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Abstract

Background: The role of estrogen and estrogen receptors in oncogenesis has been investigated in various malignancies.
Recently our group identified estrogen receptor beta (ERb) expression as an independent prognostic factor in the
progression of human Malignant Pleural Mesothelioma (MMe), but the underlying mechanism by which ERb expression in
tumors determines clinical outcome remains largely unknown. This study is aimed at investigating the molecular
mechanisms of ERb action in MMe cells and disclosing the potential translational implications of these results.

Methods: We modulated ERb expression in REN and MSTO-211H MMe cell lines and evaluated cell proliferation and EGF
receptor (EGFR) activation.

Results: Our data indicate that ERb knockdown in ER positive cells confers a more invasive phenotype, increases anchorage
independent proliferation and elevates the constitutive activation of EGFR-coupled signal transduction pathways.
Conversely, re-expression of ERb in ER negative cells confers a more epithelioid phenotype, decreases their capacity for
anchorage independent growth and down-modulates proliferative signal transduction pathways. We identify a physical
interaction between ERb, EGFR and caveolin 1 that results in an altered internalization and in a selective reduced activation
of EGFR-coupled signaling, when ERb is over-expressed. We also demonstrate that differential expression of ERb influences
MMe tumor cell responsiveness to the therapeutic agent: Gefitinib.

Conclusions: This study describes a role for ERb in the modulation of cell proliferation and EGFR activation and provides a
rationale to facilitate the targeting of a subgroup of MMe patients who would benefit most from therapy with Gefitinib
alone or in combination with Akt inhibitors.
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Introduction

Malignant pleural mesothelioma (MMe) is a highly aggressive

tumor, most often associated with asbestos exposure, although a

role for SV40 and genetic susceptibility have also been proposed

[1]. The delayed clinical diagnosis of this tumor is due to the slow

progression of the malignancy [2]. The clinical prognosis is

generally poor, with a reported median survival from presentation

of 9–12 months. Several clinical prognostic factors have been

tentatively correlated to patient survival; these include histological

type (epithelioid, sarcomatoid or biphasic) and tumor grade [3,4].

We recently published data demonstrating that estrogen receptor

beta (ERb) is linked with better prognosis in MMe patients and is

likely to act as tumor repressor [5].

Estrogens exert their biological effects through two distinct

receptors: ERa and ERb. The ERs are transcribed from two

different genes and display specific tissue expression patterns as

well as distinct ligand specificities even though both bind the most

biologically active estrogen, 17b-estradiol [6]. This is confirmed by

the fact that mice lacking ERb (bER KO) display a very different

phenotype to those devoid of ERa (aERKO) [7–11]. In addition

to ligand binding ERb activity and sub-cellular distribution is also

regulated through its post-translational modification [12,13].

Evidences accumulated over the past decade describe a cross-talk

between ERs and EGFRs [14]. Work in this area has established a

requirement of ERs for some EGFR actions [15,16]. Recent

findings suggest the important role of EGFR (or similar receptors)

for estrogen signaling from the membrane in breast cancer. It has
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been shown that a pool of ERa resides in or associates with the

plasma membrane and utilizes the membrane EGFR to rapidly

signal through various kinase cascades that influence both

transcriptional and non-transcriptional actions of estrogen in

breast cancer cells [14,17]. Moreover, the activation of ERK1/2

through EGFRs and IGFR changes the phosphorylation state of

ERa to modulate receptor localization and transcriptional activity

[18,19]. More recently, it has become clear that ERb function can

also be modulated by phosphorylation in its N-terminal region, so

coupling ERb activity to growth factor signaling [20].

A large number of studies have focused on the expression of

growth factor receptors in MMe. EGFR is over-expressed in MMe

and this correlates significantly with increased tumor cell

proliferation and with the promotion of angiogenesis [21,22].

Despite these evidences two phase II studies with Erlotinib and

Gefitinib, two anti-phospho tyrosine kinase EGFR specific

molecules, did not show efficacy suggesting that further charac-

teristic apart from EGFR expression could be involved in

determining sensitivity to these agents [23,24].

