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Abstract 

Cystic fibrosis (CF) is one of the commonest lethal genetic diseases in which 

the role of microRNAs (miRNAs) has yet to be explored.    Predicted to be regulated 

by miR-126, TOM1 (target of Myb1) has been shown to interact with Tollip, forming 

a complex to regulate endosomal trafficking of ubiquitinated proteins.  TOM1 has 

also been proposed as a negative regulator of IL-1β and TNF-α induced signaling 

pathways.  miR-126 is highly expressed in the lung and we now show for the first 

time differential expression of miR-126 in CF versus non-CF airway epithelial cells 

both in vitro and in vivo.  miR-126 down-regulation in CF bronchial epithelial cells 

correlated with a significant up-regulation of TOM1 mRNA, both in vitro and in vivo 

when compared to their non-CF counterparts.  Introduction of synthetic pre-miR-126 

inhibited luciferase activity in a reporter system containing the full length 3’-

untranslated region (3’UTR) of TOM1 and resulted in decreased TOM1 protein 

production in CF bronchial epithelial cells.  Following stimulation with LPS or IL-

1β, over-expression of TOM1 was found to down-regulate NF-κB luciferase activity. 

Conversely, TOM1 knockdown resulted in a significant increase in NF-κB regulated 

IL-8 secretion.  These data show that miR-126 is differentially regulated in CF versus 

non-CF airway epithelial cells and that TOM1 is a miR-126 target that may have an 

important role in regulating innate immune responses in the CF lung. To our 

knowledge this is the first report of a role for TOM1 in the TLR2/4 signaling 

pathways and the first to describe miRNA involvement in CF.  



 3 

Introduction 

Cystic fibrosis (CF) is an inherited disorder characterised by chronic airway 

inflammation. Bronchial epithelial cells contribute significantly to the pulmonary 

inflammation evident in CF.  LPS and IL-1β, which bind to Toll-Like Receptor 4 

(TLR4) and the IL-1 Type-I receptor (IL-1RI) respectively, also play a pivotal role in 

this process. These agonists can activate the innate immune response culminating in 

pro-inflammatory gene expression leading to neutrophil-dominated airway 

inflammation and tissue damage in the CF lung.  IL-1RI and TLRs are present on a 

variety of cell types, including both immune cells and epithelial cells within the lung, 

and in the context of CF airway epithelial cells have been shown to promote pro-

inflammatory gene transcription following stimulation with their cognate agonists (1, 

2). For example, in airway epithelial cells of non-CF and CF origin triacylated 

lipopeptide, LPS or unmethylated CpG DNA can induce IL-6, IL-8 and TNF-α 

production via TLRs 2, 4 and 9 (1). Similarly, IL-1β can up-regulate production of a 

plethora of pro-inflammatory cytokines (2). Thus and/or TLRs and their signaling 

intermediates represent potential therapeutic targets for CF.  Despite significant 

advances in treatment regimes CF remains a condition for which there is no effective 

cure.  Therefore investigating the expression and function of miRNAs in CF will shed 

light on previously unidentified regulatory mechanisms controlling changes in gene 

expression and direct the development of future therapeutic strategies for this 

debilitating and fatal disorder. 

Expanding interest in miRNAs over the past decade has uncovered their 

importance in several biological processes and has identified disease states with 

altered miRNA expression patterns. miRNAs are approximately 20-25 nucleotides 

long and negatively regulate gene expression at a post-transcriptional level. Within 
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each miRNA there exists a 2-8 nucleotide “seed region” thought to be critical for 

target selection (3). Mature miRNAs use this seed region to bind selectively to 

microRNA recognition elements (MRE) within the 3’UTR of target mRNAs. 

Different target genes may have several MREs and therefore be regulated by 

numerous miRNAs.  The number of and distance between MREs are considered 

important for the biological activity of miRNAs. Relatively few miRNAs have been 

studied in detail and hence the biological relevance of the majority remains to be 

uncovered.  Expression levels vary greatly among tissues and it is believed that 

dysregulation of miRNA can contribute to disease pathology (4). Therefore we 

considered it plausible to investigate whether unique miRNA expression profiles exist 

in CF, particularly in CF bronchial epithelial cells and explore their effects on 

influencing signaling pathways.     

We performed expression profiling comparing miRNA expression in CF and 

non-CF bronchial brushings. Based on these studies we selected miR-126 for further 

investigation given that its expression is known to be highest in vascularised tissues 

such as the lung, heart and kidney (5-7) and as it has been shown to be present in 

bronchial epithelium (8). miR-126 is 21 nucleotides in length, located on chromosome 

9q34.3 and is contained within intron 5 of its host gene epidermal growth factor like-7 

(EGFL-7) (6, 9). In recent studies miR-126 has been shown to have functional roles in 

angiogenesis (10, 11), to be down-regulated in a number of malignancies (8, 12) and 

to act as a tumor suppressor in breast cancer (13). In silico analysis of a number of 

miRNA target prediction databases shows that TOM1 is a potential target of miR-126.  

TOM1 is a member of a family of proteins containing an N-terminal VHS 

(Vps27p/Hrs/STAM) domain reported to be involved in intracellular trafficking (14).  

Previous studies have shown that TOM1 forms a complex with Tollip (Toll-
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interacting protein) a negative regulator of TLR2, TLR4 and IL-1RI signaling. This 

complex regulates endosomal trafficking of ubiquitinated proteins (15). Moreover this 

complex has been shown to traffic IL-1RI to the endosome for degradation (16). 

