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Abstract 

In mammalian cells the primary function of the endoplasmic reticulum is to synthesise and 

assemble membrane and secreted proteins.  As the main site of protein folding and post-

translational modification in the cell, the ER operates a highly conserved quality control system to 

ensure only correctly assembled proteins exit the ER, and misfolded and unfolded proteins are 

retained for disposal.  Any disruption in the equilibrium of the ER engages a multifaceted 

intracellular signalling pathway termed the unfolded protein response (UPR) to restore normal 

conditions in the cell.  A variety of pathological conditions can induce activation of the UPR, 

including neurodegenerative disorders such as Parkinson’s disease, metabolic disorders such as 

atherosclerosis, and conformational disorders such as cystic fibrosis.  Conformational disorders are 

characterised by mutations that modify the final structure of a protein and any cells that express 

abnormal protein risk functional impairment.  The monocyte is an important and long-lived 

immune cell and acts as a key immunological orchestrator, dictating the intensity and duration of 

the host immune response.  Monocytes expressing misfolded or unfolded protein may exhibit UPR 

activation and this can compromise the host immune system.  Here we describe in detail methods 

and protocols for the examination of UPR activation in peripheral blood monocytes.  This guide 

should provide new investigators to the field with a broad understanding of the tools required to 

investigate the UPR in the monocyte.   
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1. Introduction 

1.1. ER Stress and the Unfolded Protein Response (UPR) 

Newly synthesised secreted and transmembrane proteins are transported into the lumen of the 

endoplasmic reticulum (ER) where they are folded and correctly assembled.  The homeostasis of 

this organelle is vital to continued normal cell function and survival.  Perturbations that disrupt ER 

homeostasis, such as fluctuations in calcium storage or increased demand for protein folding arising 

from elevated production of secretory proteins, compromise ER protein folding capacity resulting in 

the accumulation of unfolded or misfolded protein within the lumen of the ER .  An imbalance 

between the load of unfolded proteins entering the ER and the ability of the ER to process this load 

is termed ER stress, and can be detrimental to cell survival.  ER stress can also be induced by a 

range of pathophysiological conditions, including stroke, ischaemia, diabetes, obesity, viral 

infection, and mutations that impair protein folding (Kaufman, 1999).   

To maintain homeostasis, the ER has evolved highly specific signalling pathways 

collectively referred to as the unfolded protein response (UPR), which strives to adapt for survival 

or induce apoptosis.  In the event of ER stress this protective pathway causes the translational 

attenuation of general protein synthesis, induces a transcriptional programme of ER-resident 

chaperones, and coordinates the degradation of misfolded proteins through ER-associated 

degradation (ERAD)(Mori, 2000).  Three proximal ER-resident transmembrane sensors, protein 

kinase RNA (PKR)-like ER kinase (PERK), inositol-requiring kinase 1 (IRE1), and activating 

transcription factor 6 (ATF6) form a tripartite management system that orchestrates the mammalian 

UPR (Ron and Walter, 2007).  The luminal domain of these three molecules is sequestered by the 

ER chaperone glucose-regulated protein 78 (GRP78), however, upon misfolded protein 

accumulation, GRP78 dissociates from PERK, IRE1, and ATF6, leading to their activation 

(Malhotra and Kaufman, 2007).  
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The most immediate step in the UPR is translational attenuation to prevent further 

accumulation of unfolded proteins in stressed cells.  This is mediated by PERK, through 

phosphorylation of eukaryotic initiation factor 2 (eIF2) at Serine 51 on its alpha subunit (eIF2α) 

(Harding et al., 1999).  While reducing the rate of protein synthesis and the protein load in the ER, 

eIF2α phosphorylation paradoxically promotes the translation of ATF4 mRNA, a basic leucine 

zipper (bZIP) transcription factor.  ATF4 induces a pro-survival programme of genes essential for 

amino acid import, glutathione biosynthesis, and resistance to oxidative stress (Harding et al., 

2003).   

The next step in the UPR employs IRE1 and ATF6, which regulate chaperone induction, 

expansion of the ER in response to increased client protein load and ER-associated degradation 

(ERAD) (Mori, 2000).  Upon UPR engagement, IRE1 is activated and its endoribonuclease activity 

causes removal of a 26-nucleotide intron from X-box binding protein 1 (XBP-1) mRNA 

(Tirasophon et al., 1998).  The spliced XBP-1 mRNA is translated into a potent bZIP transcription 

factor which translocates to the nucleus and acts as a key regulator of ER folding capacity.  

