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Summary

S u m m a r y

In tro d u c tio n

Breast cancer  is the second m ost com m on  can cer  in w o m e n  worldwide. Approxim ately 

80% o f breast  cancer patients are  p o stm eno p au sa l  w o m e n  and about tw o  thirds of 

those  are  d iagnosed with horm one recep to r  positive breast cancer. Therefore, 

endocrine  th e ra p y  to block ER activity and signaling is the m ost successful and m ost 

com m only  used therapy. A ro m atase  Inhibitors (Als) are currently one o f  the most 

promising treatm en ts  for estrog en -recep tor  positive breast  cancer in postm enopausal 

w o m en . Even though m any w o m en  initially respond to the treatm ent, approxim ately  

40%  will acquire resistance and re lapse  within 5  year. The m echanism s involved in the 

d eve lop m en t  o f  resistance to  Als h o w e ve r  are  poorly understood as  long-term follow up 

is only n ow  becom ing available.

It is though that the d e ve lop m en t  o f  resistance and resulting tum our recurrence is due, 

at least in part, to cellular plasticity leading to  a shift in the phen otyp e  o f  the tum our cell 

from  steroid d ep e n d e n ce  to  steroid indepen den ce  /  grow th  factor depen den ce . 

Consequently, the resistant cancer  cells m ay utilize steroid receptor-independent 

m echanism s to  drive tum our progression.

A berrant expression o f  the  p l6 0  steroid recep to r  coactivators SR C -1  and SRC-3 (AIB1) in 

patients has been associated  with resistance to endocrine therap ies  and the 

d e ve lop m en t  o f  tum our recurrence. Although initially described as a nuclear receptor 

coactivator protein, SR C -1 has been show n to interact with transcription factors  running 

do w n stream  o f  an activated MAP kinase pathw ay. These  transcription factor 

interactions m ay rep resen t  one o f  the  c on seq u en ces  o f  grow th factor  path w ay  cross-talk 

described in endocrine resistance. Functional interactions b etw een  SR C -1  and the Ets 

fam ily o f  transcription factors, Ets2 and PEA3 have previously been  reported, and this 

relationship has been  show n to  be im portant in tum o ur progression and the 

d e ve lop m en t  o f  m etastasis  in tam oxifen  treated  patients.
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Summary

H yp o th e s is

The hypothesis  o f  this thesis  is to investigate if the  steroid receptor  coactivator SRC-1 

plays an important role in advancing the m etastatic  phen otype  in A rom atase  Inhibitor 

resistance. It will be investigated if such a role is d e p e n d e n t  on or independent of 

estrogen  receptor  signaling.

R esu its

The d e v e lo p m e n t  o f  Al resistance in cell lines gave  rise to a phen otype  displaying an 

increase in motility and invasiveness along with a loss o f  organisation. Both the resistant 

cell m odel and Al resistant tum our sam p les  expressed  high levels o f  the steroid receptor 

coactivator  SRC-1. W e found that SR C -1  interacts with the  transcription factor  Ets to 

regulate  Myc and M M P9 expression  and that SR C -1 w as  required for the aggressive Al 

resistant phenotype. In patients treated  with a first-line Al (n=89), w e  found that 

horm on e receptor switching b e tw e e n  the primary tum our and the  resistant m etastasis  

w a s  a com m on featu re  o f  d isease  recurrence. A significant coassociation b etw een  SRC-1 

and Ets2 in the nucleus o f  the  recurrent tissue com pared  with the m atched primary 

tum our w as  also o bserved  (p=0.0004, n=3). We also observed  an increase in Myc and 

M M P9 protein expression  in the  recurrent tissue in com parison to  the m atched primary 

tum our.

C onclusion

SR C -1  plays a key functional role in the mediation o f  an Al resistant aggressive 

phen otyp e  by utilising Ets to regulate  Myc and M M P9. Targeting dow n stream  proteins 

o f  the  SR C -1 signaling path w ay  m ay o ffer  clinical potential to  t re a t  tum our recurrence.

xv
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Chapter 1: Introduction

1 .1  B r e a s t  C a n c e r

Breast cancer is the second most common cancer in women worldwide after skin cancer 

(Parkin DM et al., 2002). Though treatm ent has dramatically improved over the last 

years, it still is the leading cause o f cancer-related death for women. In a recent survey, 

Irish women ranked fourth highest in European countries fo r both incidence and 

m ortality o f breast cancer (National Cancer Registry Ireland, 2011; Figure 1.1). 

Approximately 80% of breast cancers occur in postmenopausal women and out of these 

about two thirds are diagnosed w ith hormone receptor positive breast cancer (Fabian G 

and Kimler BF, 2005). Breast cancer development and progression are highly influenced 

by both Estrogen receptor (ER) and growth factor receptor signaling. In the past decades 

multiple drugs have been developed to inhibit tum our growth and invasion. However, 

endocrine therapy to block ER activity and signaling is still the most successful and most 

commonly used therapy in the treatm ent o f ER positive breast cancer.
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Figure 1 .1 : E s tim ated  b reas t cancer incidence a n d  m o rta lity  in Europe 2 0 0 8 . Adapted 
from  NCR! Annual Report (National Cancer Registry Ireland, 2011).
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Chapter 1: Introduction

1 .1 .1  B reast Cancer incidence a n d  m o rta lity  in  Ire la n d

Except fo r non-melanoma skin cancer, breast cancer is the most common malignancy in 

Irish women (Figure 1.2). An annual average o f 2692 breast cancer cases (20 of which 

were diagnosed in men) were registered during the three year period 2007-2009 

(National Cancer Registry Ireland, 2011), representing an increase of 13% from the 

annual average over the previous three year period 2005-2007 (National Cancer Registry 

Ireland, 2009). It is likely that this increase is linked to  the development of advanced and 

organised screening methods in recent years.

Interestingly, the five-year relative survival o f breast cancer patients has improved by 

over 10% between the 1994-1997 and 2003-2007 periods (Figure 1.3), probably 

because, due to an improvement in detection techniques, earlier diagnosis as well as 

better treatm ent is possible.
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3 %
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Figure 1 .2 : R e la tive  fre q u e n c y  o f  th e  m a in  invasive cancers d iagnosed  b e tw e e n  2 0 0 7  

a n d  2 0 0 9  in Ire lan d . Adapted from  the NCRI Annual Report (National Cancer Registry 
Ireland, 2011).
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fem ale  breast
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Figure 1 .3 : F ive -year re la tiv e  su rv iv a l fo r  cancers d iag n osed  in Ire la n d  durin g  the  

p erio d s  1 9 9 4 -1 9 9 7 , 1 9 9 8 -2 0 0 2  a n d  2 0 0 3 -2 0 0 7 . Adapted from the NCRI Annual Report 
(National Cancer Registry Ireland2011).

1 .1 .2  Risk fa c to rs

Identifying risk factors for breast cancer is an im portant diagnostic tool for at least two 

reasons: patients thought to  be at risk can be monitored more closely for earlier 

diagnosis and a better prognosis; also, understanding the pathophysiology o f the risk 

factor's association w ith breast cancer development may lead to novel ways of 

prevention and/or the development o f more effective therapies (Gradishar and Morrow,

1996). Several risk factors have been uncovered over the last years, the most strongly 

associated ones being gender and age (Table 1.1).

Breast cancer is fairly rare in men accounting for less than 1% of all breast cancers cases 

(Fentiman IS et al., 2006; NCRI, 2011). In women, breast cancer incidence increases 

dramatically w ith age. This might be due to an increase in endogenous estrogen over 

time. The risk o f breast cancer increases w ith cumulative number o f ovarian cycles and is 

decreased by 15% for each year o f delay in age of menarche but increases by 3% for 

each year of delay in age at menopause (Colditz GA et al., 2006).
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Table 1.1: Factors th a t increase the risk fo r  breast cancer in women. Adapted from  
Breast Cancer Fact & Figures 2011-2012 (American Cancer Society, 2011).

Relative
Risk Factor

>4.0  • Age (65+ vs. <65 years, although risk increases
across all ages until age 80)

« Biopsy-confirmed atypical hyperplasia

• Certain inherited genetic mutations for breast 
cancer (BRCA1 and/or BRCA2)

• Mammographically dense breasts

• Personal history of breast cancer

2.1-4.0 • High endogenous estrogen or testosterone levels

• High bone density (postmenopausal)

• High-dose radiation to chest
• Two first-degree relatives with breast cancer

1.1-2.0 • Alcohol consumption

• Ashkenazi Jewish heritage

• Early menarche (<12 years)

• Height (tall)

• High socioeconomic status

• Late age at first full-term pregnancy (>30 years)

• Late menopause (>55 years)
• Never breastfed a child

• No full-term pregnancies

• Obesity (postmenopausaU/adult weight gain

• One first-degree relative with breast cancer

• Personal history of endometrium, ovary, 
or colon cancer

• Recent and long-term use of menopausal hormone 
therapy containing estrogen and progestin

► Recent oral contraceptive use

Pregnancy increases the short-term risk o f breast cancer probably due to  heightened 

free estrogen levels during the first trimester. However, pregnancy seems to  have a 

long-term beneficial effect due to  high levels of prolactin and a decrease in sex-hormone 

binding globulin. Also, lactation has proved to lower breast cancer risk due to  the 

suppression of ovulatory function caused by nursing (Collaborative Group on Hormonal 

Factors in Breast Cancer, 2002).

The administration o f exogenous hormones has also been shown to associate with 

breast cancer risk. In current and recent users o f oral contraceptives the risk was found 

to  increase by 15-25% compared to never-users (Collaborative Group on Hormonal 

Factors in Breast Cancer, 1996). Interestingly though, this risk reduces to that o f never- 

users 10 years after stopping oral contraceptive use (La Vecchia C et al., 2004).



Chapter 1: Introduction

Postmenopausal women on recent and long-term hormone replacement therapy (HRT) 

containing estrogen and progestin are also at higher risk o f developing breast cancer 

(Colditz GA et a l,  1995).

Family history is associated w ith a 2-3-fold higher risk and this risk increases with the 

number o f affected first degree relatives (Collaborative Group on Hormonal Factors 

in Breast Cancer, 2001). In this group of women low-penetrance genes associated with 

hormonal metabolism and regulation, DNA damage and repair are thought to  be 

involved in the development o f breast cancer. There is also evidence that 

polymorphisms in genes that are involved in the biosynthesis of estradiol, especially the 

CYP19 gene, can increase the risk for breast cancer (Haiman CA et at., 2000). Mutations 

o f several high-penetrance genes, such as BRCA1, BRCA2 and p53, increase the 

cumulative lifetime risk o f breast cancer in carriers of these genes by over 50%. 

However, they are rare in most populations and explain only a small fraction o f total 

cases (2-5%) (WHO International Agency fo r Research on Cancer, 2008).

Poor lifestyle choices such as lack of physical activity, high alcohol consumption and bad 

nutrition are also believed to increase the risk fo r breast cancer (McTiernan A, 2003). 

Postmenopausal obesity is linked to high breast cancer risk, which may be due to  the 

increase in estrogen exposure due to high hormone levels in the adipose tissue (Siiteri 

PK, 1987) (Table 1.1).

1 .1 .3  H o rm o n e  re c e p to r sta tus  in  b re a s t cancer

Hormone receptor (HR) status is a crucial parameter in determining the prognosis and 

treatm ent of breast cancer. HR-positive (HR+) breast cancer can be defined as estrogen 

receptor-positive (ER+), progesterone receptor-positive (PR+) or both (Rugo HS, 2008). A 

patient tha t is classed HR+ has hormone-sensitive breast cancer and thus responds to 

endocrine therapies tha t block or interfere w ith the function o f estrogen or 

progesterone. The first evidence o f effective endocrine therapy in the treatm ent of 

breast cancer was the response of metastatic disease to ovarian suppression (Rugo HS,

2008). Only about one th ird  of patients responded to  the therapy, suggesting that better 

identification o f responsive breast cancers and more specific therapies were needed
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(Jensen EV and Jorndan VC, 2003). The discovery tha t a receptor fo r estrogen was found 

in estrogen target tissue but not in nontarget tissue raised the question of whether 

these concepts translated to  the clinic to  predict hormone responsiveness of the 

tumour. Jensen et at. reasoned that if the ER was necessary fo r estrogen-induced 

proliferation, the detection o f ER in a tum our specimen might be highly useful in 

determining the prognosis and treatm ent. In 1971, Jensen et al. reported that ER-rich 

breast cancers were more likely to respond to  endocrine therapy than ER-poor breast 

cancers (Jensen EV et al., 1971). Today, hormone receptor status is analysed by 

immunohistochemical (IHC) staining, either on paraffin-embedded or frozen tum our 

tissue (Allred DC et al., 1990; Harvey JM et al., 1999). Several scoring systems are 

available to assess the degree of hormone positivity but the best validated one to  date is 

the Allred score (Rugo HS, 2008). Still, due to  the simplicity o f interpretation, the greater 

part of laboratories report results as positive or negative and central retesting has 

shown that a small percentage of results from IHC may in fact be false negatives 

(Layfield U et al., 2003). A definite connection between the relative degree of hormone 

receptor positivity and response to  endocrine therapy has yet to  be drawn, even though 

it has become evident tha t minimally HR+ tumours have a lower response rate (Allred 

DC e ta i,  1998).

1 .1 .4  M o le c u la r  c lassification  o f  b re a s t cancer

The advent o f microarray-based gene expression profiling had a significant effect on our 

understanding o f breast cancer. It is no longer perceived as one disease with altering 

histological and clinical behaviour but rather as a heterogeneous group o f diseases 

consisting o f molecular very distinct entities. This heterogeneity cannot be explained by 

clinical parameters (tum our size, histological grade, etc.) or biomarkers (ER, PR and HER2 

status) alone. The classification by these traditional parameters has been joined by 

rankings based on gene expression (Eroles P et al., 2011). The seminal class-discovery 

studies undertaken by Perou et al. (2000) and Sorlie et al. (2001) revealed that ER+ and 

ER- breast cancers are distinct diseases in molecular terms. Cluster analysis o f intrinsic 

genes initially revealed the existence of four subtypes -  luminal, HER2-enriched, basal-
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like and normal breast-like -  but lately the luminal subtype has been divided further into 

luminal A and luminal B. Overall, up to seven intrinsic subtypes have been characterised 

so far (Figure 1.4) and it is likely that the number o f subtypes is going to increase over 

the next years.

ER/PR 

|  HER2 

AR

Figure 1 .4 : M o le c u la r subtypes o f  b reas t cancer. Simplified model o f the seven subtypes 
depicts receptor expression (ER = estrogen receptor, PR = progesterone receptor, HER2 = 
human epidermal growth fac to r receptor, AR = androgen receptor) as well as the 
occurence o f the subtypes in breast cancer patients (size o f the circles).

1 .1 .4 .1  Lum inal A

The most common subtype is luminal A and makes up 50-60% of all breast cancer. It is 

characterised by the expression o f genes in the luminal epithelial cells lining mammary 

ducts as well as a low expression o f genes that are involved in cell proliferation (Perou 

CM et at., 2000; Sorlie T et al., 2001). All lobular carcinomas in situ as well as most 

infiltrating lobular carcinomas belong to  this class due to  their molecular profile. The 

luminal A immunohistochemistry profile is characterised by the expression o f ER, PR, 

Bcl-2 and cytokeratin CK8/18, an absence o f HER2, a low rate of proliferation measured 

by Ki67 and a low histological grade (Eroles P et al., 2011). Patients diagnosed with this 

subtype o f cancer have a good prognosis; the relapse rate o f 27.8% is significantly lower 

than for any other subtype (Kennecke H et al., 2010) and survival from the time of 

relapse is also longer w ith a median o f 2.2 years. In luminal A breast cancer, metastases

HER2- molecular-
e n rich e d apocrine
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predominantly occur in the bone (47%), less frequently in the liver (17.7%) and rarely in 

the lung (8.5%) (Sihto H et al., 2011). The treatm ent o f this subtype is based on selective 

estrogen receptor modulators, pure selective regulators of ER in premenopausal women 

as well as aromatase inhibitors in postmenopausal women (Guarneri V and Conte P, 

2009).

1 .1 .4 .2  L um in a l B

10 to  20% of all breast cancers are classed luminal B. They exhibit a more aggressive 

phenotype, higher histological grade and proliferative index than luminal A. The pattern 

of distant metastases also differs: whereas the bone is still the most common site of 

recurrence (34.9%), this subtype has a much higher recurrence rate in the lung (16.3%) 

(Sihto H et al., 2011). Patients w ith  luminal B breast cancer have worse prognosis and 

the survival from time o f relapse is lower (1.6 years) (Kennecke H et al., 2010). Like 

luminal A, luminal B expresses ER, but there are several biological differences between 

the tw o subtypes: luminal B breast cancers exhibit an increase in proliferative genes and 

often express EGFR and HER2. Various d ifferent gene expression microarray platforms 

classify luminal B tum ours ER+ w ith poor prognosis (Loi S et al., 2007). 

Immunohistochemically, there have been attempts to differentiate luminal A and B 

using Ki67 protein expression as a potential marker (Cheang MC et al., 2009). In 

comparison to the ER+/HER2- Ki67 low profile in luminal A breast cancers, luminal B 

subtypes exhibit an ER+/HER2- Ki67 high or ER+/HER2+ profile. However, a m inority of 

up to  6% of luminal B tum ours are clinically ER-/HER2-. The treatm ent of this subtype is 

currently challenging as the exact mechanisms that lead to  the ir survival, proliferation 

and metastasation have yet to  be revealed. Still, a number o f inhibitors o f the PI3K 

pathway are currently being tested w ith a particular focus on the treatm ent of the 

luminal B subtype (Eroles P et al., 2011).

1 .1 .4 .3  B asal-like

The basal-like subtype represents 10-20% of all breast cancers and expresses genes

usually present in normal breast myoepithelial cells, explaining the name of this subtype.

9
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They also express genes characteristic o f luminal epithelium but at levels much lower 

than those o f luminal breast cancers (Eroles P et ah, 2011). Metastatic relapse is very 

aggressive w ith a majority o f metastasis in visceral organs such as lung (20.8%), brain 

(9.5%) and non-regional lymph nodes (11.9%) (Sihto H et a!., 2011).

The most prominent feature o f this type o f breast cancer is the absence of the three key 

receptors: ER, PR and HER2. Therefore, this subtype is more commonly known as triple 

negative in clinical practice, even though these two are not equivalent terms. A 

discordance o f 30% between those two groups has been observed (Kreike B eta!., 2007). 

Eventually, five markers have been identified to  classifiy this subtype: ER, PR, HER2, 

EGFR and CK5/6 (Nielsen TO et al., 2004).

1.1.4.4 HER2-enriched

15-20% of all breast cancers fall into the HER2-positive or -enriched subtype. This 

subtype is characterised by a high expression HER2 and other genes associated with the 

HER2 pathway and/or the HER2 amplicon located on the 17q l2  chromosome. It also 

exhibits an over-expression o f genes involved in cellular proliferation (Eroles P et al., 

2011). Tumours o f this subtype are highly proliferative, 75% have a high histological 

grade and more than 40% have p53 mutations. The IHC profile does not absolutely 

correspond w ith the intrinsic subtype, as 70% of tumours tha t have been classed HER2+ 

by microarray do not overexpress the protein by IHC. Equally, not all tumours w ith an 

amplification or overexpression o f HER2 are included in the cluster of HER2+ by 

microarray analysis (Parker JS et al., 2009). As mentioned before, a fraction o f tumours 

tha t are clinically ER+/HER2+ are classified molecularly as luminal B.

HER2 enriched breast cancer metastasis occur in the liver (27.1%) more frequently than 

in any other molecular subtype, yet, they also give rise to bone (29.2%) and lung (22.9%) 

metastasis quite frequently (Sihto H et al., 2011).

Patients diagnosed w ith the HER2-enriched subtype have poor prognosis, even though 

anti-HER2 treatm ent has dramatically improved over the last decade (Piccart-Gebhart 

MJ eta!., 2005; Slamon DJ e ta i,  2001).
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1 .1 .4 .5  N o rm a l b re a s t-lik e

Only about 6-10% of all breast tumours fall into this molecular subtype. This subtype of 

breast cancer is rather poorly characterised and consistently cluster together with 

samples o f fibroadenomas and normal breast, hence the name (Fan C et a i,  2006). 

