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e mineralocorticoid receptor (MR), aldosterone modulates the expression
he subunits of the epithelial Na+ channel, in combination with important sig
as serum and glucocorticoid-regulated kinase-1. In addition, the rapid ‘non
tein kinases and secondary messenger signalling cascades has also bee
sitive tissues of the nephron, distal colon and cardiovascular system. Thes
described as being coupled to MR or to an as yet unidentified, membrane
ptor. The rapidly activated signalling cascades add a level of fine-tuning t
-responsive membrane transporters and also modulate the aldosterone
pression through receptor and transcription factor phosphorylation.
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Introduction

The binding of steroid hormones to their cognate receptors in-
ces the dissociation of heat shock proteins (Hsp), dimerization
the receptor and translocation into the nucleus. Here the hor-

one-receptor complex acts as a ligand-dependent transcription
tor, binding to hormone response elements (HREs) in the pro-

oters of various target genes, thereby regulating their transcrip-
n. Steroid hormone receptors also induce rapid extranuclear
nalling effects including the activation of kinase signalling cas-

des and increases in second messenger production, and these ef-
ts are not dependent on transcription/translation. Many routes
cross-talk exist between the rapid effects which occur within

conds/minutes and the later genomic effects which take hours/
ys, both pathways integrating to mediate the final physiological
tcome.
Aldosterone acts as a key mediator of sodium homeostasis by
htly controlling ion transport in the kidney through both geno-

ic and non-genomic mechanisms. Aldosterone binds to the min-
alocorticoid receptor (MR) and induces the expression of a
mber of genes including the renal outer medullary K+ (ROMK)
annel, Na+/K+-ATPase and the epithelial Na+ channel (ENaC)
sher et al., 1996; Beesley et al., 1998; Kolla and Litwack, 2000).
dosterone also mediates rapid non-genomic effects such as the
tivation of the PKC–PKD and ERK1/2 MAPK protein kinase cas-
des through the transactivation of the epidermal growth factor
ceptor (EGFR), via the non-receptor tyrosine kinase, c-Src.
nalling cascades coupled to EGFR transactivation either directly

odulate membrane targets through their phosphorylation or
ernatively modulate the expression of membrane targets
rough the phosphorylation of transcription factors such as CREB
MR. Fig. 1 shows a summary of aldosterone-induced rapid non-
nomic effects initiated in the cytoplasm such as transactivation

. 1. Rapid versus genomic effects of aldosterone. Aldosterone diffuses across the
olateral membrane and binds to the mineralocorticoid receptor (MR), inducing
erization and translocation to the nucleus. Here the hormone-receptor complex

ds to GRE response elements, recruits other transcription factors (TFs), and acts
a ligand-dependent transcription factor inducing the expression of genes such as
aC and SGK-1. Aldosterone binding to the MR also induces rapid kinase signalling
cades in the cytoplasm, including the activation of extracellular stimulus
ulated kinase 1/2 (ERK1/2), protein kinase C delta (PKCd) and protein kinase D
D), through the transactivation of the epidermal growth factor receptor (EGFR)
the non-receptor tyrosine kinase, c-Src.
ease cite this article in press as: Dooley, R., et al. Non-genomic actions of aldost
llular Endocrinology (2011), doi:10.1016/j.mce.2011.07.019
EGFR and kinase signalling and the latent genomic effects in
e nuclear compartment such as the induction of expression of
aC or the serum and glucocorticoid-induced kinase, SGK-1.
The classical nuclear MR is responsible for transducing numer-

s aldosterone-induced rapid signalling effects, as demonstrated
rough the sensitivity of these responses to MR antagonists such
spironolactone or eplerenone. However, other studies found that

pid aldosterone-mediated effects are not affected by MR antago-
sm. The identity of this alternative aldosterone receptor to date
mains elusive. In order to examine MR-dependency in rapid
n-genomic responses, Grossmann et al. performed a study using
terologous expression of human MR in Chinese hamster ovary
HO) and human embryonic kidney (HEK)-293 cells (Grossmann

al., 2005). Aldosterone induced rapid extracellular stimulus
gulated kinase (ERK)1/2 and c-Jun N-terminal kinase (JNK)1/2
nalling responses, which were spironolactone-sensitive. Con-
rsely, aldosterone also induced a spironolactone-insensitive
pid increase in intracellular Ca2+ concentration ([Ca2þ

i ]) in both
R-transfected and mock-transfected cells (Grossmann et al.,
05). This study clearly outlines two different mechanisms for
osterone-mediated rapid signalling events; MR-dependent and

R-independent pathways. The ‘‘unknown’’ aldosterone receptor
ay be an as yet undiscovered novel receptor, or a well character-
d signalling molecule. For example, aldosterone binds directly to

e C2 domain of protein kinase C alpha (PKCa), with a binding
nity of between 0.5 and 1 nM resulting in PKCa autophosphory-

ion (Alzamora et al., 2007). Furthermore, numerous reports have
oposed that the G protein coupled receptor, GPR30, is a novel
trogen receptor. Estrogen binds to GPR30, resulting in intracellu-

Ca2+ mobilization and nuclear phosphatidylinositol 3,4,5-
phosphate (PIP3) synthesis (Revankar et al., 2005). Recently,
e rapid responses to aldosterone in smooth muscle have been
ked to the GPR30-coupled signalling pathway, where the
pression of GPR30 is required for the MR-independent rapid ef-
ts of aldosterone (Gros et al., 2011). The capacity for GPR30 to
d multiple steroid ligands is controversial and its promiscuity

eds to be better understood.
In the case of other steroid hormone receptors, rapid responses

e mainly mediated by a small proportion of classical nuclear ste-
id receptors localized to the plasma membrane. The estrogen
ceptor (ER) is associated with a subset of lipid rafts termed cav-
lae (Kim et al., 1999; Razandi et al., 2002). Caveolin-1, the major
otein component of caveolae has been implicated as a structural
affold, for the organization of cytoplasmic signalling complexes
kamoto et al., 1998). Palmitoylation of ERa enhances the interac-
n of this receptor with caveolin-1 (Acconcia et al., 2005). More-
er, a conserved palmitoylation motif in the E domain of estrogen
ceptors ERa and b, progesterone receptors PR-A and B as well as
e androgen receptor (AR) was shown to be required for mem-
ane localization and rapid signalling events (Pedram et al.,
07). More recently it was shown that heat shock protein 27
sp27) binds ERa and promotes its palmitoylation and its interac-
n with caveolin-1 and this same mechanism was extended to
th AR and PR (Razandi et al., 2010). The glucocorticoid receptor
R) colocalized with c-Src in caveolae and caveolin was required
mediate rapid PKB activation and induce cell proliferation
atthews et al., 2008). The androgen receptor also localizes to

