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Abstract
The toll-like receptors (TLRs) are a key component of host defense in the respiratory epithelium.
Cigarette smoking is associated with increased susceptibility to infection, while COPD is
characterised by bacterial colonisation and infective exacerbations. We found reduced TLR4 gene
expression in the nasal epithelium of smokers compared with non-smoking controls, while TLR2
expression was unchanged. Severe COPD was associated with reduced TLR4 expression
compared to less severe disease, with good correlation between nasal and tracheal expression. We
went on to examine the effect of potential modulators of TLR4 expression in respiratory
epithelium pertinent to airways disease. Using an airway epithelial cell line, we found a dose-
dependent downregulation in TLR4 mRNA and protein expression by stimulation with cigarette
smoke extracts. Treatment with the corticosteroids fluticasone and dexamethasone resulted in a
dose-dependent reduction in TLR4 mRNA and protein. The functional significance of this effect was
demonstrated by impaired IL-8 and HBD2 induction in response to LPS. Stimulation with
salmeterol (10-6 M) caused upregulation of TLR4 membrane protein presentation with no
upregulation of mRNA, suggesting a post-translational effect. The effect of dexamethasone and
salmeterol in combination was additive, with downregulation of TLR4 gene expression, and no
change in membrane receptor expression. Modulation of TLR4 in respiratory epithelium may have
important implications for airway inflammation and infection in response to inhaled pathogens.

Introduction
The lung represents the largest epithelial surface in the
body and the respiratory epithelial cell represents the
body's first interaction with airborne pathogens. As well
as providing a physical barrier to entry of micro-organ-
isms, the epithelium is increasingly recognised to play an
important role in innate immunity, and can respond to
potential pathogens by releasing a variety of effector mol-

ecules of the inflammatory response along with anti-
microbial peptides [1,2].

TLR4 is critically important in signalling the inflammatory
response to Gram-negative bacteria through recognition
of LPS, regulating the inducible expression of many
cytokines, chemokines, adhesion molecules and acute
phase proteins. We have previously shown that LPS sig-
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nalling via TLR4 induces production of the anti-microbial
peptide human beta-defensin 2 (HBD2) [3], which has a
broad spectrum of antimicrobial activity, particularly
against Gram-negative bacteria, including Escherichia coli
and Pseudomonas aeruginosa and the yeast Candida albicans
[4].

Chronic Obstructive Pulmonary Disease (COPD) is a con-
dition characterised by progressive airflow limitation
punctuated by exacerbations, associated with airway
inflammation [5,6]. The role of bacteria in the pathogen-
esis and acceleration of COPD remains the subject of
some debate, but increasing evidence in recent years sup-
ports the importance of bacteria in this disease, as a stim-
ulus to chronic inflammation and a cause of
exacerbations [7]. Modulation of TLR4 expression in res-
piratory epithelium could result in an ineffective host
response and failure to eradicate potentially pathogenic
organisms, leaving the host susceptible to colonisation,
chronic inflammation and acute exacerbations.

This study examined the expression of TLR4 and HBD2 in
respiratory epithelium in non-smokers and smokers with
COPD. The effect of cigarette smoke was replicated in vitro
by examining TLR4 mRNA and protein expression and
quantifying IL-8 expression in airway epithelial cells stim-
ulated with cigarette smoke extracts. The effects of other
potential modulators of TLR expression in respiratory epi-
thelium pertinent to COPD, including the long-acting
beta2 agonist (LABA) salmeterol and the corticosteroids
fluticasone and dexamethasone were also examined. The
data indicate that altered expression of TLR4 may be
important in the pathogenesis of COPD and may be mod-
ulated by corticosteroids, LABAs and cigarette smoke.

Materials and methods
Study population
Outpatients attending for upper GI endoscopies were
recruited for nasal brush sampling following approval of
study protocol and consent forms by the Beaumont Hos-
pital Ethics Committee. Subjects were excluded on the
basis of pre-existing immunosuppression, pulmonary or
nasal pathology, including current or recent (within 6
weeks) upper or lower respiratory tract infection and
reported normal functional status.

Nasal and Tracheobronchial Epithelial cell sampling
Following informed consent, nasal brushing was per-
formed under direct vision using a Cervibrush + (CellPath
plc)using a modification of the technique of Bridges et al
[8]. Tracheobronchial epithelial cells were harvested as in
the method of Kelsen et al [9]. Samples were accepted for
analysis if they contained at least 80% epithelial cells.

