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in COMT Mutant Mice: Impact on Indices of Dopaminergic,
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Cannabis use confers a two-fold increase in risk for psychosis, with adolescent use conferring an even greater risk. A high-low activity
polymorphism in catechol-O-methyltransferase (COMT), a gene encoding the COMT enzyme involved in dopamine clearance in the
brain, may interact with adolescent cannabis exposure to increase risk for schizophrenia. The impact of such an interaction on central
neurotransmitter pathways implicated in schizophrenia is unknown. Male mice with knockout of the COMT gene were treated
chronically with delta-9-tetrahydrocannabinol (THC) during adolescence (postnatal day 32-52). We measured the size and density of
GABAergic cells and the protein expression of cannabinoid receptor | (CBIR) in the prefrontal cortex (PFC) and hippocampus (HPC) in
knockout mice relative to heterozygous mutants and wild-type controls. Size and density of dopaminergic neurons was also assessed in
the ventral tegmental area (VTA) across the genotypes. COMT genotype x THC treatment interactions were observed for:
(1) dopaminergic cell size in the VTA, (2) CBIR protein expression in the HPC, and (3) parvalbumin (PV) cell size in the PFC. No effects
of adolescent THC treatment were observed for PV and dopaminergic cell density across the COMT genotypes. COMT genotype
modulates the effects of chronic THC administration during adolescence on indices of neurotransmitter function in the brain. These
findings illuminate how COMT deletion and adolescent cannabis use can interact to modulate the function of neurotransmitters systems
implicated in schizophrenia.
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INTRODUCTION

The traditional hypothesis, widely held for several decades,
is that increased dopaminergic function underlies the
pathology of schizophrenia (Carlsson, 1978). More recently,
the dopamine hypothesis of schizophrenia has been revised,
with excess mesolimbic dopamine being secondary to lower
dopamine levels in the prefrontal cortex (PFC) (Davis et al,
1991). In this context, the catechol-O-methyltransferase
(COMT) gene on chromosome 22ql1, a region implicated in
schizophrenia, is functionally significant. It encodes the
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COMT enzyme responsible for the degradation of dopa-
mine, particularly in the PFC. Furthermore, a valine to
methionine substitution (valine substitution for methionine
at the 158/108 locus Vall58Met) within COMT was shown
to reduce enzymatic activity of COMT, and thus lead to a
slower breakdown of dopamine (Chen et al, 2004; Lachman
et al, 1996). Reports have shown that a functional poly-
morphism in the COMT gene can moderate the association
between cannabis use and psychosis (Caspi et al, 2005;
Harrison and Weinberger, 2005; Tunbridge et al, 2006; van
Os et al, 2010), but not all studies support such associations
(Zammit et al, 2011). One particular study (Caspi et al,
2005) demonstrated that psychosis was most likely in those
who used cannabis during adolescence and were homozygous
for the COMT Val allele with the Met allele generating a
four-fold reduction in enzymatic activity.

Mutant mice with deletion of the COMT gene have further
elucidated the role of COMT in terms of dopamine-related
function (Babovic et al, 2007; Seamans and Yang, 2004) of
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PFC-mediated cognition (Babovic et al, 2007; Gogos et al,
1998) and of spatial working memory. Thus, they have
proved valuable in demonstrating the complexities of the
inverted U-shaped dose-response relationship between
PFC-mediated function and cortical dopaminergic activity
involving the COMT gene, whereby a narrow range of
dopamine can benefit PFC function and either insufficient
or excessive dopamine can impair cognitive function
(Castner et al, 2000; Goldman-Rakic et al, 2000; Seamans
and Yang, 2004; Tunbridge et al, 2006). Moreover, a com-
panion study by the authors have shown that the effects of
chronic adolescent exposure to delta-9-tetrahydrocannabi-
nol (THC) on behaviors related to psychosis and memory
are modified in COMT mutant mice (O’Tuathaigh et al,
2010). No complementary analysis on neuronal structure
has been performed in COMT mutant mice. Although it is
known that single polymorphisms involve smaller effects on
enzyme activity in humans, the COMT mutant mice provide
an adequate model to further explore the modulatory role of
COMT, following adolescent cannabis use.