These tumours are mostly small and tend to have good prognosis and are more common 

amongst postmenopausal women (Calza S et al., 2006). Its clinical significance however 

has yet to be determined (Reis-Filho JS et al., 2006). Some researchers question whether 

these tumours are a distinct subtype or if this subtype might rather be an artefact of 

expression profiling due to a disproportionally high content o f stromal cells in the 

sample (Weigelt B et al., 2010).

1 .1 .4 .6  C lau d in -lo w

Only 12-14% of breast carcinomas are claudin-low, making it a relatively rare subset of 

tumours. This subtype was the last one to  be identified in 2007 and is characterised by a 

low expression o f genes involved in tight junctions and intercellular adhesion, namely 

claudin-3, -4 and -7 as well as E-cadherin. This subtype is similar to basal-like tumours in 

tha t it  exhibits low expression of HER2 and luminal gene cluster. However, this group 

differs from the basal-like subtype in tha t it overexpresses a set o f 40 genes related to 

immune response (Prat A et al., 2010).

Even though the claudin-low subtype exhibits a low expression o f genes involved in cell 

proliferation, patients diagnosed w ith  this specific subtype have a poor prognosis and 

are insufficiently responsive to neoadjuvant chemotherapy (Prat A et al., 2011). Claudin- 

low breast cancer cells overexpress a subset of genes linked to  mesenchymal 

d ifferentiation and EMT, which is associated w ith acquisition o f a cancer stem cell 

phenotype (Hennessy BT e ta l., 2009).

As w ith basal-like tumours, claudin-low tumours are trip le negative by IHC, however, the 

concordance is not 100% and about 20% of tumours are positive for hormone receptors 

(Prat A e t al., 2011).
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1 .1 .4 .7 M o le c u la r  apocrin e

8-12% of breast cancers are classed molecular apocrine (Farmer P et ai., 2005). This 

subtype o f tumours is ER- but AR+ and expresses genes that are normally expressed in 

ER+ luminal tumours such as XBP-1, SCUBE2, SPDEF and FOXA1 (Doane AS et a i,  2006). 

For example, it has previously been shown that in these tumours AR driven transcription 

of genes that influence cell proliferation is mediated by FOXA1 in an ER-independent 

manner (Robinson JL et al., 2011).

1 .1 .5  H is to ry  o f  b re a s t cancer m a n a g e m e n t

Breast cancer is one o f the oldest types of cancers to  be documented. From ancient 

Egypt until today, breast cancer management has evolved through the ages and

continues to be an ongoing research area.

The earliest description o f breast cancer can be found in the so-called "Edwin Smith

Surgical Papyrus" from ancient Egypt and dates back to around 1600 B.C. (Cooper WA,

1941). The first known record o f a mastectomy goes back to  Roman times (de Moulin D,

1983) and was performed in more or less the same way until the end o f the 18th century.

However, w ith the discovery o f nitrous oxide as an anesthetic inhalant by Horace Wells

in 1846, the microscopic histopathological observation established by Rudolf Virchow in

1855 and eventually the introduction of carbolic acid spray as an antiseptic by Joseph

Lister in 1867, a new era in surgery began (Ekmektzoglou KA et al., 2009). It was

American surgeon William Halsted who performed the first properly documented

mastectomy o f the 19th century. Based on Virchow's theory that cancer is a local

disease and tha t the lymph nodes are the natural barrier against cancer spread, Halsted

proposed that cancer cells move to distant organs through adjacent tissues

(Ekmektzoglou KA et al., 2009). It was his belief that by surgically removing the tum our

and its what he called "spreading tentacles", women could be cured from the disease.

Even though this theory turned out to be incorrect, it became the cornerstone o f the

surgical treatm ent o f cancer. In 1889, Halsted performed his first radical mastectomy,

which involved removing the affected breast, the nearby lymph nodes and the two chest

wall muscles to  ensure elim ination o f all cancer cells from the body (Halsted WS, 1894).

12
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This technique became the mainstay of breast cancer surgery fo r almost one hundred 

years. However, the development of distant metastasis in patients that had undergone 

Halsted's radical surgical procedure suggested that breast cancer was a systemic disease 

(Fisher B et at., 1972). This finding led to the introduction o f simple mastectomy 

followed by regional adjuvant radiotherapy, which had been shown to result in similar 

10-year survival rates in breast cancer patients w ith stage I disease when compared to 

women that had undergone radical mastectomy (McW hirter R, 1955; Atkins H et al., 

1972). Cytotoxic chemotherapy was also introduced into the clinic as a form  of systemic 

adjuvant therapy and promising results were published in 1976 (Bonadonna G et a i,  

1976).

The first use of estrogen suppression as a therapy for breast cancer was more than a 

century ago when oophorectomy was shown to have antitum our effects in 

premenopausal women with breast cancer (Beatson GT, 1896). Beatson had 

unconsciously studied the effect of estrogen on breast cancer, as at the time estrogen 

had not yet been discovered. Half a century later, adrenalectomy and hypophysectomy 

was shown to have antitum our effects in postmenopausal women (Dao TL et a i,  1955; 

Fracchia AA et a i,  1971). Those surgeries were decided to  be the therapy of choice 

because at the time it was believed tha t the adrenal gland was the site o f estrogen 

synthesis in postmenopausal women. Modern research however has shown that the 

adrenal gland produces estrogen precursors called androgens, which are peripherally 

converted into estrogens through aromatisation (Lonning PE et a i,  2010). Even though 

these surgeries did show success, the fact that only about one third of patients 

responded to any form  of ablative surgery meant that two third o f women were 

undergoing surgery and extensive medical care w ithout any favourable outcome.

The discovery of the estrogen receptor and the representation o f the estradiol synthesis 

by Toft and Gorski in 1966 as well as the discovery o f intracellular ER in breast cancers 

by Elwood Jensen a year later linked hormone signaling through the ER to  its effect on 

breast cancer cells for the first time (Toft D and Gorski J, 1966; Jensen EV et a i,  1967). 

This discovery could distinguish between patients that would or would not benefit from

ablative therapy and paved the way fo r the development o f novel endocrine therapies.
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1.2 Endocrine therapy

Sustained exposure to endogenous or exogenous estrogen is a well-established cause of 

breast cancer (Colditz GA et a!., 1998). Randomised trials have demonstrated that 

adjuvant endocrine therapy can effectively reduce the risk o f recurrence in estrogen 

sensitive tumours (Nadji M et al., 1998). Since approximately 75% of all breast tumours 

are estrogen receptor-positive (ER+) (Possinger K, 2004; Fabian G and Kimler BF, 2005) 

and 55% are progesterone receptor-positive (PR+) (Nadji M et al., 2005), adjuvant 

hormonal therapy that interferes w ith steroid action and signaling has become 

increasingly im portant in the management o f hormone receptor positive breast cancer 

treatm ent besides cytotoxic chemotherapy and targeted therapy (Osborne CK, 1998; 

EBCTCG, 2005).

Endocrine therapy involves the manipulation o f the endocrine system through 

exogenous administration of specific hormones, particularly steroid hormones, or drugs 

that inhibit either the production or the activity o f such hormones. It has a relatively low 

morbidity, and there is evidence that antihormonal treatments have had a significant 

effect in reducing m orta lity in breast cancer patients. Despite this, resistance to 

endocrine therapy, either primary de novo or acquired during treatment, occurs in the 

majority of patients, and is a major obstacle to  optimal clinical management (Larionov 

AA and Miller WR, 2009).

Since the endocrine system changes during a woman's life, a variety of drugs have been 

developed to affect d ifferent sites of hormonal synthesis. However, the most familiar 

example of endocrine therapy in oncology is the use o f the selective estrogen-response 

modulator (SERM) tamoxifen fo r the treatm ent of breast cancer. A novel class of 

hormonal agents called aromatase inhibitors (Als) display a d ifferent mechanism of 

action and side effects than tamoxifen and have gained an increasing importance in the 

treatm ent o f ER+ breast cancer in postmenopausal women (Dellapasqua S and Colleoni 

M, 2010).
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1 .2 .1  Selective  E s trogen-R ecep to r M o d u la to rs  (SERMs)

SERMs are synthetic, non-steroidal molecules and are an im portant class o f hormonal 

therapy agents that act as competitive antagonists o f the estrogen receptor in breast 

tissue (Jordan VC, 1976). This class of drugs is used primarily for the treatm ent and 

chemoprevention o f breast cancer. By competitively binding to  the ER, they trigger a 

change in the biological activity o f the receptor to  prevent cell proliferation (Oseni T et 

al., 2008). SERMs act as antagonists in breast tissue but also as agonists in other organs 

such as bone, liver and the cardiovascular system. SERMs have also been shown to 

display mixed properties in the uterus. Recruitment o f coactivators is a prerequisite for 

agonist properties o f SERMs in certain tissues, which is determined by the availability of 

those proteins as well as conformational changes in the ER induced by SERM binding 

(Shanle EK and Xu W, 2010). The exact mechanisms that determine tissue selectivity are 

unclear and it is therefore d ifficu lt to  predict the tissue specific effects of SERMs 

(Katzenellenbogen BS and Katzenellenbogen JA, 2002).

1 .2 .1 .1  T am o xifen

One o f the most frequently utilised SERMs is tamoxifen (TAM) and it has been used as

first-line treatm ent of pre-menopausal women with estrogen receptor-positive breast

cancer for nearly four decades (Jordan VC, 2008). Response to the drug in ER- breast

cancers is quite rare, as tamoxifen acts as a competitive anti-estrogen to  inhibit estrogen

signaling. Tamoxifen is a pro-drug tha t is converted to antiestrogenic metabolites that

are more potent than tamoxifen itself (Desta Z et al., 2004). In vitro  and in vivo studies

have revealed that tamoxifen undergoes oxidation by the cytochrome P450 system,

mainly CYP3A and CYP2D6, resulting in a range o f primary and secondary metabolites

that display a significant increase in activity (Poon GK et al., 1993; White IN, 2003). Two

of the most studied metabolites o f tamoxifen are the primary metabolite 4-hydroxy-

TAM (4-OHT) and the secondary metabolite 4-hydroxy-/V-desmethyl-TAM (endoxifen)

(Jordan VC et al., 1977). 4-OHT has been shown to  possess a high affinity fo r ERs and to

exhibit a 30- to 100-fold increase in potency than tamoxifen in suppressing estrogen-

dependent cell proliferation (Coezy E et al., 1982; Robertson DW et al., 1982). Endoxifen
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has been demonstrated to be similarly potent as 4-OHT with regards to ER binding 

affinity, suppression of estrogen-dependent growth and gene expression (Stearns V et 

a!., 2003; Johnson MD et a i,  2004).

Tamoxifen competes with estrogen for the estrogen receptor. Binding to the receptor 

causes dimerisation, conformational changes in the ER/SERM complex and binding of 

the complex to the ERE (Figure 1.5). The conformational change in the AF2 domain of 

the ER caused by tamoxifen leads to different downstream effects (Brzozowski AM,

1997). It is thought that tamoxifen might block gene transcription through the AF2 

domain, whereas AFl-mediated gene transcription might still occur, offering an 

explanation for the partial agonist/antagonist action of tamoxifen (Tora L, 1989).

Five years of adjuvant therapy with TAM has shown to halve the rate of disease 

recurrence (47% disease reduction) as well as contra-lateral breast cancer (47% 

reduction) and reduces breast cancer deaths per year by one third (26% mortality 

reduction) (Early Breast Cancer Trialists' Collaborative Group (EBCTCG), 1998 and 2005). 

A few protective properties have been shown such as protection against osteopenia or 

hypercholesterolaemia; however, serious side effects include endometrial cancer and 

thromoembolic events (McDonald CC et al., 1995; Sismondi P, 1994).
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Figure 1.5: M olecular effects o f tamoxifen on estrogen receptor. Both estradiol and 

tamoxifen bind to the ER, which leads to  dimerisation and a conformational change in 

the AF2 domain and binding to the EREs. The conformational change with tamoxifen is 

different from that w ith estradiol and leads to persistent but less efficient transcription 

of most estrogen-dependent genes. Adapted from  Nature Reviews (Johnston SR and 
Dowsett M, 2003).
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1 .2 .2  A ro m a ta s e  In h ib ito rs  (A ls)

W hereas tamoxifen com petitively binds to the estrogen receptor to inhibit ER signaling, 

Als bind to the p450 subunit of the aromatase enzyme to prevent the conversion of 

androgenal precursors into estrogen. This interaction causes a severe decrease in 

estrogen levels inside the cell, subsequently inhibiting cell proliferation by inducing cell 

cycle arrest in the G0-G i phase which is coupled with increased apoptosis in hormone- 

sensitive breast cancer cells (Thiantanawat A et at., 2003).

Arom atase is a member of the cytochrome P450 fam ily and is a product of the CYP19A1 

gene, which is located on chromosome 15 (Chen SA et a i,  1988). It is the only vertebrate 

enzyme that can aromatise a six-membered ring and is therefore the only source of 

estrogen in the body (Amarneh B et al., 1993). Breast cancer cells express the aromatase 

enzyme and produce higher levels of estrogen than non-cancerous cells, making it a 

great target in the treatm ent of breast cancer (Harada N, 1997). Aromatisation is the 

final step of steroid biosynthesis and is rate-limiting for estrogen synthesis (Figure 1.6).
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F igure  1 .6 : M e ta b o lic  p a th w a y s  d iffe re n tia lly  ta rg e te d  b y  A ls. (1) 1st generation Als 
reduce aldosterone and cortisol in addition to estrone and estradiol. (2) 2nd generation 
Als reduce aldosterone and cortisol in addition to estrone and estradiol. (3) 3rd 
generation Als and inactivators block only conversion of androstenedione and 
testosterone to estrone and estradiol. Derived from  Fabian CJ, 2007.
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Therefore, synthesis of precursors is not affected by inhibition of the enzyme. These 

unique features of the aromatisation reaction provided the opportunity to  develop 

inhibitors selectively fo r P450arom (Brodie A et a i,  2009).

Aromatase inhibitors can only be used in postmenopausal breast cancer patients, as 

they possess a lim iting ability to decrease circulating estrogen. This is due to  the fact 

that in premenopausal women ovarian aromatase is responsible for the synthesis o f the 

majority o f circulating estrogen in the body and is exquisitely sensitive to changes in 

luteinising hormone (LH) (Fabian CJ, 2007). The exquisite sensitivity o f the ovarian 

aromatase prom oter to  gonadotrophins, which radically increase after AI administration, 

renders Als useless in the treatm ent o f premenopausal women. However, Als have been 

shown to  successfully decrease estrogen synthesis in premenopausal women when 

given in combination w ith  a gonadotrophin inhib itor (Winer EP, 2005).

In postmenopausal women, estrogen production in the ovaries has ceased, but other 

organs, such as adipose tissue, brain, blood vessels, skin, bone, endometrium and breast 

tissue can still synthesise estrogen by converting androgens produced by the adrenal 

glands through the aromatase enzyme (Chumsri S et a i,  2011). The aromatase gene 

prom oter in breast tissue fo r example is less sensitive to changes in LH than the gene 

prom oter in the ovaries. However, the gene prom oter in breast tissue is more sensitive 

to  an increase in inflammatory cytokines. Since circulating inflammatory cytokines 

increase w ith age and breast tissue Inflammatory cytokines increase with breast cancer 

progression, aromatase activity in breast tissue is highly increased in postmenopausal 

breast cancer patients (Simpson ER and Davis SR, 2001).

1 .2 .2 .1  Evolu tion  o f  A ro m a ta s e  In h ib ito rs

The first generation o f Als included potent but non-selective inhibitors o f adrenal steroid 

synthesis. One of them, ammoglutethimide (Figure 1.7 c and d left), lacked selectivity for 

aromatase and inhibited cortisol, aldosterone, thyroid hormone as well as aromatase 

biosynthesis (Figure 1.6) (Santen RJ et a i,  1977). Even though this drug exhibited 

response rates between 20% and 40% in metastatic breast cancer (Santen RJ et a i,
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1978), its toxicity and the need for chronic corticosteroid substitution led to the 

development of a new class of aromatase inhibitors.
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Figure 1.7: M olecular structures o f Als in clinical use. a) Androstenedione (natural 

substrate), b) Steroidal drugs (substrate analogues), c) Non-steroidal drugs (bind to 

haem group o f aromatase as illustrated in d). d) Computer models depicting the two 

third-generation Als and aminoglutethimide interacting with the active site of 

aromatase. Aminoglutethimide is a poorer f it and less space filling than anastrozole and 

particularly letrozole (Red = substrate-binding pocket; blue = haem prosthetic group; 

yellow = inhibitor). Adapted from  Nature Reviews Cancer (Johnston SR, 2003).
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The second generation Als encompassed the non-steroidal inhibitor fadrozole and the 

steroidal inhibitor formestane (Figure 1.7 b). Even though fadrozole was superior to 

aminoglutethimide in regards to  potency, selectivity and safety, its selectivity was not 

optimal (Figure 1.6). Additionally, results from clinical trials indicated that it was not 

more successful than tamoxifen (Santen RJ et al., 1991; Falkson Cl et al., 1996; 

Thurlimann B e ta l., 1996). Formestane on the other hand proved to be quite successful 

in metastatic disease and as neoadjuvant therapy, yet its use was limited due to the 

need o f parenteral application (Dowsett M et al., 1994).

The third generation Als gave rise to  a class o f very potent and selective inhibitors of 

aromatase activity. Compared w ith the first generation non-selective inhibitor 

aminogluthetimide this generation o f Als has been shown to  be 100- to 10,000-fold 

more potent as well as monospecific for the aromatase enzyme (Santen RJ et al., 2009). 

The third generation Als can be split up into irreversible steroidal Als such as formestane 

and exemestane and reversible non-steroidal Als such as anastrozole and letrozole 

(Figure 1.7 c and d middle and right) (Campos SM, 2004).

Both groups of third generation Als have demonstrated good clinical efficacy w ithout 

cross-resistance as well as acceptable short-term toxicity profiles in post-menopausal 

women with advanced disease (Brueggemeier RW, 2004). The earliest use o f third 

generation Als in the management o f advanced breast cancer was reported in the 1990s 

(Reddy P, 1998) and initial results o f their use in an adjuvant setting were published in 

2002 (Baum M eta l., 2002).

1 .2 .2 .2  S te ro id a l vs. n o n -s te ro id a l A ro m a ta s e  In h ib ito rs

All Als are similar in tha t they prevent estrogen biosynthesis by inhibiting aromatase 

activity, however, there are distinct differences between them. The two classes of Als, 

namely steroidal and non-steroidal, d iffer w ith regards to the ir mechanism of binding to 

aromatase.

Steroidal Als bind to the substrate-binding site o f the aromatase enzyme due to their 

similar structure to  the original aromatase substrate, androstenedione. A fter binding, 

the steroidal Al is converted to  a reactive intermediate that covalently binds to
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aromatase causing irreversible inaction. As such, they have become known as aromatase 

inactivators or suicide inhibitors as the enzyme is inactivated by its own function (Brodie 

AM e ta l., 1981).

Non-steroidal Als bind to the haem moiety o f the enzyme and prevent binding of 

androgens by saturating the binding-site. The inhibition w ith non-steroidal Als is 

competitive and thus reversible (Chen SA et al., 1988). Examples for this type of Als are 

fadrozole, vorozole, rogletimide, letrozole and anastrozole. Even though formestane, 

fadrozole, vorozole and rogletimide exhibited some clinical activity in tamoxifen 

resistant breast cancer they are no longer in clinical use because they did not prove to 

be more effective than tamoxifen. Additionally, they had undesirable side effects, 

caused suppression o f aldosterone or required intramuscular injection (Chumsri S et al., 

2011). These drugs were replaced by the latest generation o f Als that offer fewer side 

effects and better oral bioavailability (Smith IE and Dowsett M, 2003).

The steroidal Al exemestane is structurally related to androstenedione. It has been 

shown that its androgenic structure may give rise to hormonal effects apart from 

estrogen depletion, which makes it distinct from the non-steroidal Als letrozole and 

anastrozole (M iller WR et al., 2008). The main metabolite o f exemestane can bind to  the 

androgen receptor (AR) w ith high affinity and it has been shown that, following the 

approved daily doses, the circulating levels of this metabolite are 15% that of unchanged 

exemestane (Ariazi EA et al., 2007; Traina TA et al., 2008). Still, it needs to be evaluated 

if steroidal Als like exemestane can exert an androgenic effect in breast cancer that is 

clinically relevant.

