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Dementia in Down’s syndrome: an MRI comparison
with Alzheimer’s disease in the general population
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Abstract

Background: Down’s syndrome (DS) is the most common genetic cause of intellectual disability. People with DS
are at an increased risk of Alzheimer’s disease (AD) compared to the general population. Neuroimaging studies of
AD have focused on medial temporal structures; however, to our knowledge, no in vivo case–control study exists
comparing the anatomy of dementia in DS to people with AD in the general population. We therefore compared
the in vivo brain anatomy of people with DS and dementia (DS+) to those with AD in the general population.

Method: Using MRI in 192 adults, we compared the volume of whole brain matter, lateral ventricles, temporal
lobes and hippocampus in DS subjects with and without dementia (DS+, DS-), to each other and to three non-DS
groups. These included one group of individuals with AD and two groups of controls (each age-matched for their
respective DS and general population AD cohorts).

Results: AD and DS+ subjects showed significant reductions in the volume of the whole brain, hippocampus and
temporal lobes and a significant elevation in the volume of the lateral ventricle, compared to their non-demented
counterparts. People with DS+ had a smaller reduction in temporal lobe volume compared to individuals with AD.

Conclusions: DS+ and AD subjects have a significant reduction in volume of the same brain regions. We found
preliminary evidence that DS individuals may be more sensitive to tissue loss than others and have less ‘cognitive reserve’.

Keywords: Dementia, Imaging, Intellectual disability
Background
Down’s syndrome (DS) is associated with trisomy of
chromosome 21 and occurs in approximately 1 per 1,000
live births. It is the most common genetic cause of intel-
lectual disability. People with DS encounter an additional
disease burden because they have a significantly increased
risk for developing Alzheimer’s disease (AD) in later life.
In the general population, approximately 10% of 65-year-
olds and 40% of 80-year-olds, develop symptoms of AD
[1]. In contrast, the incidence of AD in people with DS is
estimated to be three to five times higher. For example, at
autopsy, the presence of Alzheimer-type neuritic plaques
and neurofibrillary tangles have been reported in the
brains of 7.5% of people with DS as early as the second
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decade of life, with a rise in prevalence to 80% of cases by
the fourth decade and to 100% in individuals over 60 years
of age [2].
The markedly high frequency of AD neuropathology

and early onset of dementia in DS is poorly understood.
Likely explanations, however, include a genetically deter-
mined elevation in risk factors for AD, and/or having less
cognitive reserve due to a combination of these vulner-
ability factors and a pre-existing intellectual disability
(mental retardation). For example, a significant proportion
of the increased genetic risk for individuals with DS to de-
velop dementia is probably explained by having trisomy of
genes carried on chromosome 21 that are implicated in
AD. Hence, it has been hypothesised that the presence of
an extra copy of the amyloid precursor protein (APP) gene
in individuals with DS leads to increased formation of
amyloid plaques, neuronal death and clinical AD [3,4].
Similarly, trisomy of the myo-inositol (mI) transporter
protein [5] is associated with an increase in brain mI, a
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compound that modulates neuronal development and
survival, cellular osmolarity, membrane metabolism, signal
transduction, protein C activation [6] and amyloid depos-
ition [7]. We have previously reported [5] that subjects
with DS who do not have dementia (DS-) have a signifi-
cant increase in the concentration of mI as compared to
controls, and that increased mI is associated with reduced
overall cognitive ability (including memory). People with
DS and dementia (DS+) have higher mI concentration
than those without dementia (DS-), or people from the
general population who have AD or mild cognitive impair-
ment [8,9].
These DS-specific vulnerability factors may also com-

bine with the additional burden of having a lower cog-
nitive reserve due to pre-existing intellectual disability.
The concept of brain reserve refers to the ability of the
brain to tolerate the pathology of age- and disease-related
changes without obvious clinical evidence [10]. The grea-
ter the reserve, the more severe pathological changes are
needed to cause clinically functional impairment [10-12].
The cognitive reserve model suggests that the brain ac-
tively attempts to cope with brain damage by using pre-
existing cognitive processing approaches or by enlisting
compensatory ones [11].
Greater cognitive reserve can arise through numerous

mechanisms, but is generally greater in people with higher
overall intelligence, and/or those able to more efficiently/
flexibly use brain networks [13]. Dementia risk has repeat-
edly been reported to be much lower in high-reserve
individuals, but much higher in people with limited educa-
tion and/or intellectual disability - a finding replicated
across more than 20 studies involving more than 29,000
individuals and over a median follow-up period of greater
than seven years [14]. Hence, it may be that dementia in
people with DS is associated with less loss of brain tissue
than in the general population because they have less cog-
nitive reserve, due perhaps to a double hit of pre-existing
intellectual disability combined with a genetically deter-
mined increase in risk factors such as brain amyloid and
mI concentration.
In the general population, AD is associated with a loss

