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Abstract: Cystic fibrosis (CF) is an inherited disorder characterized by chronic airway 

inflammation. microRNAs (miRNAs) are endogenous small RNAs which act on messenger (m)

RNA at a post transcriptional level, and there is a growing understanding that altered expression 

of miRNA is involved in the CF phenotype. Modulation of miRNA by replacement using miRNA 

mimics (premiRs) presents a new therapeutic paradigm for CF, but effective and safe methods of 

delivery to the CF epithelium are limiting clinical translation. Herein, polymeric nanoparticles are 

investigated for delivery of miRNA mimics into CF airway epithelial cells, using miR-126 as a 

proof-of-concept premiR cargo to determine efficiency. Two polymers, polyethyleneimine (PEI) 

and chitosan, were used to prepare miRNA nanomedicines, characterized for their size, surface 

(zeta) potential, and RNA complexation efficiency, and screened for delivery and cytotoxicity in 

CFBE41o- (human F508del cystic fibrosis transmembrane conduc tance regulator  bronchial epi-

thelial) cells using a novel high content analysis method. RNA extraction was carried out 24 hours 

post transfection, and miR-126 and TOM1 (target of Myb1) expression (a validated miR-126 

target) was assessed. Manufacture was optimized to produce small nanoparticles that effectively 

complexed miRNA. Using high content analysis, PEI-based nanoparticles were more effective 

than chitosan-based nanoparticles in facilitating uptake of miRNA into CFBE41o- cells and this 

was confirmed in miR-126 assays. PEI-premiR-126 nanoparticles at low nitrogen/phosphate (N/P) 

ratios resulted in significant knockdown of TOM1 in CFBE41o- cells, with the most significant 

reduction of 66% in TOM1 expression elicited at an N/P ratio of 1:1 while chitosan-based miR-

126 nanomedicines failed to facilitate statistically significant knockdown of TOM1 and both 

nanoparticles appeared relatively nontoxic. miRNA nanomedicine uptake can be qualitatively 

and quantitatively assessed rapidly by high content analysis and is highly polymer-dependent 

but, interestingly, there is not a direct correlation between the levels of miRNA uptake and the 

downstream gene knockdown. Polymeric nanoparticles can deliver premiRs effectively to CFBEs 

in order to modulate gene expression but must be tailored specifically for miRNA delivery.

Keywords: miR-126, nanotechnology, cystic f ibrosis, TOM1, high content analysis, 

inflammation

Introduction
Cystic fibrosis (CF), an autosomal recessive disorder characterized by chronic airway 

inflammation,1 occurs due to mutations in the cystic fibrosis transmembrane conduc-

tance regulator (CFTR) gene involved in Cl- transport.2 A deletion of phenylalanine at 

position 508 of the CFTR protein (F508del) is the most frequent mutation, and accounts 

for approximately 70% of CFTR alleles.3 People with CF typically develop obstructive 

lung disease and disease in other organ systems, including pancreatic insufficiency, 

sweat electrolyte imbalance, and male infertility.3 Bronchial epithelial cells contribute 
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significantly to the airway inflammation evident in the CF 

lung by responding to host-derived and pathogen-derived 

agonists, such as neutrophil elastase and Pseudomonas 

aeruginosa lipopolysaccharide1,4–9 that can signal via Toll-

like receptors to augment interleukin-8 expression, leading to 

neutrophil-dominated inflammation. Therefore, components 

of these pathways may provide therapeutic targets for CF.