Steroidal, irreversible Als like exemestane are thought to  cause longer aromatase 

inhibition than non-steroidal, reversible Als since estrogen synthesis can only resume 

after de novo synthesis o f the enzyme. However, in vivo studies demonstrated tha t de 

novo synthesis ocurrs rather quickly in the span o f one to  two days (Dowsett M et al., 

1987).

Recent studies revealed that differences in binding between steroidal and non-steroidal

Als lead to  conflicting effects on aromatase. For example, the steroidal Al exemestane

destabilises aromatase in MCF7aro, a breast cancer cell line that overexpresses the

21



Chapter 1: Introduction

enzyme, leading to  a faster degradation of the aromatase protein by proteosomic 

enzyme than in the absence of the Al (Wang X and Chen S, 2006). In contrast, non­

steroidal Als have been shown to increase aromatase protein levels, probably due to 

stabilisation o f the enzyme or the induction of transcription o f aromatase mRNA, which 

may result in an increase in aromatase activity (Chen S et al., 1999; M iller WR and Dixon 

JM, 2001; Soudon J, 2000). Therefore, it is thought tha t prolonged treatm ent w ith non­

steroidal Als may result in an increase in aromatase protein levels and subsequent 

estrogen biosynthesis, which could contribute to the development o f Al resistance 

(M iller WR et al., 2008).

The Als approved by the FDA for postmenopausal women with ER+ breast cancer and 

currently in clinical use in both the adjuvant and metastatic setting are the steroidal Al 

exemestane (Aromasin®) as well as the non-steroidal Als anastrozole (Arimidex®) and 

letrozole (Femara®) (Janicke F, 2004).

1 .2 .2 .3  A n ti-e s tro g e n ic  e fficacy  o f  A ro m a ta s e  In h ib ito rs

Even though exemestane, anastrozole and letrozole are currently all in clinical use, it is 

worth noting tha t some o f them are more efficient than others with regards to blocking 

aromatase activity. Studies have shown that letrozole is the most potent in suppressing 

aromatisation. Bernardi et al. compared the anti-estrogenic activities o f anastrozole 

(lm g), letrozole (2.5mg) and exemestane (25mg) in postmenopausal women w ith no 

previous Al therapy. The results o f this study revealed the most substantial effect on 

estrogen production by letrozole, that is 84% suppression o f plasma estrone (El) and 

47% suppression o f plasma estradiol (E2), when compared with the other two 

aromatase inhibitors. Anastrozole displayed a similar level of estrone suppression (75%) 

but was not as efficient in suppressing estradiol (E2) production (26%). Exemestane 

proved to  be the least potent w ith 25% of estrone and 21% of estradiol suppression 

(Bernardi et al., 2002) (Figure. 1.8).
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Exemestane Anastrozole Letrozole

Figure 1.8: Anti-estrogenic activities o f Ais. Percent suppression from baseline of 

plasma estrone (E l) and estradiol (E2) after 1 month of Al therapy. Adapted from  The 
Breast (Monnier A, 2006).

1.2.2.4 Letrozole

Letrozole was developed in 1986 by Ciba-Geigy (now Novartis), a company that was also 

involved in the development o f several other Als in the 1980s. When tested in an in vivo 

assay it appeared to have a profound effect on the rat uterus at doses significantly lower 

than doses found to  have an effect w ith other Als. This finding suggested that this 

molecule was substantially more potent than any other Als previously tested by the 

company (Bhatnagar AS, 2007). It was subjected to  dose-finding Phase I studies in 

healthy postmenopausal women (Iveson TJ e ta l., 1993a), postmenopausal patients with 

advanced breast cancer (Iveson TJ et al., 1993b) and healthy male volunteers (Trunet PF 

et al., 1993). Two Phase III trials followed which tested two d ifferent doses o f letrozole 

against each other and revealed tha t 2.5 mg o f letrozole was significantly more potent 

than the 0.5 mg dose (Dombernowsky P et al., 1998; Buzdar A et al., 2001). It was 

approved fo r the treatm ent of advanced breast cancer in Europe in 1996 and one year 

later in the United States (Dellapasqua S, 2010).

The Femara P025 study, a Phase III trial, eventually revealed that letrozole proved to be 

superior to  tamoxifen as first-line therapy fo r postmenopausal women w ith advanced 

breast cancer (Mouridsen H et al., 2001).



Chapter 1: Introduction

1 .2 .3  T am o xifen  vs Letrozo le

Even though tamoxifen is known as the gold standard of endocrine therapy, 

development o f resistance is still quite common (Clarke R et al., 2001). It is not effective 

for more than five years and the risk o f recurrence remains even after that period 

(Brewester AM et al., 2008). More than tw o  third o f deaths occur after completed 

therapy and low rates o f compliance have been reported with no more than one third of 

patients adhering to five years o f treatm ent (Barron Tl et al., 2007).

Aromatase inhibitors have been introduced as a prospective alternative. They have been 

shown to  cause less gynaecological and menopausal symptoms than tamoxifen, but 

have been observed to  cause fractures and hypercholesterolaemia more frequently 

(Monnier A, 2006).

1 .2 .3 .1  C om parison  o f  ta m o x ife n  vs. le tro zo le  in  p rec lin ica l studies

Angela Brodie's group compared the efficacy o f letrozole vs tamoxifen in xenograft 

models tha t were treated w ith either endocrine therapy over a period of 56 weeks 

(Figure 1.9) (Jelovac D et al., 2005). They inoculated ovariectomized mice with MCF-7Ca 

cells (MCF-7 cells overexpressing aromatase) and divided them into three groups (n = 20 

per group) to receive vehicle, letrozole (10 ng/d), or tamoxifen (100 |ig/d) as soon as the 

tumours had reached a measurable size (300 mm3). All groups received androstenedione 

supplement (100 |ig/d) throughout the duration of the experiment. Tumor volumes 

were measured weekly and expressed as percentage change relative to the initial tum or 

volume (Fig. 1.9). As previously reported (Long BJ et al., 2004), both treatments were 

effective in controlling tum or growth compared w ith vehicle, yet, letrozole was more 

effective and delayed tum or progression twice as long as tamoxifen. Tumors treated 

w ith letrozole initially shrunk to  half the ir size (4 weeks). A fter 18 weeks, however, they 

had regained the ir starting size and thereafter were clearly unresponsive to the drug 

(Fig. 1.9).
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F igure 1 .9 : E ffec t o f  le tro zo le  a n d  ta m o x ife n  on th e  g ro w th  o f  M C F-7C a xen og rafts .

Animals were inoculated w ith MCF-7Ca cells and were supplemented with 

androstenedione for the duration o f the experiment. They were assigned to three 

groups (n=20) and injected daily w ith vehicle (control), tamoxifen (100 [xg/d) or letrozole 

(10 |ig/d) as soon as tumours reached measurable size (300 mm3). Tumour volumes 

were measured weekly and were expressed as the percent change relative to the initial 

volume. Two mice per group were sacrificed and tumors were collected fo r analysis at 4, 

28, and 56 weeks as indicated. Adapted from  Cancer Research (Jelovac D et al., 2005).

1 .2 .3 .2  C om parison o f  ta m o x ife n  vs. le tro zo le  in  c lin ical stud ies

The first clinical study evaluating an aromatase inhibitor as adjuvant therapy for breast 

cancer was performed at the Royal Marsden Hospital in London three decades ago. The 

study compared the first generation Al aminoglutethimide to  placebo (Coombes RC et 

al., 1982). The tria l revealed tha t aminoglutethimide improved short-term, but had no 

sustainable effect on overall survival (Jones AL et al., 1992).

To date, several trials have been conducted to  evaluate the efficacy o f the third 

generation Als anastrozole, letrozole and exemestane (Figure 1.10). In general, there are 

three different treatm ent strategies under investigation: early adjuvant therapy 

(replacement of tamoxifen as adjuvant therapy fo r five years), early sequential adjuvant 

therapy (sequencing o f tamoxifen before or after an aromatase inhibitor during the first
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five years) and extended adjuvant therapy (aromatase inhibitor therapy following five 

years o f tamoxifen treatm ent) (Mouridsen HT and Robert NJ, 2005).

1.2.3.2.1 Early adjuvant tria ls

The firs t early adjuvant trial comparing an Al w ith tamoxifen was the so-called ATAC 

(Anastrozole, Tamoxifen, Alone or in Combination) trial. It was initially designed as a 

three-arm study to  assess the efficacy and safety o f anastrozole, tamoxifen or a 

combination o f both drugs during five years o f adjuvant therapy (Baum M et al., 2002; 

Howell A et al., 2005; Forbes JF et al., 2008; Cuzick J et al., 2010). A fter five years of 

treatm ent, there was a significant improvement in disease free survival (DFS) of 2.5% 

(p=0.005) in the group o f patients treated w ith the anastrozole alone when compared 

w ith five years o f tamoxifen (Howell A et al., 2005), however, no significant 

improvement in overall survival has been observed beyond 100 months o f median 

follow-up.

The BIG 1-98 (Breast International Group) collaborative group study represents a phase 

III, double-blind tria l tha t initially randomised 1828 patients to either letrozole or 

tamoxifen fo r five years (Mouridsen H et al., 2009). It was later modified to a four-arm 

study and randomised 6182 patients to letrozole fo r five years, tamoxifen for five years, 

letrozole fo r tw o  years followed by tamoxifen for three years or tamoxifen for two years 

followed by letrozole fo r three years (Coates AS et al., 2007). 26 months follow-up data 

from the BIG 1-98 study revealed that letrozole significantly increased the DFS rate 

(p=0.003), decreasing recurrent cancer from  13.6% to 10.4%. Five years o f letrozole 

monotherapy has shown a significant benefit over tamoxifen, especially in the reduction 

o f distant metastasis (Mouridsen H et al., 2009). Interestingly, long-term follow  up has 

revealed an overall survival benefit for patients on letrozole in comparison to  patients 

tha t received tamoxifen monotherapy (Lao Romera J e ta l,  2011).

TEAM is a multinational, phase III trial. Approximately 4400 postmenopausal, HR+ 

patients with early breast cancer were randomised after concluding primary treatment 

w ith surgery, chemotherapy and radiation therapy to  either tamoxifen or exemestane as 

adjuvant monotherapy fo r five years (van de Velde CJ et al., 2011).
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Figure 1.10: Design o f  various clinical trials. Tam = tamoxifen, Ana = anastrozole, Let = 

letrozole, Exe = exemestane. * TEAM trial design was amended later on; patients in the 

tamoxifen monotherapy arm were switched to exemestane after 2-3 years of tamoxifen 

treatment. # Planned study size, but placebo arm was closed prematurely due to reults 

from the MA.17 study.
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Due to  recent findings of the ICCG 96 trial (see below) that suggested that switching 

from tamoxifen to exemestane after tw o to  three years improves disease free survival 

(DFS) compared w ith remaining on tamoxifen, the TEAM study has been amended 

accordingly (Mouridsen HT and Robert NJ, 2005).

A multicenter, randomized trial performed by the International Letrozole Breast Cancer 

Group was designed exactly like the monotherapy arms o f the BIG 1-98 study. It 

confirmed that Letrozole was more efficient than tamoxifen as a first-line treatm ent for 

women w ith advanced metastatic breast cancer. Results from 907 patients randomized 

into two groups (letrozole n=453, tamoxifen n=454) revealed tha t patients on letrozole 

experienced significantly longer time to progression (9.4 months) when compared with 

those on tamoxifen (6 months, p<0.0001). Letrozole continued to  have a significant 

advantage over tamoxifen at a median o f 32 months. Patients treated with the Al 

attained a significantly greater overall objective response rate (ORR) of 32% than those 

treated w ith the SERM (21%, p=0.0002) as well as a higher rate o f clinical benefit (50%) 

than w ith  tamoxifen (38%, p=0.0004) (Figure 1.11) (Mouridsen H e ta i,  2003).

P= 0.0002

ORR Clinical Benefit

F igure 1 .1 1 : Efficacy o f  le tro zo le  a n d  ta m o x ife n  tre a tm e n t in  p a tie n ts  w ith  ad vanced  

m e ta s ta tic  b re a s t cancer. Results at median 32-month follow-up. Adapted from  The 
Breast (M onnierA et al., 2006).
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1.2.3.2.2 Early sequential adjuvant trials

In the early sequential adjuvant therapy arms o f the four-arm BIG 1-98 trial patients 

received either two years of letrozole followed by three years o f tamoxifen or two years 

of tamoxifen followed by three years o f letrozole as mentioned earlier. When letrozole 

was compared to each one of the sequential arms it emerged that sequential treatm ent 

with letrozole followed by tamoxifen or tamoxifen followed by letrozole was not 

superior to  five years o f letrozole monotherapy w ith regard to improving disease 

outcome (Regan MM eta l., 2011).

The ICCG 96 /  IES (International Collaborative Cancer Group /  Intergroup Exemestane 

Study) is a large, double-blind trial designed to compare two to  three years of 

exemestane w ith tw o  to three years of tamoxifen in patients that have already received 

tamoxifen fo r tw o to  three years. Postmenopausal ER+ patients w ith early breast cancer 

who were disease-free after initial tamoxifen treatm ent were randomised to continue 

on tamoxifen therapy or to switch to exemestane, with an overall treatm ent of five 

years o f adjuvant therapy (Coombes RC et a!., 2004).

The ARNO tria l is designed to  compare five years of tamoxifen versus sequential

tamoxifen fo r two years followed by three years of anastrozole treatment. This trial

began in 1996 and was carried out by tw o  study groups: the Austrian Breast Cancer

Study Group and the German Adjuvant Breast Cancer Group (Goss PE, 2001). Their trial

design differed slightly in tha t the Austrian group randomised the patients upfront

whereas the German group randomised the patients during the first tw o  years after

surgery. Postmenopausal patients with hormone-sensitive breast cancer and no prior

adjuvant chemotherapy were recruited fo r this trial. The trial demonstrated that

switching to  anastrozole resulted in a 39% relative improvement in DFS (p=0.049) and

52% improvement in overall survival (p=0.045) at a median follow-up o f 30 months

when compared to continuing on tamoxifen treatm ent (Kaufmann M et al., 2006).

The ITA is an Italian open-label trial that was designed to compare the standard five-year

tamoxifen treatm ent w ith tw o to  three years o f tamoxifen followed by tw o to three

years o f anastrozole fo r a total o f five years (Boccardo F et al., 2006). Postmenopausal

ER+ and node-positive patients were enrolled, out of which 45% had prior adjuvant
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chemotherapy. This study however was limited to  the apparent small size (n=448), the 

open label design and in particular the changes in inclusion criteria. The criteria had 

specified tha t the patients in the sequential arm o f the trial would receive tamoxifen for 

a maximum of two to three years, but the swith to anastrozole actually took place at 

highly inconsistent time points w ith a median o f 28 months (range from 20 up to 40 

months).

1.2.3.2.3 Extended adjuvant therapy

Due to  the appreciable late recurrence rates in women w ith ER+ breast cancer following 

five years of first-line tamoxifen therapy, the MA.17 trial was designed to evaluate 

additional five years o f letrozole administration after completing adjuvant tamoxifen 

would improve DFS in those patients. Postmenopausal HR+ breast cancer patients were 

randomized to receive either five years of letrozole or placebo after five years of 

tamoxifen treatm ent (Goss PE et al., 2003). However, the trial was discontinued after a 

planned interim analysis showed significantly better four-year disease free survival 

estimates with letrozole. The results o f this tria l led to the approval o f letrozole as 

extended adjuvant therapy in the treatm ent o f early breast cancer in patients who 

received adjuvant tamoxifen treatm ent In the United States as well as several European 

countries (Mouridsen HT and Robert NJ, 2005).

The NSABP B-33 study randomised patients to either exemestane or placebo fo r an 

additional five years after completed five-year tamoxifen therapy. It was planned to 

recruit a tota l of 3000 patients but the placebo arm was closed in October 2003 due to 

the results o f the MA.17 study (Mamounas EP eta l., 2008).

1.2.3.3 Side effects

Due to their different mechanisms o f action, Als and tamoxifen have very different side

effects, even though in general, Als have proven to cause fewer. One of the most severe

unwanted side effects associated w ith tamoxifen therapy is the partial agonist activity of

the drug in the endometrium. It has been shown to increase the risk fo r endometrial

cancer by 2 -  5 fold (Smith LL et al., 2000). Cardiovascular disease is the second most
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common cause o f death in women w ith breast cancer (Yancik R et al., 2001). Due to 

their menopausal status, age, higher rates of hypertension as well as administered 

therapies, postmenopausal breast cancer patients are at a higher risk fo r myocardial 

infarction and stroke (Nilsson G et al., 2005). Results from the BIG 1-98 tria l revealed 

that patients treated w ith  letrozole experienced less thromboembolic events, such as 

deep venous thrombosis and pulmonary embolism, than those treated w ith tamoxifen 

but displayed significantly higher rates of serious or fatal cardiac events (Bundred NJ, 

2005; Coates AS et al., 2007). Other side effects o f tamoxifen that Als rarely cause are 

hot flushes and gynaecologic complications (Swaby R et al., 2007). In contrast to 

tamoxifen, which has an agonist effect on bone density, continous estrogen depletion 

caused by Al treatm ent can result in acceleration of bone loss in postmenopausal 

women (Bundred NJ, 2009). Recent studies have succefully used a combination o f Als 

w ith either bisphosphonates or vitamin D to  prevent bone mineral loss (Gnant MF et al., 

2007; Geisler J et al., 2006). Another downside to Al therapy, which is not as such a side 

effect, is the significantly higher cost o f Al therapy (Figure 1.12).

I  Osteoporosis risk 

i  Cost
Cardiovascular disease?

Sexual function?

Neurocognition?

Hyperlipidaemia?

I  Relapse rate 

i  DVT 

i  Stroke

i  Endometrial CA

I  M/S syndrome ¿H ot flushes

Tamoxifen Aromatase inhibitor

Figure 1 .1 2 : C om parison  o f  side e ffects  o f  T am o xifen  vs A if r o m  th e  ATA C  tr ia l

(CA = cancer, DVT = deep venous thrombosis, M/S = musculoskeletal). Adapted from  
British Journal o f Cancer (Wong ZW and Ellis MJ, 2004).
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1.3 Disease progression in breast cancer

1 .3 .1  M e ta s ta s is

Early breast cancer is characterized as an invasive cancer that has not spread beyond the 

breast or the axillary lymph nodes and is therefore potentially curable, as the tum our as 

well as any nodal matastases can be surgically removed (National Institute for Health 

and Clinical Excellence, 2006). Despite efforts such as improvements in diagnosis, 

surgical techniques and local and systemic adjuvant therapies, most deaths from breast 

cancer are due to  micro-metastases that remain undetected or the progressive growth 

of metastases that are resistant to therapy. The organ microenvironment can modify the 

response of metastatic tum our cells to  therapy and alter the efficacy o f anticancer 

agents (Fidler IJ, 2001). However, the main obstacle in treating metastasis is the 

biological heterogeneity o f primary tum ours and metastases: by the time of diagnosis, 

cancers contain a variety o f genetically unstable cell populations with diverse growth 

rates, cell-surface properties, antigenicities, marker enzymes, sensitivity to cytotoxic 

drugs, abilities to  invade and produce metastasis etc. (Fidler IJ, 1990).

Metastatic disease increases the mortality rate in breast cancer patients by 70%. Even 

though metastasis usually correlates w ith later stages o f the disease it is thought that 

the metastatic process may begin early on in breast cancer development (Marsden CG et 

a!., 2012). Metastases can remain undetectable fo r many months and years but 

eventually lead to  recurrence at the primary site and/or dissemination to distant sites 

(Allan AL et at., 2006; Kim MY et at., 2009). For this to happen the primary tum our needs 

to undergo a complex multistep process. The outcome o f the metastatic process 

depends on both intrinsic properties o f the tum our cells and their interactions w ith host 

factors (Langley RR, 2007).

After the initial transformation neoplastic cell proliferation must be progressive. At this 

point the expanding tum our mass receives nutrients via simple diffusion. When the 

tum our exceeds a size of approximately 1-2 mm in diameter it has to undergo extensive 

neo-angiogenesis to  allow supply w ith fresh nutrients and oxygen and removal of
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metabolic waste from the hypoxic center of the tum our mass (Folkman J, 1986). 