Concurrently, another bZIP transcription factor ATF6 is released from GRP78 and transported to 

the Golgi where it undergoes sequential cleavage by site-1 protease (S1P) and site-2 protease (S2P).  

Cleaved ATF6 cooperates with spliced XBP-1 to induce the expression of ER chaperones, ER 

quality control genes, folding enzymes and ERAD (Yoshida et al., 1998; Yoshida et al., 2001).  

ERAD ensures the removal of terminally misfolded proteins from the ER lumen to the cytoplasm 

for ultimate degradation by the ubiquitin-proteasome system (Travers et al., 2000).   

 

1.2. The Monocyte 

The human immune system has been historically divided into innate immunity and acquired or 

adaptive immunity. Monocytes and their multitude of differentiated offspring fulfil important 
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regulatory and effector roles in both arms of the immune system (Medzhitov and Janeway, 2000).  

Peripheral blood monocytes in the circulation migrate through blood vessel walls into various 

organs and differentiate into more specialised macrophages.  Monocytes and their macrophage 

progeny act as immunological orchestrators and serve three major functions, antigen presentation, 

phagocytosis, and immunomodulation (Dale et al., 2008).  Upon activation, monocytes and 

macrophages produce large amounts of cytokines and chemokines that recruit other immune cells 

such as neutrophils to sites of infection and inflammation.   

The first reports of ER stress and UPR activation in immune cells were in professional 

antibody-secreting plasma cells (Calfon et al., 2002).  This developmental ER stress is a natural 

consequence of the transition from B cell to plasma cell, which produces huge amounts of 

antibodies and requires a massive expansion in ER folding capacity (Iwakoshi et al., 2003).  

However, there is emerging evidence that UPR activation in monocytes and macrophages may play 

a role in the pathogenesis of a number of diseases.  In mouse models of atherosclerosis, 

macrophages overloaded with free cholesterol were shown to exhibit UPR activation (Li et al., 

2005), and monocytes from Type II diabetes patients showed elevated expression of GRP78 

(Komura et al., 2010).  Monocytes from cystic fibrosis (CF) patients were shown to be intrinsically 

abnormal in their cytokine responses (Zaman et al., 2004), but this can be reversed by inhibitors 

designed to prevent ∆F508 CFTR (cystic fibrosis transmembrane conductance regulator) 

degradation by ERAD and increase the secretion of CFTR (Vij et al., 2006).  In addition, work from 

this group has demonstrated intracellular accumulation of Z alpha-1 antitrypsin (AAT) in the ER of 

monocytes, and this causes sustained activation of the UPR with subsequent effects on immune 

function (Carroll et al., 2010).   

As the tissue macrophage can present a challenge in terms of isolation with unreliable 

sampling techniques or lengthy differentiation protocols from monocytes that risk cell activation, 
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the monocyte is a useful tool for investigating immune system derangement in a variety of 

disorders.   

 

2.1. Isolation, culture and treatment of peripheral blood monocytes 

In this section we will provide details for isolating monocytes from freshly-drawn whole blood from 

human donors.  It must be noted that studying the behaviour and function of human monocytes is a 

difficult undertaking.  Monocytes constantly observe their surroundings and swiftly react to 

changes, as is their nature.  The isolation, purification and culture of these cells in vitro can affect 

their phenotype, and care must be taken not to stimulate the cells.  The faster the isolation process 

the less chance of cell activation, and all buffers to be used should be pre-warmed to 37ºC.  We use 

Lymphoprep (Axis-Shield) to perform density gradient separation but Ficoll-Paque can also be used 

(Yeo et al., 2009).   

 

2.1.1. Required Materials 

• Lymphoprep (Axis-Shield) 

• 1X saline (0.9% NaCl) 

• Hanks Balanced Salt Solution (Biosciences) 

• EasySep Human CD14 positive selection kit (Stemcell Technologies) and EasySep magnet 

(Stemcell Technologies).  The kit is designed to isolate CD14 positive cells from fresh or 

previously frozen peripheral blood mononuclear cells by positive selection. 

