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abstract

PURPOSE Dynamic network models predict clinical prognosis and inform therapeutic intervention by elucidating
disease-driven aberrations at the systems level. However, the personalization of model predictions requires the
profiling of multiple model inputs, which hampers clinical translation.

PATIENTS AND METHODS We applied APOPTO-CELL, a prognostic model of apoptosis signaling, to showcase the
establishment of computational platforms that require a reduced set of inputs. We designed two distinct and
complementary pipelines: a probabilistic approach to exploit a consistent subpanel of inputs across the whole
cohort (Ensemble) and amachine learning approach to identify a reduced protein set tailored for individual patients
(Tree). Development was performed on a virtual cohort of 3,200,000 patients, with inputs estimated from clinically
relevant protein profiles. Validation was carried out in an in-house stage III colorectal cancer cohort, with inputs
profiled in surgical resections by reverse phase protein array (n = 120) and/or immunohistochemistry (n = 117).

RESULTS Ensemble and Tree reproduced APOPTO-CELL predictions in the virtual patient cohort with 92% and
99% accuracy while decreasing the number of inputs to a consistent subset of three proteins (40% reduction) or
a personalized subset of 2.7 proteins on average (46% reduction), respectively. Ensemble and Tree retained
prognostic utility in the in-house colorectal cancer cohort. The association between the Ensemble accuracy and
prognostic value (Spearman ρ = 0.43; P = .02) provided a rationale to optimize the input composition for specific
clinical settings. Comparison between profiling by reverse phase protein array (gold standard) and immuno-
histochemistry (clinical routine) revealed that the latter is a suitable technology to quantify model inputs.

CONCLUSION This study provides a generalizable framework to optimize the development of network-based
prognostic assays and, ultimately, to facilitate their integration in the routine clinical workflow.

Clin Cancer Inform. © 2019 by American Society of Clinical Oncology

Licensed under the Creative Commons Attribution 4.0 License

INTRODUCTION

In recent years, there has been a transition from
making clinical decisions on the basis of macroscopic
characteristics of the tumor to molecular-based bio-
markers.1-5 Advances in omic technologies have led to
the development of prognostic and predictive mo-
lecular signatures for the majority of solid tumors.6-17 A
few transcriptomic-based taxonomies have been
commercialized, and their introduction in the clinic is
being evaluated.18-21 Dynamic systems models, histori-
cally relegated to comprehending cancer biology in basic
research, have emerged as valuable biomarkers.22-27

Systems models, which primarily are based on ordi-
nary or partial differential equations, have the inher-
ent ability to encode pathway properties that can
serve both as prognostic indicators and as screening
platforms to inform patient treatment. The network
dynamics, and thus model predictions, can be per-
sonalized by tuning critical model inputs with patient-

specific measurements, such as protein concentra-
tions or expression of genes and microRNAs. How-
ever, robust quantification of model inputs requires
a large tumor volume for each sample, highly spe-
cialized equipment, and time-consuming protocols
not suitable for a fast-paced environment such as
a clinical histopathology department.

We developed a framework to identify the essential
model inputs that require de novo patient-specific
quantification for a specific clinical setting, which
therefore assists with the integration of pathway-based
biomarkers in the routine clinical workflow (Fig 1). As
a case study, we selected a mathematical model of
apoptosis execution, APOPTO-CELL, that our group
developed28 and showed to be prognostic in colorectal
cancer (CRC)22,26 and glioblastoma multiforme.29 We
developed two methods to apply APOPTO-CELL with
a minimal set of protein inputs: Ensemble and Tree.
Ensemble estimates the APOPTO-CELL signature by
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aggregating the results from a collection of APOPTO-CELL
simulations performed with a range of concentrations for
the proteins that were not quantified. In contrast, Tree uses
a decision tree to estimate the APOPTO-CELL signature
from a smaller number of protein inputs. The set of proteins
that need to be measured is dictated by the decision tree
tailored for the individual patient. We validated our
framework in an in-house CRC cohort, with protein inputs
quantified by high-throughput techniques, such as reverse
phase protein array (RPPA) and immunohistochemistry
(IHC).

PATIENTS AND METHODS

Development and Validation of Minimal Models for

APOPTO-CELL With Virtual and Real-World CRC Cohorts

APOPTO-CELL is a mathematical model that takes as input
tumor protein expression of APAF1, procaspase-3 (PC3),
procaspase-9 (PC9), SMAC, and XIAP and predicts apo-
ptosis sensitivity. The development of the Ensemble and
Tree variants of a minimal model for the APOPTO-CELL
signature with a virtual patient cohort is described in the
Data Supplement.