Angiogenesis is regulated by a balance of positive and negative signaling events that are 

mediated by GFs and their receptors as well as cell adhesion to the ECM (Cheresh DA 

and Stupack DG, 2008). Certain proangiogenic factors that play a key role in establishing 

a neocapillary network from the surrounding vasculature are synthesised and secreted 

by the tum our cells to aid in this process (Langley RR et al., 2007). The next step in the 

metastatic process is the detachment o f carcinoma cells from the epithelium and 

subsequent invasion of the underlying stroma. This process resembles the well- 

characterised epithelial-to-mesenchymal transition (EMT) observed in embryogenesis, 

both on a cellular and a molecular level (Kalluri R and Weinberg RA, 2009). The loss of 

intracellular adhesion molecules, such as E-cadherin, and cytokeratins as well as an 

increase in N-cadherin and integrins is crucial for EMT and leads to dramatic changes in 

the physical and mechanical properties o f a cell (Figure 1.13). Reduction in intercellular 

adhesion as well as a morphological change from cuboidal epithelial to mesenchymal is a 

hallmark of the transition (Polyak K and Weinberg RA, 2009). These changes eventually 

result in detachment of cancer cells from the primary tumour and the acquisition of a 

motile phenotype (Thiery JP and Sleeman JP, 2006).

Figure 1.13: The physics o f  invasion and intravasation. EMT is associated with a loss of 

adhesion through downregulation of E-cadherin (E-cad) and a change in morphology. 

Invasion by tum our cells o f the surrounding tissue and subsequent motion is dictated by 

the physicochemical properties of the ECM. Tumour cells enter the vascular system by 

intravasation. Adapted from  Nature Reviews Cancer (Wirtz D et al., 2011).

Primary Basement 
tumour j [ membrane
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Cancer cells need to  express certain secreted and/or membrane-bound matrix 

metalloproteinases (MMPs) to  digest the laminin- and collagen-IV-rich basement 

membrane (Hotary K et al., 2006). After leaving the tum our microenvironment, the cells 

encounter the architecturally complex extracellular marix (ECM) that is rich in collagen-1 

and fibronectin (Wirtz D et al., 2011). The matrix surrounding a mammary tum our is 

often stiffer than in normal tissue. This is thought to be due to  augmented collagen 

deposition (Levental KR et al., 2009) and crosslinking o f the collagen fibres by tum our- 

associated fibroblasts (De Wever O et al., 2008), the latter enhances integrin signalling 

and bundling o f individual fibres (Provenzano PP et al., 2009). These changes increase 

proliferation and invasion in a positive feedback loop (Levental KR et al., 2009). 

However, the exact molecular and physical mechanisms tha t drive motile cancer cells 

away from  the ir primary tum our and into the stromal space, especially at a subcellular 

level, have yet to be elucidated (Wirtz D et al., 2011). Invasion o f the surrounding tissue 

by tum our cells and subsequent migration is dictated by the physiochemical properties 

o f the ECM.

During intravasation, tum our cells have to  undergo dramatic shape changes that are

driven by cytoskeletal remodelling to penetrate endothelial cell-cell juntions. Once the

cancer cells have managed to  migrate through the ECM they can enter the vascular

system by squeezing between endothelial cells o f veins or capillaries to desseminate to

distant organs in the body. Cancer cells also frequently invade thin-walled lymphatics, as

they offer low resistance to  penetration by cancer cells and therefore provide a common

pathway for entry into the circulation (Fidler IJ, 2003). Once inside the vasculature,

cancer cells often form  so called clusters or emboli. Tumour cells are thought to have a

better chance of survival w ith in those clusters compared to  individual cells in circulation

(Liotta LA et al., 1976). A process called cell-induced platelet cell aggregation facilitates

vascular embolisation as well as the form ation of metastatic foci (Jurasz P et al., 2004).

Another way fo r cancer cells to  survive inside the vasculature is the formation of so-

called tum our nests tha t are enveloped w ith endothelial cells. It is thought to be a

means o f non-invasive metastasis and can be observed in patients w ith inflammatory

breast cancer (Yui S et al., 2005). A mouse model study revealed that those nests are
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enveloped with endothelial cells derived from the sinusoidal vasculature of highly 

angiogenic breast tumours and grow inside blood vessels in the secondary organ such as 

the lung (Sugino T et al., 2002).

a Primary tumour b Proliferation/ c Detachment/ d Embolism/circulation
angiogenesis invasion

Lymphatics,
venules,
capillaries Interaction with platelets,

lymphocytes and other 
blood components

Figure 1.14: The m etastatic process. Each step is rate-limiting in that failure of a tumour 

cell to complete a step terminates the process, a) Cellular transformation and tumour 

proliferation. Tumour is initially supplied with nutrients by simple diffusion, b) 

Vascularisation occurs if a tum our exceeds 1-2 mm in diameter. Angiogenic factors 
secreted by the tum our establish a capillary network from surrounding tissue.

c) Detachment of carcinoma cells from the epithelium and subsequent invasion of the 

underlying stroma. Intravasation o f capillaries, venules or, most commonly, lymphatics.

d) Embolisation o f tum our cells. Cells that haven't been destroyed remain in circulation 

and become trapped in capillary beds of distant organs where they adhere to vessel 

walls, e) Extravasation and establishment of microenvironment, f) Proliferation and 

angiogenesis inside the organ parenchyma completes the metastatic process. Adapted 
from  Nature Reviews Cancer (Fidler IJ, 2003).

e Extravasation

3 5
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Primary tumours have been found to metastasise to various distant sites in the body;

however, there is a higher probability o f metastasis at certain sites. For example, breast

cancer tends to  metastasise to bone marrow and the lungs, whereas prostate cancer

predominantly metastasises to bone marrow and the liver (Wirtz D et a i,  2011). Two

hypotheses have been postulated over the last years to  explain the patterns of

metastasis. The "seed and soil" hypothesis states that a primary tum our cell will

metastasise to  a site w ith a favourable microenvironment (Paget S, 1889). The

mechanical hypothesis on the other hand states tha t the occurrence o f a metastasis is

based on the pattern of blood flow. Both mechanisms are thought to have

complementary roles in influencing the location of a metastatic site (Weiss L, 2000).

Eventually, the circulating tum our cells arrest in the capillaries o f the secondary organ.

Two main mechanisms, namely physical occlusion and adhesion, are thought to  be

involved in this process. Arrest can simply be caused by the large size o f the tum our in

relation to  the capillary lumen (Naumov GN et al., 1999). Attachment o f the cancer cells

to  vessel walls by adhesion is a specific and highly regulated process involved in organ-

selective metastatic form ation. This non-random arrest o f tumours may be determined

by the expression o f specific adhesion molecules and their corresponding ligands in the

lining o f the capillaries inside the secondary organs as well as on the tum our cell surface

respectively (Gassmann P et al., 2004). Attachment is usually followed by the

recruitm ent of leukocytes, which are thought to be the first cells to  extravasate,

followed by the cancer cells (Wood S Jr, 1958). In some cases, cancer cells proliferate

intravascularly, which can cause physical disruption o f the endothelium due to  an

increase in tum our mass, allowing tum our cells to enter the surrounding tissue (Wong

CW et al., 2002). However, studies in breast tum our cells have shown the development

o f cell protrusions and deformation o f the nucleus while crossing the endothelium,

suggesting that extravasation is an active process (Tsuji K et al., 2006). It is thought that

the same mechanisms required for cell m otility  also play a role in extravasation (Sahai E,

2007). Most o f the primary tum our cells tha t have arrived at the secondary site will

undergo apoptosis w ith in 24 hours (Chambers AF et al., 2002; Fidler IJ, 1970). A study

conducted by Kim and colleagues revealed tha t non-metastatic cells that were lodged in
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the capillaries at the secondary site were more prone to apoptosis than metastatic cells, 

suggesting that increased survival at this stage in the metastatic process correlated with 

overall metastatic capability (Kim JW et al., 2004). Still, not all tum our cells that survive 

at the secondary site will start to proliferate, which can be due to  the fact that not all 

cancer cells have the same replicative potential. It has been established tha t a subset of 

solid tum our cells may have properties similar to  stem cells (Bjerkvig R et al., 2005). Only 

those stem cell-like cells are thought to be able to form a macroscopic metastasis and 

interact w ith the tum our microenvironment to  enable vascularisation o f the secondary 

tum our. It has frequently been observed tha t disseminated cells can remain dormant for 

a prolonged period o f time prior to  resuming proliferation, however, the molecular basis 

is not well understood (Naumov GN et al., 2002).

1 .3 .2  R esistance to  en do crin e  th e ra p y

The development o f resistance is the major factor lim iting endocrine therapy and is most 

often observed during the treatm ent o f advanced disease. Breast tumours have been 

shown to  start growing 1-3 years into the treatm ent despite continued tamoxifen 

administration. Interestingly, it has been shown that resistant tumours become growth 

dependent on tamoxifen and can be stimulated by the drug in a dose-dependent 

manner (Gottardis and Jordan, 1988). This mean that the drug has no beneficial effect 

any more, but furtherm ore, it actually begins to  have a negative effect on the tumour. 

Therefore, understanding resistance and how it develops is crucial.

1 .3 .2 .1  A bsence o fE R

The primary and most obvious mechanism o f resistance to endocrine treatm ent is the

lack o f ERa. Also, a recent study has shown tha t women that are carrying inactive alleles

of cytochrome P450 2D6 (CYP2D6), which is needed to convert tamoxifen into its active

metabolite endoxifen, may be less responsive to the treatm ent (Hoskins JM, 2009).

These types of mechanisms are coined de novo or initial resistance. Acquired resistance

on the other hand seems to be due to  a variety o f mechanisms following prolonged

exposure to  endocrine therapy. Yet, the most obvious mechanism seems to  involve a
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simple selection process due to the heterogeneity of the disease. Each breast tum our 

consists o f both estrogen responsive as well as independent cells. During treatment, the 

number of ER+ cells reduces, while the ER- cells become the prevailing type o f cancer 

cells w ithin the tum our, resulting in a tum our tha t will not respond to  endocrine therapy 

any more, even if clinically, these tumours still appear to be ER+ (Chen S et al., 2006). 

Early studies suggested that the loss o f ERa expression or mutations are a potential 

cause o f resistance, but the loss of ERa expression as well as mutations in the receptor 

occur only in a m inority of resistant patients (Gutierrez MC et al., 2005; Herynk MH et 

al., 2004).

1.3.2.2 Ineffective o r compromised inh ib ition  o f  aromatase

Unsucessful Al therapy is not necessarily a result o f de novo resistance but more likely 

due to inefficient or compromised treatment. A plethora of reasons, such as lack o f drug 

potency, poor or adverse pharmacokinetics, compensatory endocrine loops or mutant 

aromatase molecules tha t cannot be blocked by the Al might be responsible for the 

development o f resistance (M iller WR, 2010). As mentioned before, early generation Als 

were not very specific and did not completely block estrogen biosynthesis, potentially 

resulting in residual estrogen maintaining proliferation o f hormone-dependent tumours 

(Figure 1.15) (M iller WR, 2006; Lonning PE, 1996). In fact, studies have shown that 

apparently resistant tum ours successfully responded to  treatm ent w ith more potent Als 

(M iller WR et al., 2008; Thurlimann B et al., 1997).

It has also been suggested that some breast cancer patients exhibit adverse 

pharmacokinetics to Als (Ingle JN, 2008). The 1st generation Al aminoglutethimide has 

been shown to catalyse its own metabolism by activating liver cytochrome p450 

enzymes (Santen RJ and Misbin Rl, 1981). Drug interactions between Als and tamoxifen 

are also quite frequent. Results from the ATAC study revealed that administration of 

anastrozole or letrozole in combination w ith tamoxifen substantially decreased the 

plasma levels o f letrozole by 30 -  40% and o f anastrozole by 20 -  30%, even though 

estrogen suppression did not seem to be affected by this, at least in the case of 

anastrozole (Dowsett M e ta l., 1999a, 1999b, 2001).
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Oestrogen-stimulated growth

A ----------------- ►  E — ► E R E R -P

Al-induced response

A rom atase  inhibitor 
*

A — ► X E R

Resistance -  Ineffective inhibition
A rom atase  inhibitor

A — ►  — * E  — ► E R  - E R -P

Resistance -  alternative sources of oestrogenic stimulus (EH)

A rom atase  Inhibitor EH

A rom atase inhibitor

A — ► X E R

G F

Resistance -  increased ceil survival
A rom atase Inhibitor

A — ► X  E R

Figure 1.15: Mechanism o f  estrogen-stimulated pro liferation, Al-induced response and 
mechanisms o f  A l resistance. A = androgen precursor, CSF = Cell survival factor, E = 

estrogen, EH = estrogenic hormone, ER = estrogen receptor, ER-P = phosphorylated ER, 

GF = growth factor, Prolif = proliferation, Resp = response. Adapted from  Expert Opinion 
Pharmacother. (M iller WR, 2010).
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Another possible reason fo r ineffective aromatase inhibition by Als might be the 

expression o f UDP-glucurosyltransferases, a family of enzymes tha t are involved in the 

deactivation and clearance o f Als (Lazarus P and Sun D, 2010).

High levels o f aromatase enzyme might also prevent effective inhibition by the Als, 

which might be especially the case in premenopausal women, who express high levels of 

aromatase enzyme in the ovaries. Compensatory feedback loops also cause a problem as 

they increase levels o f gonadotrophins, which stimulate androgen synthesis and 

aromatase activity in the ovaries (Goss PE and Strasser-Weippl K, 2004). Therefore, Als 

can only be given to  premenopausal women when administered in combination w ith a 

luteneizing hormone releasing hormone (LHRH) agonist to inhibit the increase of 

gonadotrophins (M iller WR, 2004). Recent findings have suggested tha t tw o common 

functional polymorphisms in CYP19, the gene encoding aromatase, are linked to 

differences in response to Als (Wang L et a i,  2010).

1.3.2.3 A lternative sources o f  estrogenic hormones

The third generation Als have been praised fo r their specificity in only blocking 

aromatisation o f androstenedione and testosterone into estrone and estradiol (Figure 

1.15). However, this also means that synthesis of other steroids tha t can potentially 

interact w ith  the ER to some extent, such as adrenal androgens, is not affected by these 

Als. Also, Als only block endogenous synthesis of estrogens and have no effect on 

exogenous estrogens, fo r example synthetic or phytoestrogens. Still, as Als tend to be 

equivalent or even superior to other endocrine therapies such as tamoxifen, it is very 

unlikely tha t these alternative sources o f estrogenic hormones are causing AI resistance 

(M iller WR, 2010).

1.3.2.4 A ltered ER activ ity

Due to the ir mode o f action, Als are not used in the treatm ent o f ER- tumours (M iller WR

et a i,  2002). Surprisingly though, many AI resistant tumours are ER+, yet the tum our

does not regress upon estrogen deprivation by Als (Johnston SR and Dowsett M, 2003).

A possible explanation fo r this phenomenon is that, in those breast cancer patients, ER is
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mutant and/or aberrant (Fuqua SA and Cui Y, 2004). These receptors would be 

insensitive to  hormone stimulation and unresponsive to Al treatment. ERa function is 

regulated by post-translational modifications tha t influence interactions w ith other 

proteins, including transcriptional co-regulators. It has been suggested that aberrant 

coregulator expression dislocates signaling so that cell proliferation is estrogen- 

independent and Al-insensitive (Johnston SR and Dowsett M, 2003; Musgrove EA and 

Sutherland RL, 2009). Overexpression and phosphorylation o f ERa co-activators such as 

AIB-1 has been shown to  lead to  constitutive ERa-mediated transcription, which confers 

resistance in vitro  as well as in xenograft models (Ali S and Coombes RC, 2002; Ring A 

and Dowsett M, 2004) and is associated w ith  reduced responsiveness o f patients to 

tamoxifen (Osborne CK et al., 2003). The ER co-activator PELP1, fo r example, localises to 

the cytoplasm where it functions as a scaffold tha t modulates ER interaction w ith SRCs, 

leading to the activation of SRCs and ERK family kinases and subsequent tamoxifen 

resistance. (Gururaj AE et al., 2006).

1 .3 .2 .5  G ro w th  fa c to r  p a th w a y s  a n d  cross-ta lk

It has been shown that ER can be activated by low estrogen levels or even in the absence 

o f estrogen (Johnston SRD and Dowsett M, 2003; Musgrove EA and Sutherland RL, 

2009). Human epidermal growth factor receptor signaling can induce estrogen- 

independent phosphorylation of ER (Bunone G et al., 1996). It is therefore not a surprise 

tha t Als fail to  inhibit proliferation in ER+ and HER2+ breast tumours (Dowsett M et al., 

2001; Ellis ML et al., 2006).

Growth factors o f the epidermal growth factor (EGF) and insulin-like growth factor (IGF) 

families have previously been shown to  modulate tamoxifen sensitivity in vitro. Whereas 

breast cancer cells are insensitive to growth factor stimulation following treatm ent w ith 

fulvestrant, tamoxifen treatm ent does not lead to this insensitivity (Carroll JS et al.,

2003), leading to the conclusion that receptor tyrosine kinases may function as 

mediators of endocrine resistance in breast cancer. Increased expression o f HER2, EGFR 

and IGF1R can cause tamoxifen resistance as well as the activation of components of

the ir downstream signalling cascades, especially Erk and PI3K (Musgrove EA et al., 2009).
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The deregulation o f these pathways is a result o f genetic or epigenetic modifications, 

including amplification o f HER2 and methylation of PTEN, a tum our suppressor that 

inhibits PI3K. However, deregulations o f these pathways may also reflect aberrations in 

upstream regulators such as the activation o f Akt in association w ith the loss of PTEN 

expression or overexpression o f HER2 (Arpino G et al., 2008). Loss o f PTEN has also been 

shown to  result in the activation IGF1R and HER3 (M iller TW et al., 2009). However, it 

has not yet been fully elucidated how these events mediate resistance to tamoxifen. 

Overexpression o f HER2 is one of the best-characterised mechanisms o f endocrine 

resistance (Arpino G et al., 2008). Recent studies suggest that the loss o f transcriptional 

repressors and amplification o f HER2 are responsible fo r increased expression o f this 

receptor.

One o f the reasons tha t cross talk between ER and growth factor pathways may lead to 

endocrine resistance involves the phosphorylation of co-activator proteins (Osborne CK 

et al., 2003). An association between expression o f the p l6 0  proteins SRC-1 and AIB-1 

and HER2 in a cohort or patients w ith breast tum our has previously been described 

(Fleming FJ et al., 2004).
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1.4 Hormone receptor signaling
Nuclear hormone receptors (NRs) are ligand-inducible, DNA-binding transcription factors 

(TFs) that can regulate gene expression by recruiting coregulators to gene promoters 

(Evans RM, 1988). Members o f this superfamily respond to  endocrine, paracrine and 

possibly autocrine signals and thus modulate diverse aspects o f development, 

differentiation, homeostasis and behaviour in vertebrates (Leng X et at., Hormones and 

Cancer, 1996). They can be divided into 3 families or classes:

The steroid receptor family (class I) includes all the classic steroid horomone receptors 

such as progesterone receptor (PR), estrogen receptor (ER), glucocorticoid receptor 

(GR), androgen receptor (AR) & mineralocorticoid receptor. In the absence o f ligand, 

these receptors are complexed w ith heat shock proteins (HSPs) and are not able to bind 

DNA. Hormone binding to  the receptor causes the HSPs to dissociate, resulting in 

activation and dimerisation o f receptor proteins (Leng X et a!., 1996). The homodimer is 

now able to  bind to the hormone response element (HRE) on the DNA and either 

stimulate or repress transcription o f target genes.

The thyroid/retinoid fam ily (class II) includes thyroid receptor (TR), vitamin D receptor 

(VDR), retinoic acid receptor (RAR) & peroxisome proliferator-activated receptor (PPAR) 

and its members are located in the nucleus where they are consistently associated with 

the chromatin. These receptors are able to bind to  HREs as homo- or heterodimers in 

the absence of ligand, but hormone binding radically changes the activity o f this class of 

nuclear receptors (Leng X et al., 1996).