microRNAs (miRNAs) are 21–24 nucleotide duplex 

RNAs involved in the translational regulation of gene 

expression.10 RNA interference (RNAi) involving mature 

miRNAs occurs through the RNA induced silencing complex, 

where miRNA can bind to target messenger (m)RNA and 

induce cleavage degradation or translational repression of 

the mRNA target.10–12 Aberrant levels of miRNA are associ-

ated with many human diseases. miR-126, the first miRNA 

shown to be associated with CF, is downregulated in CF 

airway epithelial cells in vivo.1 TOM1 (target of Myb1) is 

a known target of miR-126, and is reciprocally upregulated 

in vivo in CF bronchial brushings.11 Other studies have also 

looked at miRNA expression in the CF airway and intestinal 

epithelial cells in humans and mice,13,14 and these support the 

concept that miRNAs have an important role in CF.15 Indeed, 

expression of wild-type and F508del CFTR are also known 

to be regulated by miRNAs.16–20

The use of RNAi in the targeted therapy of disease may 

prove very useful. Unlike DNA-based approaches, which 

require nuclear delivery, miRNAs and other RNAs, such as 

small interfering RNA (siRNA), only need to be delivered to 

the cytoplasm, and may be more benign to cells in terms of elic-

iting innate immune responses.21 Often miRNA has multiple 

targets, and this is of great benefit in terms of using replace-

ment miRNA mimics.22 An added advantage of using miRNA 

over siRNA in regulation of aberrant mRNA expression is the 

reduced need for very high strand complementarity.

The systemic applications of naked miRNAs are restricted, 

because these and other small RNAs are  polyanionic and 

highly susceptible to destruction by serum nucleases.23 

 Therefore, vectors are generally utilized to enhance in vivo 

stability as well as anatomic and cellular targeting. The use 

of nanoparticles and other nonviral vectors in the delivery of 

DNA and RNA into cells may be preferred therapeutically 

over viral vector-based delivery, due to the complications 

associated with viral delivery, including patient immune 

responses.21 Cationic polymers are now widely used to form 

RNA-containing nanoparticles, termed polyplexes. Examples 

of such polymers are polyethylenimine (PEI) and chitosan, 

and these are commercially available. PEI has a high cationic 

charge density, is of synthetic origin, and is available in  various 

molecular weights and degrees of branching.24  Chitosan is 

a cationic polysaccharide polymer obtained by deacetyla-

tion of chitin. It can be sourced in many forms depending 

on molecular weight and degree of deacetylation.24,25 The 

physicochemical properties and subsequent biointeraction 

of RNA-cationic nanoparticles (polyplexes) is controlled by 

the ratio of amines on the cationic polymer to phosphates on 

the nucleic acid, and is known as the N/P ratio.

In the area of drug delivery, the cationic polymers 

described above have been used extensively to complex 

DNA and siRNA. However, very little work has been done 

using these polymers in the complexation of miRNA. Herein, 

we describe the preparation and characterization of miRNA 

nanomedicines using PEI and chitosan, and determine their 

levels of toxicity and miRNA uptake into a CFBE41o- 

(human F508del CFTR bronchial epithelial) cell line by 

harnessing state-of-the-art high content analysis, and using 

miR-126 as a proof-of-concept miRNA mimic (premiR) 

cargo to screen their efficiency by examining miR-126 and 

TOM1 expression.

Materials and methods
Materials
Chitosan glutamate (Protasan® UP G 113, molecular weight 

160 kDa, degree of deacetylation 75%–90%), branched PEI 

(25 kDa, dialyzed), sodium tripolyphosphate pentabasic, 

Hoechst 33342, and phalloidin fluorescein isothiocya-

nate (FITC) were sourced from Sigma-Aldrich (St Louis, 

MO, USA). hsa-miR-126 (mature miRNA sequence 

UCGUACCGUGAGUAAUAAUGCG), hsa-miR-145 

(sequence GUCCAGUUUUCCCAGGAAUCCCU), and 

Scrambled Silencer® Negative Control 1 siRNA (AM4611) 

were obtained from Applied Biosystems (Foster City, 

CA, USA). RiboJuice™ (Novagen, Billerica, MA, USA) 

transfection agent was used as the positive control in all 

transfections. Fluorescently labeled miRNA (Dharmacon 

Miridian miRNA-Dy547) and a Cellomics® multiparameter 

cytotoxicity 3 kit were obtained from Thermo Scientific 

(Waltham, MA, USA). All other chemicals used were of 

reagent grade and commercially available.