• 5 mL polystyrene round bottom Falcon tube (BD Biosciences, product) 

• RPMI 1640 (Biosciences) supplemented with 10% FCS, 2% glutamine and 

penicillin/streptomycin (necessary for culturing monocytes) 
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• Thapsigargin (Molecular Probes) and tunicamycin (Sigma) for chemically inducing UPR 

activation.  Thapsigargin depletes calcium stores in the ER by inhibiting Ca
2+

 ATPase, 

while tunicamycin inhibits N-linked glycosylation of newly-synthesised proteins.  

 

2.1.2. Monocyte Isolation  

Mononuclear cells are isolated from venous peripheral blood obtained from donors by density 

gradient separation.  The blood must be collected in tubes containing an anticoagulant (EDTA or 

heparin).  Once drawn, blood is immediately placed in 50 mL tube and mixed with an equal 

volume of 0.9% NaCl (1X saline).  The diluted blood is then layered over Lymphoprep in a fresh 

50 mL tube.  For example, if 15 mL blood is obtained, mix with 15 mL 1X saline and then slowly 

and carefully layer over 15 mL Lymphoprep.  Alternatively, Lymphoprep can be under-layered 

below the diluted blood using a long pipette.  It is essential to avoid mixing of blood and 

Lymphoprep before centrifugation.  Centrifuge the Lymphoprep and blood at 800 x g for 10 

minutes at room temperature, with the centrifuge brake switched off.  After centrifugation, the 

mononuclear cells (which include monocytes and lymphocytes) form a distinct band at the 

blood/Lymphoprep interface. Carefully remove this band using a Pasteur pipette and place in a 

fresh tube.  Add an equal volume of 1X saline or HBSS to reduce the density of the solution and 

pellet these cells by gentle centrifugation (300 x g, 10 minutes).  Resuspend cells in 1mL EasySep 

recommended medium (1 mM EDTA, 2% Foetal Calf Serum in PBS Dulbecco) and transfer this 

1mL cell suspension to a 5 mL Falcon tube.  It is useful to count the number of mononuclear cells 

isolated at this step.  Monocytes should typically represent 10% of this total mononuclear fraction.   

From this point, we follow the EasySep CD14 kit protocol exactly as described in order to 

isolate monocytes from the mononuclear cell population.  In our experience, the most critical step 

in the Lymphoprep protocol is to ensure the centrifuge brake is switched off as this will ensure a 

tight band of mononuclear cells forms at the interface between serum and Lymphoprep.  Another 
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critical step is the careful layering of diluted blood over Lymphoprep to ensure no mixing occurs 

between the layers.  Leaving the centrifuge brake on or inefficient layering technique will result in 

a diffuse mononuclear band at the interface, and a poor monocyte yield.  Once monocytes are 

successfully isolated and counted they can be used in a variety of applications.  For example, if 

performing stimulation experiments, monocytes can be cultured in RPMI containing 10% (v/v) 

foetal calf serum (FCS) and 1% penicillin/streptomycin at 37°C in a 5% CO2 atmosphere for up to 

24 hours.  However, it is essential that monocytes are cultured in polypropylene tubes, and not 

polystyrene tubes, as polystyrene promote significant adherence and probable activation of 

monocytes.   

 

2.2. Enzyme-linked Immunosorbent Assay (ELISA) 

In addition to its role in maintaining ER homeostasis, it has become apparent that ER stress-induced 

UPR activation can influence the expression of a subset of inflammatory genes.  The spliced form 

of XBP-1 has been shown to control the production of IL-6 in the mouse B cell (Iwakoshi et al., 

2003).  XBP-1 was also shown to regulate the production of IFN-β in mouse macrophages 

subjected to ER stress (Smith et al., 2008).  Another study in a mouse model of atherosclerosis 

demonstrated that accumulation of free cholesterol in macrophages caused UPR activation and the 

secretion of significant amounts of TNF-α and IL-6 (Li et al., 2005).  Thus, the underestimated 

technique of ELISA is a reliable method of investigating an aberrant immune response in 

monocytes, often a consequence of UPR activation.  This quantitative method is highly 

reproducible, relatively cheap and easy to perform.  However, due to the large quantities of 

chemokines and cytokines secreted by monocytes, dilution of supernatants is often required and as 

little as 2 µL of supernatant can be sufficient in some cases, for example when assaying IL-8.  

Another application for ELISA is in the investigation of impaired secretion of specific proteins.  For 
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example, we have used this technique to show impaired secretion of AAT from monocytes isolated 

from alpha-1 antitrypsin deficient-individuals (Carroll et al., 2010).   