Cannabis use alone is not necessary or sufficient to cause
the development of schizophrenia, which suggests that the
association may be because of a genetic vulnerability to the
effects of cannabis. In support of this, patients with schizo-
phrenia or with an established vulnerability to psychosis are
much more sensitive to the effects of cannabis than control
subjects (D’Souza et al, 2005; Henquet et al, 2005; Stefanis
et al, 2004; van Os et al, 2002; Verdoux et al, 2003).
Nonetheless, consumption of cannabis is a risk factor for
developing schizophrenia (Arseneault et al, 2004; Henquet
et al, 2005; Moore et al, 2007), and the risk of developing
psychotic symptoms is highest when cannabis is consumed
during adolescence (Arseneault et al, 2002; Caspi et al, 2005;
Konings et al, 2008; McGrath et al, 2010; Moore et al, 2007),
possibly because the brain is still developing (Ehrenreich
et al, 1999; Pistis et al, 2004; Pope et al, 2003; Schneider and
Koch, 2003). Cannabinoid receptors mature slowly, reach-
ing maximal levels during adolescence that possibly reduce
later in life due to post-adolescent pruning, in a similar
manner to that described for dopamine receptors (Belue
et al, 1995; McLaughlin et al, 1994; Seeman, 1999). Studies
have shown that heavy cannabis use, especially during
adolescence, could contribute to additional changes in
global brain structures (Arnone et al, 2008; Matochik et al,
2005; Welch et al, 2010; Wilson and Cadet, 2009; Yucel et al,
2008). However, the effect of cannabis use during adoles-
cence on specific cell populations and their structure,
particularly those implicated in schizophrenia, is less well
understood.

THC, the main psychoactive ingredient of cannabis, is
known to mediate its effect by binding to the cannabinoid
receptor 1 (CB1R) (Pertwee, 2005); this is the main canna-
binoid receptor in the brain, being expressed predomi-
nantly in the hippocampus (HPC), PFC, cerebellum, and
basal ganglia (Freund et al, 2003). Endocannabinoids, the
endogenous ligands of CBI1R, are released by post-synaptic
neurons to activate CBIR on neighboring presynaptic
neurons, which can in turn inhibit presynaptic neurotrans-
mitter release of y-aminobutyric acid (GABA) and glutamate,
as well as modulating the dopamine system (Chevaleyre
et al, 2006). It is also thought that dopaminergic midbrain
neurons are modulated by endocannabinoid cortical
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neurons (Chevaleyre et al, 2006). Thus, the major neuronal
populations modulated by cannabinoids are also ones
implicated in schizophrenia (Laviolette and Grace, 2006;
Lisman et al, 2008). How adolescent cannabis use and
COMT genotype interact to modulate such structural changes,
particularly in neuronal populations implicated in schizo-
phrenia, is not yet understood.

Examination of morphological parameters such as neuronal
cell size, cell density, and protein expression can provide
complementary information on a neurons capacity to func-
tion (Behan et al, 2009; Cotter et al, 2002a, b). Recent
reports have demonstrated deficits in GABAergic neuronal
size and density (Cotter et al, 2002a) to be an indicator of
pathophysiological deficits in schizophrenia and to be in line
with functional assessments of the same neuronal popula-
tions (Hashimoto et al, 2003; Volk et al, 2001). In this study,
we aimed to elucidate the impact of chronic THC treatment
during adolescence on morphological indices of dopami-
nergic, cannabinoid, and GABAergic function in the brain
and how they might be modified in COMT mutant mice.

MATERIALS AND METHODS
Animals

Mice containing the mutated COMT allele were generated at
Rockefeller University, New York, NY, USA, and back-
crossed to C57BL6 mice for 10 generations (Gogos et al,
1998); breeding and genotyping at the Royal College of
Surgeons in Ireland were as described previously (Babovic
et al, 2007). After weaning on postnatal day (PND) 21, pups
from litters of the same generation were housed in groups of
three to five per cage and maintained at 21 £1°C on a 12-h
light/dark cycle (07:00 hours on; 19:00 hours off), with ad
libitum access to food and water. Males of wild type (WT),
COMT heterozygous (HET) and COMT knockout (KO)
genotypes, 6-7 mice per treatment and genotype, were
treated with THC 8.0 mg/kg subcutaneously or vehicle over
20 consecutive days (McKinney et al, 2008) from PND
32-52, a period corresponding to adolescence in mice
(Vazdarjanova et al, 2011) . These studies were approved by
the Research Ethics Committee of the Royal College of
Surgeons in Ireland. They were conducted under license
from the Department of Health and Children, in accordance
with Irish legislation and the European Communities
Council Directive 86/609/EEC for the care and use of
experimental animals, and from the Environmental Protec-
tion Agency in relation to the contained use of genetically
modified organisms. All efforts were made to minimize the
number of animals used and their suffering.