Preparation of mirNa nanomedicine
mirNa-PeI nanoparticles
Varying amounts of PEI (from 131 ng to 1.31 µg in distilled 

H
2
O) were added to 1 µg of miRNA (in 6.8 µL RNase-free 

H
2
O). This was diluted to 40 µL with phosphate-buffered 

saline (PBS) or 5% (w/v) glucose solution, mixed gently by 

pipette, and left on ice for 30 minutes.
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miRNA-chitosan nanoparticles
For simple complexation, varying amounts of chitosan in 

2% acetic acid were added to 1 µg of miRNA to produce 

N/P ratios of 50–200. This was diluted with PBS, mixed 

gently by pipette, and left on ice for 30 minutes. Chitosan-

tripolyphosphate (TPP)-miRNA nanoparticles were prepared 

using various amounts of chitosan depending on the N/P ratio 

used. A weight ratio of 6:1 was used for all chitosan:TPP 

nanoparticles described here. Briefly, TPP solution was 

added to 0.5 µg miRNA and diluted to 100 µL with distilled 

water. This was left for 2 minutes at room temperature and 

then added dropwise to the relevant concentration of chito-

san solution (100 µL) to produce N/P ratios of 50–200. The 

solution was then mixed gently by pipette and left on ice for 

30 minutes.

size and zeta potential
The sizes and zeta potential of all the miRNA nanomedi-

cines were measured using the Zetasizer Nano ZS (Malvern 

Instruments, Malvern, UK). All complexes were diluted to 

1 mL in 10 mM NaCl solution immediately before measure-

ment on the Zetasizer instrument.

cFBe41o- uptake of mirNa 
nanomedicines: high content analysis
CFBE41o- cells (human F508del CFTR bronchial epithe-

lial cells)26 were maintained in a 37°C, humidified 5% CO
2
 

incubator in Minimal Essential Medium/GlutaMAX™ 

medium (Gibco®, Life Technologies, Carlsbad, CA, USA). 

Cells were seeded at 3 × 104 cells/well in a 96-well plate. 

miRNA-nanomedicines were prepared as described, with the 

fluorescently labeled miRNA (Dharmacon Miridian miRNA-

Dy547, ThermoScientific). Thirty nM miRNA-Dy547 or 

equivalent in nanoparticles was added per well and, following 

a 20.5-hour incubation, the cells were washed with PBS and 

fixed in 4% paraformaldehyde. Cells were stained for F-actin 

using phalloidin FITC and for the nucleus using Hoechst 

33342. Cells were washed three times with Dulbecco’s PBS 

and stored in 150 µL of this solution. High content analysis 

was carried out using an IN Cell Analyzer 1,000 (GE Health/

Amersham Biosciences, Little Chalfont, UK).

High content analysis of nanoparticle 
toxicity
CFBE41o- cells were seeded at 3 × 104 cells/well in a 96-well 

plate. miRNA nanomedicines were formed as described 

earlier, using premiR-126 (30 nM per well). Control wells 

were treated with 120 µM valinomycin for 18 hours as a 

positive control of toxicity prior to analysis. Cells were fixed 

and stained for the nucleus using Hoechst 33342 and the cell 

count was determined using the IN Cell Analyzer 1,000.

Transfection with miRNA nanomedicines
CFBE41o- cells were seeded on 24-well plates at 8 × 104 cells/

well and were treated with premiR-126:PEI nanomedicines 

at N/P ratios of 1:1, 3:1, 5:1, or 10:1; premiR-126:chitosan 

nanomedicines at N/P ratios of 5:1, 50:1, 15:1, or 200:1; and 

compared with relevant controls including scrambled premiR 

control (scr), premiR-126 only; empty chitosan nanoparticles 

and PEI nanoparticles; premiR-126 using RiboJuice, or 

untreated. All miRNA treatments were at a concentration of 

30 nM premiR per well. Twenty-four hours post-transfection, 

cells were lysed and RNA isolated for further analysis using 

TRI Reagent® (Sigma-Aldrich) according to the manufac-

turer’s specifications.