The aim of this study is to achieve a better knowledge on the

molecular mechanism by which ERb exerts its tumor repressor

effects on MMe progression, in view of potential novel patient-

tailored therapies.

Results

ERb expression in ERs negative MMe cells reduces their
growth rate

To confirm the tumor repressor role of ERb in the modulation

of MMe cell growth, we expressed ERb in the constitutively ERs-

negative MSTO-211H MMe cell line, by using a pCXN2 based

plasmid expressing ERb. ERb expression conferred a more

epithelioid phenotype on the MSTO-211H cells compared to

mock transfected cells, characterized by a more cortical actin

distribution (Fig. 1B). 48 hours after transfection, total protein

extracts were prepared from mock- and ERb -transfected cells.

Equal amounts of protein from these cell extracts were Western

blotted and probed with ERb, phospho-EGFR, EGFR, phospho-

Akt, Akt, phospho-ERK1/2, ERK1/2 and cyclin D1-specific

antibodies; tubulin was added to confirm equal loading (Fig. 1A).

ERb protein expression was not detectable by immunoblot in

mock transfected cells, whereas it was in transfected cells. Western

blot analysis confirmed the efficacy of ERb expression to down

modulate EGFR, Akt and ERK1/2 phosphorylation without a

change in the total abundance of these proteins expression, while it

resulted in cyclin D1 protein reduction (Fig. 1A). Consistent with

our published data [5], ERb expression exerted at any considered

time a significant (p,0.05) suppressive effect on MSTO-211H cell

proliferation (Fig. 1C), without inducing apoptosis (data not

shown); we believe that in these cells PI3K/Akt could act in

concert with MAP kinase signaling to modulate cyclin D1

expression and cell cycle progression. Here we found that ERb
expression significantly reduced the number and the size of

colonies that MSTO-211H cells formed when cultured for 7 days

in soft agar. When colonies of more than 15 cells were considered

about 50% of reduction was seen in ERb expressing cells (Fig. 1D).

ERb silencing promotes MMe cell proliferation
We tested whether the suppression of ERb expression could

influence the rate of MMe cell proliferation. We previously

established that REN cells express moderate levels of ERb [5].

REN cells were transfected with an ERb-specific shRNA (shRNA-

ERb) to suppress expression of the receptor. 48 hours after

transfection, total protein extracts were prepared from mock- or

shRNA-ERb-transfected cells. Equal amounts of protein from

these cell extracts were Western blotted and probed with ERb,

phospho-EGFR, EGFR, phospho-Akt, Akt, phospho-ERK1/2,

ERK1/2 and cyclin D1-specific antibodies; tubulin was added to

confirm equal loading (Fig. 2A). Western blot analysis confirmed

the efficacy of the ERb-specific shRNA in suppressing expression

of the protein. Silencing of ERb expression in REN cells resulted

in increased EGFR, Akt and ERK1/2 phosphorylation without a

change in the total abundance of the proteins. However, the

abundance of cyclin D1 protein was elevated in cells suppressed in

ERb expression. Phase contrast microscopy imaging of cells grown

on a solid substrate (Fig. 2B) revealed that silencing of ERb
resulted in the loss of contact inhibition by the REN cells, which

allowed them to form dense foci rather than a confluent

monolayer. The cells were fixed and stained with phalloidin-

TRITC to discriminate changes in the actin cytoskeleton of the

REN cells. Suppression of ERb resulted in significant remodeling

of the actin structure within the REN cells, with a transition from a

largely cortical actin polymerization pattern to a highly defined

stress fibers organization. We next performed cell proliferation

experiments on cells grown on a solid surface and also tested the

effect of ERb suppression on the capacity of the REN cells for

anchorage-independent growth in semi-solid media. ERb sup-

pression significantly (p,0.05) increased the proliferation rate of

REN cells compared to wild-type controls at any considered time

(Fig. 2C). Moreover, ERb suppression resulted also in a 3 to 4-fold

increase in the number of colonies formed by the REN cells after 7

days of culture in soft agar (Fig. 2D).