Cell lines and culture
Human airway epithelial cells (A549, European Collec-
tion of Cell Cultures, Porton Down, UK) were cultured at
37°C in 5% CO2 in Ham's F12 (Gibco-BRL), 10% FCS,
1% penicillin/streptomycin. Prior to agonist treatment,
cells were washed with serum-free F12 and placed under
serum-free conditions or in serum containing 1% FCS for
LPS stimulations.

Preparation of Fluticasone, Salmeterol and 
Dexamethasone
Fluticasone propionate and salmeterol were obtained
from Glaxo SmithKline, Glaxo Wellcome UK Ltd, Stanley
Park West, Uxbridge, Middlesex UB11 1BT, and reconsti-
tuted Ham's F12/0.01% DMA and Ham's F12/0.01%
Methanol respectively to stock concentrations of 10-6 M.
Dexamethasone was purchased from Sigma-Aldrich, Tal-
laght, Dublin, Ireland and reconstituted in 10% Ethanol
in PBS to a stock concentration of 1 mM, and serial dilu-
tions prepared in PBS.

Preparation of cigarette smoke extracts
Cigarette smoke extract (CSE) was freshly prepared for
each experiment by a modification of a previously pub-
lished method [10]. Briefly, 2 filtered Marlboro Red ciga-
rettes, each containing 0.8 mg of nicotine and 10 mg of tar
according to the manufacturer's report, were bubbled
through 20 ml serum free F-12 medium, pre-warmed to
37°C, by a mechanical vacuum pump. The extract was fil-
tered through a 0.45 μm pore filter (Millipore, Bedford,
MA) to remove bacteria and particles, and serial dilutions
1:10 were made.

Reverse Transcription (RT)-PCR
RNA isolation, cDNA synthesis and RTPCR were per-
formed as previously described [3] using gene-specific
primers (Table 1). Products were analyzed by densitome-
try and compared in a semi quantitative manner relative
to GAPDH using ImageMaster® TotalLab Software (Amer-
sham Pharmacia, Amersham, UK).

Real Time PCR
TLR4 mRNA was quantified using commercially available
SYBR Green assays as previously described [11] with prim-
ers listed in Table 1. The results are expressed as the ratio
of the mean of triplicate target gene cDNA measurements
to the triplicate housekeeping gene (β-actin) measure-
ment.

Protein determination
IL-8 protein concentrations in cell supernatants were
determined by sandwich ELISA (R & D Systems, U.K.).
TLR4 protein was analysed in membrane and cytosolic
fractions by Western Blot as previously described [12] and
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surface expression by Laser Scanning Cytometry as previ-
ously described [3].

Cell viability
Viability of A549 cells under stated treatment conditions
was quantified using the Promega CellTiter 96 Aqueous
One Solution Cell Proliferation Assay as recommended by
the manufacturer.

Statistical analysis
Data were analyzed with GraphPad Prism 3.0 software
package (GraphPad Software, San Diego, CA). Results are
expressed as mean ± S.E. and were compared by Mann-
Whitney test. Differences were considered significant
when the P value was ≤ 0.05.

Results
Demographics of patient population
The demographics of the study population are shown in
Figure 1A. There was no significant difference in the char-
acteristics of the COPD subgroups or control subgroups in
terms of age, gender or medication use. No patients or
control subjects reported a clinical history suggestive of
atopy. All COPD subjects were using inhaled LABA and
corticosteroids. COPD patients were on average a decade
older than the control subjects. There was difficulty in
recruiting a population of "normal" older smokers, that is,
smokers who had no history of respiratory disease and
normal FEV1. The main objective of the study was to
observe differences between COPD patients of different
degrees of severity. Observed differences with control
groups represent a "real world" differences between typi-
cal subjects with this condition and healthy control sub-
jects. As all COPD patients were using both inhaled LABA
and corticosteroids, differences between subsets of

patients may be attributable to the disease process, while
differences with control subjects may be the result of dis-
ease, smoking or medication.

TLR4 expression is down regulated in the nasal epithelium 
of smokers in-vivo
We examined expression of TLR4 along with TLR2 and
HBD2 in the nasal epithelium of healthy smokers and age
matched controls (Figure 1B). Semi-quantitative analysis
of mRNA expression revealed a very significant reduction
in TLR4 expression in the nasal mucosa of smokers com-
pared to controls (P < 0.005). There was no significant
reduction in expression of TLR2 (P = 0.28) or HBD2 (P =
0.20).