of brain tissue, including from the temporal lobe and
hippocampus [15-24], and the expansion of cerebrospinal
fluid (CSF) [17,22,25-31]. Furthermore, AD severity is as-
sociated with progressive brain atrophy [32]. In compari-
son, there are relatively few magnetic resonance imaging
(MRI) studies of dementia in DS. Nevertheless those that
are available have reported that compared to DS-, DS+
have a significant reduction in the volume of the medial
temporal lobe/hippocampus [33-35], in addition to a sig-
nificant reduction in the volume of the whole brain and/
or an increase in the volume of CSF [33,34,36].
To our knowledge, no in vivo case–control study has yet

compared the anatomy of dementia in DS to people with
AD in the general population. Therefore, we compared the
volume of whole brain matter, lateral ventricles, temporal
lobes and hippocampus in DS+ and DS- to each other, and
to three non-DS groups. These included one group of indi-
viduals with AD and two groups of controls (each age-
matched for their respective DS and general population
AD cohorts). We tested the hypotheses that: (1) people
with dementia (in both DS and in the general population)
have a significant reduction in the volume of whole brain,
temporal lobe and hippocampus and an increase in the
volume of the lateral ventricles compared with controls,
and (2) people with dementia and DS have less brain atro-
phy than people with AD in the general population.

Method
Participants
We included a total of 192 adults with successful MRI
brain scans: 64 individuals with DS (19 DS+ and 45 DS-)
and 128 adults without DS (43 younger healthy control
subjects age-appropriate to the DS sample; and 46 older
people with AD, together with 39 older healthy control
subjects age-appropriate to the AD sample).
Individuals with genetically confirmed DS were recruited

from community centres, residential homes and speciality
clinics in London, Birmingham, Plymouth and Newcastle
upon Tyne, UK. DS status was assessed in all participants
by karyotyping and cognitive status was measured using
the Cambridge Cognitive Examination (CAMCOG), a
composite index of episodic memory, orientation, lan-
guage, attention, praxis and executive function previously
validated for use in DS [37]. The CAMCOG is appropriate
for assessing cognitive function in people with intellectual
disability, unlike more standard tests of cognitive function
such as the Wechsler Adult Intelligence Scales. The
CAMCOG incorporates, and is highly correlated with, the
Mini Mental State Examination (MMSE) [38]. The decline
in function of DS+ was based on the International Classifi-
cation of Diseases-10 (ICD-10) Research Diagnostic Cri-
teria. The AD samples were part of a larger, national
longitudinal study based at the Institute of Psychiatry,
London. Individuals from this study were diagnosed with
dementia using the ICD-10 Research Diagnostic Criteria,
with non-AD dementia excluded, in keeping with the Na-
tional Institute of Neurological and Communicative Disor-
ders and Stroke and Alzheimer’s Disease and Related
Disorders Association (NINCDS-ADRDA) Criteria [14].
Age-appropriate, healthy controls (HC) were recruited
from general practice lists and the local population as part
of both studies. Absence of dementia was confirmed by
screening with the CAMCOG and the MMSE.
All participants underwent standard physical, neuro-

logical and psychiatric screening, including routine clinical
blood tests (for example, renal, liver and thyroid function).
In addition, all participants underwent clinical MRI to
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exclude other brain disorders, including stroke or vascular
dementia. Exclusion criteria included the presence of de-
tectable physical disorder (for example, history of birth
trauma or head injury), psychiatric illness (for example,
major depression or psychosis) or other reason for cogni-
tive decline (for example, changes in living situation).
None of the participants were taking antipsychotic or anti-
depressant medication at the time of the study. However,
seven DS+ (37%) and 25 AD (54%) participants were tak-
ing acetylcholinesterase (AChE) inhibitors.
It should be noted that we had a very high success rate

in MRI scanning in our DS+ and AD groups, with less
than 20% dropout/non-compliance across all recruited
participants with dementia. There were no significant dif-
ferences in age, gender, number of years in education or
cognitive status between the dropouts and those from
whom it was possible to obtain a successful scan. The
study was approved by local and national Ethics Commit-
tees. After a complete description of the study was pro-
vided to the participant and the identified carer, written
informed consent was obtained where possible. Where
not possible, the participant’s assent was obtained with
formal consent provided by an identified carer.