We validated our minimal models in a real-world cohort
from a retrospective collection of patients with stage II to IV
CRC, as previously reported.26 Clinical follow-up of patients
is standardized, and every included patient was reviewed
every 6 months for 3 years followed by 6-month or annual
visits for years 4 and 5. We used disease-free survival (DFS)
and overall survival (OS) as clinical end points. DFS was
defined as the absence of a suspicious lesion on surveil-
lance computed tomography of thorax, abdomen, and
pelvis performed according to guidelines in place at the
treating hospital (every 6 months for 2 years followed
annually for 3 years or annually for 3 years). OS was de-
fined as the most recent clinical contact with a patient. We
focused our study on patients with stage III CRC treated
with fluorouracil-based chemotherapy with clean resection
margins and follow-up of at least 1 month after surgery;
with sufficient bulk tumor material available for quantifi-
cation of PC3, PC9, SMAC, and XIAP by IHC; and previous
measurements of those proteins by RPPA.26 The workflow
that illustrates data handling and patient inclusion is
shown in Appendix Figure A1, and clinical baseline
characteristics are listed in the Data Supplement Table.
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Patient #1
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FIG 1. Workflow for the development and validation of two variants of minimal models for APOPTO-CELL: Ensemble and Tree. Ensemble
uses a probabilistic approach with clinically grounded distributions in place of individualized measurements for a subset of proteins. In
contrast, Tree can be used to personalize the proteins to measure for every patient by traversing the classification decision tree to a node with
the predicted APOPTO-CELL signature.
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Statistical Analysis

We assessed differences among DFS and OS curves using
Kaplan-Meier estimates and evaluated statistical signifi-
cance by log-rank tests. We estimated the relative risk of
relapse and death associated with the signatures by un-
adjusted and two multivariate Cox proportional hazards
regression models (Data Supplement). In multivariate
model 1, we controlled for clinical covariates previously
found to be associated with survival in univariate ana-
lyses,26 namely T stage (T2 to T3 v T4) and lymphovascular
invasion (invasion v no invasion). In multivariate model 2,
we additionally adjusted for age (continuous, linear), sex
(male v female), and tumor location (distal, proximal v
rectal). We reported hazard ratios, 95% CIs, and likelihood
ratio test P values. We assessed model performance with
the concordance index.

Development and validation of Ensemble and Tree variants
of the reduced model were performed in MATLAB with
Parallel Computing and Statistics Toolboxes release 2014b
(The MathWorks, Cambridge, United Kingdom). Simula-
tions and construction of decision trees were performed
with batch jobs run at the Irish Centre for High-End
Computing (MATLAB with Parallel Computing Toolbox
release 2016b). Batch corrections and survival analyses
were performed in R version 3.4.330 using the packages sva
version 3.26.031 and survival version 2.41-3.32,33 Decision
trees were visualized using Graphviz version 2.38.0.34

Data and Software Availability

Data sets and analysis source code are available at Zenodo
(https://doi.org/10.5281/zenodo.1162683).

RESULTS

Investigating Minimal Models for APOPTO-CELL

We synthetized a virtual patient cohort to develop and
evaluate the performance of two variants of a minimal
model for APOPTO-CELL: Ensemble and Tree. We pre-
viously profiled all five proteins required by APOPTO-CELL
in a cohort of patients with stage II/III CRC by quantitative
Western blotting (qWB)22 (Fig 2A, 1). We used these protein
profiles to build clinically relevant distributions of each
protein input discretized into 20 percentile bins (ie, 20
concentrations; Fig 2A, 2). We built a virtual CRC cohort
with one patient for each permutation of the five protein
inputs and the 20 concentrations considered, which resulted
in approximately 3,200,000 patients (five-dimensional cube
with 20 concentrationsfive proteins; Fig 2A, 3). We ran one
simulation for each virtual patient and computed the cor-
responding APOPTO-CELL signature using 25% substrate
cleavage (SC) as the cutoff (SC less than or equal to 25% v
SC greater than 25% for apoptosis-resistant and apoptosis-
susceptible predictions, respectively).22,26,28

Next, we examined systematically the predictions land-
scape obtained by running APOPTO-CELL with an arbitrary
subset of the proteins. For each measurement status