TOM1 has also been proposed as a negative regulator of IL-1β and TNF-α induced 

signaling pathways, whereby its over-expression can suppress the activity of the 

transcription factors NF-κB and AP-1 (17). In this paper we explore the presence of 

miRNA in CF for the first time. We investigate the expression of miR-126 in CF and 

non-CF airway epithelial cells both in vitro and in vivo by quantitative real time PCR 

(qRT-PCR) and miRNA expression profiling and explore the potential mechanism 

responsible for altered miRNA expression in CF bronchial epithelium. We determine 

whether TOM1 is a valid target of miR-126, as predicted by in silico analysis, and 

further investigate the role of TOM1 in IL-1β, LPS and lipopeptide-mediated airway 

inflammation in the CF lung using over-expression and knockdown approaches. 

 

 

 

 

 

 

 

 



 6 

Material and Methods 

Cell culture and treatments All cell lines were maintained in a 37°C humidified CO2 

incubator in appropriate media.  16HBE14o
–
 and 9HTEo

–
 (human bronchial and 

tracheal epithelial cell lines respectively), CFBE41o
–
 and CFTE29o

–
 (human ∆F508 

homozygote bronchial and tracheal epithelial cell lines respectively) were obtained as 

a gift from D. Gruenert
 
(California Pacific Medical Center Research Institute, San 

Francisco,
 
CA). HepG2 (human hepatocellular liver carcinoma cell line), HEK293293 

(human embryonic kidney cell line), A549 (type II-like human lung epithelial cell 

line), THP-1 (human acute monocytic leukemia cell line), U937 (monocytic cell line) 

and U373 MG (human glioblastoma-astrocytoma, epithelial-like cell line) were 

obtained from the European Collection of Cell Cultures. Prior to agonist treatment, 

cells were washed with serum-free media and placed in media containing 1% FCS for 

Pseudomonas aeruginosa LPS (Sigma), IL-1β (R&D Systems), flagellin (Alexis 

Biochemicals), triacylated lipopeptide (palmitoyl-Cys((RS)-2,3-di((palmitoyloxy)-

propyl)-Ala-Gly-OH, Pam3)
 

(Bachem), unmethylated CpG DNA (uCpG 5'-

TCGTCGTTTTGTCGTT-3') (MWG) and poly:IC (Sigma) stimulation experiments.   

Study populations and bronchial brush sampling Nineteen individuals in total were 

recruited into this study, six of which had CF (confirmed by sweat testing and/or 

genotyping) and thirteen which were non-CF controls with a mean age of 22.8+1.6 

years and 51+4.2 years respectively. For expression profiling studies five individuals 

with CF (three male and two female) and five non-CF controls (four male and one 

female) were selected from the study group. All participants (CF and controls) were 

undergoing diagnostic and/or therapeutic fibre-optic flexible bronchoscopy as part of 

routine care. Full informed consent was obtained pre-procedure and appropriate 
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approval obtained from our institutional review board.  Following completion of the 

bronchoscopy and prior to the withdrawal of the bronchoscope, an area 2 cm distal to 

the carina (medially located) in either the right or left main bronchus was selected and 

washed twice with 10 ml sterile 0.9% NaCl. Following this, a sterile 10 mm x 1.2 mm 

bronchial brush (Olympus Medical Systems Corp, Japan) was inserted through the 

appropriate port on the bronchoscope and the chosen area sampled with two 

consecutive brushes by scraping the area gently. The brush was withdrawn and 

immediately placed in 5ml MEM+Glutamax supplemented with 10% FCS and 1% 

penicillin-streptomycin (Gibco).  Brushes were gently agitated to dislodge cells into 

the media which was centrifuged at 1,200rpm for 5 minutes and cell pellets re-

suspended in 0.5 ml of Tri Reagent (Sigma) prior to RNA extraction. 

 

miRNA expression profiling in CF bronchial brushings  miRNA expression 

profiling was performed in bronchial brushings (CF; n=5, non-CF; n=5) by a stem-

loop real-time PCR-based miRNA expression profiling
 
method using the Taqman 

MicroRNA Arrays v2.0 (released June 2009) from Applied Biosystems. The content 

is derived from the miRBase microRNA registry, providing comprehensive coverage 

of miRNAs from release 10.0 using the most up-to-date TaqMan MicroRNA Assays.  

Two array cards (A and B) for each sample were run on the Applied Biosystems 

7900HT fast real time PCR system which measured expression levels of 667 different 

human miRNAs in each sample and three positive and one negative control per card. 

RNA (30 ng) from clinical samples was reverse transcribed with the Megaplex primer 

pool (Applied Biosystems), allowing simultaneous reverse transcription of 430 

miRNAs and 36 endogenous controls in one RT pool (18). A Pre-amplification step 

was performed on the Megaplex RT product (5µl) using TaqMan PreAmp Master Mix 
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(2x) and PreAmp Primer Mix (5x) (Applied Biosystems).  The PreAmp primer pool 

contained forward primers specific for each miRNA, and a universal reverse primer 

(Applied Biosystems).  All miRNAs with Cycle threshold (Ct) values greater than 35 

were considered ‘non amplified’ or ‘not expressed’ and excluded from analysis.  

