulmonary characteristics very similar to CF, most likely due to their accelerated 

Na(+) transport, and represent a more appropriate model for testing antiprotease 

therapies for CF (Mall et al., 2004).  

The potential use of irreversible synthetic inhibitors of NE such as peptide 

chloromethyl ketones or reversible peptide aldehydes, tripeptide ketones, modified 

NE-specific β-lactams or peptide boronic acids has been largely superseded by the 

development of EPI-HNE-4, a rapid acting and potent NE inhibitor (Delacourt et al., 



 22 

2002) which can potentially be nebulised to CF patients (Grimbert et al., 2003), 

however clear clinical efficacy remains to be demonstrated. 

Most evidence to date exists for the use of A1AT as an antiprotease-targetted 

therapeutic for NE-dominated airways diseases. In addition to augmentation studies 

for A1AT deficiency (Hubbard et al., 1989) a number of human studies have shown 

that A1AT aerosol therapy has many beneficial effects on airway inflammation in 

patients with CF (Cantin et al., 2006; Griese et al., 2007; McElvaney et al., 1991). 

Delivery of SLPI to the lung has yielded less success (Vogelmeier et al., 1990). 

Unlike A1AT, SLPI does not accumulate on the epithelial surface due to its 

degradation by cysteinyl cathepsins (Taggart et al., 2001) and consequently relatively 

higher doses are required to inhibit NE. Elafin and its precursor trappin-2 have both 

antiproteolytic and anti-inflammatory potential however, like SLPI they too are 

susceptible to degradation by proteases in the CF lung (Guyot et al., 2008). 

 

Concluding remarks 

There is a fine balance between the physiologic and deleterious effects of 

pulmonary proteases. When this balance is disturbed lung damage results as in the 

case of cystic fibrosis or COPD where there is dysregulated release of proteases or 

insufficient inhibition by antiproteases in A1AT deficiency. Therapeutics that target 

specific pulmonary proteases hold much promise for the treatment of chronic 

inflammatory lung disease not only with respect to protecting the lungs from protease-

mediated tissue damage but also by controlling overexuberant inflammatory 

responses. 
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Table 1. Classes and protein targets degraded by neutrophil elastse 

Substrate Targets 

Immunoglobulin IgA, IgG, IgM 

Plasma protein C3, C5, plasminogen, fibrinogen, factors V, VII, XII, and XIII, platelet 

IIb/IIIa receptor, 

Matrix protein Elasin, collagen I-IV, fibronectin, thrombomodulin, proteoglycan  

Cytokine IL-1, IL-2, IL-6, TNFα 

Protease inhibitor TIMP, elafin, SLPI 

Protease MMP-2, MMP-9, Cathepsin B, TACE, meprin α 

Other Cadherins, complement receptors, surfactant, ICAM1, gp120 
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Figure 1. Mechanism of NE induction of IL-8 in airway epithelial cells 
Following its release from the azurophilic granules in response to a microbial insult, 

NE activates meprin α or TACE which in turn cleave proTGFα to generate soluble 

TGFα as a ligand for EGFR. EGFR co-localises with TLR4 and a signal transduction 

cascade is initiated via MyD88 or Mal, IRAKs, TRAF6, TAK1 and the IKKs leading 

to degradation of IκB proteins, activation of NFκB and increased IL-8 gene 

transcription. 

 

 

 