veolin-rich membrane fractions, and over-expression of caveo-
-1 potentiates ligand-dependent AR activation (Lu et al., 2001).
date there is no indication of lipid-modification of MR and this
roid receptor lacks the conserved palmitoylation motif men-
ned above. Recent evidence points to a fraction of MR localized
the membrane through interaction with the epidermal growth
tor receptor (EGFR); disruption of cholesterol-rich membrane
mains by cyclodextrin perturbed this MR–EGFR interaction
rossmann et al., 2010a).
erone: From receptors and signals to membrane targets. Molecular and
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The rapid physiological actions of aldosterone and other steroi
hormones have been termed ‘‘non-genomic’’ because the observe
effects occur within a time frame after treatment that cannot b
accounted for by changes in gene expression at the level of tran
scription. The rapid responses are observed, for the most part, we
in advance of the more latent pronounced effects of the hormone
and as a result an artificial dichotomy has arisen with the rapid an
transcriptional responses being regarded as separate independen
actions of the hormone. In fact the different facets of aldosteron
action ultimately act through common effectors, so contributin
to the physiological outcomes of maintaining whole body electro
lyte balance and regulating blood pressure. The close inter-connec
tion between rapid and transcriptional responses is observed a
multiple levels of regulation. For example, the activity and localiza
tion of aldosterone-responsive transcription factors is influence
by their phosphorylation state which can be modulated by rap
idly-induced kinases; while the products of aldosterone-induce
transcription may include signalling intermediates that contribut
to the aldosterone sensitivity of the target tissues. This review aim
to examine the mechanisms which underpin the rapid actions o
aldosterone and to show how these rapid actions synergize wit
the later transcriptional responses that aldosterone elicits in d
verse target tissues.

2. Aldosterone-induced signalling cascades

2.1. Mitogen activated protein kinases

The activation of protein kinase signalling cascades is the mos
extensively documented facet of rapid aldosterone responses. Th
mechanisms by which these signalling cascades impact upon ce
physiology are now being elucidated. The activation of the differ
ent members of the mitogen activated protein (MAP) kinase famil
has been described in various aldosterone-responsive tissues. Th
sometimes antagonistic downstream signalling processes that ar
coupled to the different MAP kinases leads to subtle, tissue-specifi
effects that impact upon whole organism physiology. The activa
tion of ERK1/2 has been investigated by many groups using exper
imental models of diverse tissues including Madin–Darby canin
kidney (MDCK) cells (Gekle et al., 2001), a model for the intercala
ing cells of the renal cortical collecting duct (CCD); M1-CCD cel
(Markos et al., 2005; McEneaney et al., 2010a) a model for th
CCD principal cells; vascular smooth muscle cells (VSMCs
(Manegold et al., 1999); cardiac myocytes (Okoshi et al., 2004
and the mesangial cells of the glomerulus (Nishiyama et a
2005). ERK1/2 activation is most often associated with the modu
lation of cell growth, either through the promotion of proliferatio
(McEneaney et al., 2010a; Nishiyama et al., 2005; Stockand an
Meszaros, 2003) or hypertrophy (Okoshi et al., 2004). The kinetic
of ERK1/2 activation shows some variation and is influenced by th
concurrent activation of other signalling cascades. For example i
MDCK cells, ERK1/2 activation occurs within 5 min and is sustaine
over a period of hours (Gekle et al., 2001). In M1-CCD cells the earl
phase of ERK1/2 activation is coupled to EGFR trans-activation, an
the activation of protein kinase D1 (PKD1) is required to maintai
ERK1/2 activation beyond 2–5 min (McEneaney et al., 2010a). Th
contribution of PKD1 to stabilizing ERK1/2 activation has also bee
described, where ERK1/2 activation occurs in response to growt
factors; however, this does not involve direct phosphorylation o
ERK1/2 by PKD1 (Sinnett-Smith et al., 2004). The prolonged phas
of ERK1/2 activation stimulated by aldosterone in A6 renal cells
coupled to the stimulation of Ki-RasA expression, while aldoste
rone also stimulates Ki-RasA GTPase activity within 15 min o
treatment (Tong et al., 2004).

The p38 MAP kinase sub-family, another signalling target o
aldosterone, has four identified isoforms (a, b, c and d) which hav
Please cite this article in press as: Dooley, R., et al. Non-genomic actions of
Cellular Endocrinology (2011), doi:10.1016/j.mce.2011.07.019
different and often antagonistic roles in cell growth. The p38-a iso
form is implicated in differentiation (Lovett et al., 2010) and th
promotion of apoptosis through p53 phosphorylation (Liu et a
2011), while p38-c is implicated in advancing cell cycle progres
sion and stimulating DNA repair to promote cell survival (W
et al., 2010). Aldosterone promotes biphasic p38 activation i
VSMCs within 1 min of treatment (Callera et al., 2005), followe
by a second phase of activation detectable after 30 min. The VSM
p38 response was dependent on MR and c-Src co-activation an
the authors further implicated p38 in the profibrotic effects o
aldosterone on VSMCs through NADPH regulation. The connectio
between aldosterone-induced p38 activation and cardiovascula
disease progression is emphasized by the observation that p3
antagonism with the novel inhibitor GSK-AHAB, counteracted th
deleterious effects of high fat and high salt diet in a spontaneousl
hypertensive rat model (Willette et al., 2009). The MR-dependen
activation of p38 in glomerular podocytes is also stimulated b
aldosterone and this contributes to the induction of apoptosis i
these cells (Chen et al., 2009).

The members of the JNK family of MAP kinases are also act
vated by aldosterone. Aldosterone treatment promotes dopamin
synthesis by adrenal pheochromocytoma PC12 cells via the tran
scriptional regulation of tyrosine hydroxylase (TH) expression
TH abundance is interlinked with the transcription-independen
stimulation of SAP kinase by aldosterone. Aldosterone-induce
SAP kinase activation was mediated via a rapid, Rho sma
GTPase-dependent pathway and aldosterone-induced RhoA activa
tion was enhanced by bone morphogenetic protein (BMP-4) (Got
et al., 2009).