MRI protocol
Subjects were scanned using a 1.5 Tesla, GE NV/i Signa
MR system at the Maudsley Hospital, London. A va-
cuum fixation device ensured that subjects were both
comfortable and restrained from movement during the
scanning process. The whole brain was imaged with three-
dimensional inversion recovery prepared fast spoiled
gradient-recalled acquisition in the steady state (SPGR)
T1-weighted dataset. These T1-weighted images were
obtained in the axial plane with 1.5-mm contiguous sec-
tions, repetition time (TR) of 13.8 milliseconds, inversion
time (TI) of 450 milliseconds, echo time (TE) of 2.8 milli-
seconds and flip angle of 20˚ with one data average and a
256 × 256 × 124 matrix. Image contrast for all datasets
was chosen with the aid of optimising software [39]. Ac-
quisition time was 6 minutes, 27 seconds. Full brain and
skull coverage was required and a detailed quality control
was carried out on all MR images according to previously
described quality control procedures [40,41].

MRI data analysis
Volumetric analysis of hippocampi, temporal lobes, lateral
ventricles, whole brain matter and total intracranial vol-
umes (TIV) were performed. Manual tracing was per-
formed on SPGR data sets using both Measure Image
Analysis Software [42,43] (Johns Hopkins University,
Baltimore, Maryland, USA) and published anatomical def-
initions [43,44]. Whole brain matter volume consisted of
total cerebral hemispheres (frontal, temporal, parietal and
occipital lobes) and excluded lateral and third ventricles.
The three-dimensional acquisition as utilised, well differ-
entiated brain parenchyma from CSF (including peripheral
CSF, lateral and third ventricles) and was based upon dif-
ferences in pixel intensities in signal as derived from the
T1 weighted sequences employed. Intracranial volume in-
cluded all brain matter (cerebral hemispheres, cerebellum
and brainstem) lateral and third ventricles and all periph-
eral CSF in the cranium. The extra axial boundaries were
derived from analysis of the signal of the dura and diploic
space, permitting identification of the subdural contents.
At the base of the brain, the dural signal line was carefully
followed and where there was any interruption in this sig-
nal, raters utilised their knowledge of neuroanatomy to es-
timate the line best connecting the dural signal. The
temporal lobes included all pixels traced from the anterior
pole of the temporal lobe to the aqueduct of Sylvius with
the superior temporal lobe boundary defined as a straight
line drawn from the angle of the medial temporal lobe,
where it was attached to the temporal stem, to the mid-
point of the operculum. The dura of the middle cranial
fossa was then traced around each temporal lobe to
complete the temporal lobe region [44]. The hippocampus
was traced by means of an adaptation of the criteria of
Watson et al. [45] - namely, we did not trace the hippo-
campus any further than the aqueduct of Sylvius. The su-
perior and inferior horns of the lateral ventricles were
measured from their first appearance in the frontal and
temporal lobes, respectively, terminating at the atrium.
The posterior horn of the lateral ventricles was measured
from the atrium to its last appearance (on the coronal
slice) in the occipital lobe. Raters were blind to subject
status. The volume of each region was calculated by multi-
plying the summed pixel cross-sectional areas by slice
thickness. Intra-rater and inter-rater reliabilities were de-
termined for the brain regions of interest (ROIs) traced by
the operators as part of this analysis. Inter-rater reliabil-
ities were obtained for all regions traced [46]. The intra-
rater and inter-rater reliabilities were intraclass correlation
coefficients. For all regions r was >0.9 for the inter-and
intra-rater correlation coefficients.
In order to control for the relationship between brain

volume and head size, volumes were expressed as raw (un-
corrected) volumes, and when normalised, as a percentage
of traced TIV. Statistical analyses were carried out on both
raw and corrected brain volumes. TIV is determined dur-
ing childhood by the volume of brain, meninges, and CSF
contained within it [47,48]. Brain volume is maximal by
early childhood and appears to decline from early adult-
hood. The normalisation to TIV provided the proportion
of hippocampal volume to past brain size.

Statistical analysis
Subject groups were normally distributed. All volumes
were normally distributed and were analysed using
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univariate analysis. However, age was significantly different
between groups (F 157.556, P <0.001), as was the gender
distribution. Age, gender and TIV were added as covari-
ates in the analysis. CAMCOG scores were corrected for
age. Follow-up pairwise comparisons among estimated
marginal means, adjusting for covariates, were conducted
where appropriate. Pairwise analyses were adjusted for
multiple tests. All significance tests used a P-value of <0.05
adjusted for multiple testing using the Bonferroni correc-
tion. The percentage reduction in the volume of the raw
and TIV-corrected volumes of the hippocampus and tem-
poral lobe (and the percentage increase in the volume of
the lateral ventricles) within individuals with DS between
DS+ and DS-, were compared to those within AD cases
and controls from the general population by means of the
t-test. The percentage differences were based on age-
corrected volumes. Our results may have been confounded
by medication status, therefore, we compared brain anat-
omy in individuals with dementia who were taking AChE
inhibitors and those who were not taking such medication.