 

2.2.1. Required Materials for IL-8 ELISA 

• Monocyte supernatants 

• Immulon 2HB 96 well high-binding microtitre plates (Thermo Electron Corporation) 

• Voller’s coating buffer (100mM Bicarbonate/carbonate buffer, pH 9.6) 

• Wash buffer (0.05% Tween in PBS, pH 7.4) 

• Blocking buffer (1% BSA, 0.05% Tween in PBS, pH 7.4) 

• Recombinant human IL-8 (R&D Systems) 

• Monoclonal antibody to human IL-8 (MAB208, R&D Systems) 

• Biotinylated antibody to human IL-8 (BAF208, R&D Systems) 

• Streptavidin-horseradish peroxidase (HRP) (Biolegend) 

• ABTS substrate (Invitrogen) 

 

2.2.2. ELISA to Measure IL-8  

Supernatants are recovered and protein concentrations determined by ELISA with specific 

antibodies to the secreted protein of interest, in this example the chemokine IL-8.  The day before, a 

high-binding 96 well plate is coated with 100 µL per well of capture antibody (MAB208, 1/500 

dilution) diluted in Voller’s buffer – this is a key point.  If PBS is used as a diluent for the coating 

antibody, as stated in the manufacturer’s datasheet, the ELISA will not work.  The plate is sealed 

and incubated overnight at 4ºC.  Next day, each well is aspirated and filled with wash buffer, and 

repeated for a total of 3 washes using a multi-channel pipette.  Complete removal of the liquid at 

each step is achieved by inverting the plate and blotting on clean tissue paper.  Plate is blocked by 
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the addition of 200 µL of blocking buffer and incubated for 1 hour at room temperature.  Repeat 

aspiration and wash steps as before for 3 washes.  Plates are filled with 100 µL per well of 

monocyte supernatant (diluted).  Serial dilutions of recombinant human IL-8 in serum-free RPMI 

medium are performed to construct a standard curve (31.25 – 2000 pg/mL) and the plate is 

incubated for 2 hours at room temperature.  Plate is washed 3 times as before, 100 µL of the 

detection antibody (BAF208, 1/2500 dilution) is added to each well, and plate is incubated for a 

further 2 hours.  Next, plate is washed 3 times, 100 µL streptavidin-HRP is added (1/2500 dilution) 

and incubated for 30 minutes at room temperature.  Another 3 washes are performed, and the plate 

is incubated with 100 µL ABTS for 5 – 30 minutes in a dark box or cupboard protected from direct 

light.  It is useful to check the plate periodically for the development of a green colour, and once a 

significant colour is observed, measure the absorbance of each well at 405 nm on a Victor2 

microplate reader (Wallac).  Prepare a standard curve from the data produced from the serial 

dilutions with concentration on the X axis versus absorbance on the Y axis (linear).  Interpolate the 

concentration of the sample from this standard curve using Prism 4.0 statistical analysis software 

(GraphPad).  

As an ancillary step to ELISA, cytokine arrays can be employed to measure multiple 

proteins in the monocyte supernatants (RayBiotech, Inc).  This technique, although expensive, 

allows the semi-quantitative measurement of over 100 cytokines, chemokines, proteases, 

antiproteases, and growth factors from a single sample.  Any potential leads can then be confirmed 

by ELISA or quantitative RT-PCR.  

 

2.3. RNA Isolation, cDNA synthesis and RT-PCR 

There are inherent difficulties involved in measuring the activation of the major UPR orchestrators.  

The phosphorylation of PERK and IRE1 and the proteolytic cleavage of ATF6 are hallmarks of 

their activation.  However, these proteins are expressed at very low levels and detection is hindered 
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by a lack of high quality commercial antibodies.  As surrogate markers of activation, a number of 

UPR genes downstream of these proximal sensors have been identified, and can be easily measured 

by real-time PCR.  For example, ATF4 is selectively activated by PERK-induced phosphorylation 

of eIF2α, and while IRE1 activation is difficult to reproducibly and consistently measure, the 

processing of unspliced XBP-1 mRNA into mature spliced XBP-1 (sXBP-1) mRNA is a 

convenient, widely-used indicator of IRE1 activation (Marciniak et al., 2004).  The expression of 

several other UPR-responsive genes can be easily measured in this way, including calreticulin, 

calnexin, CHOP, ERdj5, p97/VCP, GRP78, and GRP94.   