Drugs

Delta-9-tetrahydrocannabinol (Sigma Aldrich, St Louis,
MO, USA) was dissolved in saline: cremaphor: ethanol
(18:1:1); vehicle controls received identical injections of
the final saline: cremaphor: ethanol solution.

Immunofluorescent Staining

Animals were killed at PND 150-160 by cervical dislocation.
Whole brains were removed and post-fixed in 4%
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paraformaldehyde (24h), cryoprotected in daily steps of
24h in 10, 20, and 30% sucrose solution, and frozen in
isopentane cooled on dry ice.

Serial coronal sections (20 pm) were collected at the PFC,
Bregma 1.54—2.34mm, the HPC, Bregma —1.34 to
—3.52mm, and the ventral tegmental area (VTA, Bregma
—3.08 to —3.88 mm). Briefly, sections were incubated with
primary antibodies against (1) monoclonal tyrosine hydro-
xylase (TH), a marker of dopaminergic neurons (1:500,
Millipore, Cork Ireland) (2) monoclonal cannabinoid 1
receptor (CB1R, 1:2000, a kind gift from Dr Maurice
Elphick), and (3) polyclonal parvalbumin (PV), a marker of
a subset of GABAergic neurons (1:1000, Abcam, Cam-
bridge, UK), diluted in 5% NGS/1 x PBS-T. PV and TH
antibodies were revealed by fluorescence using the respec-
tive conjugated Alexa Fluor 488 secondary antibody
(1:2000 in 5% NGS/PBS-T) and cover slipped using DAKO
fluorescent mounting medium. CB1R antibody was visua-
lized using the tyramide signal amplification kit (Perkin
Elmer, Dublin, Ireland). All sections from each experi-
mental group were immunostained in one single run under
identical conditions with each run. A negative control,
containing adjacent sections incubated in secondary anti-
body alone, that is, with the omission of the respective
primary antibody, was included in every run. All morpho-
metric measures were made by an observer blind to
genotype and treatment.

Quantitative Analysis of CBIR, PV, and TH
Immunoreactivity

All analyses were carried out on a Leica DM2500 micro-
scope (Leica Microsystems, Ireland), a cooled monochrome
12-bit camera QI-IMAGING CAMERA Fast 1394 (Media
Cybernetics, UK) and a Prior x 100 x, y-motorized stage
and stage controller (Media Cybernetics, UK) attached to a
Heidenhain z axis depth gauge (Heidenhain, Germany).
Cross-sectional areas of VTA, PFC, and HPC were captured
at x 20 magnification and tiled using standardized exposure
conditions. Boundaries of the VTA were defined by exa-
mining the size and shape of TH-IR neuronal groups and
juxtaposition of other landmarks through reference to
adjacent Nissl-stained VTA sections and a standard mouse
atlas (Paxinos, 2008). The VTA was distinguished by the TH
immunoreactive region bordered medially by the inter-
peduncular nucleus (IPN), laterally and ventrally by the
substantia nigra pars compacta (SNpc) and medial lemnis-
cus (ML), and dorsally by the parabrachial pigmented
nucleus. Representative TH-immunoreactive sections of the
VTA at —3.00 mm, —3.30 mm, and —3.60 mm with respect
to Bregma are shown in Figure la. The location of PFC
and HPC was defined using standard cytoarchitecture and
subcortical landmarks as delineated in the Paxinos and
Watson mouse brain atlas (Paxinos, 2008). Additionally,
adjacent sections were stained with cresyl violet as described
previously (Behan et al, 2010) and superimposed onto
immunofluorescent images to accurately delineate PFC as
well as the hippocampal formation, which included CAl,
CA2/3, CA4, dentate gyrus, and subiculum.