2.2. Protein kinase C

The PKC family regulate cellular processes as diverse as prolifer
ation, apoptosis, trafficking and tight-junction formation. Aldoste
rone promotes the MR-independent activation of PKCa in rena
CCD cells within 2–5 min (Le Moellic et al., 2004; Markos et a
2005). Here PKCa activation relies upon the direct binding of aldo
in [Cai ]. PKCd and PKCe can also be activated rapidly in respons
to aldosterone, but this does not rely upon direct binding of th
hormone to the kinases but instead is coupled to MR through EGF
trans-activation (McEneaney et al., 2008). Protein kinase D isoform
1 (PKD1) is rapidly activated in response to aldosterone and is
substrate for the non-classical, Ca2+-independent PKC isoform
(nPKCs) such as PKCd and PKCe. The aldosterone-induced activa
tion of PKD1 in M1-CCD cells follows the same kinetics as doe
aldosterone-induced nPKC isoform activation and is coupled t
MR through EGFR transactivation (McEneaney et al., 2007, 2008
Rapid activation of PKD1 has been implicated in aldosterone-in
duced proliferation in M1-CCD cells (McEneaney et al., 2010a
and in the stimulation of hypertrophy in cardiac myocytes follow
ing aldosterone treatment (Tsybouleva et al., 2004).

In addition to steroid receptor-dependent and -independen
activation of protein kinases, several studies have demonstrate
direct activation of different PKC isoforms by a wide variety of ste
roid hormones. The first evidence of direct activation of specifi
PKC isoforms (PCKa, PKCc and the novel PKCe) by a steroid hor
mone was demonstrated for 1,25(OH)2-vitamin D3 by Slate
et al. (1995). This direct ‘in vitro’ stimulatory effect on protein k
nases has been shown for other hormones such as aldosteron
estrogen (Alzamora et al., 2007; Doolan et al., 2000) and glucocor
ticoids (for review see (Alzamora and Harvey, 2008)). These direc
effects appear additive to the stimulatory effects of diacylglycero
and phorbol esters and require an intact C2 binding domain. Thes
findings raise the interesting and controversial possibility that PK
isoforms may act as receptors for non-genomic transduction o
aldosterone: From receptors and signals to membrane targets. Molecular and
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283 certain rapid responses to steroid hormones additional to the acti-
284 vation of PKC isoforms by DAG and phospholipase C via membrane
285 receptors.

286 2.3. Secondary messengers: calcium and cAMP

287 Aldosterone promotes the activation of multiple secondary
288 messenger responses including a rise in [Ca2þ

i ], cyclic adenosine
289 monophosphate (cAMP) biosynthesis and nitric oxide (NO) release.
290 Aldosterone raised [Ca2þ

i ] in renal CCD (Harvey and Higgins, 2000),
291 in isolated colonic crypts (Maguire et al., 1999), VSMCs (Wehling
292 et al., 1994) and in the brain, preferentially in the ventral hippo-
293 campus over the dorsal hippocampus (Maggio and Segal, 2010).
294 The regulatory mechanism and route of the [Ca2þ

i ] increase in the
295 nephron and colon is not defined; however, the Ca2+ response
296 was insensitive to spironolactone in CCD cells and sustained by
297 Ca2+ entry from outside of the cell and PKC-dependent in colonic
298 crypts (Doolan et al., 1998). Aldosterone enhanced a tetanic stress
299 response in hippocampal cells by stimulating Ca2+ entry through
300 nifedipine-sensitive, L-type calcium channels (Maggio and Segal,
301 2010). The dorsal and ventral hippocampus express MR but the
302 nature of the initiating receptor for the Ca2+ response is not yet
303 confirmed. The PLC/PKC-dependent activation of L-type calcium
304 channels is required to elicit vasoconstriction within 5 min of aldo-
305 sterone treatment in the afferent arterioles of the renal micro-cir-
306 culation, while stimulation of vasoconstriction in efferent
307 arterioles is mediated by aldosterone-induced activation of T-type
308 Ca2+ channels (Hayashi et al., 2003).
309 The interplay between rapid aldosterone effects and cAMP sig-
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345microperfused rabbit afferent arterioles through the activation of
346PLC and Ca2+ mobilization, and this response was spironolactone
347insensitive (Arima et al., 2003), and was modulated by NO (Arima
348et al., 2004). On the other hand, aldosterone-induced vasodilation
349has also been described in both rodents and humans (Liu et al.,
3502003; Uhrenholt et al., 2003). Aldosterone counteracted
351K+-induced vasoconstriction within 2–5 min in microperfused rab-
352bit renal afferent arterioles, an effect which was dependent on MR,
353and inhibition of NO formation by L-NAME restored K+-induced
354vasoreactivity (Uhrenholt et al., 2003). Similarly, aldosterone coun-
355teracted phenylephrine-induced vasoconstriction in rat aortic
356rings, while a dose-dependent enhancement of the vasoconstric-
357tion response was induced by aldosterone in endothelial-denuded
358vessels (Liu et al., 2003). In the same study, the authors demon-
359strated that in cultured endothelial cells, aldosterone induced a
360PI3K-dependent increase in nitric oxide synthase activity as well
361as a PI3K-dependent activation of ERK1/2 and p70/S6 kinase (Liu
362et al., 2003). NO can modulate intracellular signalling cascades
363by acting on a variety of kinases and G protein-coupled receptors
364(Iwakiri et al., 2006; Rizzo and Piston, 2003; Ushio-Fukai, 2009).
365For example, shear stress-induced NO release leads to an
366S-nitrosylation of several proteins including ER-ATPase, Hsp90,
367and tubulin-b chain (Huang et al., 2009).
368In chronic diseases such as hypertension and diabetes mellitus,
369reactive oxygen species (ROS) are generated, which uncouple eNOS
370from NO production and divert eNOS to superoxide generation
371(Forstermann and Li, 2010). Aldosterone-induced renal injury is
372mediated by ROS generation through NADPH oxidase-dependent
373mechanisms (Nishiyama and Abe, 2006). Aldosterone exerts nega-
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lling as expressed through cAMP response element binding pro-
in (CREB)-dependent transcription differs between tissues.
dosterone stimulated an increase in intracellular cAMP within

in and CREB phosphorylation within 5 min in VSMCs (Christ
al., 1999). In HEK-293 cells, aldosterone treatment suppressed
EB-dependent transcription through the stimulation of calcineu-
/protein phosphatase 2B (PP2B) activity (Grossmann et al.,
10b). It is unclear whether aldosterone had a rapid effect on ba-
l CREB phosphorylation in the HEK-293 cells; however, pre-incu-
tion with aldosterone for 20 min was sufficient to suppress the
EB induction by forskolin.