ERb over-expression influences EGFR mediated signaling
and internalization

Therefore, we sought to investigate EGFR signaling in mock-

and ERb-transfected REN cells treated with EGF. Here we show

that the proliferation of REN cells is promoted by EGF treatment;

while transfection of REN cells with the ERb expression plasmid

significantly (p,0.05) inhibited the proliferation rate of these cells

both under basal conditions and following EGF exposure (Fig. 3A).

In response to EGF treatment of mock cells, EGFR became

phosphorylated and the ERK1/2 MAPK and Akt signaling

pathways were activated as demonstrated by the phosphorylation

state of these kinases (Fig. 3B). In ERb over-expressing cells there

was a reduced basal level of EGFR phosphorylation and a

diminished response to EGF treatment. This translated into a

reduced activation of signal transduction cascades with a slight

reduction in EGF induced ERK1/2 phosphorylation, but a

complete ablation of the EGF induced Akt phosphorylation

(Fig. 3B). To assess whether EGFR internalization was affected by

ERb over-expression, we evaluated the process of EGFR

internalization at 60 and 120 minutes of EGF treatment, in mock

and ERb over-expressing REN cells. As shown in Fig. 3C, EGFR

is almost completely internalized in mock-REN cells at both 60

and 120 minutes. In ERb-REN cells, EGFR is internalized at both

time points, although the process appears to be slower with respect

to mock cells, in particular at 60 minutes, suggesting a different

kinetic of internalization/recycling. These data were confirmed by

immunoblot analysis with anti-phospho tyrosine and anti-EGFR

antibodies of EGFR immunoprecipitated from plasma membrane

(Fig. 4D) of EGF treated mock and ERb over-expressing REN

cells.

ERb associates with EGFR and caveolin 1
Recently, it has been shown that EGFR may also follow the two

distinct endocytotic routes: one clathrin-dependent and one

clathrin-independent mediated by caveolin [25]. Published

ERb Function in Mesothelioma
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evidence suggests that the EGFR-caveolin interaction leads to

reduced activation of EGFR signaling [26]. The interaction

between androgen receptor and EGFR in the caveolae of prostate

cancer cells has been recently reported [27]. Consequently, we

investigated the physical interaction between ERb, EGFR and

caveolin-1 in REN cells. Firstly, membrane associated EGFR was

immunoprecipitated from lysates of REN cells treated 1 and 5

minutes with 5 ng/ml of human recombinant EGF. As shown in

Fig. 4A, Western blot analysis evidenced increased amounts of

ERb and caveolin 1 in EGFR immunoprecipitates upon EGF

stimuli. Membrane-associated EGFR was then immunoprecipi-

tated from mock- and ERb -transfected REN cells that were

treated for 5 minutes with EGF or left untreated, and then

analyzed by immunoblotting with EGFR, ERb and caveolin-1

Figure 1. ERb expression in ERs negative MMe cells reduces their growth rate. A) Western Blot analysis of cell extracts from mock- and ERb
expressing MSTO-211H cells. Representative of three separate experiments. B) Upper panels show phase contrast microphotographs (200X
magnification) of mock- or ERb-transfected MSTO-211H cells, visualizing the acquisition of a more epithelioid phenotype in transfected cells. Lower
panels show cells fixed in ethanol and stained for actin with phalloidin–TRITC as described. Note the actin rearrangement in ERb expressing cells
(400X magnification). C) Cell proliferation curves of mock- and ERb-transfected MSTO-211H cells cultured in complete medium for 24 and 48 hours.
Each value represents mean 6 SD (n = 3). D) Total soft agar colony counts for mock- or ERb-transfected MSTO-211H cells were done by three
independent investigators microscopically visualizing individual colonies (clusters of 15 or more cells) in 10 random microscopic fields. Columns
represent the fold increase of the mean number of colonies in 10 fields; bars, SD; * p,0.05. Representative of three separate experiments.
doi:10.1371/journal.pone.0014110.g001
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antibodies. ERb and caveolin-1 co-immunoprecipitated with