The orphan receptor fam ily (class III) is a set of proteins, which was identified as 

members o f the nuclear receptor family by comparative sequence analysis; their 

cognate ligands however remain unknown. This class o f receptors can bind to DNA as 

monomers and may potentially be constitutively active or regulated through other 

mechanisms such as posttranslational modification (Huang P et al., 2010). It is not clear 

though if these receptors can also form  homodimers or heterodimerise w ith other NRs 

(LengX et al., 1996).
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1 .4 .1  Estrogen  R ecep to r

Estrogens, such as 17R-estradiol (E2), are cyclically secreted in adult women from 

puberty until menopause and have been shown to  influence physiology and behaviour 

o f females. They are known to  be key promoters o f cell proliferation, both in normal and 

neoplastic breast epithelium, and mediate the ir cellular effects via binding to the 

estrogen receptor (ER) (Jensen EV et at., 2010). Two ERs, ERa and ER|3, have been 

identified to  date and are encoded by separate genes: ESR1 and ESR2. ERa was 

identified in the late 1950s and purified a couple o f years later (Jensen EV and Jordan 

VC, 2003). Physiologically, ERs play an im portant role in the reproductive system, bone 

metabolism as well as the maintenance o f the cardiovascular and central nervous 

system (Chen GG et al., 2008). They function as estrogen-driven transcription factors 

and are involved in the stimulation of target genes that are implicated in the regulation 

of cell cycle progression and growth of breast epithelium (Singh RR and Kumar R, 2005).

1 .4 .1 .1  S tru c tu re  a n d  fu n c tio n a l fe a tu re s

All nuclear receptors are part o f the zinc finger fam ily o f transcription factors and share

common structures with domains o f distinct functions, suggesting that they are all

evolutionary linked and may be derived from the same ancestral receptor (Leng X et al.,

1996). In te rm o d u la r sequence analysis and mutational dissection o f NRs led to  the

definition o f six functional regions (A-F) (Figure 1.16): The A/B domain at the N-terminus

contains the autonomous transactivation function AF-1. The highly conserved C region

harbours the DNA binding domain (DBD), which mediates the binding of the receptor to

the DNA follow ing ligand activation (Webster NJ et al., 1988). The conserved E region

contains a second transcriptional activation function (AF-2) in the C-terminal ligand-

binding domain (LBD). The LBD mediates interaction between the receptor and its

ligand. Both AF domains are able to  recruit a range of co-regulatory proteins to  the DNA

bound receptor, the only difference is that AF-1 is regulated by phosphorylation and its

activity is hormone-independent whereas AF-2 is hormone-dependent. They usually act

synergistically but some gene promoters can be independently transactivated by either

o f the AFs (Osborne CK et al., 2001). The two remaining regions, D and F, are o f variable
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size and are not conserved: D can be considered as a linker peptide between the DBD 

and the LBD, whereas F is a C-terminal extension region o f the LBD (Ruff M et a!., 2000).

AF-1 DNA Ligand/AF-2

A/B C I D | E T f

I 1 8 ^ ^  26 302 ^ 55 595

ERa N

ERp I 

% identity

,1 1.4 22 255 5.0 5

(18) (97) (30) (59) (18)

Figure 1 .1 6 : S tru c tu ra l o rg an iza tio n  o f  NRs consists o f  six fu n c tio n a l regions (A-F).
Shown are the relationships o f their amino acid sequences, including the level of 

conservation (in parentheses). Adapted from  Annual Review o f Physiology (Huang P et 
a I., 2010).

1 .4 .1 .2  ER in B reast Cancer

The discovery of the estrogen receptor (ER) as a mediator o f estrogen's biological effects 

revolutionized the understanding of breast cancer biology and led to the classification of 

breast cancer into tw o groups: ER positive (ER+) and ER negative (ER-). Each o f these 

groups is understood to  have the ir own distinct biological and clinical features.

The lack o f ER is associated with a more aggressive type o f breast cancer. Patients who 

are ER+ tend to be older and seem to have a better overall chance of survival compared 

to  ER- patients (Osborne CK et al., 1980). The presence of ER is also an excellent 

predictor of response to  endocrine therapy with two third of ER+ tumours responding to 

the anti estrogen tamoxifen.

1 .4 .2  Estrogen m e d ia te d  s ignaling  p a th w a y s

Estrogen binding to  its receptor results in a diverse range of physiological and 

pathological cell functions (Ascenzi P et al., 2006; Pearce ST and Jordan VC, 2004). The
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mechanism of its action, however, can generally be categorised into tw o pathways: 

genomic and non-genomic (Figure 1.17).
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Figure 1.17: Estrogen-mediated genomic and non-genomic pathways. Adapted from  
Medicinal Research Reviews (Chen GG et al., 2008).

1.4.2.1 Genomic pathw ay

This pathway is commonly known as the classical pathway as it describes the mechanism 

by which estrogen exerts its function via ERa and ER(B (Figure 1.17). It involves estrogen- 

dependent form ation o f nuclear ER homo- or heterodimers, followed by binding of the 

ligand-receptor complex to the estrogen response element (ERE) sequence in the 

prom oter region o f estrogen responsive genes, resulting in recruitment o f coregulatory 

proteins to the promoter. This leads to an increase or decrease in mRNA levels, 

depending on the type o f coregulatory protein recruited (co-activator or co-repressor 

respectively) followed by the production of a protein and eventually a physiological 

effect (Chen GG et al., 2008). This process usually happens over the course of hours. 

There is growing evidence that both ERs can regulate transcription o f certain genes with 

the aid o f other DNA-bound transcription factors independent of ERE (Ascenzi P et al., 

2006; Pearce ST and Jordan VC, 2004). This observation may explain why one third of 

estrogen-stimulated genes lack functional EREs (Pietras RJ and Marquez-Garban DC,
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2007). Examples for non-ERE DNA-bound transcription factors that interact w ith ERs are 

AP-1, Fox and NF-kB (Cvoro A et a!., 2006; Carroll JS and Brown M, 2006).

1 .4 .2 .2  N o n -g e n o m ic  p a th w a y

In contrast to  the genomic pathway, estrogen acts either via ER located in or adjacent to 

the plasma membrane or via other non-ER plasma membrane-associated estrogen- 

binding proteins (Figure 1.17) (Pietras RJ and Marquez-Garban DC, 2007; Levin ER, 

2005). Estrogen action in the non-genomic pathway results in cellular responses like 

increased levels o f calcium and the activation o f intracellular kinase cascades such as 

mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K) as well as 

protein kinase A (PKA) and C (PKC). So called adaptor proteins like caveolin-1 or She may 

target the ER to the plasma membrane.

AP-1 response elements may be regulated indirectly via interactions between the ERs 

and c-fos and c-jun, tw o known AP-1 transcription factors. AP-1 dependent transcription 

is also thought to  be directly activated by binding o f estradiol to ERs in the cytoplasm 

that can form  complexes with transcription factors such as SRC-1, p300 or pol II (Cascio S 

et at., 2007; Chen GG et al., 2008). These TFs can regulate genes that are implicated in 

cellular processes like proliferation, differentiation, cell m otility and apoptosis. Events in 

this pathway occur in a span of a few minutes, meaning it is too fast to  be mediated by 

biosynthesis of RNA or proteins (Chen GG et a!., 2008).

1 .4 .2 .3  G -p ro te in -c o u p le d  re c e p to r-3 0

Recent studies have found a range o f new estrogen receptors. One of them, the G-

protein-coupled receptor-30 (GPR30), has been shown to play a role in carcinogenesis

and metastasis (Prossnitz ER et a i,  2008; Filardo EJ et al., 2008). Studies conducted in

the SKBR3 breast cancer cell line showed tha t estrogen signalling via the GPR30 can

activate MAPK and ERK1/2 and transactivate the epidermal growth factor receptor

(EGFR) independent o f the estrogen receptor (Filardo EJ et al., 2008; Thomas P et al.,

2005). Interestingly though, GPR30 does not play a role in estrogen mediated MAPK

activation In MCF-7 breast cancer cells, suggesting that the GPR30-mediated estrogen
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signaling is exclusive to  some cell lines (Pedram A et al., 2006). This signalling mechanism 

is similar to  the non-genomic signalling mechanism and has therefore been established 

as an alternative pathway.

1.4.2.4 Non-genomic pathw ay crosstalk to  genomic pathw ay

It has also been suggested tha t crosstalk can occur between the genomic and non- 

genomic pathways (Levin ER, 2005; Pietras RJ and Marquez-Garban DC, 2007). It has 

been shown that the non-genomic activation o f signalling pathways in the cytoplasm 

may regulate gene expression independent o f an ERE. For example, the non-genomic 

patheway can activate MAPK to phosphorylate and recruit certain coactivators such as 

SRC-1, which in turn enhances nuclear ER transcriptional activity (Chen GG et al., 2008).

1.4.3 Coactivators

Initially it was thought that NRs facilitated general transcription factors (GTFs) and RNA 

polymerase II to  assemble at the promoter site to  initiate mRNA synthesis (Xu J wu 

omalley 2009). In the early 1970s, scientists started to look for nuclear non-histone 

helper proteins tha t were thought to  aid the binding to  DNA and the transcriptional 

function o f NRs (Spelsberg TC et al., 1971). It was found that the activation of an 

overexpressed NR could indirectly inhibit the transcriptional activity o f another NR, 

suggesting that steroid receptors may compete fo r factors that mediate the ir enhancer 

function (Meyer ME et al., 1989). Moreover, it was found that in vitro  transcription 

systems consisting o f purified NRs and GTFs were inefficient indicating tha t additional 

transcription activators were needed fo r efficient hormone-stimulated transcriptional 

activation (Klein-Hltpass L eta l., 1990).

The first nuclear receptor coactivator (NCoAl) was cloned in 1995 and was aptly named

steroid receptor coactivator-1 (SRC-1). It interacted with hormone receptors in a steroid-

dependent manner and strongly increased the transcriptional activities of steroid

receptors (Onate SA et al., 1995). Two homologous proteins were characterised as

steroid receptor coactivators shortly after: SRC-2 or NCoA2, which is also known as TIF2

or GRIP1 (Voegel JJ et al., 1996; Hong H et al., 1996) and SRC-3 or NCoA3, which is
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frequently called AIB1 but is also known as p/CIP, RAC3, ACTR or TRAM-1 (Anzick SL, 

1997; Torchla J et al., 1997; LI H et at., 1997; Chen H et al., 1997; Takeshita A et al.,

1997). These three proteins comprise the p l6 0  family of steroid receptor coactivators, 

named so because they are all approximately 160kD in size (Darimont BD et al., 1998). 

To date, over 300 coactivators have been identified and are associated with a range of 

diseases (Lanz RB et al., 2008; Xu J et al., 2009). They are defined by their inability to 

bind to DNA, clearly differentiating them from classic transcription factors (Johnson AB, 

2011).

Coactivators were initially described as molecules that bridge NRs to the general 

transcription machinery. Even though this is their primary function, coactivators can also 

modify chromatin within promoter and enhancer regions or enable secondary 

coactivators, so called co-coactivators, that modify the chromatin in a manner that 

supports binding o f enhancer regulatory proteins and GTFs, for example via histone 

acetylation and specific sites o f histone methylation (Figure 1.18). Coactivators are a 

diverse group of proteins and lack a uniform structure such as that found in the super 

family o f nuclear receptors (Johnson AB, 2011).

6H.H/PAS I srr

Ac**0 Ac

Figure 1.18: SRC-mediated coactivation o f NRs. SRC proteins are recruited to hormone 

bound NRs and bind via their three LXXLL motifs. SRCs can recruit multiple secondary 

coactivator complexes by binding to  their three activation domains (ADs). Three 

examples are shown: histone acetyltransferase, p300/CBP; histone methyltransferases, 

PRMT1 and CARM1; and chromatin remodeling complex, SWI/SNF. These secondary 

coactivators modify the chromatin and bridge the NR complex with the general 

transcription machinery to elicit transcriptional activation. SRCs (steroid receptor 

coactivators); bHLH/PAS (basic helix-loop-helix/Per-Arnt-Sim); S/T (serine/ threonine- 

rich region); NR (nuclear receptor); Ac (acetylation); Me (methylation); HRE (hormone 

response element); L (LXXLL motifs). Adapted from  Molecular and Cellular Endocrinology 
(Johnson AB, 2011).
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In 1997 however, Heery and Torchia identified a m otif w ithin several coactivators 

Including the p l6 0  fam ily of SRCs (Heery DM et al., 1997, Torchia J et a!., 1997). It was 

named LXXLL (L = leucine, X = any amino acid) m otif or NR box and binds to the 

hydrophobic pocket created w ithin helix 12 o f the LBD upon ligand binding. Heery et al. 

showed tha t mutation o f these residues prevents binding o f SRC-1 to the LBD in ERa in 

vitro  and SRC-l-mediated activation o f the receptor in vivo (Heery DM et al., 1997). 

Nevertheless, a recent analysis of nuclear receptor coregulator motifs revealed that of 

303 coregulators only 149 had at least one LXXLL m otif meaning while it is a common 

m otif amongst coregulators it is not collectively shared (Lanz RB et al., 2008).

1 .4 .3 .1  p l6 0  fa m ily  o f  s te ro id  re c e p to r co activa to rs

The most extensively studied family of coactivators is the p l6 0  family o f steroid receptor 

coactivators. The founding member o f the p l6 0  family, SRC-1, was identified in a yeast 

two-hybrid screen as a protein tha t interacts w ith the progesterone receptor LBD (Onate 

SA et al., 1995). SRC-2 was found shortly after as a protein that interacted w ith a variety 

o f NRs (Hong H et al., 1997; Voegel JJ et al., 1996). The third and last member of the 

family, SRC-3, was cloned by numerous labs and therefore has many different names, 

but due to the fact tha t it was found to  be amplified in breast cancer it received the 

fitting  name amplified in breast cancer 1, AIB-1 (Anzick SL, 1997). The p l6 0  proteins are 

all approximately the same size (160 kD) and share 50-55% sequence similarity with a 

range of structural domains conserved (Kim JH and Stallcup MR, 2008).

1 .4 .3 .2  S tru c tu re  a n d  fu n c tio n  o f  s te ro id  re c e p to r co activators

SRCs contain three structural domains. The basic helix-loop-helix-Per/ARNT/Sim (bHLH-

PAS) domain at the N-terminus is the most conserved one (75% sim ilarity and 60%

identity) and is required for protein-protein interactions (Kim JH and Stallcup MR, 2008).

It can interact w ith various transcription factors and co-coactivators as shown in Figure

1.19 to potentiate transcription (Kim JH et al., 2003; Belandia B et al., 2000). The bHLH-

PAS contains nuclear im port and export signals as SRCs localise in the nucleus as well as

the cytoplasm (Amazit L et al., 2003). The domain is also essential fo r proteasome-
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dependent turnover o f the coactivators (Li C et al., 2007). The central region o f the 

protein contains three LXXLL motifs and counts fo r direct interaction w ith liganded NRs 

(Heery DM et al., 1997). The C-terminus is made up o f tw o transcriptional activation 

domains, namely AD I and AD2. The A D I domain helps in the recruitment of CBP and 

p300 histone acetyltransferase (HAT) to the chromatin context by direct binding which is 

essential for SRC-mediated transcriptional activation. AD2 can interact w ith histone 

methyltransferases (HMTs) such as coactivator-associated arginine methyltransferase 1 

(CARM1) or protein arginine methyltransferases (PRMT1) (Yao TP et al., 1996; Koh SS et 

al., 2001). Both SRC-1 and SRC-3 contain weak c-terminal HAT activity, but the 

importance o f this activity and its cellular substrates has not been completely identified 

to date (Spencer TE et al., 1997; Chen H et al., 1997).

These structural and functional features provide the SRCs with a suitable base fo r the 

recruitment of additional coregulators or GTFs, resulting in chromatin remodeling, 

assembly of GTFs and recruitment of RNA Polymerase II (Xu J et al., 2009).

Transcription TEF-4, STA T6

F a c to r s M EF-2C AHR
Myogenin A R N T P53
P53, E2F1 P53 AP-1

ER81 NRs NFkB C -F os

AD3

Coactivators

CoCoA  
GAC63  

Flil 
BAF57  
MMS19 

M AGE-11 
Pin1

P300/CBP CARM1/PRMT1 
b-caienin

P/CAF

Figure 1.19: SRC-interacting proteins. SRCs coactivate nuclear receptors (NRs), as well as 

numerous transcription factors. Once tethered to  chromatin via these interactions, SRCs 

recruit a number of secondary coactivators tha t interact w ith its activation domains 

(ADs). This is a representative list o f just some o f SRC's interacting proteins, o f which 

SRC-interacting domains have been mapped. Adapted from  Molecular and Cellular 
Endocrinology (Johnson AB, 2011).
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Not only do SRCs serve as coactivators fo r NRs but they can also serve as coactivators for 

other TFs such as NF-k B, STATs, p53 and C-Fos as well as secondary coactivators 

(frequently called co-coactivators) such as p300, CARM1 or CoCoA (Figure 1.19). Another 

role o f SRCs is to  promote gene transcription by interacting w ith kinases, phosphatases, 

ublquitin/SUMO ligases, HATs and HMTs.

1 .4 .3 .3  P o s ttra n s la tio n a l m o d ifica tio n s  o f  SRCs

The levels of SRCs inside a cell are not necessarily the sole determinants of their 

physiological as well as pathological functions. Several studies have suggested that 

signaling pathways stimulated by either hormones, GFs or cytokines can induce post­

translational modifications o f steroid receptor coactivators, such as phosphorylation, 

acétylation, méthylation, ubiquiylation and sumoylation (Figure 1.20). These 

modifications play Important roles in determining protein stability, TF interaction 

specificity and transcriptional activity o f SRCs. Deregultated posttranslational 

modification o f SRCs has considerable implications In cancer (Xu J et al., 2009). 

Phosphorylation is a temporally controlled, tightly regulated and well-characterised 

event and leads to conformational changes at particular coactivator sites, resulting in 

the creation o f surface binding sites fo r other proteins (Li S and Shang Y, 2007). 

Phosphorylation changes the coactivator's affinity fo r particular NRs, resulting in a 

change in NR-dependent gene expression (Lopez GN et al., 2001; Giamas G et al., 2009). 

A range o f phosphorylation sites has been identified in the p l6 0  coactivator family. SRC-

1 contains seven phosphorylation sites, namely Ser-372, Ser-395, Ser-517, Ser-569, Ser- 

1033, Thr-1179 and Ser-1185, all o f which hold a consensus sequence fo r proline- 

directed protein kinases (Li S and Shang Y, 2007). For example, phosphorylation of SRC-1 

on T h r ll7 9  and S e rll8 5  can be induced by stimulation w ith EGF, interleukin 6 (IL-6) and 

cyclic AMP and it has been demonstrated that phosphorylated SRC-1 has higher 

coactivator function in ligand-dependent as well as ligand-independent NR pathways 

(Rowan BG et al., 2000; Ueda T et al., 2002). MAPK-mediated phosphorylation on the 

same sites has been shown to  increase the affinity o f SRC-1 fo r AR In prostate cancer,

suggesting its contribution to prostate cancer recurrence (Ueda T et al., 2002; Gregory
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CW et al., 2004). The oncogenic kinase Src has been seen to mediate SRC-1 

phosphorylation in endometrial cancer cells, causing a significant increase in the agonist 

activity o f the SERM tamoxifen, indicating that the coactivator may have a role in 

tamoxifen-induced endometrial proliferation and the development of endometrial 

cancer that is associated with the use o f the drug (Shang Y and Brown M, 2002; Shah YM 

and Rowan BG, 2005).

Inhibition of 
transcription

Inhibition of transcription. Transcriptional 
and protein stabilization activation of

gene X

Coregulator complex 
disassembly and 
termination o f 
transcription

Transcriptional Transcriptional activation 
activation o f coupled with SRC3 degradation
gene Y  for a negative-feedback control

Figure 1 .2 0 : P osttran s ia tio n a i m od ifications  o f  SRCs. Phosphorylation results in 

activation of SRCs. Phosphorylation o f SRC-3 determines its selectivity fo r different TFs, 

promotes sequential ubiquitlnation from mono- (activation) to poly-ubiquitination 

(degradation), and controls the duration of transcriptional activation by SRC-3. 
Conversely, de-phosphorylation by PPase promotes its sumoylation, stabilizes it and 

inhibits its activity. Adapted from  Nat. Rev. Cancer (XuJet a!., 2009).