(available v not available) and for each of five protein inputs,
we calculated the APOPTO-CELL signature. These 32
combinations (two-measurement statusfive proteins) span the
complete set from having all five protein measurements
available to having no quantifications. For each virtual
patient, we computed both the ground-truth APOPTO-CELL
and the Ensemble signatures. The ground-truth APOPTO-
CELL signature was obtained by running APOPTO-CELL
using all five proteins as input. The Ensemble signature was
determined by running multiple simulations (20 concen-
trationsNo. unavailable proteins) using the available inputs and
permutations of possible values for the remaining un-
available protein concentrations. For each virtual patient,
we enumerated the simulations classified as apoptosis
sensitive or apoptosis resistant and used the majority vote
as the overall prediction (Fig 2A, 4). For each combination
of proteins, we assessed the fractions of virtual patients for
whom the Ensemble and ground-truth APOPTO-CELL
predictions matched (Fig 2B). Unavailability of APAF1
expression affected only a very limited number of simula-
tions (less than 1%), which rendered PC3 + PC9 + SMAC +
XIAP the optimal quartet of proteins. Among the trios and
duos of proteins, PC3 + SMAC + XIAP and SMAC + XIAP
ranked highest (fourth and eighth out of 32), whichmatched
ground-truth APOPTO-CELL predictions in 92% and 87%
of the simulations, respectively. We deemed the Ensem-
ble signatures conclusive when , we computed the same
predictions for more than 75% of the simulations (super-
majority vote; Fig 2A, 4). ThePC3+SMAC+XIAP andSMAC+
XIAP protein combinations conclusively and correctly cat-
egorized 84% and 74% of the virtual patients, respectively.
However, we conclusively made incorrect predictions for 3%
and 5% of patients (ie, more than 75% of the simulations did
not match with ground-truth APOPTO-CELL; Fig 2B). SMAC
closely followed by XIAP ranked highest as single proteins
and achieved 75% and 73% accuracy, respectively. For all
other protein combinations, the ability to make conclusive
predictions and to identify apoptosis-resistant virtual patients
decreased drastically.

We next sought to identify concentration ranges where
apoptosis predictions are driven largely by a single
protein (Fig 2C). For each concentration of the protein of
interest, we aggregated by majority vote the APOPTO-
CELL signature across 160,000 simulations (20 con-
centrationsfour available proteins). For extreme SMAC (greater
than or equal to the 95th percentile) or XIAP (less than the
5th percentile) concentrations, APOPTO-CELL predicted
apoptosis sensitivity almost independently of any other
protein. Conversely, high XIAP (greater than or equal to the
95th percentile) produced predominantly predictions of
apoptosis impairment (86%). The fraction of simulations
that predicted apoptosis resistance decreased with in-
creasing concentrations of PC3 and, albeit more moder-
ately, PC9. In contrast, APAF1 expression influenced

Translating Network Biomarkers Into the Clinic

JCO Clinical Cancer Informatics 3

Downloaded from ascopubs.org by Royal College of Surgeons in Ireland on April 24, 2019 from 193.001.229.002
Copyright © 2019 American Society of Clinical Oncology. All rights reserved.

https://doi.org/10.5281/zenodo.1162683


A

C

B

Vi
rtu

al
 P

at
ie

nt
s 

(%
)

0

10

20

30

40

50

60

70

80

90

100

Super-majority vote
Match with ground-truth APOPTO-CELL

SC > 25

SC > 25%

SC > 25

SC 25

SC 25%

SC 25
Inconclusive (75%)

C
o

n
cl

u
si

ve
(>

 7
5%

)

Protein input combinations

Best 4Ps Best 3Ps Best 2Ps Best 1P

APAF1

PC3

PC9

SMAC

XIAP

Si
m

ul
at

io
ns

 (%
)

Protein Concentration (percentiles)

