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Abstract

Steroids exert their actions through several pathways. The classical genomic pathway, which involves
binding of steroids to receptors and subsequent modulation of gene expression, is well characterized.
Besides this, rapid actions of steroids have been shown to exist. Since 30 years, research on rapid
actions of steroids is an emerging field of science. Today, rapid effects of steroids are well established,
and are shown to exist for every type of steroid. The classical steroid receptors have been shown to be
involved in rapid actions, but there is also strong evidence that unrelated structures mediate these
rapid effects. Despite increasing knowledge about the mechanisms and structures which mediate
these actions, there is still no unanimous acceptance of this category. This article briefly reviews
the history of the field including current controversies and challenges. It is not meant as a broad
review of literature, but should increase the awareness of the endocrinology society for rapid
responses to steroids. As members of the organizing committee of the VI International Meeting on
Rapid Responses to Steroid Hormones 2009, we propose a research agenda focusing on the
identification of new receptoral structures and the identification of mechanisms of actions at
physiological steroid concentrations. Additionally, efforts for the propagation of translational studies,
which should finally lead to clinical benefit in the area of rapid steroid action research, should
be intensified.
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Introduction

Steroids exert their biological functions through several
mechanisms. The classical genomic action of steroids is
well established and characterized since decades.
Besides this, rapid or nonclassical actions of steroids
have been described as early as 1942 when Hans Selye
discovered instant anesthetic effects of i.p. injected
progesterone in rats (1). These and few other findings
especially those originating from Pietras & Szego (2) in
the 1970s remained dormant and in the depository of
science until the middle of the 1980s. At that time,
related findings were more widely recognized, and the
dogma of genomic steroid action as the only available
hypothesis was increasingly challenged by the scientific
community. Subsequently, from the 1970s up to the
time of writing this article, literature on rapid steroid
actions developed from about ten papers to a current
archive of about 2000 citations.

In the past 10 years, it was shown that classical
receptors are involved in rapid signaling involving
almost all steroid hormones including thyroid hormone
and vitamin D (reviewed in (3)). Membrane-located
ndocrinology
forms of estrogen and progesterone receptors were
identified, and probably exist for other steroid hormone
receptors such as glucocorticoid and androgen
receptors, as the membrane location may be due
to palmitoylation, which also occurs in these receptors
(4, 5). Several signaling cascades, for example, those
involving phosphoinositide-3 kinase, MAPKs, tyrosine
kinases, or the JAK/STAT pathways, have been
identified (reviewed in (3)).

In the 1990s, the interest in this field increased by
findings which did not fit to the involvement of
classical receptors. For example, it was demonstrated
that rapid effects of aldosterone are not sensitive
toward mineralocorticoid receptor inhibitors such as
spironolactone. In addition, rapid actions of aldoster-
one have been shown in cells lacking the classical
mineralocorticoid receptor (6, 7). These and other
data resulted in claims for novel, alternative receptors.
Meanwhile, this topic is discussed in a series of
international meetings on rapid response to steroid
hormones (RRSH) and in specialized section meetings
embedded in large congresses, e.g. for endocrinology
or neurosciences.
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Table 1 Physiologically relevant rapid actions of steroids.

Steroid Physiologically relevant effect Involved receptor References

Progesterone Effects on motility and chemotaxis
of human spermatozoa

Unknown Reviewed in Baldi et al. (2009) (16)

Increase of intracellular calcium
in human sperm

Unknown Baldi et al. (1991) (24)

Acrosome reaction in human sperm Unknown Morales et al. (1992) (25) reviewed
in Baldi et al. (2009) (16)

Aldosterone Regulation of cell volume in
human mononuclear leukocytes

Unknown Wehling et al. (1991) (26)

Vasoconstriction of resistance
arteries in male humans

Unknown Romagni et al. (2003) (27)

Alternation in pH in MDCK cells Unknown Gekle et al. (1996) (28)
Inflammation, hypertrophy, fibrosis

in rat heart
Classical mineralocorticoid

receptor
Rocha et al. (2002) (29),

Young et al. (1994) (30)
and Sun et al. (2002) (31)

ENaC trafficking in renal CCD cells Classical mineralocorticoid
receptor

McEneaney et al. (2008) (32)

PKD signaling in renal cell proliferation Classical mineralocorticoid
receptor

McEneaney et al. (2009) (33)

Estrogen Rapid vasodilation in postmenopausal
women

Classical estrogen receptor? Gilligan et al. (1994) (34)

Activation of ERK in uterine arterial
endothelial cells from pregnant ewes

Classical estrogen receptor Chen et al. (2004) (35)