Results (Table 1)

Raw (uncorrected) volumes
There was a significant main effect of group for the hippo-
campus, temporal lobes and lateral ventricles. There was a
significant main effect of group and gender for whole
brain volume (WBV) and TIV. We found no significant
differences between DS+ who were taking AChE inhibi-
tors and those who were not.
Follow-up pairwise comparisons revealed that compared

to their respective control groups without dementia, both
DS+ and AD had a highly significant reduction in the
volume of the hippocampus, and AD (but not DS+) had a
highly significant reduction in the volume of the temporal
lobe and a highly significant increase in the volume of the
lateral ventricles. DS+ had a highly significant reduction in
the volume of the hippocampus compared to DS-. Com-
pared to the DS healthy control group (the younger
healthy control group), both DS+ and DS- had a highly
significant reduction in WBV (Figure 1). The hippocampal
and temporal lobe volume reductions in AD and DS+
were disproportionately greater than the WBV reduction.
The percentage differences between DS+ and DS-, were

compared to those within AD cases and controls from the
general population and were found to be significant. The
reduction in the volume of the hippocampus between DS+
and DS- was similar to that within AD cases and controls
from the general population (19% and 17%, respectively).
In contrast, the reduction in the volume of the temporal
lobe between DS+ and DS- was almost twice that within
AD cases and controls from the general population (14%
and 8%, respectively). The increase in volume of the lateral
ventricles between DS+ and DS- was less than that within
AD cases and controls from the general population (36%
and 43% respectively).

Volumes corrected for TIV
There was a significant main effect of group for the hippo-
campus, temporal lobes and the lateral ventricles. There
was a significant main effect of gender for the temporal
lobe. Follow-up pairwise comparisons revealed that com-
pared to their respective control groups without dementia,
both DS+ and AD had a highly significant reduction in
the volume of the hippocampus (Figure 2), and AD (but
not DS+) had a highly significant reduction in the volume
of the temporal lobe (Figure 3) and a highly significant in-
crease in the volume of the lateral ventricles (Figure 4).
DS+ had a highly significant reduction in the volume of
the hippocampus compared to DS-.
The percentage differences between DS+ and DS-, were

compared to those within AD cases and controls from the
general population and were found to be significant. The
reduction in the volume of the hippocampus between
DS+ and DS- was less than half that within AD cases and
controls from the general population (7% and 15% re-
spectively). Similarly, the reduction in the volume of the
temporal lobe between DS+ and DS- was also less than
half that within AD cases and controls from the general
population (2% and 5%, respectively). The increase in vol-
ume of the lateral ventricles between DS+ and DS- was
similar to that between AD and AD HC (41% and 40%,
respectively).

Relationship of cognitive ability to brain anatomy
In the AD population, there was a positive correlation
between MMSE and corrected hippocampal volume (r =
0.311, P = 0.01) and between MMSE and corrected tem-
poral lobe volume (r = 0.316, P = 0.05). There was a nega-
tive correlation between MMSE and the corrected lateral
ventricle volume (r = − 0.475, P = 0.01). The DS+ popula-
tion showed a positive correlation between CAMCOG
and the corrected hippocampal volume (r = 0.216, P =
0.05) and between CAMCOG and the corrected temporal
lobe volume (r = 0.435, P = 0.01). There was a negative
correlation between MMSE and the corrected lateral ven-
tricle volume (r = − 0.462, P = 0.01).

Discussion
In this study, we found that people with dementia (both
with DS and AD) had a reduction in the volume of whole
brain, temporal lobe and hippocampus, in addition to an
elevation in lateral ventricle volume, compared to con-
trols. Also, for the first time, we found that DS+ had a
relatively smaller reduction in brain volume compared to
people with AD in the general population. Following nor-
malisation and correction for confounders, it was found
that both the AD and DS+ groups had a significant



Table 1 Magnetic resonance imaging comparing subjects with Down’s syndrome and Alzheimer’s disease in the general population

DS+ (n = 19)
mean ± SD

DS- (n = 45)
mean ± SD

DS HC (n = 43)
mean ± SD

AD (n = 46)
mean ± SD

AD HC mean
± SD

F effect of group
(P-value)

F effect of gender
(P-value)

Significant pairwise
comparisons

Age (years)* 51.52 ± 7.89 38.07 ± 12.24 33.75 ± 11.37 76.59 ± 5.3 75.87 ± 5.53 157.556 (<0.001) NS DS+<AD; DS+<AD HC; DS-<AD;
DS-<DS+; DS HC<AD; DS HC<DS
+; DS HC<AD HC