EGFR to a minor extent in untreated cells however, EGF

treatment promoted the interaction and more ERb and caveolin-1

was immunoprecipitated with EGFR. Over-expression of ERb
resulted in an increased and EGF-independent association of these

proteins (Fig 4B). The ERb-EGFR-caveolin 1 interaction was

further investigated by confocal imaging in mock-transfected and

in ERb over-expressing REN cells (Fig. 4C). In mock-transfected

cells, there was little co-localization of ERb with either EGFR or

caveolin 1 within the cytoplasm or at the cell membrane; EGF

treatment resulted in a co-localization of ERb with EGFR and

caveolin 1 at discrete sites largely located within the cytoplasm of

treated cells. In ERb over-expressing REN cells ERb was

associated at high abundance with EGFR and caveolin 1 at

discrete sites within the cytoplasm, proximal to the cell membrane,

supporting co-immunoprecipitation data. The co-localization of

the proteins occurred independently of EGF treatment. The

redistribution of EGFR to discrete sites was specific to over-

expression of ERb and was not observed when ERa was over-

expressed in these cells (Fig. 4D).

ERb expression influences response of MMe cells to
Gefitinib

Gefitinib is an EGFR tyrosine kinase inhibitor that acts by

binding to the adenosine triphosphate (ATP)-binding site of the

enzyme, employed in the treatment of certain types of carcinomas.

However, lack of correlation between EGFR expression and

response to its tyrosine-kinase (TK) inhibitor Gefitinib has been

reported in different malignancies [28,29]. Mutations in EGFR-

TK domain have been associated with response in patients with

metastatic NSCLC [30]. The prevalence of such mutations in

mesothelioma is presently unknown but it seems that they are very

rare in mesothelioma [31]. Here we tested if ERb expression could

influence response to Gefitinib of MMe cells. The growth-

inhibitory effects of 5 mM Gefitinib were evaluated on mock,

ERb over-expressing or ERb silenced REN cells and in mock and

ERb expressing MSTO-211H cells (Fig. 5A). REN cells were

weakly sensitive to Gefitinib, and over-expression of ERb did not

significantly affect the sensitivity of these cells. The silencing of

ERb expression rendered the cells more sensitive to EGFR

antagonism, suggesting that the loss of ERb expression resulted in

Figure 2. ERb silencing promotes MMe cell proliferation. A) Western Blot analysis of cell extracts from mock- and ERb silenced REN cells.
Representative of three separate experiments. B) Upper panels show phase contrast microphotographs (200X magnification) of mock- or shERb-
transfected REN cells, visualizing the loss of contact inhibition and formation of foci in vitro. Lower panels show cells fixed in ethanol and stained with
phalloidin-TRITC to stain for actin as described. Note the actin rearrangement in ERb silenced cells (400X magnification). C) Cell proliferation curves of
mock- and shERb-transfected REN cells cultured in complete medium for 24 and 48 hours. Each value represents mean 6 SD (n = 3). D) Total soft agar
colony counts for mock- or shERb-transfected REN cells were done by three independent investigators microscopically visualizing individual colonies
(clusters of 15 or more cells) in 10 random microscopic fields. Columns represent the fold increase of the mean number of colonies; bars, SD;
* p,0.05. Representative of three separate experiments.
doi:10.1371/journal.pone.0014110.g002
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a greater reliance of the cells upon EGFR-coupled signaling

pathways to support proliferation. These data were reinforced by

concordant data obtained with Gefitinib treatment of wild type

and ERb positive MSTO-211H cells (Fig. 5A).

Because EGFR signals through PI3-kinase/Akt and MAP/ERK

effectors pathways, phosphorylation of Akt and ERK 1/2 were

analyzed in ERb silenced REN and in MSTO-211H cells treated

with EGF in the absence or in the presence of Gefitinib. The basal

level of phosphorylated EGFR was increased in both cell types

upon EGF treatment and this resulted in increased Akt and

ERK1/2 phosphorylation. Gefitinib addition abrogated both basal

and EGF induced EGFR and ERK1/2 phosphorylation, but only

the EGF induced amount of phosphorylated Akt (Fig. 5B).