Activation of nitric oxide synthase in
endothelial cells of rat adipocytes

Classical estrogen receptor Jaubert et al. (2007) (36)

Increase in [Ca]i in chicken and pig
granulosa cells, triggered by inositol
1,4,5-trisphosphate

Unknown Morley et al. (1998) (37), Shears
(1991) (38) and Eppig (1991) (39)

Activation of ERK and increase in
insulin biosynthesis

Estrogen receptor a Alonso-Magdalena et al. (2008) (40)

Insulinotropic action Estrogen receptor b Nadal et al. (1998) (41) and Soriano
et al. (2009) (42)

Female sex-specific antisecretory
responses in intestine

Membrane estrogen
receptor a

O’Mahony et al. (2009) (43, 44)

Vitamin D Effects on membrane-gated calcium
channels, phospholipase C activity,
and the sodium/hydrogen antiport in
osteoblasts

Vitamin D receptor Norman et al. (2002) (45) and
Huhtakangas et al. (2004) (46)

Opening of chloride channels in
osteoblasts requires intact VDR

Vitamin D receptor Zanello et al. (2004) (47)

In keratinocytes and in vivo in skin:
protection against u.v.-induced DNA
damage

Vitamin D receptor Dixon et al. (2007) (48)

VDR is present in T-tubule membranes
of heart muscle cells, and is associated
with myocyte contraction

Vitamin D receptor Tishkoff et al. (2008) (49)

Alternations of cytosolic calcium
concentration in mouse osteoblasts

Unknown Lieberherr (1987) (50)

Thyroid hormones Formation of new blood vessels
in the chick chorioallantoic
membrane model

Integrin avb3 Davis et al. (2004) (51)

ERK/MAPK activation in CV-1 cells Classical thyroid hormone
receptor

Davis et al. (2000) (52)

Androgens Alternation of calcium levels in
activated T-cells, male rat osteoblasts

Unknown Benten et al. (1997) (53) and
Lieberherr & Grosse (1994) (54)

Activation of MAPK kinases in prostate
cancer cells

Classical androgen
receptor

Peterziel et al. (1999) (55)

Prolactin release from lactotrophs
(type 2) in the male pituitary

Unknown Christian et al. (2000) (56)

Antiproliferative effect of testosterone
on LNCaP human prostate cancer cells

Membrane androgen
receptor

Hatzoglou et al. (2005) (57)

Proliferative effect of dihydrotestosterone
on human breast cancer cells

Integrin avb3 Lin et al. (2009) (58)

Physiological concentrations of the different steroids used as eligibility criterion: progesterone: pM–mM (dependent on the site of action); estradiol: up to 10 nM;
aldosterone 0.1 nM; 1a,25(OH)2-vitamin D3: 1–0.1 nM in plasma; thyroid hormones: 0.01 nM; androgen: 0.1–10 nM (dependent on the site of action);
glucocorticoids: 10 nM (free cortisol).
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Nonclassical receptors for rapid
steroid action

Besides the rapid actions of steroids mediated through
classical receptors, there are several examples of
alternative molecules which mediate these rapid
actions. Often, these are already known proteins, with
distinct biological functions. For example, there is strong
evidence that integrins mediate rapid effects of thyroid
hormones (8). The digitalis receptor (digitalis being a
steroid) is a membrane enzyme, namely sodium–
potassium ATPase (9). The odorant receptors, through
which we may smell steroidal pheromones, have not
been identified yet, but they must exist (10). In plants,
brassinosteroids do not stimulate transcription, but bind
to transmembrane receptor kinases (11). Additionally, it
was demonstrated that neurosteroids act through GABA
receptors (12). Current data suggest that neurosteroids
may alternatively act via an as yet unidentified
G-protein-coupled receptor (13). The identification of
completely unknown structures, which may mediate
rapid steroid actions, has turned out to be difficult.
All evidences for alternative membrane receptors
transmitting rapid steroid action, which are not related
to known structures, are still controversially discussed.
This particularly applies to GPR30 as a potential
receptor for estrogen and the membrane progesterone
receptor (14, 15).
Physiological and pharmacological
relevance of rapid steroid actions

A conceptual problem of many studies dealing with
rapid steroid actions is the use of very high, supraphy-
siological steroid concentrations. This renders the
identification of physiologically relevant rapid actions
of steroids difficult. Table 1 summarizes some examples
of steroid effects observed at physiological concen-
trations. It is important to consider the concentration
of the steroid at the site of action, which may
significantly differ from the circulating one. Pro-
gesterone may serve as an example: in the case of
sperm stimulation, it is present at very high concen-
trations (exceeding plasma levels by a factor of 1000) at
the site of action (reviewed in (16)). In general,
Table 2 Rapid steroid actions that have already been successfully tra

Steroid action

Anesthetic effects of progestins A

Fluticasone and budesonide decrease the airway
mucosal blood flow

Membrane effects of high-dose glucocorticoid application A
experiments using physiological concentrations
of steroids at their site of action must be encouraged
in future studies to better identify the physiological
role of rapid steroid effects.