0

25

50

75

100
APAF1

0

25

50

75

100
PC3

0

25

50

75

100
PC9

0

25

50

75

100
SMAC

0

25

50

75

100
XIAP

Reference CRC
patient cohort,

n = 30,
Hector et al22

No. of available proteins No. of simulations 
1 204

2 203

3 202

2.
5t

h
12

.5
th

22
.5

th
32

.5
th

42
.5

th
52

.5
th

62
.5

th
72

.5
th

82
.5

th
92

.5
th

2.
5t

h
12

.5
th

22
.5

th
32

.5
th

42
.5

th
52

.5
th

62
.5

th
72

.5
th

82
.5

th
92

.5
th

2.
5t

h
12

.5
th

22
.5

th
32

.5
th

42
.5

th
52

.5
th

62
.5

th
72

.5
th

82
.5

th
92

.5
th

2.
5t

h
12

.5
th

22
.5

th
32

.5
th

42
.5

th
52

.5
th

62
.5

th
72

.5
th

82
.5

th
92

.5
th

2.
5t

h
12

.5
th

22
.5

th
32

.5
th

42
.5

th
52

.5
th

62
.5

th
72

.5
th

82
.5

th
92

.5
th

4 20

5 1

2.97

0.002

0.41

0.002

0.34

0.009

2.55

0.020

0.040.04

5.63e–5

P
C

9

SMAC

X
IA

P

20,201,20 2,20

20,11,1 2,1

20,21,2 2,2

APAF1PC3

APAF1
PC3

P
C

9

APAF1
PC3

P
C

9

APAF1
PC3

P
C

9

APAF1PC3

P
C

9

APAF1
PC3

P
C

9

APAF1PC3

P
C

9

APAF1PC3

P
C

9

APAF1
PC3

P
C

9

0 25 50 75 100

% Simulations

1

2

#cp

Pa
tie

nt
s

Majority

Simple Super
50% 75%

Virtual patient cohort
(n = 20 concentrations5 proteins)

Pr
ot

ei
n 

(p
er

ce
nt

ile
s)

97.5th

2.5th

Protein Concentration (M)

Protein Concentration (M)

Pr
ob

ab
ili

ty
 D

en
si

ty

0.00
10

–4
10

–2
10

0

10
–4

10
–2

10
0

2.00

4.00

6.00

APAF1

APAF1

PC3

PC3

PC9

PC9

SMAC

SMAC

XIAP

XIAP

A
P

A
F1

 (
M

)

P
C

3 
(

M
)

P
C

9 
(

M
)

S
M

A
C

 (
M

)

X
IA

P
 (

M
)

0.0Cu
m

ul
at

iv
e 

Di
st

rib
ut

io
n

0.2

0.4

0.6

0.8

1.0

FIG 2. Exploration of alternative strategies to develop a minimal model of the APOPTO-CELL signature on the basis of simulation ensembles (En-
semble). (A) Schematic representation of the pipeline to evaluate systematically how APOPTO-CELL model predictions are affected when computed
with a reduced number of inputs. For each protein, Pi(i 2 [1, 5]) was estimated from a reference cohort22 (1), and its cumulative distribution was
discretized into 20 bins of 5-percentile increments (2). The concentrations corresponding to the centers of each bin were used as inputs to APOPTO-
CELL for a full factorial design (five-dimensional cube with #c#p simulations where #c and #p indicate the number of concentrations and number of
proteins, respectively (3). For each minimal model, there are multiple simulations #c#p − #available p, and the overall APOPTO-CELL signature (substrate
cleavage [SC] ≤ 25% v SC . 25%) was computed using a majority vote (simple- and super-majority vote for . 50% and . 75% of simulations,
respectively; 4). (B) and (C) Dependency of the APOPTO-CELL signature by all combinations of measurement status (available v not available) for the
inputs and by single proteins. In (B), correct/incorrect conclusive predictions by simple- and super-majority vote are indicated by blue/purple, and red/
teal for apoptosis susceptibility (SC . 25%) and resistance (SC ≤ 25%), respectively.
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APOPTO-CELL predictions only at low concentrations
(predominantly less than the 5th percentile).22,26,28

Development of Classification Decision Trees for Optimal

Selection of Model Inputs

Results from Ensemble revealed high prediction accuracy
for subpopulations of patients from only a single or a reduced

set of inputs. Hence, we examined whether we could op-
timally select which proteins to measure, personalized to
each patient, and quantify additional inputs only when
essential.