Mean normalisation was carried out by subtracting the mean sample Ct from the 

individual miRNA Ct values (19). Relative quantification of gene expression was 

determined using the comparative cycle threshold method (2
(−∆∆Ct)

) as previously 

described (20). In the case of the non-CF samples, the mean Ct value was calculated 

for each individual miRNA, and this was used to calculate the ∆Ct for the calibrator 

sample.  Array data have been deposited in NCBI's Gene Expression Omnibus (21) 

and are accessible through GEO Series accession number 

GSE19431(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= GSE19431) 

Quantitative assessment of miRNA levels by Real Time PCR miR-126 expression 

was measured using Taqman miRNA assays (Applied Biosystems) according to the 

manufacturer’s instructions and qRT-PCR was performed on the Roche LC480 

Lightcycler.  The expression of miR-126 relative to miR-16 was determined using the 

2
(−∆∆Ct) 

method. All qRT-PCR experiments were performed in triplicate, including no-

template controls.   

miR-126 regulation 16HBE14o
– 

and
 
CFBE41o

–
 cells (1x10

5 
in triplicate) were left 

untreated or treated with LPS (10 µg/ml) or IL-1β (10 ng/ml) for 3, 6 and 24 h 

following which miR-126 expression was measured by qRT-PCR as described above. 

16HBE14o
– 

cells (1x10
5
 in triplicate) were treated with Thapsigargin (1 µM) (a 

pharmacological ER stress inducer) or CFTRinh-172 (5 µM and 10 µM) for 4 h and 24 
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h, (all reagents were purchased from Sigma).  DMSO was the vehicle control. RNA 

was isolated and miR-126 expression assessed by qRT-PCR. 

miR-126 target predictions In silico analysis of a range of miRNA target prediction 

databases was performed namely, TargetScan
 

4.2, picTar, PITA, RNA Hybrid, 

RNA22 and miRanda. TOM1 was a predicted target of miR-126 in all databases but 

miRANDA.  Tollip was listed as a predicted target of PITA and RNA 22 only. 

TOM1 and Tollip expression analysis Total RNA was extracted using Tri Reagent, 

equal quantities of which was reverse transcribed into cDNA using Quantitect 

Reverse Transcription Kit (Qiagen) following the manufacturer’s protocol.  Primers 

for TOM1, Tollip and β-actin were obtained from MWG Eurofins Genetics (TOM1-F 

5’-ATTCTGTGGGCACTGACTCC-3’ and TOM1-R 5’-

CACTCACCATCTCCAGCTCA-3’, β-actin-F 5’-GGACTTCGAGCAAGAGATGG-

3’ and β-actin-R 5’-AGGAAGGAAGGCTGGAAGAG-3’, TOLLIP-F 5’-

CAAGGTGGAGGACAAGTGGT-3’, TOLLIP-R 5’-

ACATGTCCTGGATGGCTTTC-3’). Expression of TOM1 or Tollip relative to β-

actin was determined using the 2
(−∆∆Ct) 

method.  All qRT-PCR experiments were 

performed in triplicate, including no-template controls.   

Luciferase reporter plasmid construction The full length 3′UTR of TOM1 was PCR 

amplified using a proof reading Phusion flash High-Fidelity PCR master mix 

(Finnzymes) with the following primers TOM1 3′UTR-F 5’- 

CTGCTCTCACACCCTTAGGC-3’ and TOM1 3′UTR-R 5’- 

TGCTAGCAGGGTGGTTTTCT-3’.  The amplified 740bp product was inserted into 

the HindIII and SpeI sites of the miRNA expression vector pMIR-REPORT (Applied 

Biosystems) immediately downstream of the luciferase gene and termed pMIR-
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TOM1-3’UTR.  Transformants were validated by restriction mapping and sequencing 

(MWG Eurofins Genetics).  

Transfection of pre-miR-126 and reporter plasmids HEK293293 cells (1x10
5
 in 

triplicate) were transiently transfected with 250 ng of pMIR-TOM1-3’UTR and 100 

ng of reference Renilla luciferase reporter plasmid
 

pRLSV40.  Cells were co-

transfected with either 30 nM of synthetic pre-miR-126 or a scrambled control.  

Transfections were performed using Genejuice (Novagen) for plasmid DNA and 

Ribojuice (Novagen) for siRNA in OptiMEM reduced serum media (Gibco) as per the 

recommended conditions.  Lysates
 

were prepared at 24 h post-transfection
 

and 

assayed for both firefly and Renilla luciferase using Luciferase assay system 

(Promega) and coelenterazine (MGT), respectively.  Firefly luciferase activity was 

normalized to the Renilla luciferase activity. 

miR-126 over-expression CFBE41o
–
 cells (1x10

5 
in triplicate) were left untransfected 

(NT) or reverse transfected with either 30nM of a scrambled control or synthetic pre-

miR-126 using NeoFX transfection reagent (Applied Biosystems). Twenty four hours 

post-transfection cells were washed with PBS, whole cell lysates prepared and 

separated by electrophoresis
 

on a 10% SDS-polyacrylamide gel. Nitrocellulose
 

membranes (Sigma-Aldrich) were probed using a mouse monoclonal antibody to 

TOM1 (Abcam) and a rabbit polyclonal β-actin antibody as a loading control 

(Abcam). Signals were detected using
 

the appropriate horseradish peroxidase-

conjugated secondary antibodies (Cell
 
Signaling Technologies) and visualized by 

chemiluminescence (Pierce) on the Syngene G:Box chemi XL gel documentation 

system. Membranes were analyzed by densitometry using GeneTools software on the 

same system.  
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TOM1 over-expression and NF-κκκκB luciferase reporter activity CFBE41o
–
 cells 

(6x10
4
 in triplicate) were co-transfected for 48 h (Genejuice) with 250 ng of pCDNA3 

(empty vector) or a TOM1 overexpression plasmid pTOM1-Myc (a gift from Dr. K. 