Discussion

ERa and ERb act as ligand-regulated transcription factors that

positively and negatively regulate gene expression, directly or

indirectly, through the activation of protein kinase signaling. Models

of action have been described that involve synergism, as well as

competition between the two receptors, which is further refined by

other transcription factor interactions [32]. ERa and ERb display

differential expression profiles in estrogen-responsive tissues [33]

and shifts in their expression profile have also been identified in

malignant as compared to normal tissue and also through the stages

of cancer progression [34]. We have found that ERb is the

predominant isoform expressed in the pleural mesothelial cells and

patients with ERb over expressing tumors have a better survival [5].

Evidence points to ERb having a significant anti-neoplastic role in

MMe but the mechanisms underpinning this role remain to be

elucidated. In the present study we transfected the ERb-expressing

REN MMe cell line with ERb-specific shRNA to suppress

expression. This resulted in the promotion of anchorage-indepen-

dent cell growth and transition to a less epithelioid phenotype. The

mechanisms responsible for the increased cell growth and the

phenotypic shift that correlates with the loss of ERb expression are

important in understanding the role of ERb as a tumor suppressor.

Conversely, exogenous expression of ERb by the ERb-negative,

MSTO-211H MMe cell line resulted in suppression of anchorage-

independent cell growth and transition to a more epithelioid

phenotype. We previously demonstrated that in vitro ERb over-

expression caused a G2/M cell cycle phase arrest of MMe cells,

both in a ligand-dependent and -independent manner. The fact that

exogenous expression of ERb leads to inhibition of proliferation

correlates with in vivo data showing that ERb expression was lost in

the more aggressive sarcomatoid forms of the malignancy. In this

present study we found that MMe cells silenced or constitutively

devoid of ERb expression also display a more aggressive phenotype,

with the enhanced formation of foci when cultured in vitro and the

development of more abundant colonies when cultured in soft agar.

The modulation of cell cycle regulating proteins through ERb is

compatible with rapidly induced signaling and ablation of ERb
impacts upon the activation but not the expression of multiple

signaling intermediates in the MMe cells including Akt and Erk1/2.

Cross-talk between ERs and growth factor receptor-mediated

pathways at the plasma membrane has been described [35–37] and

functional interactions between ERb and the epidermal growth factor

receptor (EGFR) is documented [20]. Over expression of EGFR has

been detected in up to 68% of MMe tumors, however, the EGFR

expression level is itself not a good prognostic indicator. In the present

study we investigated the interaction between EGFR and ERb in

MMe cells. In cells which express high levels of ERs, ERb but not

ERa constitutively co-localizes with EGFR in caveolin 1 enriched

regions. This clustering interferes with EGFR phosphorylation in

response to its ligand, and also results in delayed internalization of the

receptor and activation of coupled signaling cascades following

stimulation. As a consequence, ERb over-expressing cells are

insensitive to treatment with the EGFR inhibitor, Gefitinib, while

cells silenced in ERb expression display basal EGFR phosphorylation

and are more sensitive to Gefitinib. Our data give a possible

explanation for the inefficacy of EGFR inhibitors in phase II clinical

trials for ERb positive epithelioid MMe patients and opens the

possibility of a more successful employment of these drugs in more

aggressive, ERb negative, tumors either as a single agent or in

combination with Akt inhibitors.

Materials and Methods

Reagents and antibodies
The monoclonal antibody specific for a-tubulin and the polyclonal