SRCs are regulated by subcellular localisation and intracellular trafficking and 

phosphorylation can change the availability o f a certain coactivator in a subcellular 

compartment by regulating its trafficking. EGF-induced phosphorylation of SRC-3 for 

example can redistribute the coactivator from the cytoplasm to the nucleus (Wu RC et
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a i,  2002). Estrogen-induced phosphorylation of SRC-3 on the other hand leads to  an 

interaction between the coactivator and ERa, indicating tha t activation o f SRC-3 may 

have a role in non-genomic estrogen receptor signaling (Zheng FF et al., 2005). 

Ubiquitination, also refered to as ubiquitylation, is involved in the fine-tuning of a wide 

range o f substrates and entails further complexity and a broader range o f biochemical 

effects than phosphorylation (Kodadek T el al, 2006; Dennis AP and O'Malley BW, 2005). 

There are tw o forms o f ubiquitination that can result in tw o  very different outcomes: the 

addition o f a single ublquitin is a reversible process and regulates the activity and 

transportation o f various cellular proteins (Gill G, 2004; Staub O and Rotin D, 2006); 

addition of a polyubiquitin chain on the other hand is a irreversible process and results 

in selective degradation o f proteins via the 26S ubiqultin-proteasome pathway 

(Glickman MH and Ciechanover A, 2002; Pickart CM 2004). It was found that 26S 

proteasome-degradation regulates the function of NRs and the turnover o f activated 

NRs and SRCs (Shao W et al., 2004; Yan F et al., 2003; Lonard DM et al., 2000). In vitro  

experiments revealed tha t the p l6 0  coactivators were expressed at a higher level and 

exhibited an increase in transcriptional activity in the presence o f a proteasome inhibitor 

(Yan F e ta i,  2003; Lonard DM eta!., 2000; Baumann CT et al., 2001).

Sumoylation Is another mechanism that can modify SRCs. The enzymatic machinery that 

adds and removes the small ubuiqtln-like modifier (SUMO) is mechanistically very similar 

to  the ubiquitination machinery (Kotaja N et al., 2002; Chauchereau A et al., 2003; Wu H 

et al., 2006). However, sumoylation differs from  ubiquitination in tha t it does not 

promote degradation o f its substrates but is involved in modifying their function and 

directing their localisation in the cell (Hay RT, 2005; Johnson ES, 2004; Melchior F et al., 

2003; Schwartz DC et al., 2003). All three members o f the p l6 0  coactivators share two 

common sumoylation sites in the NID: SRC-1 at Lys-732, 774, SRC-2 at Lys-731, 788 and 

SRC-3 at Lys-723, 786. As an example, sumoylation o f SRC-1 at Lys-732 and Lys-774 has 

been shown to result in an increase in interaction w ith PR and a prolonged nuclear 

retention (Chauchereau A et al., 2003).

Acetylation causes the addition o f a relatively small acetyl group (Clayton AL et al., 2006;

Eberharter A and Becker PB, 2002; Freiman RN and Tjian R, 2003). It was initially thought
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that acétylation of histones aids chromatin remodelling and transcriptional activity, 

however recent studies have revealed other HAT substrates besides histones, such as 

hormone receptors and coactivators representing a dynamic regulatory mechanism in 

hormone signaling (Chen H et a!., 1999; Fu M et al., 2000; Grunstein M, 1997; Vidali G et 

al., 1968; Wang C et al., 2001).

M éthylation, a process that is known to  play an im portant role In histone modification 

and transcriptional enhancement (Bannister AJ et al., 2002), has recently been found to 

repress transcription through modifications o f coactivators such as CBP/p300 (Lee YH et 

al., 2005) but also SRCs (Feng Q et al., 2006; Naeem H et al., 2006). All three members of 

the p l6 0  proteins have been identified as substrates for CARM-dependent méthylation, 

but only SRC-3 is relatively well-studied (LI S and Shang Y, 2007). SRC-3 contains a 

méthylation site at Arg-1171, which is located in a CARMl-binding site and it has been 

shown tha t estrogen induces CARMl-mediated SRC-3 méthylation at that site resulting 

in the term ination of transcription by disassembling the SRC-3 coactivator complexes 

and increasing SRC-3 degradation (Feng Q et al., 2006; Naeem H et al., 2006).

It needs to  be mentioned that d ifferent combinations of post-translational modifications 

are very common. They can determine the coactivator potency and selectivity of the 

SRCs and allow them to incorporate a multitude o f upstream signals into the delicately 

orchestrated regulation o f gene expression. Since post-translational modifications 

influence cellular concentrations as well as activities of the SRCs, altering or inhibiting 

those modifications may be im portant in controlling overexpressed SRCs in cancer (Xu J, 

2009).

1 .4 .3 .4  In  vivo fu n c tio n s  o f  SRC fa m ily  m e m b e rs

The current understanding o f the diverse in vivo functions o f the p l6 0  family members

has mainly been gathered from  knockout mouse model experiments. The results of

these studies suggest tha t each member has both specific and redundant physiological

functions in embryonic and adult mice (Xu J et al., 2009). Although S r c T mice showed

no major defects in development and growth, it came to  light tha t SRC-1 plays an

im portant in vivo role in organ physiology. In mammary gland development SRC-1 has
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been shown to  be required fo r normal mammary duct elongation during puberty and 

alveolar development during pregnancy (Walsh CA et al., 2012). Experiments conducted 

in SRC-1 null mice have established that ductal density as well as alveoli number Is 

reduced in those animals, yet they are still able to produce milk (Xu J et al., 1998).

The additive severity observed in double-knockout mice points towards the existence of 

cooperative physiological functions among SRC family members. Most Srcl~/ ';Src2~/~ mice 

do not survive and S rc l+/';Src2v' mice are all infertile (Mark M et al., 2004). SRC-1 and 

SRC-3 cooperatively regulate viability, metabolism and energy balance (Xu J et al., 2009). 

Most 5 rc l'/ ;5/'c3/ ‘ mice die before birth and mice that do survive exhibit compromised 

regulation o f select peroxisome prollferator-activated receptor-y (PPARy) target genes 

tha t are involved in adipogenesis and mitochondrial uncoupling. These mice are leaner 

and resistant to  obesity due to  a high basal metabolic rate and increased physical 

activity caused by high leptin levels, a defect in adaptive thermogenesis and a 

developmental arrest in interscapular brown fa t (Wang Z et al., 2006). In normal human 

breast, protein levels o f the three SRCs in epithelial cells are variable but they are 

generally almost undetectable (Fleming FJ et al., 2004b; Hudelist G et al., 2003; List HJ et 

al., 2001).

1.4.3.5 SRC expression and function  in cancer

Coactivators are associated w ith  a wide range of human diseases, including metabolic 

syndrome and several types o f cancers (Lanz RB et al., 2008). All three p l6 0  SRCs have 

been found to  be overexpressed in several types of human cancer, particularly in steroid 

hormone-dependent breast and prostate cancer. SRC3 on human chromosome 20q21 is 

frequently amplified in cancer while amplification o f either SRC1 or SRC2 is fairly rare (Xu 

J et al., 2009). This thesis w ill mainly focus on the role of SRC-1 in breast cancer.

Many studies have looked into the mechanisms through which SRCs promote 

carcinogenesis and suggest tha t SRCs have im portant and distinct roles in promoting 

cancer initiation, progression and metastasis through alteration o f multiple signaling 

pathways (Xu J et al., 2009) (Figure 1.21). The precise mechanisms that are involved in 

the overexpression o f SRCs in human cancers, however, are still unclear.
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1 .4 .3 .5 .1  SRC-1

Several studies established that SRC-1 is significantly elevated in up to 30% of breast 

tumours and an increase in SRC-1 positively correlates w ith HER2 expression, lymph 

node metastasis, disease recurrence and poor disease-free survival (DFS) (Fleming FJ et 

a!., 2004a; Fleming FJ et al., 2004b; Myers E et a!., 2004; Hudelist G et al. 2003).

Extracellular signals
I

Post-tran National 
modification

Steroids and 
ER, PR and AR

Promotion of 
breast, prostate 
and ovarian cancer

\
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®  \ Ì
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Figure 1 .2 1 : SRCs p ro m o te  carcinogenesis th rough  m u ltip le  p a th w ays . Extracellular 

signals and their pathways cause posttranslational modifications that regulate the 

cellular concentrations, activities and specificities o f SRCs. In general, SRCs enhance 

steroid receptor functions and enable hormonal promotion o f breast, prostate and 

ovarian cancers. Specifically, SRC-1 enhances Ets2-mediated HER2 expression and PEA3- 

mediated Twist expression and upregulates CSF-1 expression to  promote breast tumour 

cell migration, invasion and metastasis. SRC-3 upregulates its own expression by serving 
as a coactivator for E2F1 and SP1. The overexpressed SRC-3 enhances PEA3 and AP-1- 

mediated MMP expression to promote breast and prostate tum our cell metastasis. SRC- 

3 also enhances E2Fl-mediated cell cycle progression and GAB2 expression that 

activates Akt. In addition, SRC-3 upregulates IGF-1, IRS-1 and IRS-2 to promote the IGF-1 

signaling pathway and to activate EGFR and ERBB2 to enhance Akt and MAPK activities, 

resulting in hyperactivation of Akt and MAPK which contribute to cancer cell 

proliferation, growth, survival, invasion and metastasis. Adapted from  Nat. Rev. Cancer 
(Xu J et al., 2009).
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A clinical study conducted in our lab also revealed elevated SRC-1 to be an independent 

predictor of breast cancer recurrence follow ing endocrine treatm ent w ith tamoxifen 

(Redmond A et al., 2009).

In vitro, SRC-1 is believed to affect cancer cell proliferation and invasiveness through 

several different pathways. SRC-1 overexpression in MCF-7 cells potentiates estrogen- 

induced cell proliferation along w ith an Increase In estrogen-responsive genes, indicating 

tha t SRC-1 plays an Important role in ER-mediated proliferation (Tai H et al., 2000). 

Knockdown o f SRC-1 in MCF-7 cells reduced proliferation as well as estrogen-dependent 

DNA synthesis and pS2 gene expression (Cavarretta IT eta!., 2002).

A mouse mammary tum our virus (MMTV) model o f breast cancer revealed that loss of 

SRC-1 does not affect tum our initiation or proliferation, but significantly inhibits tum our 

metastasis to  the lung (Wang S et al., 2009). This is due to the loss of colony stimulating 

factor 1 (CSF-1), a protein tha t is involved in the recruitment o f tumour-associated 

macrophages, and loss o f PEA3-induced expression of the epithelial-mesenchymal 

transition (EMT)-promoting gene TWIST (Johnson AB and O'Malley BW, 2012). A study 

carried out In our own lab revealed tha t SRC-1 and PEA3 significantly associated with 

tum our recurrence in a cohort of 70 HER2-positive primary breast tum our patients 

(Fleming FJ et al., 2004b). An in vitro experiment was carried out in our lab to assess 

associations and interaction between Ets and coregulatory proteins In breast cancer cell 

lines. It was found that the growth factors EGF and bFGF increase the association o f Ets 

factors w ith the ir DNA binding elements as well as SRC-1 resulting In an increase in 

transcription (Myers E et al., 2005). These findings offer a potential pathway fo r SRC-1- 

medlated activation o f target genes independent o f estrogen signaling and thus making 

It a great prognostic indicator.

1.4.3.5.2 SRC-2

To date, there has only been a few reports suggesting a potential role fo r SRC-2 in

oncogenesis and a lo t o f them are contradicting each other. Whereas one group

reported no significant change in SRC-2 protein levels between normal and breast

cancer tissue (Hudelist G et al., 2003) another revealed a significant correlation between
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all members o f the p l6 0  fam ily and cyclin D1 expression in ER+ breast tumours (Girault I 

et al., 2003). SRC-2 has also been implicated in other cancers such as meningiomas, 

prostate tumours and acute myeloid leukemia (AML) (Gregory CW et al., 2001; Troke PJ 

et al., 2006). These initial results propose a need fo r more research into the role o f SRC-

2 in breast carcinogenesis.

1 .4 .3 .5 .3  SRC-3

NCOA3, the gene encoding SRC-3, is amplified in approximately 5-10% of breast cancer 

cases, while its mRNA is overexpressed in about 30-60% (Anzick SL et al., 1997). It is 

associated with larger tum our size, higher tum our grade and worse DFS (Xu J et al., 

2009). Studies have revealed that SRC-3 overexpression is associated w ith resistance to 

tamoxifen in HER2-positive tumours (Kirkegaard T et al., 2007), making it a useful 

prognostic and diagnostic marker fo r breast cancer. It has also been shown that SRC-3 is 

involved in tum our initiation, as overexpression o f the coactivator in mice resulted In 

increased tumorigenesis (Torres-Arzayus Ml et al., 2004) and loss o f SRC-3 disrupted 

tumorigenesis in experiments conducted in a tum our mouse model (Kuang SO. et al.,

2004). Also, results from SRC-3 knockout mice revealed a role fo r SRC-3 in the promotion 

o f tum our metastasis to  the lung by coactivating PEA3 and subsequently upregulating 

the expression o f the matrix metalloproteinases MMP2 and MMP9 (Qin L et al., 2008).

1 .4 .4  Ets fa m ily  o f  tran scrip tio n  fa c to rs

A variety o f signaling cascades tha t transduce extracellular signals from ligand-activated

cell surface receptors to  the nucleus coordinate cellular responses to environmental

stimuli. Even though most pathways were thought to  be linear, it has become clear that

there is a dynamic interplay between signaling pathways tha t result In cell-type specific

responses necessary fo r proliferation, differentiation and survival. An example fo r a

group of nuclear effectors o f these signaling pathways is the Ets family o f transcription

factors (Yordy JS et al., 2000). The Ets family consists o f a large number (25 human and

26 murine) of evolutionary conserved transcription factors. They control specific genes

that play key roles in physiological as well as tumorigenic processes, such as
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proliferation, apoptosis, differentiation, lymphoid cell development, angiogenesis and 

invasion (Sementchenko VI and Watson DK, 2000). Studies in this field have focused on 

individual Ets fam ily members, however, more recent findings suggest that a variety of 

Ets factors come together in a coordinated program that affects tum our progression 

towards metastasis (Hsu T eta l., 2004).

Discovery o f the avian leukemia virus oncogene v-ets in 1983 uncovered a large family of 

coserved genes (Leprince D et a!., 1983). The Ets proteins were finally identified as 

transcription factors tha t share a conserved DNA binding domain (ETS domain) that 

recognises unique DNA sequences containing GGAA/T, so called Ets binding sites (EBS). 

Some Ets proteins contain a HLH domain fo r protein-protein interactions called Pointed 

(PNT) domain. They can act as positive or negative regulators o f genes that are involved 

in a number o f biological processes such as proliferation, differentiation, angiogenesis 

and tissue remodeling. Over 200 Ets genes have been identified to date and the number 

o f genes regulated via EBS is constantly growing (Sementchenko VI and Watson DK, 

2000).

1 .4 .4 .1  M o d u la tio n  o f  Ets fu n c tio n

It has been shown that protein-protein interactions o f Ets factors with other proteins, 

including other sequence specific TFs, result in transcriptional regulation and define 

target gene specificity (Li R et at., 2000a). Binding o f an Ets factor in the vincinity of other 

TFs can even result in higher a ffin ity interaction and synergistic repression or activation 

o f specific target genes. Recent studies revealed tha t Ets-associated proteins (EAPs) can 

modulate Ets activities through d ifferent mechanisms like DNA binding, subnuclear 

sequestering or inhibiting synergistic interaction w ith co-factors (Li R et a!., 2000b; Pei H 

e ta l., 2003).

Since many Ets proteins are effector molecules o f a variety o f signalling pathways it has 

been well established that the ir functions are post-translationally modified by 

phosphorylation-mediated effects on DNA binding as well as protein-protein 

interactions, transcriptional activation and subcellular localisation (Yordy JS and Muise-
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Helmericks RC, 2000). The mitogen-activated protein kinases (MAPK) Erk, JNK and p38 

belong to the Ets modulators that have been best characterised so far. For example, 

phosphorylation o f a MAPK site adjacent to the PNT domain can positively regulate 

transcriptional activity o f Etsl and Ets2 and it can also affect the sub-cellular localisation 

of those Ets proteins. Integrin signalling has also been shown to regulate Ets activity via 

cell adhesion (Aplin AE et al., 2001).

1.4.4.2 Ets factors in cancer

Abnormalities in signalling pathways are often observed during carcinogenesis and some

of the final downstream effectors of these pathways belong to the Ets family of

transcription factors (Sharrocks AD, 2001). E tsl and Ets2 are phosphorylated via the

ras/Raf/Mek/Erk signalling pathway and play Important roles in the regulation o f genes

such as c-myc and cyclin D1 tha t are involved in proliferation and cell cycle control

(Bassuk AG and Leiden JM, 1997; Albanese C et al., 1995). Ets proteins are also involved

in the transcriptional regulation o f anti-apoptotic genes such as bcl-2 and bcl-XL as well

as growth factor receptor genes such as HER2 and VEGFR, all o f which are frequently

amplified in human tum ours (Oikawa T et al., 2004) (Figure 1.22). Ets transcription

factors are also known to  regulate the expression o f growth factor receptor genes. It has

been shown that Ets-binding sites are located in the prom oter o f the HER2 gene, the

expression of which is regulated by several Ets TFs, including Etsl and PEA3 (Scott GK et

al., 2000). HER2 is one o f several genes tha t are amplified in 20 -  30% of human breast

cancers, generally resulting In a more aggressive phenotype with poor prognosis

(Hogdall EV et al., 2003). E tsl and Ets2 also play a vital role in coordinating endothelial

cell activities during angiogenesis (Wei G et al., 2009), which is a critical process in

embryogenesis but is also highly implicated in cancer progression (Folkman J, 2006;

Zetter BR, 1998). In addition to  the malignant transformation of cells, several Ets TFs are

also involved in progression o f tumours by initiating invasion and metastasis-related

genes. A recent study on isolated aortic endothelial cells in vitro  revealed a role fo r both

E tsl and Ets2 in directly regulating Mmp9, a gene coding fo r an extracellular protease

that is involved in invasion and endothelial cell migration (Iwasaka C et al., 1996; and
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Wei G et a!., 2009). Work from our group and others has previously shown that 

interactions w ith Ets TFs such as Ets2 and PEA3 and the nuclear coactivator SRC-1 

regulate the transcription of genes that are involved in tum our progression and 

metastasis, like MMP9 and myc (Myers E et a!., 2004; Al-azawi D e ta i ,  2008; Qin L et al.,

2009).
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Figure 1.22: Ets ta rge t genes. Ets transcription factors are im portant for the regulation 

o f expression o f a variety o f genes that are involved in GF signalling, cell cycle control, 

apoptosis, angiogenesis, invasion and metastasis. Adapted from  Cancer Science (Oikawa 
T, 2004).
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1 .5  H y p o t h e s is

Our group has previously shown that SRC-1 Is Increased In almost one third o f breast

carcinomas and that this Increase positively correlates w ith poor disease-free survival 

and recurrence. SRC-1 was found to  be a predictor fo r breast cancer recurrence in 

tamoxifen treated patients. The majority o f this previous data was collected prior to  the 

introduction o f Als to the breast cancer clinic and a role fo r SRC-1 in Al resistance has 

not yet been established.

Here we propose tha t SRC-1 plays a role Independent o f ER in advancing the metastatic 

phenotype in Aromatase Inhibitor resistance (Figure 1.23).

Figure 1.23: Proposed model of A! resistance. SRC-1 may coactivate transcription factors 
to induce transcription o f genes that are implicated in cancer progression and 
metastasis, resulting in an Al resistant phenotype.

A l  r e s is t a n t
p h e n o t y p e
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1 .6  A im s

The objective of this thesis is to further establish the role o f SRC-1 and its target genes in 

the development and most im portantly recurrence o f breast cancer. Furthermore, the 

aim o f this work is to show, for the first time, that SRC-1 has a key role in the 

development o f resistance to Aromatase Inhibitors (Als).

The first portion o f this work will deal w ith  the characterisation of an Al resistant breast 

cancer model.

The second part o f this work is to  establish the molecular and functional role o f SRC-1 in 

mediating an Al resistant phenotype by elucidating the signaling mechanisms and SRC-1 

target genes Involved in this process.

The last part o f this study is to determine the clinical significance o f SRC-1 signaling in 

the development and metastasis o f Al resistant breast cancer.