Density and cell somal size of PV " neurons (Figure 1b)
and TH™ immunoreactive neurons (Figure 1d) were deter-
mined using morphometric methods, as outlined previously
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(Cotter et al, 2002a). Areal fluorescent intensity of CB1R
staining was also measured (Figure 1c). Density (cells/mm?),
two-dimensional cell somal size (um?), and fluorescent
intensity (mean fluorescent intensity/um’) were measured
using Stereology-Pro 2.5 image analysis software (Kinetic
Imaging, Liverpool, UK). From each animal, four cross-
sectional areas of the PFC, six cross-sectional areas of the
HPC, and four cross-sectional areas of the VT A were analyzed
for the respective PV*, CBIR™, and TH* morphometric
assessments (Figures 1b-d). The volume of the entire VTA
(Figure la) was also estimated using stereological tools by
the Cavalieri principle and the point-counting method
(Behan et al, 2010; Gundersen et al, 1988). The coefficient of
error for all morphometric measurements was <5%.

Statistical Analysis

All morphological measurements were analyzed using analysis
of variance (ANOVA) with post-hoc comparisons by Fisher’s
test and corrected for multiple comparisons using Bonfer-
roni correction as outlined previously (Babovic et al, 2007;
O’Tuathaigh et al, 2007). For these measurements, we
hypothesized a priori that the effects of chronic THC
treatment during adolescence on dopaminergic, cannabi-
noid, and GABAergic neuronal populations in PFC, HPC,
and VTA, respectively, were modified by COMT genotype.
All statistical analyses were carried out using the SPSS
software package (Version 14, SPSS, Chicago, IL, USA).

RESULTS

See Table 1 for a summary of morphological and densito-
metric assessments carried out for this study.

TH Cell Counts in VTA

A genotype x THC treatment interaction for TH " neuronal
cell somal size in VTA (F,,5=8.12; p=0.002) reflected an
action of THC to reduce TH* neuronal cell somal size in
COMT KO (94.43 £7.86 um?) but not in WT (111.20+
12.90 um?*), or COMT HET (112.26 + 14.46 um?) (Figure 2a).

An effect of THC treatment on TH™ cell density was
observed in VTA (F,,5=10.44; p=0.003), whereby THC
reduced TH™ cell density in a manner that did not differ
between the genotypes (Figure 2b).

No effect of THC treatment on VTA volume was observed
(Figure 2c).

CBIR Intensity in the PFC and HPC

An effect of genotype on CBIR intensity was observed in the
PEC (Fs5,5=8.07; p=0.01), whereby COMT HET mice
(63.54 +5.90 intensity/umz) and COMT KO mice (64.85+
1.39 intensity/um®) expressed a higher CBIR intensity than
WT (60.17 £ 5.14intensity/pm2) (Figure 3a). Conversely, an
effect of genotype on CBIR intensity was observed in HPC
(Fs25 =4.75; p=0.015) whereby COMT KO mice (33.76 +
3.10 intensity/um’) expressed a lower CBIR intensity than
WT (37.27 + 3.30 intensity/um?®) (Figure 3b). No effects of
THC on CBIR intensity were observed in PFC or HPC.
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Bregma

Figure |

Delineation of ventral tegmental area (VTA) and representative immunofluorescent staining of PV, cannabinoid receptor | (CBIR), and TH in

mouse brain. (a) Delineation of VTA using TH immunofluorescence at Bregma level —3.0mm, —3.3 mm, and —3.6 mm. VTA boundary landmarks are the
interpeduncular nucleus (IPN) at the ventromedial border, the medial lemnicsus (ML), and the substantia nigra pars compacta (SNpc) at its most lateral and
ventrolateral border; scale bar, 200 p. (b) PV immunoreactivity in prefrontal cortex (PFC) (left), hippocampus (HPC) (centre), and negative control (NEG) in
HPC (right); scale bar, 200 . (c) CBIR staining in PFC (left), HPC (centre), and CBIR-negative control in PFC (right); scale bar, 200 . (d) TH
immunoreactivity in VTA (left, and inset showing TH-positive cell soma of neuron) and TH-negative control in VTA (right); scale bar, 100 p.