. Secondary messenger: nitric oxide

Nitric oxide (NO), a gaseous molecule synthesized in the vascu-
ure by the endothelial nitric oxide synthase (eNOS) is a key reg-

ator of vascular tone. In smooth muscle cells, NO activates
luble guanylyl cyclase which via cGMP, phosphorylates the myo-

light chain kinase and Ca2+-ATPase, thereby inducing vasodila-
n. Vascular endothelium exposed to aldosterone shows a
creased synthesis and release of NO (Hashikabe et al., 2006;
gata et al., 2006; Nishizaka et al., 2004). However, other reports
ow that aldosterone induces an acute increase in NO bioavail-
ility in endothelial cells. Short-term treatment with aldosterone
hanced ATP-induced NO production in endothelial cells, along
th an increase in the phosphorylation of eNOS, in an MR- and
osphoinositol 3-kinase (PI3K)-dependent manner (Mutoh et al.,
08).
Aldosterone induces the rapid induction of either vasoconstric-
n or vasodilation, depending on the bioavailability of endoge-
us nitric oxide (NO) (Arima et al., 2004; Schmidt et al., 2003,
06; Uhrenholt et al., 2003). Aldosterone infused into the brachial
tery of healthy male volunteers decreased blood flow signifi-
ntly within 4 min compared with the contralateral forearm, indi-
ting rapid vasoconstrictor responses; this effect was not
stained and flow returned to baseline after 30 min (Romagni
al., 2003). Similarly, aldosterone induced vasoconstriction in
ease cite this article in press as: Dooley, R., et al. Non-genomic actions of aldost
llular Endocrinology (2011), doi:10.1016/j.mce.2011.07.019
e effects on the cardiovascular system through the production of
S. Aldosterone increased the expression of the NADPH oxidase

bunits p22phox and gp91phox in the aorta, leading to an in-
ase in ROS (Calo et al., 2004; Hirono et al., 2007). Aldosterone
o induced a rapid non-genomic activation of NADPH oxidase,

sulting in an induction of apoptosis in neonatal rat cardiac myo-
tes (Hayashi et al., 2008). Fig. 2 depicts a summary of aldoste-
ne-induced actions in the vasculature.

Crosstalk between rapid and genomic responses

. Post-translational modulation of receptors and coactivators

Aldosterone-induced transcription is subject to modulation and
tentiation by rapidly activated signalling cascades. Aldosterone
mulates the expression of type-I, -III and -IV collagens after
h in renal fibroblasts; an effect that is inhibited by MR and
K1/2 antagonism, even though ERK1/2 activation is detected
thin 5 min (Nagai et al., 2005). The impact of rapid signalling
ents may be through direct phosphorylation of MR, phosphory-
ion of co-factors required for transcription initiation by MR or
osphorylation of factors that initiate transcription at nuclear

ceptor-independent promoters. Steroid receptors have multiple
osphorylation sites; Ser118 of ERa is phosphorylated in

sponse to ERK1/2 activation in breast carcinoma and stabilizes
a in the nucleus (Kato et al., 1995). The progesterone receptor
also phosphorylated by ERK1/2 after 5 min progestin treatment
d this leads to the recruitment of factors involved in chromatin
modelling (Vicent et al., 2006). The glucocorticoid receptor GRa

phosphorylated by MAPKs, cyclin-dependent kinases and
K-3 (glycogen synthase kinase 3) (Oakley and Cidlowski, 2011)
d phosphorylation-deficient GRa mutants were compromised
their ability to activate reporter genes in a promoter-dependent
hion (Webster et al., 1997). Phosphorylation also modulates the
bcellular trafficking of GRa; phosphorylation at Ser-203 pro-
otes the cytoplasmic retention of the receptor and thus results
erone: From receptors and signals to membrane targets. Molecular and
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in a diminished recruitment to glucocorticoid-responsive targe
genes (Blind and Garabedian, 2008). The rapid phosphorylatio
of MR following aldosterone treatment has been described; how

NO

ON

Endothelium

Vascular 
Smooth Muscle

cSrcp38

Fibrosis

NADPH

Elastic Lamina

Tunica
Adventitia

ON

eNOS
P

Fig. 2. Rapid aldosterone actions and vascular tone. Aldosterone elicits multiple r
regulate vascular tone. MR-coupled phosphorylation of endothelial nitric oxide sy
on the VSMCs to promote vasodilation in synergy with the delayed transcript
treatment promotes vasoconstriction, suggesting that aldosterone may act to restr
and p38 mitogen activated kinase in VSMCs which chronically results in fibrosis
ever, the role of receptor phosphorylation in regulating MR locali-
zation and transcriptional activity is undetermined (Le Moellic
et al., 2004). PKA inhibition blocks the dissociation of Hsp90 from
MR that precedes nuclear accumulation of the receptor (Massaad
et al., 1999) and p21 activated kinase activation augments MR nu-
clear-association (Shibata et al., 2008).

The p160 family of steroid receptor co-activators (SRCs) SRC1,
SRC2 (TIF2) and SRC3 (AIB1) are selectively recruited to sites of
transcription initiation by nuclear receptors. The phosphorylation
state of these co-activators at multiple amino acid residues influ-
ences their association with nuclear receptors, the recruitment of
other co-factors and co-activator resistance to degradation. Estra-
diol-induced SRC-3 phosphorylation is dependent on a direct inter-
action between SRC-3 and ERa (Zheng et al., 2005), and ERK1/2
phosphorylation was implicated in regulating the localization of
SRC-3 and its interaction with ERa (Amazit et al., 2007). Aldoste-
rone-stimulated kinases may also phosphorylate the SRCs. PKA
phosphorylates SRC2, while SRC3 is a substrate for p38; the effect
of these specific phosphorylation events is to promote ubiquitina-
tion and turnover of the SRCs (Gianni et al., 2006; Hoang et al.,
2004).

3.2. Genomic induction of rapid signalling intermediates

The expression of crucial signalling intermediates, including
some of those that are integral to the cascades rapidly activated
by aldosterone are subject to modulation by MR. Aldosterone
treatment promoted the expression of EGFR in aorta smooth mus-
cle cells, rendering the cells more sensitive to EGF (Grossmann
et al., 2007). EGFR is also a signalling hub for cascades rapidly in-
duced by aldosterone (Grossmann et al., 2005; McEneaney et al.,
2007) and enhanced expression of EGFR may serve to amplify
these rapid responses. Aldosterone also induces the expression

Please cite this article in press as: Dooley, R., et al. Non-genomic actions of
Cellular Endocrinology (2011), doi:10.1016/j.mce.2011.07.019
of the serum and glucocorticoid-induced kinase (SGK-1
(Naray-Fejes-Toth and Fejes-Toth, 2000). SGK-1 regulates the ce
surface expression of the epithelial sodium channel, ENaC b

Aldo

R

NO

ON Vasodilation

Aldo
MR

Vasoconstriction

ON

actions on the vascular endothelium and vascular smooth muscle cell (VSMC) layer
se (eNOS) by an as yet unidentified kinase stimulates nitric oxide (NO) release that ac
l up-regulation of NADPH oxidase. Endothelial denudation followed by aldosteron
lood flow in damaged vessels. Aldosterone treatment promotes rapid activation of c-S
he vessel wall.
444phosphorylating the E3 ubiquitin ligase Nedd4-2, thus preventing
445the ubiquitination and degradation of the ENaC channel (Debo-
446nneville et al., 2001; Snyder et al., 2002). PDK1 phosphorylates
447SGK1 in the activation loop (Biondi et al., 2001) and the fully acti-
448vated kinase is then recruited by glucocorticoid-induced leucine
449zipper (GILZ) to substrates that are associated with ENaC, such
450as Nedd 4-2 (Soundararajan et al., 2009). The convergence be-
451tween the rapid signalling and transcriptional responses coupled
452to the interaction of aldosterone with MR thus occurs at multiple
453levels, and contributes to the precise regulation of mineralocorti-
454coid-sensitive physiology.