antibodies for ERa,ERb, EGFR, caveolin-1, ERK1/2 MAP kinase

and cyclin D1 were from Santa Cruz Biotechnology (Santa Cruz,

CA). The monoclonal antibody specific for Akt and the phosphor-

ylation site-specific polyclonal antibodies for ERK1 (pThr202 and

pTyr204), ERK2 (pThr185 and pTyr187) MAP kinases, and Akt

(pSer473 and pThr308) were from Cell Signaling Technology

(Beverly, MA). The polyclonal antibodies for EGFR and ERb, used

in immunofluorescence analysis were obtained from Calbiochem

(Darmstadt, Germany) and Zymed-Invitrogen (Carlsbad, CA),

respectively. Protein A-Sepharose and ECL were from Amersham

Pharmacia Biotech (Uppsala, Sweden). Nitrocellulose membranes

and protein assay kits were from Bio-Rad (Hercules, CA). The

polyclonal phosphorylation site-specific antibody for EGFR

(pTyr1086), anti-mouse and anti-rabbit IgG horseradish peroxidase

conjugated antibodies, human recombinant EGF and all other

chemical reagents unless otherwise specified were from Sigma-

Aldrich (St Louis, MO). All reagents were of analytical grade. Culture

media, sera, antibiotics, and LipofectAMINE were from Invitrogen

(Carlsbad, CA). Gefitinib is an EGFR inhibitor also used clinically as

a chemotherapeutic agent and it is marketed by AstraZeneca.

Figure 3. ERb over-expression influences EGFR mediated signaling and internalization. A) The graph show the growth curves of mock-
and ERb-transfected REN cell treated for 24 and 48 hours with 5 ng/ml of EGF in 2% FBS culture medium. At each time point, the cells were assayed
for proliferation. Each value represents mean 6 SD (n = 3). Adjacent to the graph is reported a representative Western blot analysis that documents
ERb expression. Tubulin staining indicates equal loading of the proteins. B) Mock- and ERb- transfected REN cells made quiescent for 2 hours were
treated with 5 ng/ml of EGF for 5 minutes and detergent extracted. Levels of phosphorylated EGFR, ERK 1/2 MAP kinases and Akt were analyzed by
immunoblotting. Membranes were also blotted with antibodies to EGFR, Erk1/2 and Akt to evaluate protein expression. Tubulin was blotted to show
equal amount of loading. Western blot analysis with anti ERb antibodies documents its expression in transfected cells. Representative of three
separate experiments. C) Evaluation of EGFR internalization was performed by Flow cytometry analysis on wild type and ERb expressing REN cells
treated 60 or 120 minutes with 10 ng/ml of human recombinant EGF. Histograms represent percentage of positive cells following incubation with
anti-EGFR antibody indicated for each condition 6 SD. Data are representative of three separate experiments. D) Representative
immunoprecipitation experiment of membrane associated EGFR performed on mock and ERb over-expressing REN cells, treated 60 or 120 minutes
with 10 ng/ml of human recombinant EGF. Membrane was blotted with anti-pY and anti-EGFR antibodies.
doi:10.1371/journal.pone.0014110.g003
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Cell cultures treatments and transfection
The epithelioid MMe derived REN cell line that was used as the

principal experimental model in this investigation was isolated,

characterized [38] and kindly provided by Dr. S.M. Albelda

(University of Pennsylvania, Philadelphia, PA) and the MSTO-

211H cell line established from the pleural effusion of a patient

with biphasic mesothelioma of the lung [39] was obtained from the

Istituto Scientifico Tumori (IST)-Cell-bank, Genoa, Italy. Cells were

Figure 4. ERb associates with EGFR and caveolin 1. A) Co-immunoprecipitation experiments were performed on REN cells treated 1 and 5
minutes with 5 ng/ml of human recombinant EGF. ERb and caveolin 1 were detected by Western blot in immunoprecipitations of membrane associated
EGFR. B) Co-immunoprecipitation experiments were performed on mock and ERb over-expressing REN cells treated 5 minutes with 5 ng/ml of human
recombinant EGF. ERb and caveolin 1 were detected by Western blot in immunoprecipitations of membrane associated EGFR. C) Confocal double
fluorescent microscopy analysis of red-labeled ERb with green-labeled EGFR or caveolin 1 in mock- (left panel) or ERb-transfected (right panel) REN cells
treated or not 5 minutes with 5 ng/ml of human recombinant EGF. D) Confocal fluorescent microscopy analysis showing the localization of green-
labeled EGFR and phalloidin-TRITC labeled actin filaments in mock and in ERb and ERa transfected REN cells. Nuclei were counterstained with DAPI.
doi:10.1371/journal.pone.0014110.g004
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Figure 5. ERb expression influences response of MMe cells to Gefitinib. A) Effects of Gefitinib on viable number were evaluated in mock-,
ERb- and shERb-transfected REN and in mock- and ERb- transfected MSTO-211H cell lines. Cells were incubated in serum-containing medium in the
presence of 5 mM Gefitinib for 24–48 hours. As control 0.1% DMSO vehicle alone was used. Results are expressed as number of viable cells relative to
control at 48 hours of treatment; bars, 6 SD; * p,0.05. Data are representative of three separate experiments. B) shERb-transfected REN and MSTO-
211H cells were treated with 5 ng/ml of EGF for 5 minutes in the absence or presence of 5 mM Gefitinib and detergent extracted. Levels of
phosphorylated EGFR, ERK 1/2 MAP kinases and Akt were analyzed by immunoblot. Membranes were also blotted with antibodies to EGFR, Erk1/2,
and Akt to evaluate protein expression. Tubulin was blotted to show equal amount of loading. Western blot analysis with anti ERb antibodies
documents expression in transfected cells. Representative of three separate experiments.
doi:10.1371/journal.pone.0014110.g005
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cultured in RPMI medium supplemented with 10% foetal bovine