The combination o f molecular in vitro  studies and clinical in vivo data offers a 

translational approach to  finding novel signalling networks tha t can be targeted in the 

treatm ent o f Al resistant breast cancer.
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C h a p t e r  2

M a t e r i a l s  a n d  M e t h o d s
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2.1 Breast cancer cell line culture

2.1.1 Cell culture environment

Cell culture was performed In a sterile environment using a laminar airflow cabinet. All 

cell lines were maintained In a humid 5% (v/v) CO2 atmosphere at 37°C, with the 

exception o f MDA-MB231 cells, which were maintained In the absence of C02.

2.1.2 Recovering cells from cryo-storage

Cryovials containing cells were removed from storage in liquid nitrogen and warmed to 

37°C as quickly as possible. Cells were transferred into a T25 tissue culture flask 

containing 5ml o f culturing medium and transfer into the Incubator to slowly bring them 

to  37°C. Medium was taken o ff after 5h and fresh medium was added to the cells.

2.1.3 Routine cell culture

Breast cancer cells were cultured In T75 flasks (Sarstedt, Germany). Cells were split at 

approximately 80% confluency by washing them twice w ith  5ml phosphatase buffered 

saline (PBS; Oxoid Limited, Basingstoke, Hampshire, England) and incubating them with 

2ml of 0.05% trypsin/0.02% EDTA solution (Sigma Aldrich, Germany) fo r 5 minutes at 

37°C. Trypsin was subsequently quenched by adding 8ml o f normal cell culture media to 

the flask. The cell suspension was transferred into a 15ml conical tube (Greiner Bio-One, 

Germany) and centrifuged at 1200rpm for 4 minutes. The cell pellet was resuspended in 

the required volume o f normal cell culture medium and divided into new tissue culture 

flasks with a 1:2 split used fo r the MCF7 derived cell lines and 1:4 for MDA-MB-231 for 

routine cell culture. Recipes fo r additives are listed in the Appendix I.

2.1.4 Cell Counting

To estimate the number o f cells fo r those experiments tha t required a specific number 

o f cells (transient transfections and functional cell assays), cells were counted using a 

haemocytometer. 20|il o f cell suspension was mixed w ith 20^1 o f Trypan blue (Sigma
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Aldrich) and lOpil o f the suspension was pipetted onto the haemocytometer. The 

number o f cells In the tw o grids on the le ft and on the right were averaged and 

multiplied by 104 to  obtain the number o f cells per ml of cell suspension. Counting was 

performed in duplicate and an average was calculated. The required volume o f cell 

suspension was calculated and seeded into the appropriate cell culture vessel.

2.1.5 MCF7 cell line

MCF7 cells were acquired from the American Type Culture Collection (ATCC). MCF7 cells 

are positive fo r ER and PR and are HER2 negative representing the luminal A breast 

cancer cell phenotype. The cells were sub-cultured in Minimum Essential Media (MEM) 

supplemented w ith 10% fetal calf serum (FCS), 1% Pen/Strep (solution stabilised with 

10,000 units penicillin and lOmg streptomycin/m l) and 1% of 200mM L-glutamine (all 

reagents by Sigma Aldrich).

2.1.6 Aro cell line

To Investigate the molecular mechanisms Involved in the development o f resistance to 

Aromatase Inhibitors (Al) an estrogen-receptor positive (ER+) breast cancer cell model 

expressing high levels o f aromatase was needed. A cell model overexpressing human 

aromatase had previously been established in the lab. In short, ER+ MCF-7 breast cancer 

cells were transfected w ith a pcDNA-DEST47 vector containing the full-length human 

aromatase gene CYP19 to  mimic the estrogen production in postmenopausal women. 

The vector contains a neomycin resistance cassette that makes the cells resistant to  the 

drug Geneticin (G418; Invitrogen). Upon transfection the cells were subcultured in 

minimum essential media (MEM; Sigma Aldrich) supplemented with 10% fetal bovine 

serum (FBS; Sigma Aldrich), penicillin, streptomycin, L-glutamlne and the selective agent 

G418 (200ng/ml), allowing only cells that have been successfully transfected w ith the 

vector containing the neomycin resistance gene to  grow. These aromatase 

overexpressing breast cancer cells are from here on referred to as Aro.
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2.1.7 LetR cell line

To create a cell line tha t is resistant to Aromatase Inhibitors, Aro cells were exposed to 

the Al Letrozole (Novartis) for a minimum of 12 weeks. The cells were continuously 

cultured in phenol red free MEM containing 10% charcoal dextran stripped fetal calf 

serum (CDS-FCS) to  ensure low levels o f steroid hormones, androstenedione (25x109 M, 

Sigma Aldrich), letrozole (10‘s M) and G418 (200|ig/m l). The Al resistant cell model was 

designated LetR.

Figure 2.1: Aro and LetR cells stably overexpress aromatase protein. Protein lysate was 
dissolved by SDS-PAGE and immunoblotted fo r  Aromatase. 6-Actin was used as a loading 
control. Images are a representative o f three separate experiments (n=3). (O'Hara J et al, 
2012 -  manuscript submitted).

2.1.8 MDA-MB-231 cell line

MDA-MB-231 cells are ER, PR and HER2 negative basal like cancer cells that possess a 

highly invasive phenotype. Cells were obtained from  ATCC and were cultured in 

Leibovitz L-15 media (Invitrogen, Carlsbad, California, USA) supplemented w ith 10% FCS. 

Tissue culture flasks were closed w ith air tight caps as these cells need to be grown in 

the absence of C02 at 37°C.

2.1.9 SKBR3 cell line

The SKBR3 breast cancer cell line exhibits c-erbB2 amplification and as a result 

overexpresses HER2. The cell line was obtained from  ATCC and was cultured in RPMI 

1640 medium (Sigma Aldrich) supplemented w ith 10% FCS and 1% Pen/Strep (solution 

stabilised, w ith 10,000 units penicillin and lOmg streptomycin/m l).

MCF7 Aro LetR

A rom atase (58 kDa)

p-actin  (42 kDa)
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2.1.10 Cell treatments

Cell culture treatments were performed when the cells were 70% confluent. Prior to 

endocrine treatments, cell culture medium was decanted, cells were washed In PBS and 

steroid depleted fo r 72h in phenol red free MEM containing 10% CDS-FCS (CDS-PRF- 

MEM) to prevent stimulation by steroidal hormones present in FCS and phenol red. Prior 

to treatm ent w ith growth factors, cells were additionally serum starved for 24h. Medium 

was decanted and the cells were incubated under the treatm ent conditions outlined in 

table 2.1.

Table 2.1: Cell treatment conditions

Treatm ent Final Concentration Treatm ent tim e

Letrozole (Novartis) 10'SM

in CDS-PRF-MEM

4 hours (RNA)

8 hours (protein)

24 hours (migration assays)

Androstenedione 10'7M

In CDS-PRF-MEM

4 hours (RNA)

8 hours (protein)

24 hours (migration assays)

Estrogen 10'8M

in CDS-PRF-MEM

4 hours (RNA)

8 hours (protein)

24 hours (migration assays)

EGF ln g /n l

In serum free MEM

4 hours (RNA)

8 hours (protein)

Ethanol (vehicle) 0.01%

In CDS-PRF-MEM /  

serum free MEM

4 hours (RNA)

8 hours (protein)

24 hours (migration assays)
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2 .2  Functional Cell Assays

2.2.1 Cell Motility Assay

Cell m otility is a key activity in a number o f biological as well as pathological processes 

such as wound healing, embryonic development, inflammation, angiogenesis as well as 

cancer cell Invasion and metastasis. Cell movement occurs via a concerted Interaction of 

cell adhesion molecules, the cytoskeleton and a vast network of signalling molecules.

To assess Individual movement per cell the Cellomics® cell m otility kit (Pierce, II, USA) 

was employed.

The wells of a 96-well plate were coated with collagen and incubated fo r lh  at room 

temperature (RT). Wells were washed twice w ith 200^1 o f lx  Wash Buffer (PBS) and air- 

dryed fo r 30 minutes In the laminar flow hood. 75^1 o f fluorescent beads were added to 

each well and incubated for lh  at 37°C in the incubator. In the meantime, cells were 

trypsinised, counted and a cell supension o f 5000 cells/ml was prepared. Wells were 

subsequently washed thrice w ith 200^1 o f lx  Wash Buffer and 100^1 o f the cell 

suspension was seeded into each well. The plate was placed into the incubator and left 

fo r 22h at 37°C. 200(il of a formaldehyde solution was added to each well and cells were 

fixed fo r lh . The formaldehyde was aspirated and 100^1 of lx  Permeabilisation Buffer 

(Kit) was pipetted into each well and left at RT for 15 mln. Wells were carefully washed 

and stained fo r 30 mln with Rhodamine Phalloidin. Wells were washed four times with 

lx  Wash Buffer and images were taken on an inverted microscope. Track areas were 

measured using Olympus cellF imaging software and compared with a Student t-test.

Figure 2.2: Schematic o f the cell motility assay. Gray layer depicts collagen coating. Blue 
layer is a layer o f fluorescent beads, which is covered with cells stained fo r  the 
cytoskeletal protein F-actin with rhodamine-phalloidin (red).
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2.2.2 Cell Invasion Assay

In order to  disseminate to  distant sites in the body cancer cells must cross so-called 

basement membranes. The 'chemoinvasion assay', using a reconstituted basement 

membrane, matrigel, on top o f a mlcroporous polycarbonate membrane was developed 

25 years ago as a tool fo r invasion and metastasis research (Alblnl A et al., 1986).

Invasion chambers were used to study the Invasive properties o f breast cancer cells in 

vitro. The highly invasive MDA cells were used as a positive control in this assay. The 

invasion chamber inserts (Falcon, BD Biosciences, USA) consist o f a membrane w ith a 

pore size o f 8|im are coated w ith a thin layer o f Matrigel® basement membrane matrix 

(BD Biosciences, MA, USA) to  inhibit non-invasive cells from  migrating. Only invasive 

cells are able to  detach and break down the matrix and migrate into the pores.

Prior to the experiment, a Matrigel® solution at a concentration o f lm g /m l was 

prepared on ice and lOOpil were quickly layered on top o f the membrane inside the 

insert. The inserts were incubated at 37°C for 2h to allow the matrigel to  polymerise. 

Inserts were then rehydrated w ith  serum free medium (MEM for Aro and LetR cells, 

Leibovitz's L-15 medium for MDA-MB231 cells) fo r one hour In the incubator. In the 

meantime, a cell suspension containing cells was prepared in serum free media. 500 |il 

o f chemoattractant, in this case normal culturing medium supplemented w ith an 

additional 10% FCS (20% final concentration), was added to  the wells of the 24 well 

plate. Serum free medium was also added into one well as a control (see figure 2.3). The 

inserts were then placed into the wells containing the chemoattractant and 500 pil of the 

relevant cell suspension was added to the insert. The 24 well plate was returned into the 

Incubator and was incubated fo r 22 hours at 37°C. The non-adherent cells were then 

removed w ith a moist swab and the cells stuck inside the pores and on the lower surface 

o f the membrane were fixed w ith 100% methanol for 10 minutes, followed by staining 

w ith crystal violet fo r another 10 minutes. The membrane was thoroughly washed In tap 

water, carefully removed from the insert and mounted on a microscope slide. Using an 

inverted light microscope, the number o f Invading cells was counted on four separate 

field views In triplicate and expressed in percentage o f invading cells.
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Figure 2.3: Cell invasion in response to chemoattractant. LetR cells in serum free  
medium were seeded into an insert and placed into a well containing either serum free  
medium (control) or MEM containing 20% FCS (chemoattractant). Cells only invaded the 
membrane in response to the chemoattractant.

2.2.3 3D Assay

3D assays are a means to  assess the level o f differentiation and polarisation o f a cell. 

Cells are grown in a three-dimensional basement membrane matrix where 

differentiated cells are able to  form  organised and polarised acini structures w ith a 

hollow lumen. The less differentiated the cells, the less able they are to form polarised 

acini.

Growth factor reduced Matrigel matrix was thawed on ice. Eight well chamber slides 

were prepared by adding the matrigel into the chambers. 5 x l0 4 cells in 400|il o f their 

respective medium (as above) and 2% Matrigel (BD Biosciences) were seeded into each 

well and cultured fo r 14 days at 37°C and 5% C02. Cells were fixed in 4% 

paraformaldehyde and permeabilized w ith phosphate buffered saline (PBS) containing 

0.5% Triton X-100 fo r 10 minutes at 4°C. Cells were blocked in 10% goat serum and 1% 

bovine serum albumin fo r lh . Cells were stained with Phalloidin 594 (Molecular Probes) 

fo r 20 minutes and DAPI fo r 5 minutes. Slides were mounted (Dako) and examined by 

confocal microscopy.
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2.3 Transfections

2.3.1 Overexpression

Overexpression studies were performed using Lipofectamine® 2000 (Invitrogen). This 

transfection reagent contains specially designed cationic lipids tha t facilitate DNA and 

siRNA delivery into cells (Liu D et a i,  2003). The overexpressions were transient and 

performed using vectors fo r the genes of interest that had already been validated in the 

lab. The plasmid backbones were pcDNA3.1 (Invitrogen) fo r SRC-1 and pCGN (Addgene) 

for Ets2 (table 2.2).

Table 2.2: DNA vectors used in transient transfections. (EV = empty vector)

Vector Stock Cone. Am ount per 6 well

pCGN EV 0.8759 |ig/n l 4\ig
pCGN Ets2 0.9195 \ig /\i\ 4^g

pcDNA 3.1 EV 0.5576 ug/nl 4ng

pcDNA3.1 SRC1 2.186 ng/nl 4^g

24h prior to transfection, 5x10s cells were seeded into 6-well plates in their normal 

growth medium w itho u t antibiotics. Plasmid DNA was mixed w ith OPTI-MEM 

(Invitrogen) in one eppendorf tube and Lipofectamine 2000 (Invitrogen) reagent was 

mixed w ith OPTI-MEM in another tube (table 2.3).

Table 2.3: Components o f the transfection mix.

6 well/T25

Cell plating volume 2.5ml

Number of cells plated 5x10s

Lipofectamine 2000 10^1

OPTI-MEM to 500nl

Plasmid DNA 4|ig
OPTI-MEM to 500nl

Final transfection volume 1ml
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The solutions were incubated fo r 5 minutes, then mixed together and left fo r another 20 

minutes. Cells were washed w ith PBS and overlayed with the transfection mix. 5 hours 

later the transfection mix was taken o ff and cells were incubated in normal growth 

media fo r the time as listed in table 2.4.

Table 2.4: Transfection times for assays performed using overexpression vectors.

Assay Time to  assay fo llow ing transfection

RNA for overexpression validation 24 hours

Protein extraction 24 hours

Migration assays 72 hours

2.3.2 RNA interference

The Nobel Prize-winning discovery by Andrew Fire and Craig C. Mello in 1998, that short 

double stranded RNA molecules can cause suppression o f gene activity in a sequence 

specific manner, marked a new era in molecular research (Fire A et al., 1998). RNA 

interference (RNAi) enables researchers to  experimentally assess the functional role of 

any gene In a cell. During RNAi, the double stranded RNA Is processed to  21-25bp 

fragments o f dsRNA w ith dinucleotide 3' overhangs, coined short interfering (si)RNA. 

One strand o f the sIRNA, called guide strand, is assembled Into an RNA induced silencing 

complex (RISC) tha t cleaves the target mRNA. Target specificity to  RISC Is provided by 

the siRNA through base pairing o f the guide strand w ith the target mRNA.

A transient approach o f RNAi was used in this thesis to assess the functional role of Srcl 

and ERa. Prevalidated sIRNAs fo r these target genes were used and are listed in table 

2.5.

Table 2.5: siRNA used in transient transfections

Gene o f siRNA Source Stock RNA Final RNA

interest Concentration concentration

SRC-1 AM16706 Ambion 50|iM 40nM

ERa 4392421 Ambion 50|J.M 20nM

Control AM4635 Ambion 50|iM 40nM
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The transfection agent Lipofectamine 2000 was used to aid the transport of siRNA into 

the cells. Cells were plated in antibiotics free normal growth medium 24 hours prior to 

transfection. Seeding density and reagents used are listed in table 2.6.

Table 2.6: Reagents used for transient transfections with SRC-1 /  ERa siRNA

6 well/T25

Cell plating volume 2.5ml

Number of cells plated 5x10s

Lipofectamine 2000 5pil

OPTI-MEM to 500|.il

siRNA stock (table 2.5) 4|il /  2|il

OPTI-MEM to 500nl

Final transfection volume 1ml

OPTI-MEM reduced serum medium (Invitrogen) and the transfetion agent Lipofectamine 

2000 (Invitrogen) were brought to room tem perature. Lipofectamine 2000 was diluted 

in OPTI-MEM in one eppendorf tube and the required amount o f siRNA was diluted in 

another tube containing OPTI-MEM (see table 2.6 fo r specific amounts) and Incubated 

for 5 minutes at room temperature. The contents of the tw o tubes was then mixed and 

left fo r another 20 minutes at room temperature. In the meantime, cells were washed 

with PBS and the nucleic acid/Lipofectamine transfection complex was transferred onto 

the cells. The plate was gently tilted back and forth  to  evenly distribute the solution over 

the cells and then returned to  the Incubator. 5 hours later the transfection mix was 

taken o ff and normal growth medium was added and cells were incubated fo r the time 

listed in table 2.7, depending on the assay performed.

Table 2.7: Transfection times fo r assays using siRNA

Assay Time to  assay fo llow ing transfection

RNA fo r knockdown validation 24 hours

Protein extraction 48 hours

Cell invasion assays 72 hours

3D assay 72 hours

Migration assays 72 hours
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2.4 Protein Biochemistry

2.4.1 Protein extraction

Cells were trypslnised as described In 2.1.3 and pelleted at 3000rpm for 5 minutes at 

4°C. Radloimmunoprecipitation (RIPA) lysis buffer supplemented w ith 10% protease 

inhibitor cocktail (P8340, Sigma Aldrich) was added to the cell pellet, vortexed fo r 30 

seconds and Incubated on ice for 15 minutes. Cells were then centrifuged at 13,000rpm 

for 15min at 4°C and the supernatant was transferred into a fresh pre-chilled eppendorf 

tube and stored at -80°C until fu rther use.

2.4.2 Protein Quantification

A bicinchoninic acid (BCA) assay (Pierce, II, USA) was performed according to the 

manufacturer's protocol to assess the protein concentration in the lysate samples. 

Protein standards w ith a range o f albumin concentrations between 0 and 1.4mg/ml as 

well as 1:20 dilutions o f the samples were prepared. 25p.l of each standard and sample 

was pipetted into a 96-well plate in duplicate. BCA reagent was prepared by mixing 49 

parts of reagent A (Bicinchoninic acid and tartrate in alkaline carbonate buffer) w ith 1 

part of reagent B (4% copper sulfate pentahydrate solution). 200^1 o f this solution was 

added to  each well and incubated at 37°C for 30 min. Absorbance was read at 560nm on 

a spectrophotometer (Perkin Elmer, MA, USA). Simple linear regression was used to 

determine the equation o f the standard curve. This equation was then used to 

determine the protein content in the samples.

2.4.3 Co-lmmunoprecipitation

Co-immunoprecipitatlon or Co-IP is a technique used to assess protein-protein 

interactions. An antibody against a specific epitope on a protein is added to  cell lysate to 

form an immune complex with that particular target. Protein A beads are added to  the 

solution to capture the antibody-protein complex, proteins not bound by the
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immobilised protein A are washed away. The bound immunocomplex is then eluted 

from the beads, run on SDS-PAGE and analysed by Western Blot.

Protein A beads (Santa Cruz, CA, USA) were preblocked in bovine serum albumin (BSA). 