Expression of TLR4 and HBD2 is upregulated in COPD, 
and decreased in more severe disease
There were no significant differences between mRNA
expression of TLR4, TLR2 or HBD2 in nasal epithelium
between smokers and non-smokers in either the severe
(FEV1 < 1L) or less severe (FEV1 > 1L) COPD (data not
shown). Smokers and non-smokers were therefore
grouped together for further analysis. As demonstrated in
Figure 1B, there was significant upregulation of TLR4
expression in mild to moderate COPD compared to
smoking controls († P < 0.05), while severe disease was
associated with a significant reduction in TLR4 expression
compared to less severe disease (P < 0.05). There was no
difference in TLR2 expression between the study groups.
Changes in HBD2 expression mirrored those of TLR4,
with significant upregulation in mild-moderate COPD
compared to controls (P < 0.005), and reduced expression
in severe COPD compared to mild-moderate disease (P <
0.05). HBD2 expression in severe COPD was statistically
similar to normal controls. (P = 0.17).

Table 1: 

Gene (Accession No.) Primers (5'-3') Bases Product Size (bp)

TLR4 (NM_003266)
F AGATGGGGCATATCAGAGC 569-587 481 bpa

R GTCCATCGTTTGGTTCTGG 1068-1050
TLR4 (NM_003266)*
F GGTGGAGCTGTACCGCCTT 2982-3002 65 bp
R GCCCCAGGACACTGTCCTCCTC 2697-2716
TLR2 (U 88540)
F TGCCCTGCCTATATGCAA 381-398 486 bp
R GAACACATCGCTGACAACT 936-918
HBD2 (NM_AF071216)
F GGTATAGGCGATCCTGTTACC TGC 2688-2709 202 bp
R TCATGGCTTTTTGCAGCA TTTTGTTC 4542-4567
GAPDH (BC004109)
F AACTCTGGTAAAGTGGAT 122-138 211 bp
R TACTCAGCGCCAGCATCG 333-316

a bp, base pairs, * primers for Real Time PCR
Page 3 of 12
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Nasal expression of TLR4 correlated with tracheo-
bronchial expression in vivo
In order to see if nasal expression of TLR4 could be extrap-
olated to expression in the lower respiratory tract, a sub-
group of COPD patients underwent bronchoscopy and
brush sampling of the tracheo-bronchial epithelium as
well as nasal brushing. Data from each of nine subjects is
presented in figure 1C, with linear regression analysis
demonstrating good correlation between upper and lower
respiratory tract expression of TLR4 mRNA (r2 = 0.76, P =
0.001).

Cigarette smoke condensates down regulate TLR4 
expression in respiratory epithelium in-vitro
We next examined the effect of cigarette smoke on expres-
sion of TLR4 in respiratory epithelium in vitro. There was
a dose dependant downregulation in TLR4 mRNA (Figure
2A) and protein (Figure 2B) following exposure to the cig-
arette smoke extracts. To ensure that the effect was not
caused by direct toxicity of the cigarette smoke, a viability
assay was performed which demonstrated 50% reduction
in viability with undiluted CSE, but no toxic effect follow-
ing dilution of the extracts (Figure 2C) which showed no