 

2.3.1. Required Materials  

• TRI reagent (Sigma) 

• QuantiTect reverse-transcription cDNA synthesis kit (Qiagen) 

• SYBR Green I Master mix (Roche) for real-time quantitative RT-PCR 

• GoTaq Green Master mix (Promega) for conventional RT-PCR 

• Oligonucleotide primers (Eurofins MWG Operon) 

 

2.3.2. Real-time PCR  

For analysis of UPR markers, 500 µL TRI reagent is added to the isolated monocytes (in a fume 

hood) and RNA is recovered according to the manufacturer’s instructions.  We prefer to resuspend 

RNA in 0.1% diethylpyrocarbonate-treated (DEPC) water, as DEPC is an efficient, nonspecific 

inhibitor of RNases.  Store the isolated RNA at -80ºC and avoid repeated freeze-thaw cycles.  

Quantify RNA concentration on a spectrophotometer prior to each separate cDNA synthesis.  Equal 

quantities of RNA are then reverse transcribed into cDNA using the Quantitect Reverse 

Transcription kit.  The resulting cDNA is used as the template for quantitative real-time PCR.  
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Oligonucleotide primers are synthesised specific to each target UPR gene and quantitative PCR 

reactions performed containing 2 µl
 
template cDNA, 10 µl 2X SYBR Green I master mix, 10 

picomoles of forward and reverse primers, and nuclease-free water to give a final volume of 20 µl.  

Amplification
 
is performed on the Roche LightCycler 480 PCR system with the expression of target 

genes relative to the housekeeping gene β–actin determined using the 2
-∆∆C

T method (Livak and 

Schmittgen, 2001)(Figure 1.1.).   

 

 

Figure 1.1. Quantitative RT-PCR analysis of calreticulin (CRT), sXBP-1 and GRP78 mRNA 

induction in peripheral blood monocytes after treatment with thapsigargin for 4 hours.  

 

2.3.3. Analysis of XBP-1 mRNA cleavage 

XBP-1 mRNA splicing is analysed in our laboratory using a conventional semi-quantitative RT-

PCR assay developed by Harding et al. (Calfon et al., 2002).  RNA is isolated using TRI reagent 

and cDNA synthesised as described.  The resulting cDNA is template in a reaction with GoTaq 

master mix and specific XBP-1 forward and reverse primers.  The primers used to amplify XBP-1 

cDNA: forward 5’-AAACAGAGTAGCAGCTCAGACTGC-3’; reverse 5’-

TCCTTCTGGGTAGACCTCTGGGA-3’.  PCR products are resolved on a 2.5% agarose gel with 

unspliced XBP-1 yielding a product of 480 bp, while spliced XBP-1 is 454 bp.  Agarose gel 

electrophoresis may need to be performed for up to 2 hours to detect an appreciable difference 

between spliced and unspliced XBP-1.   

 

2.4. Detection of UPR Markers by Immunoblotting 
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As previously described, the phosphorylation of PERK and IRE1 and the proteolytic cleavage of 

ATF6 are difficult to detect.  However, the activation of a number of other downstream UPR 

proteins such as ATF4, CHOP, GRP78, and p97/VCP can be detected by Western blotting.  

 

2.4.1. Immunoblotting Method 

Monocytes are isolated as described, pelleted by gentle centrifugation (400 x g, 5 minutes) and cells 

resuspended in 1 mL hypotonic buffer (10 mM Hepes (pH 7.9), 1.5 mM MgCl2, 10 mM KCl, 0.5 

mM PMSF and 0.5 mM DTT) (Sigma).  Cells are lysed for 30 minutes on ice before centrifugation 

at 14,000 x g for 10 min at 4°C.  The supernatant is then recovered for immunoblotting and stored at 

-80°C until required.  Protein concentration in the monocyte lysate is determined by the method of 

Bradford (Bradford, 1976).  Whole cell lysates are separated by electrophoresis on SDS-

polyacrylamide gel and transferred to a PVDF membrane (Sigma).  The percent polyacrylamide 

used will depend on the size of the UPR protein being investigated.  PVDF membranes can be cut to 

investigate the levels of multiple proteins if there is sufficient difference in the size of the proteins 

being examined, and this can eliminate the need to strip and reprobe membranes.  Non-specific 

binding is blocked with 5% bovine serum albumin (Sigma) in PBS containing 0.1% Tween-20 

(Sigma).  Immunoreactive proteins are detected by incubating the membrane with specific 

antibodies to UPR proteins of interest, for example the excellent anti-KDEL antibody which detects 

GRP78 and GRP94 (Stressgen), and comparing with appropriate loading controls such as GAPDH 

or �-actin.   