We trained a binary classification decision tree (Tree) on
the 3,200,000 virtual patients using protein concentrations
as input features and the ground-truth APOPTO-CELL
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FIG 3. Custom-made classification decision trees (Tree) allow for personalization of which protein inputs to measure without compromising APOPTO-CELL
prediction accuracy. (A) and (B) Tree built using Gini index and a modified Gini index including a penalty for any new protein to measure as cost functions.
Trees in (A) and (B) were generated for a confidence threshold of 0.74 for illustrative purposes. (C) Tree size as a function of the accuracy for the Tree-based
approach. (D) Accuracy (ie, match with the ground-truth APOPTO-CELL signature) as a function of available proteins determined by the Ensemble (gray)
and Tree (light and dark red) variants for minimal models. Best trade-off tree for an illustrative example (dotted blue line) is circled in blue. (E) Breakdown of
protein requirements and corresponding APOPTO-CELL predictions for the best trade-off tree (blue circle in panel D) for the virtual colorectal cancer cohort.
Virtual patients where predictions by Tree and ground-truth APOPTO-CELL signature do not match are shown in gray. See also the Data Supplement.
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signature (SC greater than 25% v SC less than or equal to
25%) as target class (Data Supplement). The root and
internal nodes include a predictor (protein) and a split point
(concentration). The root node contains the predictor and
concentration, which yielded the best split. The leaf node
encodes the APOPTO-CELL signature and its confidence
level. Trees that meet a required prediction confidence can
be built by tuning the splitting routine. To build a tree, we
tested all possible predictors/proteins and split points/
concentrations and selected recursively the optimal split
(protein and concentration) with the Gini index as evalu-
ation metric (Fig 3A). To build trees that would favor re-use
of proteins previously evaluated in the internal nodes rather

than require proteins not yet in use, we introduced a per-
protein penalty in the Gini index metric (penalized Gini
index; Fig 3B). By varying the confidence threshold and the
per-protein penalty in a parameter scan, we observed an
increase in size (Fig 3C) and accuracy (Fig 3D) when
comparing trees built with the default and penalized Gini
index metrics (light and dark red solid lines, respectively).
Tree outperformed the best (solid line) and individual
(single data points) Ensemble approaches (Fig 3D, in gray)
previously outlined in Fig 2C.

Tree can be customized for a given clinical application. As
an illustrative example, we deemed it worth measuring an
additional protein only if it would result in an increase of at
least 5% in accuracy (best trade-off tree; Fig 3D, blue
dotted line). The tree meeting this requirement (Tree-5P;
Fig 3D, blue circle; Data Supplement) yielded results that
matched ground-truth APOPTO-CELL in 99% of the virtual
patients by measuring, on average, 2.7 proteins rather than
five. Tree-5P demonstrated that measurement of the full
protein set is required only for 5% of the virtual patients,
whereas for approximately one half (48%), one to two
proteins are sufficient (Fig 3E).

Validation of Minimal Models in a Cohort of Patients With

Stage III CRC, With Protein Inputs Quantified by RPPA

We validated the minimal APOPTO-CELL models in a real-
world cohort of patients with stage III CRC treated with
fluorouracil-based chemotherapy for whom the expression
of PC3 + PC9 + SMAC + XIAP had been previously de-
termined by RPPA.26 We evaluated the performances of
Ensemble for the best double, triple, and quadruple
combination of proteins identified in Fig 2C. For each
patient, we tested 20 concentrationNo. unavailable proteins sce-
narios, which resulted in 203, 202, and 201 simulations for
the best double, triple, and quadruple protein combina-
tions, respectively, which totaled approximately 1,010,400
evaluations for 120 patients. We observed differences in
Kaplan-Meier estimates for OS (P = .04) but not for DFS
(P = .24) when comparing patients categorized as apo-
ptosis sensitive or resistant by Ensemble for the best duo
combination (Figs 4A and 4E; Data Supplement Table).
When testing the best trio and quartet, we found that pa-
tients predicted as apoptosis impaired by Ensemble
showed reduced DFS and OS compared with those pre-
dicted as apoptosis sensitive (P, .05; Figs 4B, 4C, 4F, and
4G; Data Supplement Table). Furthermore, when testing
systematically all combinations of proteins, we found
a statistically significant association (Spearman ρ = 0.43;
P = .02) between Ensemble accuracy and prognostic value
(Fig 5).