Education (years) 11.13 ± 3.22 11.49 ± 3 NS NS NS

Sex (female:male) 10:9 31:14 29:14 22:24 11:28

MMSE* 9.32 ± 4.46 13.88 ± 5.56 15.23 ± 2.53 22.48 ± 3.74 28.74 ± 3.23 35.757 (<0.001) NS AD<AD HC; DS+<AD; DS+<AD
HC; DS-<AD; DS-<AD HC; DS
HC<AD; DS HC<AD HC

CAMCOG* 33.72 ± 19.77 52.98 ± 21.48 114.83 ± 16.52 59.323 (<0.001) NS DS+<DS HC; DS-<DS HC

Whole brain
volume (WBV, ml)*

836.33 ± 98.72 961.96 ± 111.16 1100 ± 101.23 904.32 ± 83.3 930.77 ± 77.41 23.296 (<0.001) 28.717 (<0.001) DS+<AD; DS+<AD HC; DS+<DS
HC; DS-<AD HC; DS-<DS HC; DS
+<DS-

Total intracranial
volume (TIV, ml)*

1096.46 ± 97.76 1195.7 ± 120.08 1387.95 ± 125.08 1292.39 ± 109.27 1277.27 ± 97.95 38.112 (<0.001) 55.296 (<0.001) DS+<AD; DS+<AD HC; DS+<DS
HC; DS-<AD; DS-<AD HC; DS-<DS
HC

Hippocampus (ml)* 4.52 ± 1.06 5.56 ± 0.81 6.82 ± 0.62 5.13 ± 1.04 6.19 ± 0.85 13.242 (<0.001) NS AD<AD HC; AD<DS HC; DS+<DS-;
DS+<AD HC; DS+<DS HC; DS-
<DS HC

Hippocampal
volume normalised
by TIV (% TIV)*

0.41 ± 0.09 0.47 ± 0.07 0.49 ± 0.05 0.4 ± 0.07 0.5 ± 0.06 13.095 (<0..001) NS AD<DS HC; AD<AD HC; DS+<DS-;
DS+<AD HC; DS+<DS HC

Left hippocampus
(ml)*

2.37 ± 0.58 2.97 ± 0.59 3.52 ± 0.38 2.62 ± 0.51 3.17 ± 0.46 12.723 (<0.001) NS AD<AD HC; AD<DS HC; DS+<DS
HC; DS-<DS HC

Left hippocampus
normalised by TIV
(% TIV)*

0.22 ± 0.05 0.24 ± 0.03 0.25 ± 0.03 0.2 ± 0.03 0.25 ± 0.03 12.339 (<0.001) NS AD<DS-; AD<AD HC; AD<DS HC;
DS+<DS HC; DS+<DS-

Right hippocampus
(ml)**

2.16 ± 0.52 2.7 ± 0.47 3.31 ± 0.31 2.48 ± 0.58 3.02 ± 0.44 11.540 (<0.001) NS AD<AD HC; AD<DS HC; DS+<DS
HC; DS+<AD HC; DS+<DS-

Right hippocampus
normalised by TIV
(% TIV)*

0.2 ± 0.04 0.23 ± 0.04 0.24 ± 0.03 0.19 ± 0.04 0.24 ± 0.03 11.660 (<0.001) NS AD<AD HC; AD<DS HC; DS+<AD
HC; DS+<DS HC; DS+<DS-

Temporal lobes
(ml)*

104.23 ± 16.84 121.75 ± 14.95 136.16 ± 16.65 101.78 ± 15 110.57 ± 14.21 5.947 (<0.001) NS AD<DS-; AD<AD HC

Temporal lobes
normalised by TIV
(% TIV)*

9.48 ± 1.1 10.2 ± 0.93 9.8 ± 0.77 7.86 ± 0.81 8.65 ± 0.8 5.998 (<0.001) 4.2 (0.042) AD<DS-; AD<AD HC

Left temporal lobe
(ml)*

52.05 ± 8.55 61.26 ± 7.68 68.72 ± 8.15 51.97 ± 8.35 56.74 ± 9.61 4.967 (0.001) NS AD<AD HC; AD<DS-
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Table 1 Magnetic resonance imaging comparing subjects with Down’s syndrome and Alzheimer’s disease in the general population (Continued)