Nakayma, Kyoto University), and 100 ng of an inducible (NF-κB)5-promoter (firefly) 

luciferase reporter plasmid and 100 ng of the constitutive Renilla luciferase reporter 

plasmid pRLSV40.  Post-transfection (42 h) cells were treated with LPS (1µg/ml) or 

IL-1β (10ng/ml) for a further 6 h.  Lysates were prepared and assayed for both firefly 

and Renilla luciferase as described above. 

TOM1 knockdown CFBE41o
–
 cells (1x10

5
 in triplicate) were left untreated (NT) or 

transfected with either 30 nM of an siRNA to TOM1 (siRNA ID 137971 5’ 

CCUCUUGGUUGAUCCUCUUtt 3’ Sense, 5’ AAGAGGAUCAACCAAGAGGtg 3’ 

Antisense), GAPDH (positive control, Silencer® GAPDH siRNA (Human) Part 

Number AM4605) or a scrambled control (Scr, Silencer® Negative Control #1 siRNA 

Part Number AM4611) siRNA (Applied Biosystems) using Ribojuice according to the 

manufacturer’s instructions.   Twenty four hours post-transfection cells were 

stimulated with LPS (10 µg/ml), IL-1β (10 ng/ml), triacylated lipopeptide (palmitoyl-

Cys((RS)-2,3-di((palmitoyloxy)-propyl)-Ala-Gly-OH, Pam3) (10 µg/ml), flagellin 

(1µg/ml) or poly:IC (100 µg/ml) for 6 h and uCpG DNA (100 µg/ml) for 24 h.   

Supernatants and cells were collected for ELISA and RNA extraction respectively.  

siRNA transfection was also performed (3x10
5
 cells in triplicate) for protein analysis.  

Cells were lysed 24 h post-transfection and western blot analysis carried out as 

described above. 

IL-8 ELISA IL-8 protein concentrations in the cell supernatants were determined
 
by 

sandwich ELISA (R&D Systems).  
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Statistical analysis All analyses was performed using GraphPad PRISM 4.0 software 

package (San Diego CA). 
 
Results are expressed as the mean ± SEM and were 

compared
 
by student t-test (non-parametric, one tailed) or ANOVA as appropriate. 

Differences were considered significant at p  0.05 

Results 

miRNA expression profiling and miR-126 expression levels in vivo  

Profiling to examine the expression of 667 different human miRNAs was performed 

on bronchial brushings (CF; n=5 and non-CF; n=5) using Taqman Low Density 

Arrays (TLDAs) v2.0. Of the 667 miRNA examined, no appreciable target detection 

(Ct >35) occurred for 263 miRNA across all samples.  Ninety three miRNA were 

significantly differentially expressed (1.5 ≥ RQ ≤ 0.7) in at least 3 of 5 CF patients. Of 

these 57 were down regulated and 36 up regulated (Supplemental Table 1). miR-126 

was found to be significantly decreased in four of the five CF samples compared to 

controls, (p = 0.0143) (Fig. 1A). miR-16 and miR-491-5p were not significantly 

decreased or increased in CF versus non-CF samples. We independently confirmed 

this observation by measuring miR-126 expression by qRT-PCR (CF; n=6 and non-

CF; n=13) where miR-126 was again significantly decreased in CF compared to non-

CF controls, (p = 0.0037) (Fig. 1B).   

 

miR-126 expression levels in cells lines  

We next investigated whether miR-126 was differentially expressed in CF versus non-

CF airway epithelial cell lines and again performed qRT-PCR on CF tracheal (Fig. 

2A) and bronchial epithelial cell lines (Fig. 2B) and their non-CF counterparts. This 

revealed that miR-126 was down regulated in CF compared to non-CF cells and 
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significantly so in bronchial epithelial cells (p = 0.05) which we continued to use for 

the rest of the study.  We also determined miR-126 levels in a variety of cell lines by 

qRT-PCR and, consistent with other reports, observed higher expression of miR-126 

in lung airway epithelial versus non-lung cells (Fig. 2C).    

 

Regulation of miR-126 

We then attempted to address the mechanism responsible for reduced miR-126 levels 

in CF epithelial cells by inducing either endoplasmic reticulum (ER) stress or 

defective chloride ion channel secretion in 16HBE14o
–
 cells using thapsigargin or 

CFTRinh-172, respectively.  Following 4 h treatments there were no significant 

changes in miR-126 expression (data not shown) however, 24 h post treatment miR-

126 was significantly reduced (p=0.0296) by the ER stress inducing agent (Fig 3). 

There was no change observed in cells treated with the CFTR inhibitor. We also 

examined the effects of LPS and IL-1β on miR-126 expression in both 16HBE14o
–
 

and CFBE41o
–
 and found no effect (data not shown). 

 

TOM1 is a functional target of miR-126 

In order to identify potential targets of miR-126 both for experimental validation and 

functional studies in airway inflammation we performed in silico analysis of a range 

miRNA target prediction databases.  From the databases analyzed all presented 

TOM1 as a target of miR-126 with the exception of miRANDA.  RNA Hybrid 

provided a schematic of miR-126 predicted binding within the TOM1 3’UTR showing 

a minimum free energy (mfe) of -21.5kcal/mol (Fig. 4A) and notably Targetscan 4.2 

illustrated the predicted pairing region in the TOM1 3’UTR to be conserved across 

species (Fig. 4B). We initially confirmed TOM1 expression in CFTE29o
–
, 
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16HBE14o
–
, CFBE41o

–
, 9HTEo

– 
and human lung RNA by semi-quantitative RT-PCR 

(Fig. 4C). TOM1 expression relative to β-actin was then determined in CFBE41o
– 

versus 16HBE14o
– 

cell lines by qRT-PCR resulting in reciprocal levels (p = 0.05) 

compared to miR-126 in these cells (Fig. 1C), and again this observation was 

confirmed in vivo in four of the five bronchial brushings from CF versus non-CF 

individuals (p = 0.0143) (Fig. 4D). The same databases were interrogated to assess 

whether Tollip is also a potential miR-126 target. Both PITA and RNA 22 but none of 

the other databases listed Tollip as a target.  Therefore we examined Tollip mRNA 

expression in CFBE41o
– 

versus 16HBE14o
– 

cell lines by qRT-PCR. Figure 4E 

demonstrates reduced expression of Tollip in CF compared to non-CF cells (p = 

0.0286).  