PV Cell Somal Size and Density in PFC and HPC

An effect of genotype on PV cell size was observed in the
PEC (F,, 5 =6.36; p=0.006), whereby PV cells were smaller
in COMT HET (140.67 +12.07 um?®) than in COMT KO
(169.32 £ 11.66um?), or WT (146.42 +7.89 um®) (Figure 3c).
A genotype x THC treatment interaction for PV cell somal
size in PFC (F,, ,5=7.04; p=0.004) reflected an action of
THC to increase PV cell somal size in WT, to be without
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effect in HET and to decrease PV cell somal size in COMT
KO (Figure 3c). An effect of genotype on PV cell size was
observed in HPC (F,, ,5=28.021; p=0.002), whereby PV
cells were smaller in COMT KO (165.44 +3.58 um?) and
particularly in COMT HET (154.83 + 11.91 um?) than in WT
(171.85 + 8.01 um?) (Figure 3d). There were no effects of
genotype, THC treatment or gene X THC treatment inter-
actions for PV cell density in PFC or HPC (Figures 3e and f).

NPG.NPPNPP201224




Table I Morphological Measurements During Adulthood in PFC, HPC, and VTA of WT, COMT HET, and COMT KO Mice, Respectively, Following Treatment During Adolescence

with 8.0mg/kg THC or vehicle (0)

(mm?®)

(cells/mm?)

TH VTA density VTA volume

(cells/fmm?) size (um?)

PV PFC density PV HPC density TH VTA cell
(cells/fmm?)

PV HPC cell
size (um?)

PV PFC cell
size (um?)

CBIR HPC intensity
(intensity/um?)

CBIR PFC intensity
(intensity/um?)

(mglkg)

Genotype THC
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It was noteworthy that CBIR intensity inversely corre-
lated strongly with PV cell size in PFC (r = —0.55, p <0.001)
and HPC (r=—0.46, p<0.01).

DISCUSSION

In this study, the effects on morphological indices of
GABAergic, dopaminergic, and cannabinoid function were
assessed in COMT mutant mice, following chronic THC
treatment during adolescence. To our knowledge, this is the
first study to assess the combined effects of COMT activity
and adolescent THC administration on cannabinoid-modu-
lated neuronal populations implicated in schizophrenia. As
human polymorphisms elicit smaller effects on enzyme
activity, our COMT mutant mice do not serve to replicate
such findings here but to illuminate the modulatory role of
COMT on other neuronal populations in the brain, following
chronic THC administration. On the basis of previous
findings, indicating a sexually dimorphic effect of COMT
function on psychiatric phenotypes to be evident primarily
in males (Gogos et al, 1998; O’Tuathaigh et al, 2010), we
assessed male COMT mutant mice. On the basis of our
behavioral studies on COMT mutant mice, indicating COMT
genotype to influence the effects of adolescent THC admini-
stration on schizophrenia-related behavioral phenotypes
(O’Tuathaigh et al, 2010), the same treatment regimen was
employed in the present study. We examined morphological
parameters such as neuronal cell size, cell density, and
protein expression to obtain morphological correlates on
the functional capacity of specific neuronal populations
(Behan et al, 2009; Cotter et al, 2002a, b). Given that the
COMT mutant model was based on a higher COMT activity
being a risk factor for schizophrenia, our results show that
COMT deletion is associated with: (1) release of an effect of
adolescent THC treatment in VTA that reduced dopami-
nergic cell size, (2) increased CBR1 intensity in PFC, reduced
CBRI intensity in HPC, and a shift in effect of adolescent
THC treatment in HPC and PFC from reduction to increase
in CBRI intensity, and (3) increased GABAergic cell size in
PFC and HPC, and a shift in effect of adolescent THC treatment
in PFC and HPC from increase to decrease in GABAergic
cell size. Adolescent THC treatment also reduced dopami-
nergic cell density. COMT KO mice demonstrated the pro-
minent structural neuronal deficits in this study.