Complementary DNA (cDNA) synthesis 
and quantitative reverse transcription 
polymerase chain reaction (qRT-PCR) 
for mir-126
miRNA expression was measured using Taqman miRNA 

assays (Applied Biosystems) according to the manufac-

turer’s instructions, and qRT-PCR was performed on an 

LC480 Lightcycler (Roche, Basel, Switzerland). Expres-

sion of miRNA relative to β-actin was determined using the 

2(−∆∆Ct) method.27 All qRT-PCR experiments were performed 

in triplicate, including no-template controls.

cDNA synthesis and qRT-PCR for TOM1
Equal quantities of RNA were reverse transcribed into cDNA 

using a Quantitect reverse transcription kit (Qiagen, Valencia, 

CA, USA). The cDNA resulting from this reaction was used 

as a template for qRT-PCR using SYBR Green (Roche) on 

the LightCycler 480 PCR system (Roche). The expression 

of TOM1 relative to β-actin was determined using the 2(−∆∆Ct) 

method.27 Primers for TOM1 and β-actin were obtained 

from MWG Eurofins Genetics (Ebersberg, Germany) 

(TOM1-F 5′-ATTCTGTGGGCACTGACTCC-3′ and 

TOM1-R 5′-CACTCACCATCTCCAGCTCA-3′, β-actin-F 

5′-GGACTTCGAGCAAGAGATGG-3′ and β-actin-R 

5′-AGGAAGGAAGGCTGGAAGAG-3′).

statistical analysis
All analyses were performed using GraphPad Prism 

4.0 software package (San Diego, CA, USA). Results are 

expressed as the mean ± standard error of the mean and were 
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Figure 1 Mean size (nm) of premiR-126-poly(ethyleneimine) (PEI) complexes prepared using phosphate-buffered saline (PBS) and 5% glucose, or premiR-126 chitosan 
complexes and premiR-126 chitosan-TPP nanoparticles. The percentage reduction in nanoparticle size using glucose or tripolyphosphate (TPP) for PEI and chitosan 
respectively at each N/P ratio, are shown in brackets. 
Notes: Data are represented as mean ± standard error of the mean and were compared by t-test (non-parametric, one-tailed). Differences were considered significant at 
P # 0.05. **P # 0.01. ***P # 0.001.
Abbreviations: miR, microribonucleic acid; N/P, nitrogen/phosphate ratio.

compared using the Student’s t-test (nonparametric, one-

tailed). Differences were considered significant at P # 0.05.

Results
Characterization of miRNA nanoparticles
Characteristics such as size, zeta potential (surface charge), 

and degree of complexation or encapsulation all affect 

the delivery, efficiency, and toxicity of nanoparticles, and 

the preparation methods were optimized to produce small 

miRNA-loaded, PEI, and chitosan nanoparticles that com-

plexed and condensed miRNA.

Large particles, with sizes greater than 1,000 nm, were 

obtained when PEI was complexed with premiR-126 at 

N/P ratios of 1:1, 3:1, and 5:1 using PBS as the diluent 

(Figure 1). These sizes are likely due to aggregation of 

nanoparticles. Using a higher N/P ratio of 10:1, a reduced 

size of 588 ± 34 nm was obtained. Using 5% (w/v) glucose 

as the complexation diluent for preparation of PEI:miRNA 

nanoparticles instead of PBS, much smaller complexes were 

obtained. The reductions in diameter are in the order of a 

48%–70% decrease in size, with PEI:miRNA nanoparticles 

prepared at an N/P ratio of 1:1 in glucose having a size around 

300 nm. No significant effect between diluents was observed 

with respect to zeta potential. Figure 1 also illustrates the 

effect of N/P ratio on the size of chitosan-miRNA nanopar-

ticles, with mean diameters of between 480 nm and 590 nm 

for N/P ratios of 50:1, 100:1, 150:1, and 200:1. The inclusion 

of a crosslinking agent, TPP, in the manufacturing process 

significantly reduced the miRNA nanoparticles to as low as 

115 ± 1.7 nm in diameter.

The zeta potential of free miRNA was found to 

be −15.98 ± 3.9 mV. PEI-miRNA nanoparticles were posi-

tively charged above an N/P ratio of 5, while chitosan-miRNA 

nanoparticles had a net positive charge at all N/P ratios over 

50:1 (data not shown).