Left temporal lobe
normalised by TIV
(% TIV)**

4.73 ± 0.57 5.12 ± 0.48 4.95 ± 0.4 4.02 ± 0.51 4.43 ± 0.58 4.851 (0.001) NS AD<AD HC; AD<DS-

Right temporal
lobe (ml)**

52.17 ± 8.7 60.02 ± 7.81 67.37 ± 9.63 49.8 ± 9.14 53.82 ± 7.21 3.067 (0.018) NS AD<AD HC

Right temporal
lobe normalised by
TIV (% TIV)**

4.74 ± 0.54 5.0 ± 0.57 4.85 ± 0.49 3.84 ± 0.57 4.22 ± 0.51 3.112 (0.017) NS AD<AD HC

Lateral ventricles
(ml)*

26.78 ± 21.32 17.21 ± 15.94 10.56 ± 8.38 49 ± 21.81 27.72 ± 12.27 9.238 (<0.001) NS AD>AD HC; AD>DS HC

Lateral ventricles
normalised by TIV
(% TIV)*

2.44 ± 1.86 1.43 ± 1.24 0.76 ± 0.61 3.8 ± 1.65 2.16 ± 0.89 9.009 (<0.001) NS AD>AD HC; AD>DS HC

Left lateral ventricle
(ml)*

12.7 ± 12.08 7.52 ± 6.47 5.26 ± 4.36 22.68 ± 10.75 13.6 ± 6.07 7.115 (<0.001) NS AD>AD HC; AD>DS HC

Left lateral ventricle
normalised by TIV
(% TIV)*

1.16 ± 1.04 0.63 ± 0.51 0.38 ± 0.32 1.76 ± 0.82 1.06 ± 0.45 6.967 (<0.001) NS AD>AD HC; AD>DS HC

Right lateral
ventricle (ml)**

14 ± 9.69 9.66 ± 9.58 5.3 ± 4.36 26.17 ± 11.63 14.11 ± 6.7 10.3 (<0.001) NS AD>AD HC; AD>DS HC; DS+>DS
HC

Right lateral
ventricle
normalised by TIV
(% TIV)**

1.27 ± 0.86 0.8 ± 0.7 0.38 ± 0.31 2.0 ± 0.88 1.1 ± 0.48 9.995 (<0.001) NS AD>AD HC; AD>DS HC; DS+>DS
HC

*P <0.001; ** P <0.05. Age, gender and TIV were added as covariates in the analysis. DS+, people with Down’s syndrome and dementia; DS-, people with Down’s syndrome without dementia; DS HC Down’s syndrome
healthy controls, AD Alzheimer’s disease, AD HC Alzheimer’s disease healthy controls, MMSE Mini Mental State Examination, CAMCOG Cambridge cognitive examination, TIV total intracranial volume, NS not significant.
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reduction in hippocampal volume when compared to their
comparison control groups. The AD group also showed a
significant reduction in temporal lobe volume and a sig-
nificant increase in lateral ventricle volume compared to
its age-matched control group.
Subjects with DS are at an increased risk for dementia,

thought to be of the AD type [47-49]. The hippocampal
volumes in DS+ in this study were disproportionably small
compared to age-matched healthy controls. This is in
agreement with previous neuropathological [44] and neu-
roimaging studies of subjects with DS [32,33,50-52] and a
number of MRI studies of AD subjects in the general
population [23,24,53-55]. Reduced hippocampal volume
however, is not a feature of all people with an intellectual
disability. In subjects with fragile X syndrome [56] and
autism [57], for example, corrected hippocampal volume
is reported to be significantly increased compared to
healthy controls. Therefore, reduced hippocampal volume
in the brains of subjects with DS does not appear to sim-
ply reflect a non-specific effect of an intellectual disability.
In individuals with DS, the reduction in the volume of

the hippocampus in DS+ compared to DS- was less than
half that in people with AD compared to controls from
the general population (7% and 15%, respectively). Simi-
larly, the reduction in the volume of the temporal lobe in
DS+ compared to DS- was also less than half that in
people with AD compared to controls from the general
Figure 1 Whole brain volume. Comparison of people with Alzheimer’s d
HC, healthy controls; DS-, people with Down’s syndrome without dementia
population (2% and 5%, respectively). The conclusion that
DS+ subjects have less brain volume than AD subjects
was therefore based on the TIV-corrected percentage dif-
ferences between the hippocampus and temporal lobe vol-
umes for DS+ versus DS-, as compared with AD versus
AD HC. In this study DS- had a mean age of 38 years but
did not show a significant difference from DS HC for the
volumes of the lateral ventricle or for the lateral ventricle
volume corrected for TIV. DS- in this study are very likely
to develop dementia as they age.
In corroboration with our findings, a number of previ-

ous studies have demonstrated a reduction in the volume
of the hippocampus in individuals with DS compared to
healthy controls, utilising MRI [50,58,59]. Furthermore,
DS- have also been shown to have smaller hippocampi
compared to healthy controls [51], with an age-related re-
duction in hippocampal volume compared to controls also
evident [60].
Post-mortem studies have reported that adults with DS

have prominent neuropathology in the medial temporal
lobe structures in the early stages of AD [61-64]. In the
current study, the volumetric findings in subjects with DS
were consistent with an AD pattern of atrophy, with a re-
duction in the volume of the hippocampus. This study
tentatively supports the finding that the hippocampus is
one of the brain regions most severely affected by amyloid
plaques and neurofibrillary plaques in DS [63] and that a
isease (AD) versus those with Down’s syndrome and dementia (DS+).
. *P <0.0001.