4553.3. Aldosterone and microRNAs

456microRNAs (miRNAs) are endogenous small non-coding RNA
457molecules with the ability to repress gene expression and are be-
458lieved to play an important role in development, differentiation,
459proliferation, survival and oncogenesis (Inui et al., 2010). Pre-miR-
460NA precursor transcript and mature miRNA can be modulated
461within minutes by transcription factors such as CREB, which are
462known targets of rapid responses to steroid hormones. Although
463this research is in its infancy, miRNAs represent a novel class of
464molecules rapidly activated by steroid hormones. microRNA
465expression in the kidney has been shown to be modulated by aldo-
466sterone, in particular miR-192 which regulates WNK1 (with no ly-
467sine kinase 1) expression, was down-regulated by aldosterone,
468sodium depletion or potassium loading (Elvira-Matelot et al.,
4692010). Moreover, the post-transcriptional regulation of MR gene
470expression was shown to be modulated by miR-124 and miR-
471135a (Sober et al., 2010). Taken together, these results suggest a
472miRNA-driven mechanism of gene modulation by aldosterone,
473involved in the control of sodium and potassium balance by the
474kidney, and therefore in blood pressure regulation.

aldosterone: From receptors and signals to membrane targets. Molecular and
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Membrane targets of aldosterone and mechanisms of
gulation by rapid signalling events

. Na+/H+ exchanger (NHE)

The nine isoforms of the Na+/H+ exchanger family (NHE1-9) reg-
ate intracellular pH (pHi) via electroneutral exchange of intracel-
lar H+ for extracellular Na+ and play central roles in cell volume
gulation, initiation of cell growth and proliferation (Aronson,
85; Frelin et al., 1990; Little et al., 1986). In polarized epithelia,
E1 is expressed basolaterally and is mainly involved in cyto-

asmic pH and volume regulation, whereas NHE3 is expressed
ically and mediates NaHCO3 and NaCl reabsorption. Aldosterone
gulates the activity of NHE isoforms through various mecha-
sms (Fig. 3). In cells of the amphibian kidney, aldosterone rapidly
tivated Na+/H+ exchange to promote cytoplasmic alkalinization
thin 20 min (Oberleithner et al., 1987). The aldosterone-depen-
nt rise in intracellular pH (pHi) associated with activation of
E in MDCK cells is dependent upon ERK1/2 activation and a ra-

d 3-fold increase in [Ca2þ
i ], within 1 min of aldosterone treatment

ekle et al., 2001, 1996). In another study, aldosterone induced a
ncentration-dependent increase in pHi recovery from an acid
d within 5 min in M1-CCD cells, and this effect was attenuated
inhibiting PKCa or MAPK activity (Markos et al., 2005).
Aldosterone induced activation of NHE1 in rat distal colonic
pts, independently of MR but dependent on activation of a G

otein-coupled receptor (Winter et al., 1999).
Aldosterone regulates NHE activity in VSMC through both rapid

d genomic actions (Ebata et al., 1999). In cultured VSMCs, long-
rm exposure to aldosterone resulted in a 3-fold increase in NHE1
RNA levels, whereas short-term aldosterone treatment resulted
a significant increase in NHE activity, which was insensitive to

hibitors of transcription/translation. Aldosterone also rapidly
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. 3. Schema of rapid actions of aldosterone on ion transporters in intercalated and
ATPase pumps in intercalated cells and ENaC subunits in principal cells via rapid pr
ATPase and anion exchanger (kAE) activity and expression levels are also modulate
cium-activated K+ channels (BK) in intercalated cells and via inwardly-rectifying
osterone-mediated SGK-1 activity. Ubiquitination of ENaC via SGK-1 inhibition o

bined association with, and phosphorylation by, mammalian target of rapamycin
tein kinase D to stimulate rapid trafficking of ENaC subunits to the membrane. Th

hange and KATP channels ensures covariant ‘cross-talk’ regulation of all transporters req

ease cite this article in press as: Dooley, R., et al. Non-genomic actions of aldost
llular Endocrinology (2011), doi:10.1016/j.mce.2011.07.019
tivated PKC within 5 min and this contributed to both the rapid
d transcriptional effects of aldosterone on NHE activity (Ebata
al., 1999). The rapid activation of NHE was inhibited by disrup-

rs of microtubules and filamentous actin, outlining the crucial
le of cytoskeletal components in the induction of NHE activity
d pointing towards a trafficking-based regulatory mechanism.
In the renal proximal tubule, 60–70% of filtered NaCl is reab-

rbed; the main transporters involved are the apically expressed
E3 and basolateral Na+/K+ATPase. The regulation of NHE3 is cru-
l for the maintenance of Na+ balance, extracellular fluid volume,
od pressure, and acid–base homeostasis. Early studies discov-

ed that aldosterone enhanced proximal tubule NaCl and fluid
absorption in rats, in a spironolactone-sensitive manner (Stolte
al., 1969). Subsequent studies in adrenalectomized rats found

at this was due to elevated NHE3 abundance in brush border
embranes, which occurred without increasing gene expression
rug et al., 2003). A similar response in primary human renal
oximal tubule epithelial cells was dependent on EGFR activity
rumm et al., 2006). In contrast, aldosterone-mediated inhibition
NHE3 has also been demonstrated. Aldosterone exposure for
min resulted in a 30% decrease in apical NHE3 activity in renal

edullary thick ascending limb (MTAL), resulting in decreased
nsepithelial HCO�3 absorption (Good et al., 2002, 2006). The
osterone-mediated inhibition of NHE3 was mediated via