mirNa nanomedicine uptake  
into CFBE41o- cells: high content analysis
High content analysis allows for analysis and quantification 

of multiple parameters of both cellular uptake of nanoparti-

cles and cytotoxicity induced as a result of treatment. The IN 

Cell Analyzer 1,000 algorithm detects the presence of whole 

fixed cells by the presence of both the nucleus (stained with 

Hoechst 33342) and the cytoplasm (stained with F-actin 

using phalloidin FITC). Harnessing high content analysis, 

PEI-based nanoparticles at N/P ratios of 5:1 and 10:1 appear 

to be more effective at delivery of miRNA to the cell than 

chitosan-based or chitosan-TPP-based nanoparticles, or 
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Figure 3 Cell count after treatment of CFBE41o- cells with miRNA-nanomedicines 
for 18 hours. Cells were subsequently stained and visualized using IN Cell Analyzer 
1,000 (n = 3).
Note: Differences were considered significant at P # 0.05. **P # 0.01.
Abbreviations: miRNA/miR, microribonucleic acid; PEI, poly(ethyleneimine); TPP, 
tripolyphosphate; scr, scrambled control; CFBE41o-, human F508del cystic fibrosis 
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Figure 2 High content analysis of miRNA-Dy547 loaded nanoparticles association 
with CFBE41o- cells at 20.5 hours post transfection. (A) Comparative quantification of 
fluorescent miRNA delivered to CFBE cells by PEI- and chitosan-based nanoparticles 
at different N/P ratios and compared to commercial transfection agent, RiboJuice. 
Data are represented as mean fluorescence intensity normalized to relative carrier, 
(ie, PEI, Chitosan or Chitosan-TPP uncomplexed) ± standard error of the mean and 
were compared by one-way analysis of variance, followed by Bonferroni’s multiple 
comparison test. Differences were considered significant at P # 0.05. ***P # 0.001. 
(B) Images of miRNA nanoparticles (red) internalized by CFBE cells (blue: nucleus, 
green: f-actin, arrow: area shown in higher zoom box) visualized using IN Cell 
analyzer 1,000.
Abbreviations: miRNA/miR, microribonucleic acid; PEI, poly(ethyleneimine); TPP, 
tripolyphosphate; N/P, nitrogen/phosphate ratio; CFBE41o-, human F508del cystic 
fibrosis transmembrane conduc tance regulator bronchial epithelial cells.

transfection using the commercially available RNA transfec-

tion agent, RiboJuice (Figure 2). Figure 2B clearly indicates 

differences in the nature of the intracellular distribution of 

the miRNA within CFBE41o- cells when delivered using 

different carriers. Highly defined punctae are seen in PEI-

miRNA-treated cells, while those treated with chitosan-

miRNA nanoparticles show a diffuse distribution of miRNA 

in the cell. When TPP is used to prepare smaller and more 

defined miRNA nanoparticles, this can be seen to impact 

clearly the distribution of miRNA, with more defined areas 

of miRNA within the cell. These distribution differences 

can have a very significant effect on molecular kinetics and 

ultimately on the efficacy of the miRNA nanoparticles.

High content analysis  
of nanoparticle toxicity
Cell count is the most obvious marker of toxicity. miRNA-

PEI-based and miRNA-chitosan-based nanoparticles induced 

little or no toxicity at the N/P ratios tested (Figure 3).

Modulation of mirNa in cFBe41o-  
cells using premir-126 nanomedicines
miR-126 levels were quantified in CFBE41o- cells post trans-

fection (Figure 4). Cells treated with miRNA-PEI nanoparticles 

at N/P ratios of 3:1 and higher had over 10,000-fold increases 

in miR-126 compared with untreated cells, similar to that seen 

using the commercially available transfection reagent, RiboJuice 

(P = 0.0378 and P = 0.0115 for PEI 3:1 and 5:1 versus scr). Chi-

tosan-miR126-transfected cells also showed an increase in miR-

126, most evident at N/P ratios of 200:1 and 300:1; however, 

these values were not statistically significant. The PEI-miRNA 

nanomedicines were found to be significantly more efficient than 

chitosan-miRNA nanomedicines at increasing miR-126 levels 

(PEI 3:1 versus chitosan-TPP 200:1 and 300:1, P = 0.0389 and 

P = 0.0381, respectively; PEI 5:1 versus chitosan-TPP 200:1 

and 300:1, P = 0.0117 and P = 0.0116, respectively).