Nevertheless, also rapid actions of steroidsmediated by
supraphysiological concentrations may be relevant in
pharmacological use, and therefore have clinical impli-
cations. Examples for this are the use of glucocorticoids
to decrease the airway mucosal blood flow in asthma
patients (17), the use of these steroids in acute phases of
rheumatic diseases (18), and the use of neuroactive
steroids as anesthetics or antidepressants (19).

Another problem that has received little attention
until now is the fact that circulating hormone levels do
not change rapidly, and therefore rapid effects should
be persistent. Comparably little is known about the
desensitization processes and secondary genomic
impact of nongenomically initiated steroid actions
which have been shown to exist (20).
Translational relevance

In the 1990s, there was great enthusiasm and hope to
utilize the novel findings on rapid steroid hormone
action for improved patient care. Overall, this hope has
not been realized. In the past 15–20 years, no drug
based on any kind of mechanism of rapid steroid action
has been developed and marketed. However, some
steroids that act rapidly, for example, glucocorticoids
which are used in acute rheumatic diseases, have been
used therapeutically for many years (18). In Table 2,
the few successfully translated rapid actions of steroids
are summarized. Most of them have been translated
years ago without recognition of the rapid effect they
are based on.

Furthermore, there are promising candidates which
either are being developed or await funding to be
taken into development. A prominent example is
STX (2-(4-hydroxyphenyl)-3-phenylpent-2-enoic acid
(4-(2-dimethylaminorthoxy)-phenyl)amide, E isomer),
a selective estrogen receptor modulator (SERM), with
potential impact on menopause symptoms and anti-
obesity effects, which has been shown to act rapidly
(21). The deaminated thyroid hormone analog
tetrac may be useful in the treatment of cancer (22).
nslated (in part unwittingly).

Clinical use

lthesin (mixture of alphaxolone and alphadolone) was formerly
used in humans, but was stopped due to severe side effects, and
is still in use in veterinary medicine (59)

Treatment of asthma by inhalation of these glucocorticoids (18)

cute phases or particular severe forms of rheumatic diseases such
as lupus erythematosus, vasculitis, polymyositis, and rheumatoid
arthritis (17)
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For vitamin D analogs, a role as anticancer and
diabetes-preventing agents has been proposed based
on their extranuclear effects (23).
Recommendations

The organizing committee of the RRSH series states that

i) There is evidence for rapid steroid effects through
both classic steroid receptors and unrelated
structures presumably residing in biological
membranes.

Future research should be focused on rapid
physiological effects of steroid hormones to
elucidate the involved biological pathways. There-
fore, it is important that the concentrations used
in the experiments are critically reflected. Studies
analyzing rapid effects of steroids in cell lines and
isolated tissues should be translated into intact
animal models. Furthermore, the careful analysis
of dose dependence of these effects in physiological
concentrations is necessary. The pharmacody-
namics of the involved receptors is another
important issue, which should be analyzed in
the future.

ii) The identification of new ‘receptoral structures’
that mediate rapid actions is difficult and, until
now, most approaches have failed to do this or led
to contradictory results. Future research should
focus on the identification and validation of these
structures. The difficulties of these approaches
should also be recognized and appreciated by the
funding agencies.

iii) Increased emphasis must be placed on possible
clinical application of experimentally demon-
strated rapid actions of steroids. Until now, only
limited translational success in the area of rapid
responses to steroid hormones is evident.
However, there are promising candidates, and
others should urgently be identified and developed
into potential drugs. Basic researchers are
encouraged to seek advice from clinically oriented
or translationally experienced researchers.

As a general concern, we anticipate that the area
could face increasing funding problems if research were
consumed by the very prominent area of classic steroid
receptor research, or no clinical applications became
evident in the near future.

Thus, this position paper stresses that the scientific
community, funding agencies, and journal editors
should structurally and financially acknowledge the
opportunities of rapid and nonclassical steroid research.
Scientists from neighboring areas (for example, those
working on G-proteins or other rapid signaling
pathways, or researchers from clinical areas of
relevance, such as rheumatic diseases) should be
www.eje-online.org
involved in the opportunities and challenges of this
still novel research field.
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