 

2.5. Immunofluorescence  

Immunofluorescence is a powerful tool that can be used to demonstrate the accumulation of 

misfolded protein within the ER.  For example, we have used this technique to show intracellular 
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accumulation of AAT within the ER of monocytes from alpha-1 antitrypsin deficient-individuals, as 

well as increased GRP78 and GRP94 expression (Carroll et al., 2010).   

 

2.5.1. Required Materials 

• Poly-L-lysine coated slides (Sigma) 

• 4% Paraformaldehyde (Sigma) diluted in PBS 

• 0.2% Triton X-100 diluted in PBS (permeabilisation buffer) 

• 4% BSA/1% gelatin in PBS (blocking buffer) 

• Vectashield (Vector Laboratories)  

 

2.5.2. Co-localisation using Immunofluorescence 

This method is used to investigate AAT localisation to the ER by double-staining monocytes with 

an antibody to AAT and an antibody to ER-resident chaperones containing the tetrapeptide KDEL 

motif.  Monocytes are isolated as described and 100 µL of monocyte suspension pipetted onto a 

poly-L-lysine glass slide (‘P’ side up).  Score the slide with a diamond pen to indicate the position 

of cells.  Poly-L-lysine coated slides should be used as they provide higher adhesion, reducing the 

chances of tissue or cell loss during processing.  The cells are allowed to adhere to slide for 10 

minutes and then fixed in 4% paraformaldehyde. The cell membranes are disrupted in 0.2% Triton 

X-100. Non-specific binding of antibodies and fluorescent conjugates are blocked by pre-incubation 

in 4% BSA/1% gelatin.  Co-localisation of AAT and ER-specific chaperones is detected by 

immunofluorescence using goat polyclonal anti-AAT-FITC (Abcam) and mouse monoclonal anti-

KDEL (Stressgen), with an anti-mouse tetramethylrhodamine isothiocyanate (TRITC) secondary 

conjugate (Abcam) for visualization of the anti-KDEL antibody.  PBS washes (x 3) are performed 

after each incubation, and ensure the addition and removal of solutions is performed carefully in the 
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corner of the slides so as not to disturb or dislodge the monocytes.  Cells are then mounted in 

Vectashield, containing 4’, 6-diamidino-2-phenylindole di-lactate (DAPI), and examined using a 

LSM510 Meta laser scanning confocal microscope (Zeiss).  Images are captured at ×63 

magnification and ×4 zoom with excitation wavelengths for FITC, TRITC and DAPI of 488 nm, 

543 nm and 364 nm respectively (Figure 1.2.).   

 

 

Figure 1.2. Intracellular accumulation of AAT and increased KDEL expression in the ER of ZZ 

monocytes.  The subcellular distribution of AAT in monocytes isolated from MM (normal) and ZZ 

(AAT-deficient) individuals was determined by immunofluorescence using antibodies for AAT 

(green) and the ER marker KDEL (red), with colocalisation indicated by yellow staining.  Nuclei 

were stained with DAPI (blue).  Imaging was acquired using a Zeiss LSM510 Meta confocal 

microscope and the images presented are single focal plane scans of 1 µm depth at the mid section 

of the fixed cells.   
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Figure 1.1. Quantitative RT-PCR analysis of calreticulin (CRT), sXBP-1 and GRP78 mRNA 

induction in peripheral blood monocytes after treatment with thapsigargin for 4 hours.  

 

 

Figure 1.2. Intracellular accumulation of AAT and increased KDEL expression in the ER of ZZ 

monocytes.  The subcellular distribution of AAT in monocytes isolated from MM (normal) and ZZ 

(AAT-deficient) individuals was determined by immunofluorescence using antibodies for AAT 

(green) and the ER marker KDEL (red), with colocalisation indicated by yellow staining.  Nuclei 
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were stained with DAPI (blue).  Imaging was acquired using a Zeiss LSM510 Meta confocal 

microscope and the images presented are single focal plane scans of 1 µm depth at the mid section 

of the fixed cells.   

 