R-independent ERK1/2 signalling (Watts et al., 2006). This con-
sts with other experimental systems where ERK1/2 activation
aldosterone is MR-dependent. How ERK1/2 signalling regulates
E activity is unclear. Regulation of NHE3 in other cell systems

volves trafficking between the plasma membrane and intracellu-
vesicles (Moe, 1999) and a role for ERK1/2 signalling in regulat-

g intracellular trafficking of membrane proteins has been
scribed (Giovannardi et al., 2002; Huang et al., 2003). However,
K1/2 may also regulate NHE activity through direct phosphory-
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cipal cells of the renal collecting duct. Aldosterone activates the trafficking of
kinase signalling which is transduced by the mineralocorticoid receptor (MR).

whole animal acid/base status. K+ secretion is mediated via large conductance
ll conductance K+ channels (ROMK) in principal cells. ROMK is regulated via
dd4-2 stabilizes ENaC in the apical membrane. SGK-1 activation requires the

rictor (mTORC2) and PDK1. Aldosterone-MR transactivation of EGFR activates
id stimulation by aldosterone of basolateral membrane Na+/K+ ATPase, Na+/H+

Q2
uired to sustain the transepithelial reabsorption of Na+.
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lation of the exchanger or the phosphorylation of interacting pro
teins such as Na+/H+ exchange regulatory factor (NHERF)-1/2.

In another study on the effects of aldosterone on NHE3 activit
the authors described an overlap between long-term genomic re
sponses and acute rapid responses. They showed increases in ce
surface expression of NHE and Na+/K+ATPase a-subunit afte
1 nM aldosterone treatment in human intestinal Caco-2BBE mono
layers, with overall expression levels increasing after 4 h (Musc
et al., 2008). Serum and glucocorticoid regulated kinase (SGK)-
and PI3K were rapidly activated by aldosterone and aldosterone
induced NHE3 gene promoter activity was inhibited by PI3K inh
bition or SGK-1 silencing (Musch et al., 2008). This study elegantl
outlines the synergism between aldosterone-mediated long-term
genomic effects and the preceding rapid signalling effects and tha
both levels of effects cannot easily be separated. More recentl
acute stimulation of placental tissue with 10 nM aldosterone re
sulted in a spironolactone-sensitive rapid regulation of NHE activ
ity as seen by an increased rate of pHi recovery from an acid loa
(Speake et al., 2010). Interestingly, this effect was only present i
placental tissue derived from female infants and was absent in tha
of male infants, introducing a gender-specific difference in aldoste
rone-mediated rapid responses.

4.2. H+-ATPase

Aldosterone stimulates urinary acidification through stimula
tion of H+ flux through H+-ATPase pumps. These responses wer
first described in detail in turtle urinary bladder (Al-Awqati et a
1976) and frog skin (Ehrenfeld and Garcia-Romeu, 1977). Proto
pumps were shown to be localised to apical cell membranes o
mitochondria-rich cells whose number and morphology were a
tered by aldosterone treatment. Whole-cell patch-clamp recording
in these cells revealed that aldosterone produced a rapid exocytot
insertion of H+ pumps into luminal membranes within 10 min
which was sensitive to PKC inhibitors and disruptors of the cyto
skeleton (Harvey, 1992). In the kidney, acid–base regulation
controlled in the distal nephron through the reabsorption of bicar
bonate and the release of H+ into the renal ultrafiltrate. The vacuola
H+-ATPase, expressed apically in type A intercalated cells of the co
lecting duct, actively mediates H+ secretion. Aldosterone plays a ke
role in the regulation of the renal H+-ATPase pump and many facet
of this regulation are governed by rapid signalling events (Fig. 3
For example, in outer medullary collecting ducts of mouse kidne
exposure to 10 nM aldosterone for 15 min resulted in an MR-depen
dent increase in H+ extrusion from acid-loaded type A intercalate
cells (Winter et al., 2004). Interestingly, similar to the response i
frog skin, the increase in H+-ATPase activity was dependent o
Ca2+-induced PKC activity and blocked by colchicine, indicating a
involvement of the microtubule network (Winter et al., 2004). Fur
thermore, aldosterone-injected mice showed increased apica
expression of H+-ATPase in type A intercalated cells (Winter et a
2004), supporting the idea of aldosterone-regulated trafficking o
the H+-ATPase as a means to control acid–base homeostasis.

A recent study demonstrated that aldosterone invoked both ra
pid and genomic stimulatory effects on the H+-ATPase in isolate
proximal tubules of rat kidney (Leite-Dellova et al., 2010). Her
after 2 min of aldosterone pre-incubation, a significant increas
was observed in the intracellular pH recovery rate from an aci
load, and a transient increase in [Ca2þ

i ] was observed after 1 mi
aldosterone. These effects were MR-independent as shown by the
insensitivity to spironolactone and were also not dependent o
transcription/translation. After 6 min aldosterone, a furthe
increase in [Ca2þ

i ] occurred and this persisted after 1 h. Th
later effect was MR- and transcription/translation-dependen
(Leite-Dellova et al., 2010).
Please cite this article in press as: Dooley, R., et al. Non-genomic actions of
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4.3. K+ channels

In the principal cells of the collecting duct, K+ enters the cell vi
the basolateral Na+/K+ATPase and is secreted into the lume
through apical K+ channels, along a favourable electrochemical gra
dient (O’Neil and Sansom, 1984). The renal outer medullary K
channel (ROMK) is the principal K+ secreting channel in the kidne
and is expressed apically along the aldosterone-sensitive dista
nephron (ASDN) (Kohda et al., 1998). ROMK mediates apical K
recycling in the thick ascending limb (TAL) and net K+ secretio
by ASDN cells in the connecting segment and CCD (Aguilar-Brya
et al., 1998; Hebert et al., 2005). Aldosterone regulates ROM
function mainly through the actions of SGK-1 activity (Fig. 3). Ce
surface expression of ROMK was found to be regulated by aldoste
rone-induced SGK-1 activity (Yoo et al., 2003). Co-expression o
SGK-1 and the scaffolding protein NHERF2 with ROMK1 increase
K+ channel activity through an increase in membrane abundanc
(Yun et al., 2002). NHERF-1 and NHERF-2 each contain 2 PDZ (pro
tein–protein interaction) domains; ROMK preferentially associate
with the second PDZ domain of NHERF-1 and the first PDZ domai
of NHERF-2 (Yoo et al., 2004). The association with NHERF scaffold
ing proteins increases surface abundance of ROMK and also in
creases the interaction between ROMK and CFTR (Yoo et a
2004). CFTR was found to be required for the PKA-regulated AT
sensitivity of ROMK in murine TAL (Lu et al., 2006). SGK-1 can als
stimulate ROMK activity by the phosphorylation of WNK4 (with n
lysine (K)) kinase (Ring et al., 2007). Mutations in WNK4 caus
pseudohypoaldosteronism type II (PHAII), a disease featuring in
creased renal NaCl reabsorption and impaired K+ secretion. PKC-in
duced phosphorylation of ROMK was required for trafficking o
ROMK1 to the cell membrane in HEK293 cells (Lin et al., 2002
PKC was also shown to inhibit ROMK activity, through a PIP2
dependent mechanism (Zeng et al., 2003). Here, the interaction be
tween PIP2 and ROMK was required for channel opening and
reduction in membrane PIP2 levels contributed to the inhibitio
of ROMK1 by PKC.