No significant reduction in TOM1 expression was seen 

in CFBE41o- cells after transfection with premiR-126 alone 

(Figure 5). However, TOM1 expression was significantly 

reduced in cells treated with PEI:premiR-126 at N/P ratios 

of 1:1, 3:1, and 5:1, although not at the highest N/P ratio 
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Figure 5 Effect of premiR-126 nanoparticles (as indicated) on TOM1 expression in 
cFBe41o- cells was assessed using qrT-Pcr.
Notes: Data are represented as mean (n = 3) ± standard error of the mean and 
were compared by t-test (non-parametric, one-tailed) to scrambled negative control 
complexed with RiboJuiceTM. Differences were considered significant at P # 0.05; 
*P # 0.05, **P # 0.01, ns = non statistically significant.
Abbreviations: scr, scrambled control; miRNA/miR, microribonucleic acid; PEI, 
poly(ethyleneimine); TPP, tripolyphosphate; qRT-PCR, quantitative reverse transcription 
polymerase chain reaction; TOM1, target of Myb1; CFBE41o-, human F508del cystic 
fibrosis transmembrane conduc tance regulator bronchial epithelial cells.

studied of 10:1. The most significant reduction in TOM1 

of 66% was seen using a PEI N/P ratio of 1:1, which had 

led to the lowest increase in miR-126 of any of the PEI 

nanoparticles in the miRNA assay (Figure 4). Interestingly, 

while RiboJuice:premiR-126 and chitosan:premiR-126 led to 

increased miR-126 levels, this did not translate into a statisti-

cally significant knockdown of TOM1 expression.

Discussion
The physiology and anatomy of the lungs makes the respira-

tory tract an ideal target for noninvasive local treatment of 

respiratory diseases using nanotechnology,28 including the 

respiratory component of CF. It is now well known that aber-

rant miRNA expression is involved in a range of diseases, 

and in the case of conditions involving overexpression of 

miRNA, various strategies are currently being investigated, 

including the use of modified antisense oligonucleotides 

(specifically antagomirs).29 For those conditions where 

underexpression of particular miRNAs is involved, these 

may be introduced into affected cells as premiRs. As for 

other nucleic acid-based therapeutics, effective delivery of 

antagomir and premiRs is a major obstacle to their clinical 

and commercial development. Therefore, it is critical that 

the relevant delivery technology is developed in parallel with 

progress in the field of epigenetics. Because nucleic acids 

are too large, too negatively charged, and targeted by many 

endogenous nucleases, polymeric nanoparticles can facilitate 

intracellular delivery, enhance in vivo stability, and target 

their delivery.30 Thus, microRNA nanomedicines may provide 

new therapeutic options for the treatment of many disease 

states, including cystic fibrosis. Herein we explored the use 

of cationic nanoparticles in the delivery of miRNA into CF 

cell lines to determine if they could modulate miR-126 levels 

in CFBE41o- cells and impact on the associated expression 

of the miR-126 validated target, TOM1.

There are limited data available on the physicochemical 

characteristics of miRNA nanoparticles. The sizes of PEI-

miRNA complexes appear to be buffer-dependent, as size was 

significantly reduced when the complexes were prepared in a 

5% (w/v) glucose solution instead of PBS (Figure 1). Others 

have found similar reductions in size of PEI-DNA complexes 

by using 5% glucose instead of salt-based solutions.31 As for 

other nucleic acids, including plasmid DNA and siRNA, PEI 

appears to be an extremely effective complexation agent for 

miRNA mimics, complexing the premiR completely at low 

N/P ratios to create small, positively charged nanoparticles. 

While the chitosan-miRNA nanoparticles prepared herein were 

slightly larger than the chitosan-siRNA polyplexes reported 
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Figure 4 Effect of premiR-126 nanoparticles (as indicated) on miR-126 expression 
in cFBe41o- cells was assessed using qrT-Pcr.
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in the literature,32 use of the TPP crosslinker significantly 

reduced the size of the miRNA nanoparticles and altered the 

intracellular distribution of the miRNA once internalized by 

the CFBE cells (Figure 2B).