COMT Modulation of Adolescent THC Effects on
Neurotransmitter Systems

Dopaminergic neurons. A functional polymorphism in the
COMT gene moderates the risk to develop psychosis,
following adolescent cannabis use with individuals homo-
zygous for the COMT Val allele possessing a higher risk for
psychosis, following adolescent cannabis use (Caspi et al,
2005; Henquet et al, 2006). This is attributable to increased
COMT activity associated with the COMT Val allele in the
PFC leading to a reduction in PFC dopamine neurotrans-
mission and increased mesolimbic dopamine signaling; the
converse would be hypothesized for the COMT Met allele
(AKkil et al, 2003; Bilder et al, 2004). THC challenge studies
in humans have demonstrated significant increases in
striatal dopamine release after acute administration of
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Figure 2 Somal size (a), cell density (b), and ventral tegmental area
(VTA) volume (c) for TH-positive cells in VTA during adulthood, following
adolescent treatment with 8.0 mg/kg delta-9-tetrahydrocannabinol (THC)
or vehicle (0). Data are means + SEM; *p<0.015.

inhaled THC (Bossong et al, 2009); however, such findings
could not be replicated in a larger cohort (Stokes et al, 2010,
2011). In animal studies, THC increased dopaminergic
neuronal firing and dopamine release in the striatum and
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PFC (Cheer et al, 2004; Chen et al, 1990; French, 1997;
French et al, 1997; Pistis et al, 2002; Tanda et al, 1997). PFC
is the dominant COMT site in the brain for modulating
dopamine metabolism whereas the dopamine transporter
(DAT), found at a much higher density in the striatum, is
mainly responsible for regulating striatal dopamine levels
(Scatton et al, 1985; Yavich et al, 2007) . Male COMT KO
mice used in this study have previously demonstrated
higher basal levels of dopamine release, dopamine levels,
and its metabolites in PFC of COMT KO mice (Gogos et al,
1998; O’Tuathaigh et al, 2011). Given the evidence of
COMTs regulatory role in the PFC (and not the striatum)
(Scatton et al, 1985; Yavich et al, 2007), we would speculate
that changes to COMT activity in PFC are having a knock-
on effect on the activity and output of dopaminergic cortical
neurons. It is possible that our observations of smaller
tyrosine hydroxylase-labeled dopaminergic neurons in VTA
in COMT KO mice following THC treatment occurs in
response to altered input from cortical dopaminergic neurons
(Akil et al, 2003). This further highlights a role for
prefrontal COMT levels in the regulation of and commu-
nication between cortical and subcortical dopaminergic
neuronal populations.

The aforementioned pattern of midbrain dopaminergic
signaling is similar to that proposed to be present among
subjects carrying the COMT Met allele (Akil et al, 2003;
Bilder et al, 2004). We propose that lower cortical COMT
activity may lead, through increased cortical dopaminergic
activity, to reduced midbrain dopaminergic function, and
hence, neuronal size. No changes in the structure of VTA
dopaminergic neurons were observed in male COMT WT
and HET mice. Our findings indicate that COMT genotype
and adolescent THC exposure together can modulate
dopaminergic neuronal structure in the mesolimbic system.
Changes in dopaminergic neuron structure may reflect a
cellular pathology that accompanies changes in dopami-
nergic activity as have been observed in other neuronal
populations implicated in schizophrenia (Cotter et al, 2002a).
Relating such structure-function findings are relevant to
our understanding of the pathophysiology of schizophrenia,
as excessive activity of dopaminergic neurons in VTA has
also been proposed to have a role in the emergence of
psychotic symptoms in schizophrenia (D’Souza et al, 2005;
Henquet et al, 2005; Stefanis et al, 2004; van Os et al, 2002;
Verdoux et al, 2003).