serum (FBS) at 37uC in a 5% CO2-humidified atmosphere. For

experimental purposes, the cells were maintained in the same

culture medium but lacking phenol red and containing charcoal-

stripped FBS. Mycoplasma infection was excluded by the use of

the Mycoplasma PlusTM PCR Primer Set kit from Stratagene (La

Jolla, CA). Cells grown to 80% confluence in tissue culture dishes

were transiently transfected with the pCXN2 plasmid expressing

human wild type ERb (Addgene, Cambridge, MA) using

LipofectAMINE reagent as described by the manufacturer. Gene

silencing was achieved using an ERb-specific shRNA lentiviral

plasmid (pLKO.1-puro) by Sigma (St Louis, MO).

Cell lysis, immunoprecipitation and immunoblot
Cells were extracted with NP-40 lysis buffer (1% NP-40, 150 mM

NaCl, 50 mM Tris-HCl pH 8, 5 mM EDTA, 10 mM NaF,

10 mM Na4P2O7, 0.4 mM Na3VO4, 10 mg/ml leupeptin, 4 mg/

ml pepstatin and 0.1 Unit/ml aprotinin). Cell lysates were

centrifuged at 13.000 x g for 10 minutes and the supernatants

were collected and assayed for protein concentration using the

Bradford protein assay reagent (Bio-Rad). Proteins were separated

by SDS-PAGE under reducing conditions. For co-immunoprecip-

itation experiments, cells were incubated with antibodies specific for

EGFR for 1 hour at 4uC, then lysed and a volume equivalent to

2 mg of extracted protein for each treatment was incubated in the

presence of 50 ml protein A-Sepharose beads. Following SDS-

PAGE, proteins were transferred to nitrocellulose, reacted with the

specific antibodies indicated and then detected with horseradish

peroxidase-conjugated secondary antibodies and the chemiolumi-

nescent ECL reagent. Densitometric analysis was performed using

the GS 250 Molecular Imager (Bio-Rad). For Cyclin D1 expression,

cells were extracted in RIPA Buffer (1% Triton X-100, 0.1% SDS,

1% Na-deoxycholate, 150 mM NaCl, 50 mM Tris-HCl pH 7,

0.4 mM Na3VO4, 10 mg/ml leupeptin, 4 mg/ml pepstatin and

0.1 Unit/ml aprotinin) and analyzed as indicated above.

Cell proliferation as determined by direct counting
REN or MSTO-211H cells were seeded at a density of

16104 cells/well into six-well plates in growth medium supple-

mented with FBS and incubated overnight at 37uC in a humidified

environment containing 5% CO2 to allow the cells to become

adherent. Cells were alternatively transiently transfected with the

pCXN2 ERb plasmid or ERb shRNA, using the LipofectAMINE

reagent as described by the manufacturer. After 24 hours cells

were grown for a further 24–48 hours as indicated in complete

medium or treated with 5 ng/ml of human recombinant EGF in

2% charcoal-stripped FCS growth medium. Cells were then

trypsinized and stained with Trypan blue. The number of viable

cells was counted in a Burker chamber within 5 min of staining.

The same protocol was used to evaluate drugs sensitivity.