 

Next in order to determine whether TOM1 is a molecular target of miR-126,
 
we 

constructed a luciferase reporter vector containing the full-length
 
TOM1 3'-UTR 

(pMIR-TOM1-3’UTR).  The sequenced transformant showed 100% base pair match 

to the TOM1 3’UTR and importantly maintained an intact miR-126 binding region. 

HEK293293 cells, which exhibit low levels of miR-126 expression, were used for 

transient transfections with pMIR-TOM1-3’UTR.  Co-transfection with pre-miR-126 

(a synthetic miR-126 mimic) resulted in a significant decrease in luciferase gene 

expression from the reporter vector containing the TOM1 3'-UTR
 
when compared to a 

scrambled control (Fig. 5) demonstrating direct targeting by miR-126, (p = 0.0011) 

 

Over-expression of miR-126 decreases TOM1 protein 

We next assessed the effect of miR-126 over-expression on TOM1 protein. 

Transfection of pre-miR-126 into CFBE41o
–
 cells resulted in a significant increase in 
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miR-126 expression compared to non-transfected or scrambled-transfected cells, as 

measured by qRT-PCR (data not shown).  Subsequent western blot analysis of TOM1 

in CFBE41o
–
 cells showed that miR-126 over-expression caused a reduction in TOM1 

protein production compared to non-transfected (NT) cells or cells transfected with a 

scrambled siRNA (Scr) (Fig. 6A). Representative densitometry for western blots is 

shown (Fig. 6B).   

 

pTOM1-Myc inhibits LPS - or IL-1ββββ-induced NF-κκκκB reporter gene expression in 

CFBE41o
–
 cells  

In order to determine functional effects of TOM1 in the context of the CF lung we 

transfected CFBE41o
–
 cells with a TOM1 over-expression plasmid, pTOM1-Myc, and 

assessed its effects on NF-κB activity in these cells in response to inflammatory 

stimuli common in the CF lung utilising an NF-κB reporter system. NF-κB reporter 

gene expression in CFBE41o
–
 cells was measured

 
in response to stimulation with LPS 

or IL-1β for 6 h.  Each of the agonists significantly increased
 
NF-κB reporter gene 

expression (* p = 0.05) compared with controls, whilst over-expression of TOM1 

inhibited this effect (# p = 0.05) (Fig. 7). 

 

Knockdown of TOM1 increases IL-8 protein production in response to LPS, IL-1ββββ  

or lipopeptide in CFBE41o
–
 cells  

IL-8 is an NF-κB regulated gene and a key cytokine present in the CF lung.  We 

assessed the effect of TOM1 knockdown on IL-8 protein production in CFBE41o
–
 

cells in response to a range of pro-inflammatory stimuli namely lipopeptide, poly:IC 

LPS, flagellin, uCpG DNA or IL-1β whose cognate receptors are TLR2, TLR3, 

TLR4, TLR5, TLR9 and IL-1RI, respectively. Cells transiently transfected with a 
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GAPDH or TOM1 siRNA resulted in 80% and 65% knockdown, respectively when 

compared to a scrambled control (Fig. 8A).  Transfection efficiency was normalized to 

GAPDH gene expression.  Knockdown of TOM1 resulted in a 20-50% decrease of 

TOM1 protein as determined by western blot, representative blot shown (Fig 8B). IL-

8 protein production in CFBE41o
–
 was measured

 
in response to stimulation with LPS 

or IL-1β, lipopeptide, flagellin or poly:IC for 6 h and uCpG DNA for 24 h.  LPS, IL-

1β and lipopeptide significantly increased
 

IL-8 protein production (p < 0.05) 

compared with untreated
 
cells (data not shown) and also in the presence of GAPDH 

siRNA (Fig 8C).  TOM1 knockdown in these cells potentiated the stimulatory effects 

of LPS, IL-1β and lipopeptide with IL-8 secretion significantly increased in these 

cells (Fig 8C). TOM1 knockdown did not enhance IL-8 secretion following treatment 

with flagellin, poly:IC or uCpG DNA (data not shown). 
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Discussion 

This study is the first to provide evidence for differential expression of a known 

miRNA in CF versus non-CF airway epithelial cells and our data supports the 

emerging body of evidence implicating miRNAs in innate immunity.  Having 

established that expression of miR-126 is down-regulated in CF versus non-CF 

airway epithelial cells in vivo by miRNA expression profiling and qRT-PCR of 

bronchial brushings obtained from CF individuals and non-CF controls, we replicated 

this observation in vitro using CF airway epithelial cell lines.  We also observed miR-

126 to be markedly increased in lung versus non-lung cell lines consistent with other 

reports (6, 22).  Using bioinformatic tools, targets of miR-126 were identified and 

TOM1 was selected for experimental validation given its known role in the innate 

immune response (17). As it is of general consensus that a target predicted by a 

combination of algorithms may have more functional relevance than those predicted 

using a single algorithm alone we analyzed a range of databases (23). TOM1 was 

listed as a predicted target in 5/6 of the target prediction databases interrogated.  Here 

we have experimentally validated TOM1 as a target of miR-126 by showing that over-

expression of pre-miR-126 results in a decrease of TOM1 protein production and 

reduced luciferase activity in a reporter system containing the full length TOM1 

3’UTR, demonstrating direct targeting by miR-126.  We also present a functional role 

for TOM1 in the signaling pathways induced in response to LPS and lipopeptide and 

link this observation with regulation of TOM1 by miR-126. Together these data show 

that miRNA can be differentially expressed in CF airway epithelium and may regulate 

pulmonary inflammation in CF.   
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Expression profiling studies have identified altered miRNA expression patterns 

in a variety of human diseases. A number of miRNAs are routinely under- or over-

expressed in a variety of tumors e.g. miR-34a, miR-143, miR-145, miR-21 (24-26). 