TLR4 mRNA expression is down-regulated in the nasal mucosa of smokers and in severe COPD in vivoFigure 1
TLR4 mRNA expression is down-regulated in the nasal mucosa of smokers and in severe COPD in vivo. Outpa-
tients attending for upper GI endoscopy or bronchoscopy were recruited for nasal brush sampling. Subjects were excluded on 
the basis of pre-existing immunosuppression, pulmonary or nasal pathology other than COPD, including current or recent 
(within 6 weeks) upper or lower respiratory tract infection. Tracheal brush specimens were also collected on a subset of 
patients undergoing fibreoptic bronchoscopy (n = 9). A. Table showing demographics of the study population. There was no 
significant difference between the study groups. B. Total RNA from was reverse transcribed into cDNA and used as a template 
for semi-quantitative PCR reactions using TLR4, TLR2, HBD2 and GAPDH gene-specific primers. (** P < 0.005 vs non-smoking 
controls; † P < 0.05 vs all controls; $ P < 0.05 vs COPD FEV1 > 1L). C. TLR4 expression by semi-quantitative RTPCR analysis 
in tracheal and nasal epithelium.
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Cigarette smoke downregulates TLR4 gene and protein expression in A549 cells resulting in relative hyporesponsiveness to LPSFigure 2
Cigarette smoke downregulates TLR4 gene and protein expression in A549 cells resulting in relative hypore-
sponsiveness to LPS. A549 cells (3 × 105) were seeded onto 6-well plates and grown to confluence. Cells were washed, 
placed in serum free medium or cigarette smoke condensates for 4 hours. Cigarette smoke condensates were prepared as 
described in the methods and numbers correspond to serial dilutions of the initial cigarette smoke extract. A. Following treat-
ment, total RNA was extracted, reverse transcribed into cDNA and used as a template for semi-quantitative PCR reactions 
using TLR4 and GAPDH gene-specific primers. TLR4 expression was given an arbitrary value of 1 in control cells. Data are 
expressed as mean +/- S.E. and are obtained from three experiments. (* P ≤ 0.05 compared to control). B. Western blot anal-
ysis of membrane extracts (10 μg) from A549 cells probed with anti-TLR4 antibody. Data are representative of three separate 
experiments. (CSE † cigarette smoke extract). Because actin is not compartmentalised to the membrane, equal protein loading 
is demonstrated with a panel from the Ponsceau Stain. C. Viability assay of A549 cells following treatment with CSE. Data are 
representative of three separate experiments. D. A549 cells (3 × 105) were seeded onto 6-well plates and grown to conflu-
ence. Cells were washed, placed in low-serum (1% FCS) medium and were left untreated or incubated with serial dilutions of 
CSE × 4 hours. Following treatment with CSE cells were stimulated with LPS 10 μg/ml for a further 24 hours. Levels of IL-8 in 
supernatants were measured by ELISA and values are expressed as pg/ml. Assays were performed in duplicate a minimum of 
three times. Values are expressed as mean +/- S.E. (n = 3). (* signifies P ≤ 0.05 of observed effect vs. control, † signifies P ≤ 0.05 
of observed effect vs. control plus LPS).
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significant difference in viability compared to untreated
cells. We went on to examine functional effect by IL-8
ELISA. As expected, CSE has some direct inflammatory
effect resulting in IL-8 production at dilute concentra-
tions. However, concordant with the reduced expression
of TLR4, the respiratory epithelial cells have dose depend-
ent reduced secretion of IL-8 following treatment with
higher concentrations of CSE, both with and without
additional LPS (Figure 2D). Failure of the cells to produce
any IL-8 following exposure to undiluted CSE may be a
result of the direct toxic effects demonstrated in the viabil-
ity assay.

Corticosteroids down regulate TLR4 expression and LPS 
responsiveness in respiratory epithelial cells
To explore other potential modulators of TLR4 expression
pertinent to COPD, we first examined the effect of Flutica-
sone on expression of, TLR4 mRNA by RT-PCR in the res-
piratory epithelial cell line A549 grown in culture (Figure
3A). A dose dependent downregulation of TLR4 com-
pared to the housekeeping gene GAPDH was observed
with an Inhibitory Concentration (IC) 50 between 10-9

and 10-8 M. Consistent with the data of Homma et, who
found no upregulation of TLR2 in A549 cells treated with
dexamethasone alone [13], we found no change in expres-
sion of TLR2 or of HBD2 (data not shown).

Fluticasone propionate is a synthetic trifluorinated gluco-
corticoid. Pharmacologic properties include high
lipophilicity, low systemic absorption, rapid metabolism
and clearance, and high affinity for the glucocorticoid
receptor, resulting in a high therapeutic index as a topical
anti-inflammatory agent [14]. Its very low water solubility
makes it unpredictable for use in cell culture, however. We
therefore assessed whether the observed effect was a class
effect of corticosteroids, using the more soluble glucocor-
ticoid dexamethasone. A dose dependent downregulation
of TLR4 mRNA (Figure 3B) and protein (Figure 3C) was
observed. Consistent with the increased potency of fluti-
casone, which has approximately 8 times the binding
affinity of dexamethasone, a higher dose of dexametha-
sone was required to achieve a comparable effect (IC50
between 10-8 and 10-7 M), whilst acknowledging that
these results are semi-quantitative.