Assay for Anchorage-Independent Cell Growth
Anchorage-independent growth was determined using a modifica-

tion of previously described methods [40]. Briefly, a base layer of 0.6%

agar in complete medium was plated in six-well plates and allowed to

solidify (0.5 mg/ml Puromycin was added to wells containing shERb
transfected cells, while 250 mg/ml G418 was added to ERb
transfected cells). Next, wells were overlaid with 56103 cells per well

in a 0.3% agar. A growth control well was also included with 56103

cells in medium alone (no agar) for each cell line. The plates were

incubated at 37uC, 5% CO2 for 15 days and checked every 2 days for

colony formation. At day 7, individual colonies (defined as clusters of

15 or more cells) were counted in 10 random fields.

Confocal microscopy analysis
Immunofluorescence was performed using standard techniques.

Briefly, cells were plated (16105 cells) on glass cover slips and

allowed to adhere in a humidified atmosphere with 5% CO2 at

37uC. Wild type or transfected cells were then stimulated with

EGF (5 ng/ml for 5 minutes) and subsequently fixed with 4%

paraformaldehyde in PBS. Cells were permeabilized 5 minutes at

RT with 0.2% Triton-X in PBS. After fixation, the cells were

rinsed in PBS and incubated in a blocking solution containing 1%

Gelatin and 4% bovine serum albumin (BSA) in PBS for 1 hour.

Primary antibodies diluted in 2% BSA in PBS, were added in

combination to the fixed cells and incubated at room temperature

for 2 h. After washing in 2% BSA in PBS, the immunoreactivity

was revealed using Alexa Fluor 488 goat anti-mouse IgG or

tetramethylrhodamine isothiocynate (TRITC) goat anti-rabbit

secondary antibodies (Invitrogen, Paisely, UK) in 2% BSA in

PBS (1:200) used separately to stain the cells for 30 min at room

temperature. Negative controls were performed by substituting the

primary antibodies with the 2% BSA in PBS buffer. The immuno-

stained cells were rinsed with PBS and mounted in Vectashield

mountant (Vector Laboratories, Burlingame, CA) containing 49-6-

Diamidino-2-phenylindole (DAPI). Confocal imaging was per-

formed using a laser scanning LSM 510 confocal microscope (Carl

Zeiss, Welwyn Garden City, UK). Alexa Fluor 488, TRITC and

DAPI fluorophores were excited individually at 488 nm, 543 nm

and 364 nm respectively. Single focal plain scans of 0.8 mM depth

were performed at the mid diction of the cell monolayer using the

63x1.4 oil immersion objective.

Internalization assay by flow cytometry analysis
Cell surface EGFR expression was evaluated by flow cytometry

performed as described. Cells were grown in a Petri dish until

confluent, washed with PBS, detached using 0.1% trypsin–EDTA

and re-suspended in PBS with 1 mM CaCl2 and 1 mM MgCl2

supplemented with 4% FBS. After the indicated treatments, cells

were incubated for 30 minutes at 4uC with the monoclonal anti-

EGFR antibody or non-specific IgG as control, washed twice with

PBS and further incubated with fluorescein isothiocynate (FITC)-

conjugated goat anti-mouse secondary antibody (1:200) for 30

minutes. After washing twice, cells were fixed with 3%

paraformaldehyde in PBS at room temperature for 15 minutes

and washed twice in PBS. FITC fluorescent emission was detected

over the range 515–555 nm using the FL-1 detector of a FACScan

flow cytometer (Becton Dickinson, Franklin Lakes, NJ) equipped

with 15 mW argon–ion laser for excitation. Debris was gated out

by establishing a region around the population of interest on the

Forward Scatter versus Side Scatter dot plot. For each sample,

10.000 events in the region of interest were recorded at a flow rate

of 200–300 cells/s. Data were processed with analysis software

LYSYS II (Becton Dickinson) and are expressed as median value

of EGFR expressing cells of the fluorescence histograms

normalized to the corresponding negative control obtained by

omitting the primary antibody.

Statistical analysis
Statistical differences between treatment groups were measured

using the one-tailed Student’s test.
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