In the CCD, K+ can also enter the cell via basolateral K+ channel
if the basolateral membrane hyperpolarizes to exceed the K
equilibrium potential (Wang and Giebisch, 2009). This may occu
as a consequence of mineralocorticoid-induced stimulation of th
Na+/K+ATPase (Sansom and O’Neil, 1986). Aldosterone rapidl
(within 15 min) stimulated the activity of ATP-dependent K+ chan
nel (KþATP) activity in A6 amphibian renal principal cells, by modu
lating the open probability of the channel (Urbach et al., 1996). Th
mammalian colon is a major target of aldosterone action, wit
levels of MR expression observed at even higher levels than i
the kidney (Fuller and Verity, 1990; Will et al., 1980). In the dista
colon, aldosterone induces the apical expression of ENaC and th
basolateral expression of Na+/K+ATPase, thus inducing a switc
from electroneutral NaCl absorption to stimulated electrogen
Na+ absorption (Binder et al., 1989; Kunzelmann and Mall, 2002
Here, aldosterone also induces apical K+ channels, resulting in
switch from net K+ absorption to net K+ secretion (Sweiry an
Binder, 1989). Aldosterone mediated the non-genomic inhibitio
of Ca2+-dependent intermediate conductance K+ channels (IKC

in the basolateral membranes of human colonic crypt cells, an
this involved stimulation of Na+/H+ exchange (Bowley et a
2003). This effect was later found to be dependent on PKC activit
whereby the inhibition of IKCa was blocked using PKC inhibitor
(chelerythrine chloride and Go 6976) and IKCa activity was rapidl
decreased within 10 min of addition of PMA (a PKC activato
(Bowley et al., 2007). Aldosterone activated basolateral Na+/H
exchange via a PKC- and Ca2+-dependent signalling pathway; th
resultant intracellular alkalinization up-regulated KþATP channe
and inhibited a KþCa channel (Maguire et al., 1999). These effect
aldosterone: From receptors and signals to membrane targets. Molecular and
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The ENaC channel, thought to be a heterotrimer composed of
, 1b and 1c subunit (Jasti et al., 2007), is expressed apically in
sorptive epithelia, including the ASDN. Here the basolateral
+/K+ATPase provides the main electrochemical driving force for
aC-mediated Na+ reabsorption and the rate of Na+ reabsorption
determined by ENaC cell surface abundance and open probabil-
. Aldosterone is a central regulator of Na+ reabsorption in the
DN, through the stimulation of both ENaC and Na+/K+ATPase
tivities. Aldosterone induces ENaCa expression in the distal
phron and ENaCb and ENaCc in the colon, through MR-depen-
nt transcription. Aldosterone also has many indirect effects on
e expression, stability and trafficking of the channel (Fig. 3). Cell
rface ENaC can be targeted for degradation by the proteasome by
e action of the E3 ubiquitin ligase Nedd4-2 (Goulet et al., 1998),
ich interacts with ENaC via a C-terminal PY internalization

otif. Interestingly, an inherited form of hypertension, Liddle Syn-
ome, is defined by a defect in the interaction between Nedd4-2
d ENaC caused by a mutation/deletion in the PY motifs of ENaCb
ENaCc (Shimkets et al., 1994). The result is the increased mem-

ane abundance of ENaC. Nedd4-2 is phosphorylated by SGK-1,
th in vitro and in vivo and this phosphorylation leads to a disrup-
n in the interaction between Nedd4-2 and ENaC, thereby

creasing the surface residency time of ENaC, resulting in in-
ased Na+ transport (Debonneville et al., 2001; Snyder et al.,
04, 2002). Aldosterone induces the MR-mediated upregulation
SGK-1 mRNA expression in the distal nephron of rat kidney
thin 30 min (Bhargava et al., 2001) the earliest transcriptional
sponse of aldosterone. In this way aldosterone indirectly regu-
es the rate of Na+ absorption by modulating the transcription
the rapidly-acting kinase SGK-1. Moreover, SGK-1 is also re-
ired for the aldosterone-mediated upregulation in activity of
e Na+/K+ATPase, which provides the electrochemical driving
rce for Na+ reabsorption.

SGK1 activity, as is the case for the related serine–threonine
ase PKB/Akt, is dependent on phosphorylation at two serine

sidues by phosphoinositide-dependent protein kinase (PDK1),
effector of PI3K signalling (Kobayashi and Cohen, 1999). SGK-
ctivity is therefore blocked by PI3K inhibitors and is dependent
PIP3, (a phosphoinositide generated when PI3K phosphorylates
2 at the 30 position), for complete activation (Kobayashi and

hen, 1999; Park et al., 1999). Interestingly, in a mouse CCD cell
e, aldosterone induced PIP3 production in the plasma membrane
d PIP3 was found to mediate aldosterone stimulation of ENaC
elms et al., 2005), suggesting an interplay between the activa-
n of SGK-1 via PI3K-mediated PDK-1 activation and the lipid
oduct of PI3K activity, PIP3, which could be involved in SGK-1
embrane recruitment. Recently, the phosphorylation-induced
tivation of the hydrophobic motif domain of SGK1 has been
own to be dependent upon association with mTOR including
tor (mTORC2), which then permits interaction and phosphoryla-
n with PDK1 and the activation of ENaC (Lu et al., 2010).
Work from our own laboratory has shown that the novel pro-

in kinase D1 (PKD1) plays a crucial role in the regulation of ENaC.
dosterone rapidly activated PKD1 within 5 min in a murine CCD
ll line, in an MR- and EGFR-dependent manner (McEneaney et al.,
07). This activation was found to be required for the aldoste-
ne-mediated rapid trafficking of CFP-tagged ENaC subunits
cEneaney et al., 2008) and for the apical membrane expression
d activity of endogenous ENaC subunits, an effect observed after
ronic aldosterone treatment (McEneaney et al., 2010b). PKD1 is a
ember of a family of proteins (PKD1, 2 and 3) with a multitude of
ease cite this article in press as: Dooley, R., et al. Non-genomic actions of aldost
llular Endocrinology (2011), doi:10.1016/j.mce.2011.07.019
nctions, including the regulation of post-Golgi trafficking events
ykx et al., 2003; Van Lint et al., 2002). PKD1 phosphorylates
osphatidylinositol 4-kinase (PI4K) at the Golgi complex, result-