In order to determine the functional relevance of this
effect, we stimulated the cells with the TLR4 agonist LPS.
Stimulation of the cells with LPS 10 μg/ml for 24 hours
resulted in a significant induction of IL-8, as measured by
ELISA of the cell culture supernatant (P < 0.05) (Figure 4).
Pre-treatment of the cells with dexamethasone dose-
dependently abrogated this effect, reaching statistical sig-
nificant at a dose of 10-7 M (P < 0.05). A similar effect was
seen on the induced expression of HBD2 mRNA in
response to LPS (data not shown).

Membrane expression of TLR4 is upregulated by the long-
acting beta-agonist Salmeterol via specific β-agonist effect
We next examined the effect of the long acting beta ago-
nist salmeterol on expression of TLR4 mRNA by RT-PCR
over a dose range of 10-9 and 10-6 M. Cells were incubated
with the drug for 6 hours. Semi-quantitative analysis sug-
gested a small increase in TLR4 expression over control at
the highest dose of 10-6 M, however the lack of a dose
response cast doubt on the functional relevance of this
observation. We therefore went on to quantify this effect
by Real Time RT-PCR and found no significant effect of
Salmeterol 10-6 M on TLR4 gene expression (Figure 5A).
Analysis of protein expression in total cell lysates similarly
showed no significant change in total TLR4 (TLR4t)
expression (Figure 5B lower panel), however levels in

Corticosteroids downregulate TLR4 expression in respira-tory epithelial cellsFigure 3
Corticosteroids downregulate TLR4 expression in 
respiratory epithelial cells. A549 cells (3 × 105) were 
seeded onto 6-well plates and grown to confluence. Cells 
were washed, placed in low serum (1% FCS) medium and 
were left untreated or incubated with fluticasone propionate 
or dexamethasone over the dose ranges 10-9 to 10-6 Molar 
for 16 hours. A & B. Total RNA was extracted, reverse tran-
scribed into cDNA and used as a template in PCR reactions 
using, TLR4 and GAPDH gene-specific primers. Products 
were electrophoresed in 1.5% TBE agarose gels containing 
0.5 μg/ml ethidium bromide and visualised under UV. Gels 
are representative of three independent experiments. C. 
Western blot analysis of membrane extracts (10 μg) from 
A549 cells probed with an anti-TLR4 or anti-Actin antibody. 
Equal protein loading and transfer efficiency was confirmed 
by Ponceau S staining. Data are representative of three sepa-
rate experiments.
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cytosolic extracts (TLR4c) were decreased (Figure 5B
upper panel). A concomitant increase in membrane
expression was evident at doses of 10-7 M and 10-6 M. (Fig-
ure 5C), an effect which was confirmed by Laser Scanning
Cytometry (Figure 5D). Pre-treatment of cells with the
beta-blocker Butoxamine abrogated the effect of Salme-
terol 10-6 M on membrane expression of TLR4, indicating
a specific beta-adrenoreceptor mediated effect (Figure
5C). Taken together these data indicate that salmeterol
induces a post-translational transport effect on TLR4.

Salmeterol reverses the inhibitory effect of 
dexamethasone on TLR4 expression and LPS 
responsiveness
Because inhaled long acting beta agonists are most often
prescribed in combination with inhaled corticosteroids,
we examined the effect of these compounds used in com-
bination. The lowest dose of dexamethasone at which a
functionally significant downregulation of TLR4 was
observed, namely 10-7 M, was used in combination with
the dose of salmeterol required to produce upregulation
of the same receptor, namely 10-6 M. TLR4 gene expres-

sion was determined by Real Time PCR (Figure 6A).
Again, treatment with salmeterol alone caused no signifi-
cant change in TLR4 expression above untreated cells,
while dexamethasone down regulated TLR4 expression.
At the mRNA level, the dexamethasone effect persists
when the two compounds are used in combination,
resulting in significant downregulation in TLR4 mRNA
expression compared to untreated cells. Looking at mem-
brane protein expression however, salmeterol reverses the
effect of dexamethasone on TLR4 expression resulting in
no net change in TLR4 membrane expression with the two
drugs used in combination (Figure 6B). Cell viability was
not affected by either drug (data not shown). A similar
pattern was observed in LPS-induced IL-8 expression,
where the addition of salmeterol partly reversed the
impaired IL-8 response to LPS observed with steroid treat-
ment alone (Figure 6C).