High content analysis (Figure 2A) confirms the effective 

uptake of miRNA nanomedicines into CFBE41o- cells. This 

technique has been successfully applied to screen delivery 

of plasmid DNA33 and siRNA,34 and herein we apply it for 

the first time to the screening of intracellular delivery for 

miRNA nanoparticles. The advantages of the technique 

include the ability to screen a range of delivery systems in 

parallel and generate both qualitative images and quantita-

tive uptake data. The high content analysis data indicated 

that delivery of premiRNA-PEI nanomedicines to CFBE 

cells was twice as effective as miRNA transfection using 

RiboJuice, a commercial transfection agent often used for 

miRNA transfection in molecular biology applications. 

The high content analysis uptake data also indicated that 

PEI was a more efficient miRNA carrier than chitosan. The 

findings of the high content analysis uptake study are borne 

out by the miR-126 assay (Figure 4) in which PEI-miRNA 

nanomedicines were found to be significantly more efficient 

than chitosan-miRNA nanomedicines at increasing miR-126 

levels. This may be explained by both the higher binding effi-

ciency of premiRs to PEI than chitosan (data not shown) and 

its highly cationic nature that increases its interaction with the 

cell membrane, thereby enhancing transfection. This builds 

on and supports previous work harnessing PEI and chitosan 

for siRNA delivery that found PEI was significantly better 

at both complexing siRNA and transfecting cells with short 

RNA sequences.35,36

There is an interesting dichotomy in the miR-126 assay 

(Figure 4) and the TOM1 levels (Figure 5), wherein the for-

mulation of PEI:premiR-126 N/P ratio of 1:1 that produces 

a relatively small increase in miR-126 compared with some 

of the other formulations of PEI leads to the most significant 

decrease in TOM1 expression. High N/P ratio nanoparticles 

composed of nucleic acids and PEI are often associated with 

cytotoxicity, which can then be associated with diminished 

gene expression or gene knockdown, depending on the cargo 

encapsulated therein. However, our cell toxicity studies 

(Figure 3) would indicate that overall cell viability is not 

compromised at the N/P ratios used in this study. Therefore, 

our hypothesis is that while PEI:premiR-126 N/P  3:1, 5:1 

and 10:1 facilitate efficient uptake of the miRNA, greater than 

that facilitated by RiboJuice or PEI:premiR-126 N/P 1:1, this 

huge increase in fact saturates the miRNA induced silencing 

complex machinery, especially at a very high N/P ratio of 

10:1, and interferes with its function. Previous work has 

found that high levels of artificial RNAi substrates deliv-

ered to cells can cause cellular toxicity and may compete 

for endogenous RNAi machinery, leading to disruption of 

natural miRNA function.39,40 Therefore, at high N/P ratios, 

the PEI-based nanomedicines may in essence be too effec-

tive at delivery and thereby negate the therapeutic benefits 

of the cargo. While RiboJuice appears to facilitate signifi-

cantly more uptake and miR-126 expression than PEI 1:1, 

the downstream effects are almost comparable, although the 

RiboJuice fails to elicit a statistically significant decrease in 

TOM1 expression. This difference may relate to differences 

in intracellular trafficking of the two nanomedicines, with 

PEI capable of superior delivery than that of RiboJuice, 

of the internalized premiR-126 from the endolysosomal 

system. This material-dependent effect on gene expression, 

independent of simple cell uptake, can also be seen when 

comparing the chitosan-TPP nanoparticles. In Figure 2, 

the premiR uptake facilitated by the chitosan-TPP nano-

particles is slightly greater than PEI 1:1, while in Figure 4, 

the miR-126 expression level for chitosan-TPP 200:1 is 

approximately that of PEI 1:1, yet this fails to translate into 

significant knockdown of TOM1 expression. Again this may 

relate to differences in the molecular pharmacokinetics of 

these nanomedicines, with PEI’s “proton sponge” capacity 

enabling a small amount of miR-126 to effect significant 

knockdown of target gene expression. We would contend 

that this is an important finding in the context of miRNA 

nanomedicine development that differs from the develop-

ment of other nucleic acid-based therapies, eg, plasmid DNA, 

where significant uptake is generally required to elicit gene 

expression. The more complex miRNA pathways may in fact 

respond to relatively small quantities of premiR delivered 

within a carrier that facilitates the appropriate intracellular 

trafficking and therefore development of these delivery 

systems must have an endpoint expression assay as their 

primary screening tool.