Cannabinoid 1 receptor and the endocannabinoid path-
way. Dysfunction in PFC is strongly implicated in schizo-
phrenia (Lafourcade et al, 2007) and within it, CBIR
expression is reported to be reduced (Eggan et al, 2010).
Our observation of reduction in CBIR expression in PFC
and HPC of WT mice following adolescent THC treatment is
in accordance with previous CBIR binding and protein
expression studies in animals, following THC treatment
(Romero et al, 1997, 1998). Furthermore, this finding is in
line with what we would have predicted from our model
based on a higher COMT activity and THC administration
being a risk factor for schizophrenia (Caspi et al, 2005).
Conversely, we observed a shift in this pattern, from
reduction to increase in CB1R expression in PFC and HPC,
in COMT KO mice following adolescent THC treatment.
This affirms structural significance and interdependence of
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Figure 3 Cannabinoid receptor | (CBIR) intensity in prefrontal cortex (PFC) (a) and hippocampus (HPC) (b), PV cell size in PFC (c) and HPC (d), and
PV cell density in PFC (e) and HPC (f) during adulthood, following adolescent treatment with 8.0 mg/kg delta-9-tetrahydrocannabinol (THC) or vehicle (0).

Data are means = SEM; #p<0.015.

COMT activity and the endocannabinoid system (Cheva-
leyre et al, 2006; Fride, 2005), and may be relevant to the
known association of cannabis use with increased levels of
psychotic symptoms (D’Souza et al, 2005; Henquet et al,
2005; Stefanis et al, 2004; van Os et al, 2002; Verdoux et al,
2003). It also emphasizes further the developmental period
of adolescence and its vulnerability to subsequent effects of
cannabis.

THC is known to affect endocannabinoid neurotransmis-
sion with components of this endocannabinoid pathway shown
to be involved in regulating dopaminergic neurotransmission,

particularly in the striatum (Cheer et al, 2004; Chen et al,
1990; Tanda et al, 1997). Furthermore, THC, which acts
through activation of CB1 receptors, is known to increase
firing of dopaminergic neurons in the midbrain (Diana
et al, 1998; French et al, 1997) and these same midbrain
dopamine neurons regulate excitatory and inhibitory inputs
by retrograde endocannabinoid signaling (Chevaleyre et al,
2006; Lupica and Riegel, 2005; Matyas et al, 2008). The
effects of cannabinoids such as THC on dopaminergic
mesolimbic neurotransmission are usually indirect (Fernandez-
Ruiz et al, 2010); it is thought that CBIR at GABAergic and
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glutamatergic synapses facilitate such indirect actions
(Herkenham et al, 1990; Mailleux and Vanderhaeghen,
1992; Tsou et al, 1998). Therefore, our findings of smaller
VTA dopaminergic neurons following THC treatment may
occur in response to higher cortical CBIR levels in COMT
KO mice (AKkil et al, 2003). Our finding that adolescent THC
treatment and COMT genotype interact to modulate VTA
dopaminergic neuron size in adult mice may reflect an
effect of endocannabinoid regulation on mesolimbic dopa-
minergic neuron populations following adolescent THC
exposure, a critical period of brain development (Ehren-
reich et al, 1999; Pope et al, 2003). On this basis, we propose
that dysregulation of dopaminergic neurons in VTA in
schizophrenia (Akil et al, 2003; Bilder et al, 2004) may be
exacerbated by adolescent THC-induced, CB1R-mediated,
long-term impairment in mesolimbic dopaminergic neuron
structure and, hence, signaling.

GABAergic neurons. Dysfunction in GABAergic systems
is evident in schizophrenia, with GABA synthesis and
reuptake reduced in PFC and HPC (Heckers et al, 2002;
Konradi et al, 2011; Volk et al, 2001). Furthermore, cell
density of GABAergic neurons, in particular the number of
PV-positive neurons, is decreased in PFC and HPC of patients
with schizophrenia (Benes et al, 1991, 1998; Hashimoto
et al, 2003; Konradi et al, 2011). Given these studies and
based on a higher COMT activity being a risk factor for
schizophrenia, one would have predicted deficits in cortical
GABAergic neuronal populations in COMT WT mice, where
the PFC would be hypodopaminergic and GABAergic
inhibition would not be strong. Instead, GABAergic deficits
were observed by a reduction in cell size in COMT KO mice
and not COMT WT mice. The conventional inverted-U
shape curve of dopaminergic modulation of the PFC activity
may provide some understanding given that deficient or
excessive dopamine activity exert disruptive effects on normal
neuronal structure (Seamans and Yang, 2004). As dopamine
is capable of having an inhibitory effect on cortical GABA
neurons (Retaux et al, 1991), it is possible that an excessive
release of prefrontal dopamine in COMT KO mice could
lead to impairments in normal GABAergic neuronal structure.
Conversely, GABAergic neurons in VTA are anatomically
positioned to influence the activity of the dopamine system
in the mesolimbic pathway (Laviolette and van der Kooy,
2001); so, changes in GABAergic neurons could be responsible
for altering the activity and structure of neighboring dopa-
minergic neurons.