The protective effect of salmeterol is lost in the presence 
of cigarette smoke extract
As previously demonstrated in figure 2D, IL-8 production
in response to LPS was downregulated following exposure
to CSE 10-1. IL-8 production was further inhibited by pre-
treatment with dexamethasone consistent with an addi-
tive effect of downregulation of TLR4 expression by both
treatments in isolation. Salmeterol treatment was not able
to enhance LPS-induced IL-8 expression in the presence of
CSE however, and similarly the "protective" effect of sal-
meterol on dexamethasone-induced inhibition of TLR4
signalling was lost in the presence of CSE. In fact there was
further downregulation of IL-8 production (Figure 7).
These findings are in keeping with recent report that com-
bination of fluticasone and salmeterol potentiates the
suppression of cigarette smoke-induced IL-8 production
by macrophages [15]. Salmeterol was found to have no
effect on CSE induced IL-8 production in airway smooth
muscle cells [16], although the effect of LPS was not exam-
ined in these studies.

Discussion
Expression of TLR4 on respiratory epithelium allows rapid
activation of host defense by pathogens, resulting in
induction of inflammatory mediators and anti-microbial
peptides, including HBD2. Recent evidence also impli-
cates TLR4 deficiency in oxidant induced lung damage
and emphysema [17]. Here we report altered expression
of TLR4 in the respiratory epithelium of smokers and in
patients with COPD, and modifications associated with
corticosteroid and LABA treatment that may contribute to
our understanding of their therapeutic mechanisms.

Cigarette smoking is a major environmental risk factor
predisposing to COPD and is also an independent risk
factor for bacterial colonisation of the lower respiratory
tract [18,19], acute respiratory infection [20], and infec-

Downregulation of TLR4 by dexamethasone results in rela-tive hypo-responsiveness to LPSFigure 4
Downregulation of TLR4 by dexamethasone results 
in relative hypo-responsiveness to LPS. A549 cells (3 × 
105) were seeded onto 6-well plates and grown to conflu-
ence. Cells were washed, placed in low-serum (1% FCS) 
medium and were left untreated or incubated with dexame-
thasone at dose of 10-9 to 10-6 Molar for 16 hours. Following 
treatment with dexamethasone, cells were stimulated with 
LPS 10 μg/ml for a further 24 hours. Levels of IL-8 in super-
natants were measured by ELISA and values are expressed as 
pg/ml. Assays were performed in duplicate a minimum of 
three times. Values are expressed as mean +/- S.E. (n = 3). (* 
signifies P ≤ 0.05 of observed effect vs. control, † signifies P ≤ 
0.05 of observed effect vs. control plus LPS).
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tive exacerbations of COPD [21]. Our data demonstrates
that smoking is associated with reduced TLR4 expression
and LPS responsiveness in respiratory epithelium and is
consistent with other data demonstrating reduced HBD2
production in response to LPS in respiratory epithelial
cells following exposure to cigarette smoke [22].

TLR4 and HBD2 expression was increased in subjects with
mild-moderate COPD compared to normal controls,

while with increasing severity of disease and fall in FEV1,
expression was reduced. In contrast to alveolar macro-
phages [23], TLR2 expression is not changed, suggesting
that this is not a non-specific response to airway inflam-
mation. There is little existing data regarding the transcrip-
tional regulation of TLRs in human airway epithelial cells,
although IFN-γ and TNFα have been shown to modulate
TLR4 expression and function in human intestinal epithe-
lium [24,25]. The inflammatory milieu in the airways in