We observed differences in DFS (P = .054) and OS (P = .01)
probabilities when comparing patients categorized by
Tree-4P (best trade-off tree built with only the four pro-
teins measured by RPPA and selected as in Fig 3D [Figs
4D and 4H; Data Supplement Table]). These results
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indices (c-indices) from corresponding univariate Cox proportional haz-
ards regression models for Ensemble simulation groups. Ensemble sim-
ulations were run for each combination of input status (available v not
available) for each of the four proteins quantified by reverse phase protein
array (procaspase3 [PC3], procaspase9 [PC9], SMAC, XIAP) where at
least one protein was available, which resulted in 15 groups of simulations
(24 proteins-1). For performance reasons, 10 concentrations per protein were
tested instead of the 20 used in all other analyses presented, which totaled
5,569,200 simulations for 120 patients. Each patient was classified as
apoptosis sensitive (substrate cleavage [SC] . 25%) or resistant (SC
≤ 25%) for each set of simulations on the basis of simple-majority vote. For
each Ensemble simulation group, univariate Cox proportional hazards
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c-indices computed from bootstrapped sets.
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closely resembled those obtained by using the best
quartet of proteins (0.0% and 3.0% difference in con-
cordance index computed for DFS and OS, respectively)
while requiring measurement of, on average, only 2.8
rather than four proteins (Figs 4D and 4H; Data Sup-
plement Table).

Minimal Models Provide Insights Into Patient Risk, Even

With a Suboptimal Protein Set Quantified by IHC

We tested the performances of Ensemble and Tree on
protein inputs quantified by IHC, a technique used in the
clinical pathologic routine. When comparing IHC- and
RPPA-based measurements (n = 152; Appendix Fig A1),
we found an acceptable quantitative agreement for PC3
(Spearman ρ = 0.24;P = .003) and XIAP (Spearman ρ = 0.28;
P , .001), whereas we observed no association for PC9
(Spearman ρ = 0.12; P = .15) and SMAC (Spearman ρ = 0.09;
P = .29). RPPA is the gold standard for quantitative
proteomics35-37; thus, for subsequent analyses, we retained
only proteins with significant associations between RPPA-
and IHC-based measurements. Figs 6A and 6B show
representative images for PC3 and XIAP of weak, moderate,
and strong IHC staining with validated antibodies (Appendix
Fig A2; Data Supplement) and corresponding batch-
corrected histoscore distributions (Appendix Fig A3). We
did not find statistically significant differences for DFS and
OS (P . .05) when examining PC3 and XIAP as a single
(Appendix Fig A4; Data Supplement Table) or combinatorial
(Figs 6C and 6G; Data Supplement Table) biomarker.

Next, we tested various strategies to tackle the missing data
of IHC-based protein measurements for PC9 + SMAC +
XIAP as inputs to APOPTO-CELL. We found no association
between APOPTO-CELL predictions and survival (P . .05)
when using a naı̈ve approach (individual expression for
PC3 + XIAP and median concentrations for other inputs;
Figs 6D and 6H; Data Supplement Table) or Tree (cus-
tomized tree with only PC3 + XIAP, Tree-2P; Appendix Fig
A5; Data Supplement Table). In contrast, application of
Ensemble (personalized quantifications for PC3 + XIAP
coupled with 203 simulations for APAF1 + PC9 + SMAC)
revealed differences in DFS (P = .04) and OS (P = .054;
Figs 6E and 6I; Data Supplement Table).

In exploratory analyses, we investigated the use of pro-
tein fingerprinting by IHC for PC3 + XIAP and by RPPA for

PC9 + SMAC as inputs for Tree-4P (Figs 6F and 6J; Data
Supplement Table), ground-truth APOPTO-CELL (Appen-
dix Figs A6A and A6B; Data Supplement Table), and
an enriched apoptosis signature developed to account
for PC3-mediated apoptosome-independent signaling
(APOPTO-CELL-PC326; Appendix Figs A6E and A6F; Data
Supplement Table). All three classifiers retained prognostic
value for DFS and OS (P , .05), which corroborates
previous results on the basis of RPPA-only quantifications26

(Appendix Fig A6C). Moreover, permutation analyses (Data
Supplement) indicated that PC3 + XIAP expression by IHC
critically contributed to the prognostic value of the ground-
truth APOPTO-CELL signature (Appendix Fig A6D).

DISCUSSION

The appeal of dynamic pathway models as biomarkers
stems from gaining a mechanistic understanding of the
network (dys)regulation and potential therapeutic in-
terventions.38,39 Network models deliver personalized
predictions by tailoring the model skeleton with individu-
alized inputs. However, input quantifications represent
a major bottleneck in translating mathematical models into
the clinic. Inputs should bemeasurable fromminimal amounts
of sample with high-throughput, robust, cost-effective, and
clinically amenable techniques equally suited for fresh frozen/
formalin-fixed paraffin-embedded tissues.