Several miRNAs are also differentially expressed in specific types of cancers (26, 27). 

However there is also increasing evidence for important roles for miRNAs in 

regulating innate immunity (28-30). We hypothesized that unique miRNA expression 

profiles exist in CF versus non-CF bronchial epithelial cells and that these differential 

molecular miRNA signatures can regulate pro-inflammatory gene expression. This 

held true for miR-126 which was decreased in CF versus non-CF bronchial epithelial 

cells but also identified microRNAs that are not differentially expressed.  

Expression of miR-126 was consistently and reproducibly decreased in CF 

versus non-CF airway epithelial cells and correlated with a reciprocal increase in 

expression of its predicted target TOM1 both in vivo and in vitro. Whilst we found 

miR-126 over-expression decreased production of luciferase from a reporter gene 

regulated by the 3’UTR of TOM1, this conflicts with another report that failed to 

demonstrate regulation of TOM1 by miR-126 (9). Notably, however, we cloned the 

entire TOM1 3’UTR, rather than smaller fragments, into our reporter system; an 

approach which Kuhn et al (31) have highlighted as being important for validation 

purposes.  Since our initial in silico analysis which indicated that TOM1 was targeted 

by miR-126 alone, Targetscan 5.1 now lists an additional 58 miRNA families that 

may target TOM1 (including miR-126).  Of these 23 were not analysed in our 

expression profiling, 19 were not detected in any sample and of the remaining 16 

miR-126 was the only one to be significantly decreased in four of the five CF 

samples.  Although the relatively small patient numbers used for the expression 

profiling may be considered a limitation of this study, we have subsequently 
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replicated our observations regarding miR-126 and TOM1 in additional patient 

samples. 

Upon stimulation with IL-1β or LPS cells transiently transfected with a TOM1 

over-expression plasmid exhibited a reduction in NF-κB luciferase activity.  This is 

consistent with a previous report which proposed TOM1 as a negative regulator of 

signaling pathways induced by IL-1β and TNF-α whereby over-expression of TOM1 

inhibited activity of the transcription factors NF-κB and AP-1 (17). Our work builds 

on this by showing that TOM1 can also negatively regulate signaling to NF-κB 

induced by LPS via TLR4.  Our TOM1 knockdown studies corroborate this finding, 

showing a significant increase in secretion of the NF-κB regulated cytokine IL-8 in 

response to LPS or IL-1β and additionally lipopeptide, thus introducing a role for 

TOM1 in TLR2 signaling. Other pro-inflammatory stimuli tested which activate 

TLR3, 5 and 9 failed to elicit enhanced IL-8 secretion following TOM1 knockdown 

consistent with reports of Tollip’s involvement solely in TLR 2 and 4 and IL-1RI 

signaling. To our knowledge this is the first report of involvement of TOM1 in the 

TLR2 and TLR4 signaling pathways.  These findings extend our knowledge of TOM1 

with respect to IL-1β and propose a new functional role for this protein in TLR2/4 

signaling.  Thus regulation of TOM1 has important implications not only for the 

pulmonary inflammatory manifestations of CF but for other inflammatory diseases 

too.  We hypothesise that TOM1 may play an anti-inflammatory role in the CF lung 

and postulate that its increased expression may be an attempt to compensate for the 

high pro-inflammatory burden in this condition and support this hypothesis by 

demonstrating significantly higher expression of TOM1 in vivo in bronchial brushings 

from CF versus non-CF individuals. The CF lung is a highly pro-inflammatory milieu. 
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Bronchial epithelial cells are continuously exposed to multiple pro-inflammatory 

factors including neutrophil elastase, bacterial lipopeptides, LPS, flagellin and uCpG 

DNA, amongst others (1). Furthermore ER stress associated with accumulation of 

misfolded CFTR is also likely to activate additional pro-inflammatory  pathways (32). 

Interestingly we have shown that ER stress actually contributes to down-regulation of 

miR-126 with concomitant up regulation of TOM1. Our studies show that in CF 

bronchial epithelial cells TOM1 provides a strong anti-inflammatory signal which we 

believe represents a possible compensatory mechanism of dealing with the chronic 

inflammation evident in CF. In vivo however TOM1’s anti-inflammatory effect, 

whilst important  may be overwhelmed due to the highly pro-inflammatory  nature of 

the CF lung. 