Salmeterol upregulates TLR4 membrane protein expression in respiratory epithelial cellsFigure 5
Salmeterol upregulates TLR4 membrane protein expression in respiratory epithelial cells. A549 cells (3 × 105) 
were seeded onto 6-well plates and grown to confluence. Cells were washed, placed in serum free medium and were left 
untreated or incubated with salmeterol over the dose ranges 10-9 to 10-6 M for 6 hours. Beta-agonist effect was examined by 
pre-treatment of cells with Butoxamine 0.5 M × 30 minutes prior to salmeterol treatment. A. Real time PCR was performed as 
described in the methods. Data is expressed as mean +/- SEM of 7 independent experiments with TLR4/actin given an arbitrary 
value of 1 in control cells. B. Western blot analysis of total cell extracts (t) and cytosolic extracts (c) (10 μg) from A549 cells 
probed with an anti-TLR4 or anti-Actin antibody. Data are representative of three independent experiments. C. Western blot 
analysis of membrane extracts (10 μg) from A549 cells probed with an anti-TLR4. Densitometry was performed and corrected 
for corresponding Ponsceau S staining density. Data are expressed as mean +/- S.E. and are obtained from three experiments. 
(* P = 0.05 compared to control). D. A459 cells were incubated with an isotype control (clear) or anti-TLR4 (solid) antibody 
and fluorophore-conjugated detection antibodies. HBD2 expression was quantified by laser scanning cytometry, as described 
and data from three experiments is presented. HBD2 expression is expressed as Median Channel Fluorescence (MCF) ± SEM. 
(* P < 0.05 vs. control, ** P < 0.005 vs. control).
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COPD includes many potential modulators of TLR4
including cytokines, acute phase reactants [26,27], pro-
teases [28], and anti-proteases [29,30] which may upreg-
ulate TLR4 in mild to moderate disease. Whether the
reduced expression of TLR4 expression in severe COPD is
an adaptive response to increased exposure to Gram-neg-
ative pathogens, as part of the phenomenon of endotoxin
tolerance [31] in an attempt to attenuate ongoing LPS
induced airway inflammation, or pre-exists and thus pro-
motes colonisation [32] is not clear. Reduced epithelial
expression of TLR4 may represent a useful biomarker of
disease severity.

Our COPD population differed from controls in terms of
their exposure to inhaled medications, namely LABAs and
corticosteroids. We therefore went on to explore the
potential of these compounds to modulate TLR4 expres-
sion in vitro. Glucocorticoids have been previously

Cigarette smoke potentiates hyporesponsiveness to LPS by Dexamethasone and SalmeterolFigure 7
Cigarette smoke potentiates hyporesponsiveness to 
LPS by Dexamethasone and Salmeterol. A549 cells (3 
× 105) were seeded onto 6-well plates and grown to conflu-
ence. Cells were washed, placed in serum free medium (1 
and 2), CSE (10-1) × 4 hours [3], pretreated for 16 h with 
Dex (10-7 M) then for 4 h with CSE (10-1) [4], pretreated for 
16 h with Sal (10-6 M) then for 4 h with CSE (10-1) [5] or pre-
treated for 16 h with Dex (10-7 M) AND (Sal 10-6 M) then for 
4 h with CSE (10-1 M) × 4 hours. Following these treatments, 
cells were stimulated with LPS 10 μg/ml for a further 24 
hours. Levels of IL-8 in supernatants were measured by 
ELISA and values are expressed as fold change compared to 
unstimulated controls. Assays were performed in duplicate a 
minimum of three times. Values are expressed as mean +/- 
S.E. (n = 3). (* signifies P ≤ 0.05 of observed effect vs. LPS 
alone, † signifies P ≤ 0.05 of observed effect vs. CSE plus 
LPS).
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Salmeterol reverses the inhibitory effect of dexamethasone on TLR4 membrane protein expression despite downregula-tion of mRNAFigure 6
Salmeterol reverses the inhibitory effect of dexame-
thasone on TLR4 membrane protein expression 
despite downregulation of mRNA. A549 cells (3 × 105) 
were seeded onto 6-well plates and grown to confluence. 
Cells were washed, placed in serum free medium and were 
left untreated or incubated with 10-6 M dexamethasone 
(Dex), 10-7M salmeterol (Sal) or both drugs in combination 
(Sal + Dex) for 16 hours. Numbers indicate Molar doses of 
drug. Following treatment, total RNA or membrane protein 
was extracted for PCR and Western blot analysis. For IL-8 
expression analysis, cells were further stimulated with LPS 10 
μg/ml × 24 hours. A. Real-time PCR analysis of TLR4 mRNA 
expression as a factor of β-actin expression. TLR4 expres-
sion was given an arbitrary value of 1 in control cells. Data 
are expressed as mean +/- S.E. and are obtained from three 
experiments. (* P = 0.05 compared to control). B. Western 
blot analysis of membrane extracts (10 μg) from A549 cells 
probed with an anti-TLR4. Densitometry was performed and 
corrected for corresponding ponsceau staining density. Data 
are expressed as mean +/- S.E. and are obtained from three 
experiments. (* P = 0.05 compared to control). C. Levels of 
IL-8 in supernatants were measured by ELISA and values are 
expressed as fold change compared to unstimulated control. 
Assays were performed in duplicate a minimum of three 
times. Values are expressed as mean +/- S.E. (n = 3). (** signi-
fies P ≤ 0.005 of observed effect vs. LPS alone; † signifies P ≤ 
0.05 of observed effect vs. LPS + Dex).
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reported to modulate lung responses to infection, includ-
ing Pseudomonas [33]. There have been no previous
reports about the effect of corticosteroids on TLR4 expres-
sion in epithelial cells. Here we demonstrate that corticos-
teroid exposure, at clinically relevant doses [34,35] results
in downregulation of TLR4 and impaired IL-8 response to
LPS. Here we provide evidence for a mechanism whereby
corticosteroids could impair host defence against Gram-
negative bacteria by downregulation of TLR4 expression.