g in the upregulation of vesicle fission from the trans Golgi net-
rk to the plasma membrane (Hausser et al., 2005). Therefore,
osterone may regulate fission events at the Golgi complex, so
-regulating the rate of ENaC translocation to the plasma

embrane.
Members of the Ras superfamily of small GTPases have emerged
key regulators of vesicular transport. These molecular switches

cle between GDP- and GTP-bound forms, as regulated by guan-
e nucleotide exchange factors (GEFs) and GTPase activating pro-
ins (GAPs). Aldosterone induces K-RasA expression and activity,
omoting ENaC open probability via a PI3K signalling pathway
taruschenko et al., 2004). Aldosterone promotes the interaction
tween K-RasA and PI3K, and K-RasA interacts with ENaC
taruschenko et al., 2005), highlighting the dual role of K-RasA
ting as both a molecular scaffold, bringing PI3K in close proxim-
to ENaC, and as an activator of PI3K. Another member of the Ras

perfamily, RhoA, also plays a central role in ENaC regulation.
oA rapidly increases ENaC membrane levels via Rho-kinase
d PI(4)P5-kinase activation, and the resulting increases in PIP2
els likely promote ENaC plasma membrane insertion

ochynyuk et al., 2006). Aldosterone promotes the rapid activa-
n of Rho kinase within 10 min in mesangial cells, resulting in
pertrophy and increased actin polymerization (Diah et al.,
08). Moreover, VSMC remodelling induced by aldosterone was
ediated via Rho kinase activation (Miyata et al., 2008). Rho GTP-
es and their associated kinases are well known to be important
gulators of cytoskeleton structure, and consequently play an
portant role in subcellular vesicle trafficking. Total internal

flection (TIRF) microscopy and fluorescence recovery after
otobleaching (FRAP) analysis showed that RhoA accelerates the

te of ENaC trafficking to the plasma membrane, through effects
microtubules (Pochynyuk et al., 2007). Aldosterone increased

e expression and phosphorylation of the Rab-GAP, AS160, in
D epithelia, and these phosphorylation sites were found to over-

with SGK-1 substrate sites (Liang et al., 2010). Aldosterone
duced an increase in apical ENaC localization in AS160-over-
pressing epithelia, and in the absence of aldosterone, AS160
er-expression increased total ENaC expression without affecting
rface abundance or activity. AS160 thus stabilizes ENaC in intra-
llular compartments under basal conditions, while aldosterone-
pendent AS160 phosphorylation facilitates ENaC forward
fficking (Liang et al., 2010).
Aldosterone stimulates the expression of the small chaperone

otein, GILZ (glucocorticoid-induced leucine zipper protein 1) in
nal CCDs (Robert-Nicoud et al., 2001). GILZ is a component of
e ENaC regulatory signalling complex found to selectively mod-
ate the cell surface expression of ENaC (Soundararajan et al.,
09). The inhibitory components of this complex, Raf-1 and
dd4-2, interact with ENaC and decrease the cell surface abun-
nce of this channel. The aldosterone-stimulated components of
e ENaC regulatory complex, SGK-1 and GILZ, cooperatively inhi-

the activities of Raf-1 and Nedd4-2 and therefore synergistically
crease ENaC cell surface expression (Soundararajan et al., 2009).
oreover, GILZ1 inhibits the ubiquitinylation of SGK-1 and its sub-
quent proteasome-mediated degradation, thereby prolonging its
lf-life and increasing its steady-state expression (Soundararajan
al., 2010).
Rho family members and their regulatory proteins are involved
the trans-activation of several steroid receptors (Kino et al.,

06; Rubino et al., 1998; Su et al., 2001). Constitutive over-
pression of Rac1, a member of the Rho family GTPases, induced
up-regulation in MR nuclear translocation and MR-dependent
nscription, whereas constitutively active RhoA suppressed
erone: From receptors and signals to membrane targets. Molecular and
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aldosterone-stimulated reporter activity (Shibata et al., 2008). Th
study provides a clear example of one of the possible routes o
cross-talk between intracellular signalling cascades and MR-med
ated transcription.

5. Conclusion

Steroid hormones such as aldosterone induce rapid effect
independent of de novo protein synthesis in numerous target tis
sues and these effects play a crucial role in the fine-tuning of la
tent genomic responses to the hormone. Aldosterone-mediate
rapid signalling effects such as the activation of multiple kinas
cascades allows for the dynamic regulation of transcriptiona
events through the phosphorylation of the mineralocorticoi
receptor itself, of coactivators or direct phosphorylation of th
target proteins themselves such as the various ion channel
transporters discussed.

The rapid responses to aldosterone are mediated either via th
classical nuclear MR or through an as yet unidentified membran
MR. Interestingly, as opposed to the ER, AR and PR, MR lacks th
conserved palmitoylation motif involved in the membrane anchor
ing of these receptors. Controversy still abounds on the identity o
a membrane MR and its functional role in physiology, and furthe
work is required to examine the membrane targeting of classica
MR, which could occur either through a lipid modification of th
receptor or through direct interactions with membrane scaffoldin
proteins. Some rapid non-genomic effects of aldosterone do not ap
pear to require MR such as intracellular Ca2+ mobilization and spe
cific protein kinase isoform activation. The activation of Ca2+ entr
can occur within seconds and represents one of the earliest non
genomic responses to a wide range of steroid hormones. Some ste
roid hormones such as vitamin D, estrogen, glucocorticoids an
aldosterone have been shown to directly activate specific protei
kinase isoforms (PKCa, PKCf, PKCd) in cell-free systems raisin
the possibility that under certain conditions these kinases can ac
as receptors for steroid hormones. The question is still open if th
type of ‘in vitro’ non-genomic signalling can occur in an intact cel
how its specificity to cell types can be conferred given the ubiqu
tous expression of these kinases and its importance to the physio
logical response to steroid hormones. A fast PKCa–Ca2+ respons
has been demonstrated for aldosterone and estrogen in CCD an
colonic crypts. One possibility is the direct activation of PKCa a
the missing-link receptor to produce the near instantaneous entr
of Ca2+ through a microdomain localization and activation of th
kinase and another as yet unidentified co-regulator (e.g. calmodu
lin kinase).

Aldosterone-induced rapid signalling effects modulate multipl
membrane targets, either by directly affecting their activity, o
indirectly through the modulation of MR-dependent transcription
A complex network of cross-talk exists between rapid an
latent-induced effects and synergism between both pathways re
sults in the ultimate fine-tuning of the physiological response t
aldosterone.
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