The PEI-miRNA nanomedicines (N/P ratio 1:1) produced 

a 66% knockdown in TOM1 compared with scrambled 

controls. This is a significantly lower N/P ratio than would 

be used for PEI transfections for plasmid DNA or siRNA, 

which are generally optimal at N/P ratios of 5:1 to 10:1.25,30 

This would indicate that the preparation of miRNA nano-

medicines needs to be optimized for each polymeric system 

and cannot be directly extrapolated from previous siRNA or 

plasmid DNA work. Of the miRNA nanomedicines assessed, 

PEI-miRNA nanomedicines (N/P ratio 1:1) offer the greatest 

potential, leading to a significant modulation in the target 
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gene, ie, 66% knockdown of TOM1, with the advantage of 

a low N/P ratio, which limits toxicity issues associated with 

the polymer. These data would indicate that caution needs 

to be taken in the use of cell uptake studies to screen for 

miRNA delivery systems. Our understanding of their cellular 

role is slowly being elucidated and the complexities of this 

process might well mean that the simple correlation between 

increased miR-126 levels and knockdown of the target gene is 

not as straightforward a relationship as that seen, for example, 

with the highly sequence-specific siRNA molecules.

Local delivery of miRNA to the CF lung is one of the most 

promising approaches for bringing miRNA nanotechnologies 

targeting CF to the clinic. Inhalation offers tissue-specific tar-

geting of the miRNA and minimal systemic exposure, thereby 

diminishing the risk of off-target effects. However, CF lungs 

represent both significant anatomic and pathologic barriers to 

inhaled nanomedicines, including obstructed airways covered 

with thickened mucus and mucus plugs. In order to develop 

therapeutics such as these for local aerosolized delivery to 

the CF lung, the next steps will be to evaluate their efficacy 

in mucus-producing air-liquid interface cultures, primary 

CF airway epithelial cell cultures, and ultimately in animal 

models of CF. The complex branched anatomy of the airways 

means inhaled nanomedicines require an effective device 

to deliver them to their site of action. The recent develop-

ment of advanced nebulizers, eg, vibrating mesh devices, 

enables much more efficient delivery of nanomedicines to 

the lungs.

Prior to clinical testing, these miRNA nanomedicines will 

need to be screened in suitable in vivo CF models to examine 

efficacy, toxicity, and immunogenicity. Preclinical studies of 

this next generation of gene medicines represented by miRNA 

nanomedicine will benefit from novel animal models such 

as the CF pig and ferret models. The most common routes 

for pulmonary drug administration particularly in rodents 

are intratracheal and intranasal inhalation. Intratracheal 

administration works best for proof-of-concept work, and 

due to its invasive nature, it is not routinely used in humans 

and also does not require the assessment of aerosol droplet 

or particle size. However, inhaled delivery in animals cannot 

be extrapolated to humans due to differences in anatomy and 

immunology.

Conclusion
The degree of miRNA uptake facilitated by a range of 

nanomedicines can be qualitatively and quantitatively 

assessed rapidly by high content analysis and is highly 

carrier-dependent. High content analysis data indicate that 

miRNA-PEI nanomedicines facilitated greater uptake than 

miRNA-TPP-chitosan nanoparticles and the commercial 

transfection agent, RiboJuice. This superior delivery effi-

ciency for PEI nanomedicines translated into modulation 

of TOM1 expression with PEI-miRNA nanomedicines 

(N/P ratio 1:1, 3:1, and 5:1), the only systems that could 

significantly knockdown TOM1 expression in CFBE41o- 

cells (P , 0.05). Interestingly, relative premiR-126 delivery 

efficiency for different PEI nanomedicines did not directly 

correlate with ability to modulate TOM1 expression in 

CFBE41o- cells with PEI-miRNA nanomedicines (N/P 

ratio 1:1, P , 0.05) offering the greatest knockdown of the 

formulations tested but not the most effective cellular uptake 

or miR-126 levels. Polymeric nanoparticles offer a biocom-

patible and efficient means of delivering premiRs effectively 

to CFBE41o- cells in order to modulate gene expression, 

thereby facilitating clinical translation. However, caution in 

extrapolation of uptake studies is required and downstream 

functional assays are ultimately required to determine the 

efficacy of each system.
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