Figure 2 Hippocampal volume corrected for total intracranial volume (TIV) (corrected as a ratio of the hippocampal volume to TIV).
Comparison of people with Alzheimer’s disease (AD) and people with Down’s syndrome with dementia (DS+). HC, healthy controls; DS-, people
with Down’s syndrome without dementia. *P <0.0001.
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reduction in hippocampal volume may provide a useful
tool to assist the diagnosis of dementia in people with DS,
as has been proposed for people with AD in the general
population [65,66].
The first volumetric MRI study of AD published in 1988

described a 40% reduction in the volume of the hippocam-
pus of subjects with AD compared to HC [67]. Subse-
quent studies have similarly reported reduced volume of
the hippocampal and parahippocampal formation in AD
of 20% to 52% [68], with this volume reduction already
present at the first stages of AD [69-71]. The results of the
current study showed that in individuals with DS, the re-
duction in the volume of the hippocampus in DS+ com-
pared to DS- was similar to that in people with AD
compared to controls from the general population (19%
and 17%, respectively). However, atrophy of the hippo-
campus is not specific to AD and occurs in other forms of
dementia [72,73]. Despite this, hippocampal volume has
been shown to be superior to clinical diagnosis or cogni-
tive assessment in predicting AD neuropathology [74].
We demonstrated a reduction in temporal lobe volume

in subjects with AD compared to their age-matched HC,
a finding consistent with previous MRI volumetric stud-
ies [75-80]. The medial temporal lobe plays an important
role in the storage of new information [81,82] and
atrophy of the medial temporal lobe may explain why
memory dysfunction is an early symptom of AD [83,84].
Consistent with this, subjects with memory impairment
who do not meet the criteria for dementia have an in-
creased risk of subsequent AD [85-87]. In the same way,
atrophy of the hippocampus increases the risk for subse-
quent AD in elderly individuals without dementia [88,89]
and for asymptomatic individuals at risk of autosomal
dominant AD [90].
The cognitive-reserve hypothesis concerns the percent-

age of the brain that is occupied by the hippocampus.
People with a greater proportion of their brains occupied
by their hippocampus would therefore have an increased
relative reserve. Individuals with higher levels of cognitive
reserve will have a lower prevalence and incidence of de-
mentia [91]. It is, therefore, a reduction in the volume of
the hippocampus corrected by TIV (relative reserve)
rather than a lack of raw hippocampal volume (reserve
based on actual tissue volume) that makes one more
susceptible to dementia. In the current study, follow-up
pairwise comparisons revealed that compared to their re-
spective control groups without dementia, both DS+ and
people with AD had a highly significant reduction in the
volume of the hippocampus, which had been corrected
for TIV.
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It has been hypothesised that in the brain of people with
DS, the presence of an extra copy of the amyloid precur-
sor gene located on chromosome 21 leads to abnormal-
ities in APP-processing in neuronal membranes, and
subsequently to amyloid plaques and DS [3] However, mI
also promotes the formation of amyloid plaques [7]. The
cause of the elevation in mI concentration in the brain in
DS and how this affects cognitive ability is unknown [5]. It
is possible that the increase in mI concentration does not
directly affect hippocampal neuronal function but simply
reflects another underlying metabolic process that is more
closely linked with neuronal dysfunction [5]. Therefore,
the predisposition of people with DS to amyloid depos-
ition and subsequent AD may arise from a significantly
higher gene dose of both the APP and the mI transport
genes [5].
A higher level of cognitive functioning has been shown

to be associated with fewer cases of dementia in individ-
uals with DS, and the level of cognitive functioning ap-
pears to be associated with environmental factors such as
the level of education, years in an institution and employ-
ment [92]. Furthermore, individuals with lower levels of
intellectual functioning are expected to experience an
earlier onset of dementia symptoms and a faster rate of
decline [92]. In addition, people with DS may develop
symptoms of AD earlier in life than other individuals
Figure 3 Temporal lobe volume corrected for total intracranial volum
Comparison of people with Alzheimer’s disease (AD) and people with Dow
with Down’s syndrome without dementia. *P <0.0001.
because of their smaller cognitive reserve and their in-
creased production of amyloid beta. Hence it may be that
dementia in people with DS can occur with less loss of
brain tissue than in the general population because they
have less cognitive reserve due perhaps to a double hit of
pre-existing intellectual disability combined with a genet-
ically determined increase in risk factors such as brain
amyloid and mI concentration.
Relationship of cognitive ability to brain anatomy
The results of this study showed hippocampal and tem-
poral lobe volume reductions in AD and DS+, with these
volume reductions correlated with cognitive decline in
both groups. A positive correlation was demonstrated in
the AD group for MMSE score and for both corrected
hippocampal volume and corrected temporal lobe volume.
This finding is corroborated by previous research also
demonstrating that performance on the MMSE was dir-
ectly correlated with hippocampal volume [61]. The cor-
relation between MMSE and the volume in these critical
areas, suggests that the function of the hippocampus and
temporal lobe is compromised when the volume is re-
duced. One may thus speculate that severe medial tem-
poral lobe atrophy is associated with greater cognitive
decline, a proposal in line with the finding that a small
e (TIV) (corrected as a ratio of the temporal lobe volume to TIV).
n’s syndrome with dementia (DS+). HC, healthy controls; DS-, people
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hippocampal volume at baseline is associated with a de-
crease in cognitive scores during follow up [93].