TOM1 is known to form a complex with Tollip and together they are 

responsible for the transport of ubiquitinated proteins to the endosome for degradation 

(33). IL-1RI is a substrate of the TOM1-Tollip complex and its passage to the 

endosome is facilitated by this complex (9). In a study by Hauber et al comparison of 

TLR4 levels in endobronchial biopsies from CF patients and healthy controls revealed 

a significant reduction of TLR4 and to a lesser extent TLR2 in the CF samples (34). In 

a more recent study CFBE41o
–
 cells have also been shown to exhibit lower surface 

expression of TLR4 compared to a CFTR corrected counterpart (wild-type CFTR 

plasmid transfectant).  The authors suggest this may contribute to the aberrant 

immune response evident in CF resulting in chronic bacterial infection of the CF 

airway due to decreased IL-8 secretion as a result of diminished TLR4 expression 

followed by delayed neutrophil chemotaxis (35). We show that miR-126 may be 

regulated by ER stress and in CF airway epithelial cells lower levels of miR-126 are 

concomitant with increased TOM1 expression. Thus, it may be that the TOM1-Tollip 
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complex, in addition to regulating IL-1RI expression also modulates cell surface 

expression of TLR2/4 by a similar mechanism adding to this impaired immune 

response. 

Currently one of the burning questions in this field is ‘what regulates miRNAs?’ 

Expression of miR-146a, for example, is driven by NF-κB (36, 37). We evaluated the 

effect of LPS and IL-1β on induction of miR-126 in both CF and non-CF bronchial 

epithelial cell lines however no significant changes were observed with either stimuli. 

However, in human bronchial epithelial cells stimulated with the ER stress inducing 

agonist thapsigargin we saw a marked reduction in miR-126 expression after 24h.  

There was no effect on miR-126 expression levels at 4h and similarly CFTRinh-172 

did not have any effect on miR-126 in these cells suggesting that miR-126 may be 

regulated by chronic ER stress as seen in CF. Harris et al reported TNF-α had no 

effect on expression of miR-126 in a recent study investigating regulation of VCAM1 

by miR-126 (6).  However, similar to our study they proposed a regulatory role for 

miR-126 in inflammation, specifically in the vasculature.  Saito et al have recently 

reported that down-regulation of miR-126 can be induced by inhibitors of DNA 

methylation and histone deacetylation (12). 

Notwithstanding the current gaps in our knowledge it is clear that miRNAs have 

an important role in the regulation of innate immunity (28, 30, 38-41).  For example 

miR-181a and miR-223 are implicated in establishing and maintaining the cell fate of 

immune cells (42), miR-146 is involved in innate immunity by regulating TLR 

signaling (37), Rodriguez et al highlighted the importance of miR-155 in maintenance 

of a normal immune response (43) whilst miR-181a has a role in regulation of T cell 

receptor signaling (44). Altered expression of miR-203 and miR-146 has been shown 
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in the chronic inflammatory skin condition psoriasis suggesting their involvement in 

immune-mediated diseases (45). In light of our findings it is appropriate to add miR-

126 to the growing list of miRNAs with a role in fine-tuning of innate immune 

responses. 

In summary, we describe for the first time miRNA involvement within CF.  In 

particular we identify altered expression of miR-126, a negative regulator of TOM1, 

in bronchial epithelial cells. Whilst miR-126 is decreased in CF bronchial epithelium 

in vivo making it difficult to target, identifying miRNAs that are over-expressed in CF 

airway epithelium could lead to therapeutic targets which can be manipulated more 

easily. However, we believe these findings have important implications regarding 

regulation of innate immune responses in the CF lung which may impact on anti-

inflammatory therapies currently under investigation for CF and help lead to better 

management of the disease.  Future work on other differentially expressed miRNAs 

identified in our expression profiling studies will likely yield additional new 

therapeutic targets for CF. 
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Figure legends 

FIGURE 1 miRNA expression profiling and miR-126 expression in vivo. A 

Expression levels of miR-126, miR-16 and mir-491-5p in bronchial brushings used in 

TLDAs (CF; n=5 and control; n=5).  Data are represented as fold change compared to 

normalized controls. B miR-126 expression in bronchial brushings from individuals 

with and without CF (n=6 and n=13 respectively) measured by qRT-PCR.  Relative 

expression levels determined by qRT-PCR were normalized to miR-16. Data are 

represented as mean ± SEM and were compared
 
by t test.  All qRT-PCR experiments 

were performed in triplicate and included no-template controls.   

FIGURE 2 miR-126 expression in vitro. A miR-126 expression levels were assessed 

in the CF tracheal airway epithelial cell line CFTE29o
– 

compared to its non-CF 

counterpart 9HTEo
–
, B in the CF bronchial epithelial cell line CFBE41o

– 
compared to 

its non-CF counterpart 16HBE14o
–
 and C in the bronchial airway epithelial cell line 

16HBE14o
– 

and non-lung cell lines THP-1, U937, HEK293, HepG2 and U373. The 

relative expression levels were determined by qRT-PCR using Taqman miRNA 

assays and normalized to miR-16.  Data are represented as mean ± SEM and were 

compared
 
by t test.  All qRT-PCR experiments were performed in triplicate and 

included no-template controls.  

FIGURE 3 miR-126 regulation by ER stress. 16HBE14o
– 

cells were treated with 

DMSO (vehicle control), thapsigargin (1µM) or CFTRinh-172 (5µM and 10µM) for 24 

h. Data is represented as mean ± SEM and was compared
 

by t test; data is 

representative of three experiments.   

 



 25 

FIGURE 4 miR-126 targets the 3’UTR of TOM1. A In silico analysis of the miRNA 

target prediction database RNA Hybrid shows predicted pairing between TOM1 

3’UTR and miR-126.  The 7-mer seed region is shown between the black arrows. B 

Highly conserved predicted binding site for miR-126 within the 3'-UTR of TOM1  

from interrogation of the Targetscan target prediction database (version 4.2)  (Mm, 

Mus musculus; Rn, Rattus norvicus; Cf, Canis familiaris; Hs, Homo sapiens). C 

TOM1 mRNA expression in CFTE29o
–
, 16HBE14o

–
, CFBE41o

– 
, 9HTEo

–
, human 

lung RNA (Applied Biosystems) and no-template control (NTC) assessed by semi-

quantitative RT-PCR. D TOM1 expression (both in vitro and in vivo), relative to β-

actin in CFBE41o
– 

versus 16HBE14o
– 

cell lines measured by qRT-PCR. E Tollip 

expression relative to β-actin in CFBE41o
– 

versus 16HBE14o
– 

cell lines measured by 

qRT-PCR. 