We used a mathematical model of caspase-driven apo-
ptosis in CRC (APOPTO-CELL28) with proven prognostic
value22,26 and treatment stratification capabilities40 as an
illustrative example. We built and validated a computational
platform to capitalize on the systems-level understanding
provided by the network dynamic while optimizing the
inputs required. This approach not only reduces the cost for
molecular characterization but also limits the exhaustion of
clinical material. We developed two computational methods
(Ensemble and Tree) with distinct and complementary
applications in clinical settings.

We designed Ensemble to identify a consistent inputs
subset to quantify for all patients enrolled in a study,
whereas Tree provides a personalized input prioritization
system. Ensemble could be applied when designing
studies with different cohort characteristics, such as dif-
ferent CRC stages and cancer types. Ensemble also could
be applied in clinical trials when planning the development

FIG 6. Assessment of minimal models for APOPTO-CELL with a subset of the inputs quantified by immunohistochemistry (IHC) for the in-house cohort of
patients with stage III colorectal cancer (CRC). (A) and (B) Representative images of tumor cores with weak (i), moderate (ii), and strong (iii) staining and
corresponding protein distributions (iv) for procaspase-3 (PC3) and XIAP. (C) to (J) Kaplan-Meier survival estimates for disease-free survival (DFS; top
row) and overall survival (OS; bottom row). (C) and (G) Patients were grouped by the PC3 + XIAP combinatorial apoptotic score (low, PC3 ≤ median +
XIAP.median; high, PC3.median + XIAP≤median; intermediate, otherwise). Patients were categorized by the APOPTO-CELL signature computed on
the basis of various inputs and computational strategies: (D) and (H) patient-specific quantifications for PC3 + XIAP and population median values for
APAF1 + procaspase-9 (PC9) + SMAC (naı̈ve approach for APOPTO-CELL), (E) and (I) patient-specific quantifications for PC3 + XIAP and clinically
relevant range for APAF1 + PC9 + SMAC (203 simulations per patient, Ensemble), and (F) and (J) best trade-off tree for PC3 + PC9 + SMAC + XIAP (Tree-4P).
All patient-specific quantifications were IHC based, except in (F) and (J), where measurements for PC9 and SMAC were reverse phase protein array based.
See also Appendix Figures A1 to A6.
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of companion assays for clinical testing of inhibitor of ap-
optosis protein antagonists. Furthermore, it enables the
integration of historical data sets. Of note, Ensemble also
would provide estimates of loss of accuracy and prognostic
power as rationale for optimizing the cost-effectiveness of
the model reduction.

In contrast, Tree is the optimal approach for individual
patients who come to the clinic, preserving 99% accuracy
while requiring 46% fewer quantifications. However, this
approach has the overhead necessary to manage allocation
of patients through the various quantification paths. Thus,
for this method to be valuable and easily adopted in busy
and fast-paced clinical settings, a robust handling system
would need to accompany the deployment of tree-based
approaches.

For some applications, not all model inputs may be de-
tected accurately and reliably by technologies that integrate
seamlessly in the clinic. Techniques such as qWB and
quantitative polymerase chain reaction may be optimal for
protein and transcript profiling in the development, vali-
dation, and refinement phases of a dynamic system model
cycle. However, correlation of mRNA and protein levels
often is poor in tumor tissue,41,42 and qWB is not a routine
biochemistry/histopathology technique in the clinic. We
previously showed how APOPTO-CELL inputs could be
quantified reliably not only by qWB but also by RPPA.26

However, integration of an RPPA-based workflow into the
clinical environment is also not feasible because RPPA is
an exploratory tool used for the collective high-throughput
analysis of larger patient cohorts. In contrast, we demon-
strated that at least for a subset of the inputs, IHC, a more
clinically amenable protein profiling alternative, represents
a valid substitute. Ensemble predictions using patient-
specific quantifications for PC3 + XIAP outperformed the
prognostic value of the same two proteins used as a com-
binatorial biomarker. These results highlight how Ensemble
makes it possible to exploit system-level properties, even
with a suboptimal inputs set, instead of falling back to
combinatorial static biomarkers. Of note, Ensemble pro-
vides an estimate of confidence in the model predictions
and thus allows the flagging of patients who require further
investigations.