Limitations
The initial findings that people with dementia (both with
DS and AD) had a reduction in the volume of whole brain,
temporal lobe and hippocampus; in addition to an eleva-
tion in lateral ventricle volume, compared to controls,
were potentially confounded by significant between-group
differences in brain size, age and gender. To overcome the
potential confounder of brain size, all volumes were
corrected for TIV.
Age was significantly different between the groups and

is a confounder because age-related reductions in medial
temporal brain regions, including the hippocampus, have
previously been demonstrated in DS [32,58,94,95]. While
all study groups ideally would be equivalent in age, includ-
ing AD and DS+, this is virtually impossible in this study.
Life expectancy estimates suggest that only 14% of the DS
population (with dementia or otherwise) reach the age of
68 years [96]. Furthermore, the neuropathology of AD and
some degree of the gross neuroanatomical change associ-
ated with AD have been reported to occur in the brains of
80% of individuals with DS by the fourth decade and of
100% over 60 years of age [2]. Therefore, attaining DS-
and in particular DS+ groups over 65 years to match AD
Figure 4 Lateral ventricle volume corrected for total intracranial volu
TIV). Comparison of people with Alzheimer’s disease (AD) and people with
people with Down’s syndrome without dementia. *P <0.0001.
and control groups over 65 years of age, is not feasible.
Thus, unlike some previous MRI studies [32,33] we co-
varied for age. We also corrected for gender as there was
a higher proportion of female subjects in the AD HC
group, and because gender is associated with differential
degrees of brain volume reduction, including hippocampal
volume reduction, with aging [44].
Another possible confounder for our results is that

some DS individuals were taking AChE inhibitors and
others were not. The reasons for this discrepancy are un-
known, but it most probably reflects differences in local
prescribing habits. We cannot state whether or not medi-
cation status in our DS+ and AD sample was related to
length of illness. This is because it is often difficult to ac-
curately access the date of onset of dementia in people
with DS, and we were not able to retrospectively establish
the time of AD onset or the length of illness. We found
no significant differences between those participants with
dementia who were taking AChE inhibitors and those
who were not. Nonetheless, it remains possible that
medication status was a significant confounder for our
analysis. However, many DS+ are treated with AChE in-
hibitors and, therefore, we decided not to exclude these
participants.
This was a cross-sectional study and clinical rather than

post-mortem criteria were used to identify subjects with
me (TIV) (corrected as a ratio of the lateral ventricle volume to
Down’s syndrome with dementia (DS+). HC, healthy controls; DS-,
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AD and DS+. It is not possible to be certain that all of the
people with dementia under investigation had AD, as this
can only be definitively addressed at autopsy. Neverthe-
less, all the individuals with dementia from both groups
(DS and AD in the general population) were diagnosed
using standardised instruments and individuals with de-
tectable cerebrovascular disease were excluded. Therefore,
the group differences found in regional brain volume be-
tween DS+ and AD in the general population most prob-
ably reflect AD-type neuropathology. The sample in this
study was characterized with AD using identical methods
to those previously reported and accepted for publication
by other high impact factor journals [5,9,36].
Our research laboratory has significant experience in

the use of Measure software and our inter-rater and
intra-rater correlation coefficients were >0.9. Due to our
experience of this software, we chose to use it in this
study. However, there are other packages, namely the
semi-automated package, FreeSurfer, which can produce
more detailed metrics, including information on cortical
thickness.

Conclusion
To our knowledge, this is the first study to compare the
anatomy of DS+ with individuals with AD. While similar
deficits existed in both DS+ and people with AD, namely,
reduced volume of the hippocampus and temporal lobe
regions compared to their respective control groups, it is
possible that less significant regional brain volume reduc-
tions are required for the presence of dementia in people
with DS. This is potentially explained by their lower cog-
nitive reserve.
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