 

FIGURE 5 miR-126 directly targets TOM1. Relative luciferase activity in 

HEK293293 cells (1x10
5
 in triplicate) transiently transfected with pMIR-TOM1-

3’UTR and pRLSV40 and co-transfected with a synthetic pre-miR-126.  Firefly 

luciferase activity was normalized to the Renilla luciferase activity. Data are 

represented as mean ± SEM and were compared
 
by t test; data is representative of 

three experiments.  All qRT-PCR experiments were performed in triplicate and 

included no-template controls.   

 

FIGURE 6 Effects of pre-miR-126 over-expression.  A TOM1 protein was analyzed 

by Western blot (n=3) using anti-TOM1 and anti β-actin antibodies in cell lysates 

from non-transfected control (NT), scrambled control (Scr) and pre-miR126 
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transfected CFBE41o
–
 cells. B Representative densitometry of TOM1 relative to β-

actin.   

 

FIGURE 7 Effects of TOM1 over-expression. CFBE41o
–
 cells (1x10

5
 in triplicate) 

were co-transfected with an empty vector (pCDNA3) or a TOM1 over-expression 

plasmid (pTOM1-Myc), an inducible NF-κB (firefly) luciferase reporter plasmid, and 

pRLSV40.  Following incubation for 42 h, cells were stimulated with LPS (1µg/ml) 

or IL-1β (10ng/ml) for 6 h.  Lysates were prepared using reporter lysis buffer 

(Promega).  Luciferase production from both plasmids was quantified by luminometry 

using specific substrates. Relative NF-κB luciferase activity is shown.  Data shown is 

representative of three experiments (*, p < 0.05 LPS/IL-1β vs. control (pCDNA3), #, p 

< 0.05 LPS and IL-1β vs. pTOM1-Myc). 

 

FIGURE 8 Effects of TOM1 knockdown. A Expression of GAPDH and TOM1 

mRNA levels relative to scrambled control (Scr) following transfection of CFBE41o
–
 

cells with scrambled, GAPDH or TOM1 siRNAs. B TOM1 protein was analyzed by 

Western blot (n=3) using anti-TOM1 and anti β-actin antibodies following 

transfection of CFBE41o
–
 cells with scrambled, GAPDH or TOM1 siRNAs. C Cells 

were stimulated with LPS (10µg/ml), IL-1β (10ng/ml) or lipopeptide (Pam3, 

10µg/ml) 24 h post transfection for a further 6 h.  IL-8 secretion in supernatants was 

measured by ELISA.  Data are represented as mean ± SEM and were compared
 
by t-

test; data is representative of three experiments.   
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Down-regulated Up-regulated

hsa-let-7b hsa-miR-26b

hsa-let-7c hsa-miR-27a*

hsa-miR-7 hsa-miR-93*

hsa-miR-15a* hsa-miR-101

hsa-miR-16-1* hsa-miR-127-3p

hsa-miR-17 hsa-miR-138

hsa-miR-20b hsa-miR-140-5p

hsa-miR-222 hsa-miR-142-3p

hsa-miR-23b hsa-miR-142-5p

hsa-miR-29c hsa-miR-143

hsa-miR-29c* hsa-miR-145

hsa-miR-30a hsa-miR-193a-5p

hsa-miR-30a* hsa-miR-199a-3p

hsa-miR-30d hsa-miR-212

hsa-miR-30d hsa-miR-221

hsa-miR-31 hsa-miR-223

hsa-miR-34a hsa-miR-223*

hsa-miR-34a* hsa-miR-340

hsa-miR-95 hsa-miR-340*

hsa-miR-106a hsa-miR-365

hsa-miR-125a-5p hsa-miR-374a

hsa-miR-126 hsa-miR-374b

hsa-miR-126* hsa-miR-425*

hsa-miR-130a hsa-miR-450a

hsa-miR-135b hsa-miR-483-5p

hsa-miR-140-3p hsa-miR-494

hsa-miR-141 hsa-miR-526b*

hsa-miR-144* hsa-miR-597

hsa-miR-146a hsa-miR-601

hsa-miR-150 hsa-miR-610

hsa-miR-151-3p hsa-miR-629*

hsa-miR-152 hsa-miR-632

hsa-miR-190 hsa-miR-801

hsa-miR-193b hsa-miR-877

hsa-miR-200a* hsa-miR-886-3p

hsa-miR-200b hsa-miR-886-5p

hsa-miR-200b*

hsa-miR-200c

hsa-miR-203

hsa-miR-205

hsa-miR-320

hsa-miR-324-3p

hsa-miR-361-5p

hsa-miR-362-5p

hsa-miR-378

hsa-miR-429

hsa-miR-451

hsa-miR-452

hsa-miR-502-3p

hsa-miR-532-3p

hsa-miR-532-5p

hsa-miR-565

hsa-miR-574-3p

hsa-miR-598

hsa-miR-671-3p

hsa-miR-708

hsa-miR-769-5p  

Table 1. miRNA differentially expressed in at least 3 

of 5 CF vs. non CF bronchial brushing samples 
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