Although our study has the limitation that the proteins
under investigation currently are not assessed routinely, the
methods developed can be applied to multiple diagnostic
assays that investigate oncogenic pathways and proteins
that are indeed currently routinely assessed in the clinic.
Although many challenges are at play when attempting to
bridge the gap between bench and bedside, this work
presents actionable methods to assist in the application of
systems medicine approaches in the clinic.
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APPENDIX
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FIG A1. Flow diagram that depicts the total number of patients available at each phase of the data analysis for
immunohistochemistry (IHC)-based protein quantification. (*) Clinical inclusion criteria were diagnosis of
stage III colorectal cancer, treatment with fluorouracil-based chemotherapy, clean resection margins (R0),
and follow-up of at least 1 month after resection surgery (Salvucci M, Würstle ML, Morgan C, et al: Clin Cancer
Res 23:1200-1212, 2016). RPPA, reverse phase protein array.
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FIG A3. Batch correction of protein expression quantifications in tumor cores from 166 patients. Owing to the large number of patients, two slides were
required for each of the three cores analyzed (core A, core B, and core C). Protein expression (histoscore [H-score]) for (A) procaspase-3 (PC3), (B)
procaspase-9 (PC9), (C) SMAC, and (D) XIAP in tumor tissue samples showed evidence of batch effects across slides (subcohort 1 and subcohort 2). (E-H)
Batch effects were corrected by applying ComBat (Leek JT, Johnson WE, Parker HS, et al: sva: Surrogate Variable Analysis, 2017. R package version 3.26.0.
http://bioconductor.org/packages/release/bioc/html/sva.html) with stage and chemotherapy administration as covariates. Corresponding batch-corrected
H-scores are shown for (I) PC3, (J) PC9, (K) SMAC, and (L) XIAP.
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FIG A4. Assessment of the prognostic utility of procaspase-3 (PC3) and XIAP as single-protein biomarkers (n = 117). Kaplan-Meier
estimates for disease-free survival (DFS) and overall survival (OS) among patients with stage III colorectal cancer of the in-house cohort
by PC3 (A-B) and by XIAP (C-D). Patients were dichotomized using the population median expression as cutoff. HR, hazard ratio.
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FIG A5. Application of Tree with patient-specific protein profiling performed by immunohistochemistry (IHC). (A) Best trade-off classification decision tree
for APOPTO-CELL built with a penalized Gini index cost function and customized to use procaspase-3 (PC3) + XIAP protein expression (Tree-2P) assessed
by immunohistochemistry (IHC). Kaplan-Meier survival estimates for (B) disease-free survival (DFS) and (C) overall survival (OS) for patients with stage III
colorectal cancer grouped by the Tree-2P signature. SC, substrate cleavage, HR, hazard ratio.
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FIG A6. Procaspase-3 (PC3) and XIAPmeasured by immunohistochemistry (IHC) critically contribute to the APOPTO-CELL signatures in patients with stage
III colorectal cancer (CRC) of the in-house cohort (n = 117). Kaplan-Meier estimates for (A) disease-free survival (DFS) and (B) overall survival (OS) that
compare patients categorized as apoptosis sensitive or apoptosis resistant by the APOPTO-CELL signature. As simulation inputs, we used the population
median (Salvucci M,Würstle ML, Morgan C, et al: Clin Cancer Res 23:1200-1212, 2016; Hector S, Rehm M, Schmid J, et al: Gut 61:725-733, 2012) for
APAF1 for all patients and personalized concentrations for PC3 + XIAP (by IHC; Figs 6A and 6B) and for procaspase-9 (PC9) + SMAC (by reverse phase
protein assay [RPPA; Salvucci M,Würstle ML, Morgan C, et al: Clin Cancer Res 23:1200-1212, 2016); (C) Mosaic plot comparing the APOPTO-CELL
signature obtained using patient-specific inputs assayed by RPPA-only versus a combination of RPPA- and IHC-basedmeasurements for PC9 + SMAC and
PC3 + XIAP, respectively. (D) Distribution of the concordance index (c-index) computed by univariate Cox proportional hazards regression models for DFS
and OS obtained by permutation (Perm; n = 10,000) to test the contribution of IHC-based inputs to the prognostic value of the APOPTO-CELL signature.
Baseline (ie, unperturbedmodel) andmedian permuted c-indices are indicated by solid and dotted lines in light and dark blue for DFS and OS, respectively.
(E) and (F) Kaplan-Meier estimates for DFS and OS that compare patients categorized as low risk, medium risk, and high risk by the APOPTO-CELL PC3
signature (Salvucci M,Würstle ML, Morgan C, et al: Clin Cancer Res 23:1200-1212, 2016) computed using the APOPTO-CELL predictions determined in (A)
and (B) and PC3 expression by IHC (Fig 6A).
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