LABAs such as salmeterol are prescribed primarily as bron-
chodilators, although accumulating evidence in recent
years indicates that LABAs have numerous anti-inflamma-
tory properties [36]. Beta-2 adrenergic receptors are
expressed in respiratory epithelium, but the immu-
nomodulatory effect of LABAs on these cells has been
largely unexplored. Here we show that the LABA salme-
terol had no effect on TLR4 gene transcription or total pro-
tein expression, but did induce membrane presentation of
TLR4 from the cytoplasmic/nuclear compartment. A sim-
ilar post-translational effect has been described in nasal
epithelium of patients with allergic rhinitis compared to
healthy subjects [37], while nuclear localisation of TLR4
has been confirmed in bronchial epithelium [38]. TLR4
has been shown to cycle rapidly between the Golgi and
the membrane, with signal transduction occurring only at
the membrane [39]. Little is known about the mechanism
of this translocation or indeed transport from the nucleus.
Our data, demonstrating a beta-receptor mediated effect
on post-translational TLR4 transport suggests a potential
role for cAMP-dependent protein kinases in this process.

Following in vivo inhalation of 50 μ of salmeterol, the
estimated lung tissue concentrations are between 10-7 and
10-8 M [40], and local concentrations at the site of deposi-
tion of the drug namely the epithelium are likely higher.
The observed effects at doses of 10-7 and 10-6 are therefore
clinically relevant.

While the anti-inflammatory effects of corticosteroids are
well documented, chronic inhaled corticosteroid therapy
alone has failed to impact significantly on disease progres-
sion or mortality in numerous large scale multi-centre pla-
cebo controlled trials of inhaled corticosteroids in COPD
[41-45]. Downregulation of TLR4 membrane protein
expression and consequent susceptibility to Gram-nega-
tive infection may contribute to the failure of unopposed
steroid therapy in these trials. Abrogation of this effect by
the addition of salmeterol may represent another impor-
tant advantage of co-prescription of these compounds,
and may contribute to the clinically important improve-
ments in outcome which result when these compounds
are prescribed together. In the recent TORCH study, com-
bination therapy with fluticasone and salmeterol resulted
in significant reductions in exacerbation rate and 3-year

mortality (both COPD related and all cause) compared to
fluticasone alone, which had no effect on mortality com-
pared to placebo [46].

In the presence of CSE, the protective effect of salmeterol
on TLR4 signalling is lost and in fact there is a small but
statistically significant further reduction in LPS-induced
IL-8 expression compared to dexamethasone alone. These
findings are in keeping with recent report that combina-
tion of fluticasone and salmeterol potentiates the suppres-
sion of cigarette smoke-induced IL-8 production by
macrophages [15]. Although salmeterol was found to
have no effect on CSE induced IL-8 production in airway
smooth muscle cells [16], although the effect of LPS was
not examined in these studies. It would be of great interest
to know if the clinical effects of salmeterol and fluticasone
in combination were more profound in smokers com-
pared to non-smokers in the TORCH study [46], but this
subgroup analysis has not been reported.

The respiratory epithelium is in constant dynamic interac-
tion with the environment, and is uniquely exposed to air-
borne pathogens and toxins, as well as aerosolised drugs.
The TLRs perform a pivotal role in host defence, and this
study demonstrates that TLR4 expression in respiratory
epithelium is altered in COPD, potentially contributing to
the airway inflammation and infective exacerbations
which characterise this disease. TLR4 expression is modu-
lated both by drugs used to treat airways inflammation
and by cigarette smoke, the major pathogenic determi-
nant of COPD. A greater understanding of the mechanism
of these effects may improve our understanding of the
pathogenesis of airways disease, and direct future thera-
pies.
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