It is not yet clear how reduction in the size of PV™"
GABAergic neurons in COMT KO mice in response to
adolescent THC treatment relates to the upregulation of
cortical CBIR protein expression in COMT HET and KO
mice, following adolescent THC exposure. However, given
our findings of a significant inverse correlation between
CBIR and PV cell size and that endocannabinoids are
known to modify inhibition in GABAergic neurons (Lovinger,
2008), it is also possible that enhanced expression of cortical
CBIR (by THC treatment) may alter the size of cortical
GABAergic populations and, consequently, modify GA-
BAergic signaling in COMT mutant mice. Our GABAergic
findings in the COMT mutant mouse are interesting, given
that most of the effects of the endocannabinoid system on
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dopaminergic neurotransmission are GABA- and/or gluta-
mate-mediated (Herkenham et al, 1990; Mailleux and
Vanderhaeghen, 1992; Tsou et al, 1998). Additionally,
endocannabinoids such as THC are responsible for retrograde
signaling of CB1R on GABAergic neurons and, through this
mechanism, can prevent excess inhibition at GABAergic
synapses (Lovinger, 2008). Upregulation of cortical CB1R
protein expression in COMT HET and KO mice, following
adolescent THC exposure, may thus mediate the reduction
observed in midbrain dopaminergic neuronal cell size
through CB1Rs cortical action on GABAergic neurons. How
this occurs may have a functional origin arising from a
dampened inhibition of GABAergic neurons brought, which,
in turn, can be mediated by the increased expression observed
in CB1R-enhanced endocannabinoid signaling (Lovinger,
2008).

There is certainly a higher order of complexity in how
these systems interact that should be interpreted with
caution. Nonetheless, the GABAergic changes observed in
this gene x environmental mouse model and their relation-
ship to schizophrenia indicate further the vulnerability to,
and consequent dysregulation of, neurotransmitter systems
by developmental insults such as THC treatment during
adolescence.

Summary

These studies elaborate and suggest putative mechanisms
underlying recent clinical findings that cannabis use during
adolescence, and subsequent psychosis is influenced by the
human COMT genotype (Caspi et al, 2005). The higher
activity COMT Val allele has demonstrated in some, but not
all, human studies to be associated with increased risk of
schizophrenia following THC exposure during adolescence
(Caspi et al, 2005; Zammit et al, 2011). It might have been
predicted, based on a higher COMT activity being a risk
factor for schizophrenia, that COMT KO mice exposed to
adolescent THC would evidence fewer schizophrenia-related
neuronal changes than WT mice, that is, relative hyperdo-
paminergia in mesolimbic systems (Akil et al, 2003), reduced
density of cortical and hippocampal GABAergic neurons
(Cotter et al, 2002a), and reduced CB1R expression (Eggan
et al, 2010). However, the opposite was observed; COMT KO
mice demonstrated the more prominent structural neuronal
deficits. These findings may reflect complexities arising
from the inverted U-shaped relationship between cortical-
mediated function and cortical dopaminergic activity in
human/non-human primates vis-a-vis rodents, such that
deficient or excessive dopamine activity could each
exert disruptive effects on normal neuronal structure
(O’Tuathaigh et al, 2010, 2011; Seamans and Yang, 2004;
Tunbridge et al, 2006). Additionally, future comparative
studies investigating these same paradigms in mice expres-
sing variants of human COMT are required to rule out any
probability of our COMT KO findings arising from
developmental compensation in dopaminergic, CBIR, and
GABAergic systems.

Our findings indicate disruptive effects of adolescent THC
exposure on several neuronal populations, in a manner that
can be modulated by COMT genotype. They demonstrate
how genetic, developmental, and environmental factors
can interact to modulate the cellular structure of neuronal
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populations implicated in schizophrenia such as the dopa-
minergic, endocannabinoid, and GABAergic systems.
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