Cell lysate was precleared by incubating it w ith  l j ig  rabbit IgG and 20^1 of protein A 

beads at 4°C fo r 30 minutes to reduce non-specific binding. Beads were removed by 

centrifugation at l,000g and 4“C fo r 5 minutes and the clear lysate as incubated w ith 

5[ig o f immunoprecipitating antibody on a ro tor at 4°C for 3 hours. A fter antibody 

incubation, 20[il o f the preblocked beads was added to the lysate and Incubated on the 

rotor at 4°C fo r another hour, during which the protein complex will bind to the 

antibodies on the beads. The beads were collected by centrifugation at l,000g at 4°C for 

5 minutes and the supernatant was discarded. The beads were washed four times in 1ml 

of RIPA lysis buffer containing 1% protease inhib itor cocktail and centrifuged at l,000g 

at 4°C fo r 5 minutes after each wash. A fter the final wash, the supernatant was 

discarded and the beads were resuspended in 20|il of 2x Laemli sample buffer. Samples 

were boiled fo r 10 minutes at 95°C to release the protein complex from the beads. 

Following this step, the samples were ready fo r gel electrophoresis (2.4.4) or stored at - 

20°C for fu rther use.

2.4.4 Western Blotting

Western blotting is a technique that is used to detect proteins in tissue or cell lysate. 

SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) is used to separate proteins based 

on the ir size. The gel is transferred to a membrane by applying an electrical current. This 

membrane can then be stained with a specific antibody against an epitope in the 

protein.

To allow access o f the antibody to  the epitope of interest the protein has to  be

denatured using an anionic denaturing loading buffer. To do so, the protein lysate was

mixed w ith one fifth  o f 6x loading buffer, briefly vortexed and boiled at 95°C for 8

minutes. This loading buffer contains sodium dodecyl sulfate (SDS), which causes

proteins to become negatively charged by the ir attachment to SDS anions. SDS

denatures proteins by "wrapping around" the polypeptide backbone. In so doing, SDS
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confers a negative charge to  the polypeptide in proportion to  its length. In denaturing 

SDS-PAGE separations, therefore, migration is determined by molecular weight. 

Polyacrylamide gels are used to  separate proteins In a sample. They are made up of 

acrylamide and bisacrylamide (Sigma Aldrich) and a cross-linking agent called N,N,N,N- 

tetramethyletylenediamine (TEMED; Sigma Aldrich). The more acrylamide is added to 

the mix, the smaller the pore size, allowing seperation o f molecules relative to their size. 

Ammonium persulfate (APS; Sigma Aldrich) and TEMED are added to initiate 

polymerisation of the gel.

Gels were prepared and run on the ATTO electrophoresis system (ATTO, Tokyo, Japan). 

The resolving gel was poured between the glass plates, overlayed w ith Isopropanol and 

allowed to polymerise fo r 30 minutes at room temperature. The stacking gel (5%) was 

then poured on top of the resolving gel, a 1.5mm, 10 well comb was inserted and the gel 

was allowed to  dry for an additional 30 minutes at room temperature. See table 2.8 for 

the composition o f gels o f d ifferent percentage.

Table 2.8: Gel preparation for SDS-PAGE. Volumes (ml) are fo r  preparation o f 10ml o f 
resolving gel and 2ml o f  stacking gel fo r  preparation o f one gel on an ATTO 1.5mm plate. 
*1M  Tris (pH 6.8) was used fo r  the stacking gel.

6% 8% 10% 5%

Resolving Resolving Resolving Stacking

H20 5.3 4.6 4.0 1.4

30% acrylamide mix 2.0 2.7 3.3 0.33

1.5M Tris (pH 8.8)* 2.5 2.5 2.5 0.25

10% SDS 0.1 0.1 0.1 0.02

10% ammonium 0.1 0.1 0.1 0.02

persulphate

TEMED 0.008 0.006 0.004 0.002

Gels were placed into an ATTO electrophoresis unit filled w ith 500 ml o f lx  running 

buffer (Appendix I). Lysate samples were loaded into the wells alongside a molecular 

weight marker (BioRad) fo r estimation of molecular weight. A constant voltage o f 130V 

was applied and gels were run fo r 3 -  3.5 hours, depending on the protein of interest.
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Proteins were then transferred onto a nitrocellulose membrane fo r visualisation. A 

nitrocellulose membrane and ten sheets o f Whatman paper were submerged in ice-cold 

lx  transfer buffer (Appendix I) fo r 5 minutes. The gel was removed from the glass plates 

and a sandwich of 5 sheets o f Whatman paper, nitrocellulose membrane, gel and 5 

sheets o f Whatman paper was assembled and placed between the anode and the 

cathode o f a semi-dry transfer rig (ATTO, Tokyo, Japan). A constant current of 250mA 

was applied to the transfer rig fo r varying times according to the molecular weight o f the 

protein o f interest as recorded in table 2.9.

Table 2.9: Antibody dlllutions and conditions for western blotting.

Protein Molecular Gel % Transfer Primary Antibody Secondary Antibody
Weight Antibody Cone Antibody Cone

ß-Actin 42kD n/a 60 min Mouse
monoclonal

1:8000 Anti­
mouse

1:10000

ERa 68kD 10% 60 min Rabbit
polyclonal

1:500 Anti-rabbit 1:1000

PR 116kD 8% 2 hours Rabbit
polyclonal

1:200 Anti-rabbit 1:4000

HER2 165kD 6% 2 hours Rabbit
polyclonal

1:1000 Anti-rabbit 1:2000

SRC-1 160kD 6% 2 hours Rabbit
polyclonal

1:100 Anti-rabbit 1:2000

c-MYC 67kD 10% 60 min Rabbit
polyclonal

1:200 Anti-rabbit 1:2000

Ets2 56kD 10% 60 min Rabbit
polyclonal

1:250 Anti-rabbit 1:1000

p-Ets2 56kD 10% 60 min Rabbit
polyclonal

1:1000 Anti-rabbit 1:4000

The nitrocellulose membrane was removed from the transfer rig and blocked in 5% 

(w/v) non-fat dry milk (Marvel, UK) in tris-buffered saline (TBS) containing 0.1% Tween 

(Sigma Aldrich) (TBS-T) on a rocker fo r 1 hour at room temperature, The primary 

antibody was diluted in 5 ml o f 5% non-fat dry milk in TBS-T and incubated on a rocker at 

4°C over night. Specific dillutions are recorded in table 2.9.

Following primary antibody incubation, the nitrocellulose membrane was washed in 

TBS-T buffer for 5 minutes three times. Horseradish peroxidase (HRP)-conjugated
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secondary antibody was reconstituted to  the concentration specified in table 2.9 in 5% 

non-fat cry milk in TBS-T, added to  the membrane and incubated fo r lh  at RT. Following 

secondary antibody incubation, the membrane was washed in TBS-T fo r 5 minutes three 

times and developed by enhanced chemiluminescence (ECL; Pierce, II, USA). ECL 

substrate Is used to  detect HRP activity. A luminol and a peroxide solution are added in a 

ratio o f 1:1 and the working solution is layered on top o f the membrane and incubated 

fo r 1 minute. The blot was quickly placed into an X-ray cassette and exposed to X-ray 

film (Fuji, Tokyo, Japan) in the dark room. The film  was then processed by immersion in 

developing solution for 2 minutes, followed by fixer solution (both Kodak, USA) for 2 

minutes and a quick rinse in water. The film  was left to air dry for 10 minutes and bands 

were visualised.

2.4.5 Zymography

Zymography is an electrophoretic technique where protein samples are run out on a 

polyacrylamide gel that contains a certain substrate to assess the enzyme activity of a 

specific protein.

Aro and LetR cells were seeded at approximately 50% confluency and cultured in the

respective normal culturing media for 24 hours. MMP9 Is a secreted metallo-proteinase,

therefore media was taken o ff the cells after 2 days and the secreted protein was

concentrated using Amicon Ultra4 filters (50 K pore size; Millipore). Filter units were

centrifuged at 4,000g fo r 20 minutes. The media above the filte r was transferred into a

fresh eppendorf tube and protein concentration was assessed as previously described

(2.4.2). 20pig of protein was mixed w ith 2x non-reducing loading dye (Appendix I).

Samples must not be heated, as it will irreversibly inactivate MMPs in the sample.

To assess the enzyme activity of the gelatinase MMP9, samples were run on a precast

Novex® 10% Zymogram gel containing gelatin (Invitrogen). The gel was placed into an

XCell SureLock electrophoresis chamber (Invitrogen) filled with lx  Novex® Tris-Glycine

SDS Running Buffer (supplied w ith the zymography gel, Invitrogen) and run at 125V for

approximately lh  until the running fron t reaches the bottom of the gel. After

electrophoresis, the enzyme was renatured by incubating the gel fo r 30 minutes in lx
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Novex® Zymogram Renaturing Buffer (Invitrogen) at room temperature w ith gentle 

agitation. The Renaturing buffer was decanted and lx  Novex® Developing Buffer 

(Invitrogen) was added to  the gel fo r 30 minutes at room temperature w ith gentle 

agitation. The buffer was decanted and the gel was Incubated in fresh developing buffer 

fo r at least 4 hours at 37°C. The gel was stained w ith Coomassie Brilliant Blue for an 

hour, followed by Incubation w ith Destain Buffer until bands became visible. MMP9 

bands were Identified by size (Pro-MMP9: 92 kD, active MMP9: 82 kD).
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2.5 Nucleic acid biochemistry

2.5.1 mRNA purification

mRNA was extracted from cells and purified using an RNeasy Kit (Qiagen, Hilden, 

Germany), consisting o f pre-mixed buffers and columns. RLT lysis buffer was 

supplemented with 1% mercaptoethanol (Sigma Aldrich) and 350ul o f the solution was 

added to  the cells and homogenised by passing the lysate 5 times through a 24-gauge 

needle fitted  to a 1ml sterile syringe. One volume of 70% ethanol (EtOH) was added to 

the lysate and mixed. The sample was transferred to the supplied RNeasy spin column 

and centrifuged at 8,000 rpm for 15 sec. Flow-through was decanted from the collection 

tube and the columns were washed, once w ith 700^1 o f wash buffer RW1 and twice with 

500pil o f RPE buffer, followed by a 2 minute spin to  dry the membrane inside the 

column. The spin column was placed in a clean eppendorf tube and RNA was eluted 

from  the membrane by adding 30|il o f RNAse-free water and centrifuging at 10,000 rpm 

for 1 minutes. A NanoDrop spectrophotometer (Thermo Scientific, DE, USA) was used to 

determine the RNA concentration of the sample. RNA was stored at -80°C until further 

use.

2.5.2 Reverse transcription

Reverse transcription is a technique used to transcribe single stranded mRNA into 

complementary DNA (cDNA). 1 }j.g of RNA was made up to a total volume of 8 |il with 

DEPC-treated water and mixed w ith 1 |il of random hexamers (50 ng/pil) and 1 nl of 

dNTPs (10 mM). The reaction mix was incubated at 65°C for 5 minutes and quickly 

placed on ice. 10 |il o f a cDNA synthesis mastermix (components added in the order as 

indicated in table 2.10) was added to each RNA/primer mix and incubated fo r 10 

minutes at 25°C, followed by 50 minutes at 50°C. The reaction was terminated by 

incubating the samples fo r 5 minutes at 85°C and the samples were quickly transferred 

to ice and stored at -20°C freezer until fu rther use.
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Table 2.10: cDNA synthesis mastermix

_______ Reagent_______________ Volume (\i\)

lOx RT buffer ____  2

25 mM MgClz 4

0.1 M DTT 2

RNAse OUT (40 U/^il) 1

Superscript III (200 U /iil)_____________ 1

2.5.3 Polymerase chain reaction

Polymerase chain reaction (PCR) is a technique used to  amplify a large amount of copies 

of DNA from  a relatively small amount o f starting DNA material. During a PCR reaction, a 

heat stable DNA polymerase assembles a new DNA strand from template DNA using 

specific DNA primers. The three main steps of a PCR are dénaturation, annealing and 

extension, which are each repeated fo r a specific number o f cycles.

During in itia l dénaturation, template DNA is denatured, while the Taq DNA polymerase 

gets activated.

DNA dénaturation is then performed fo r 45 seconds again at the beginning o f each cycle 

to ensure DNA dénaturation. DNA is melted during each dénaturation step by disrupting 

the hydrogen bonds between complementary bases, resulting in single stranded DNA. 

The dénaturation step is followed by prim er annealing, during which the temperature is 

lowered to allow the primer to  anneal to the DNA. Temperature and duration of this 

step depends on the specific primers used.

During extension, the DNA polymerase synthesises a new complimentary DNA strand by 

adding dNTPs in antisense direction. This cycle is repeated up to 35 times, depending on 

the amount o f template DNA in the sample.

A final elongation step after the last cycle is to  ensure that any remaining single 

stranded DNA Is fully extended.

PCR reactions were made up to 25^1 (see table 2.11 for reagents and 2.12 for primers) in 

200|il domed PCR tubes (StarLab, Germany) and PCR was carried out on a thermocycler 

(Biosciences, Dublin, Ireland) (see table 2.13 fo r thermocycler settings).
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Table 2.11: PCR reaction reagents

Reagent Volume (|jl)

lOx PCR buffer 2.5

50mM MgClz 0.75

lOmM dNTP mix 0.5

Primer Mix (Fwd & Rev) 1

Taq DNA polymerase 0.1

Template DNA 1

DNAse-free dH20 Up to  25

Table 2.12: Primers for PCR

Gene Forward prim er sequence 5' -> 3' Reverse prim er sequence 5' 3'

SRC-1 CATGGTCAGGCAAAAACCTT GCI IÜLCGAI 1 1 IGGTGTAT

Ets2 G CAAGG CTGTGATGAGTCAA CCTCTG CAG ATT CACGTT CA

Myc TTCGGGTAGTGGAAAACCAG CAG CAG CTCG AATTTCTTCC

MMP9 CG CAG ACAT CGTCAT CCAGT GGATTGGCCTTGGAAGATGA

Actin TCACCCACACTGTGCCCATCTA CAG CG G AACCG CTCATTG CCA

Table 2.13: Thermocycler settings for DNA amplification. *except MMP9 = 35 cycles and 
Actin = 20 cycles.

Step Temperature (°C) Time

1. Initia l Dénaturation 94 3 minutes

2. Dénaturation 94 45 seconds

3. Annealing 60 30 seconds

4. Extension 72 1.5 minutes

Repeat Step 2 -  4 x 28* times

5. Elongation 72 10 minutes

6. Hold 4 Forever

2.5.4 Preparing and running standard agarose DNA gels

PCR products were analysed by agrose gel electrophoresis for size separation. Agarose 

DNA gels were prepared by dissolving 1.5% (w/v) agarose powder (Promega, Germany)
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with heating in lx  tris acetate EDTA (TAE) buffer (Appendix I). A fter cooling, the 

intercalating agent SybrSafe (Invitrogen, USA) was added to the solution at a dilution of 

1:10,000, transferred into a gel casting tray containing a sample comb and left to  set for 

30 minutes at room tem perature. The comb was then removed and the gel was 

overlayed with lx  TAE buffer. Samples were mixed w ith clear loading dye and pipetted 

into the wells o f the gel. The gel was run at 100V fo r 30 minutes. Bands were visualised 

on an ultraviolet transillum inator and the image was recorded using LAS3000 imaging 

software (Fuji, Japan).

2.5.5 Chromatin immunoprécipitation (ChIP)

Chromatin Immunoprécipitation or ChIP is a technique used to assess protein-DNA 

interactions at a particular location within the genome. In short, protein-DNA complexes 

are fixed by crosslinking w ith  formaldehyde, cells are lysed and chromatin is sheared 

into shorter fragments o f approximately 500bp. Complexes are immunoprecipitated 

w ith an antibody against the protein of interest. DNA is then purified from  the isolated 

chromatin and specific genomic regions are amplified by PCR and analysed on a light 

cycler.

Aro and LetR cells were plated at equal confluence in T75 flasks and cultured in 10ml of 

phenol red free CDS-FCS MEM fo r 72 hours prior to treatments. Cells were treated 

according to table 2.1 fo r 45 minutes and cross-linked for 10 minutes with formaldehyde 

at a final concentration o f 1% (Appendix I) immediately afterwards. Fixation was 

quenched by adding glycine solution at a final concentration o f 125mM (Appendix I) to 

the media and incubated fo r a further 5 minutes. Flasks were washed once w ith 3ml ice- 

cold PBS and another 3ml of ice-cold PBS supplemented w ith Protease Inhibitor cocktail 

(P8340; Sigma Aldrich) was added to the flask and cells were removed from the flask 

w ith a cell scraper (Sarstedt). Cells were transferred into a 15ml falcon tube and 

centrifuged at 2,000rpm fo r 5 minutes at 4°C to  pellet the cells. The supernatant was 

discarded and the pellets were stored at -80°C until cell lysis and sonication at a later 

time.
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Prior to  sonication, cells were lysed in 600|il SDS lysis buffer (Appendix I) supplemented 

with 1% protease inh ib itor cocktail and placed on ice fo r 10 minutes. Cross-linked DNA 

was sheared by sonicating each sample 6 times fo r 10-second pulses with a 1-minute 

interval on ice between pulses w ith a Sonifier 250 sonicator (Branson, USA) at power 

output 4 - 5 .  Following sonication, the samples were centrifuged for 10 minutes at 

13,000rpm at 4°C after which the lysates were transferred into fresh tubes. DNA was 

quantified using a Nanodrop 2000c spectrophotometer (Thermo Scientific) to determine 

an estimation o f chromatin mass in the sample. An equal mass of starting material was 

calculated for each sample and diluted up to 2ml in ChIP dilution Buffer (Appendix I) 

containing 1% protease inh ib itor cocktail. A 40pil aliquot of each sample was transferred 

into a fresh eppendorf tube to  be used as an input control. The DNA in the aliquot was 

precipitated in 100% ethanol at -80°C fo r 1 hour, centrifuged at 13,000rpm for 20 

minutes at 4°C. The pellet was air dryed and DNA was isolated by a chelex-based 

procedure as explained below.

The diluted cell lysate was pre-cleared w ith 75^1 Salmon Sperm DNA/Protein A Agarose- 

50% Slurry (M illipore, USA) fo r 30 minutes at 4°C on a rotor to reduce non-specific 

background. The samples were centrifuged at l,000rpm  for 1 minute at 4°C and the 

supernatant was transferred into a fresh 15ml falcon tube. 6pig o f immunoprecipitating 

antibody was added to each sample (see table 2.14) and incubated on a rotor at 4°C 

over night. The negative control was incubated w ith the non-immune IgG fraction from 

the species in which the respective antibody was raised.

Table 2.14: Immunoprecipitating antibodies used in ChIP experiments

Antigen of 
interest

Immunoprecipitating
antibody

Mass of 
antibody

Volume of 
antibody

Non-immune
IgG

Mass of non- 
immune IgG

SRC-1 Rabbit polyclonal 6|ig 30nl Rabbit 6pg
Ets2 Rabbit polyclonal 6ng 30ul Rabbit 6ug

Histone H4 Rabbit polyclonal 7|Jg 7pl Mouse 5kig
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After the incubation, 60^1 of Salmon Sperm DNA/Protein A Agarose-50% Slurry 

(M illipore) was added to  the sample and incubated fo r another 60 minutes on the rotor 

at 4°C to  bind the antibody/histone complex. The agarose was pelleted by centrifuging 

the tubes at l,000rpm  at 4°C for 1 minute. The supernatant was discarded and the 

agarose was washed on a rotor fo r 5 minutes each w ith 1ml o f the following buffers: low 

salt immune complex wash buffer, high salt immune complex wash buffer, LiCI immune 

complex wash buffer, TE buffer. A fter the last wash, the pellet was resuspended in 1ml 

TE buffer, transferred into a fresh eppendorf tube and incubated on a rotor fo r 5 

minutes at room temperature. The tubes were centrifuged at l,000rpm  at 4°C for 1 

minute and supernatant was discarded. Cross-linking was reversed and DNA isolated by 

incubating the agarose beads w ith 100^1 o f 10% Chelex 100 slurry (BioRad) at 95°C for 

10 minutes. Samples were chilled on ice before adding 2[i\ o f proteinase K solution 

(lOng/jal; Fluka, Sigma Aldrich) to  each sample and incubating them at 55°C for 30 

minutes in a therm om ixer (Eppendorf, Germany). The proteinase K was inactivated by 

boiling the samples at 95°C for 10 minutes. Samples were centrifuged fo r 1 minute at 

13,000rpm and 4°C and the supernatant was transferred into a fresh eppendorf tube. 

120pil o f DNAse/RNAse-free water (Qiagen) was added to  the beads, vortexed fo r 10 

seconds, centrifuged, and the supernatant was added to the previous supernatant of the 

respective sample. The DNA concentration in the samples was assessed using the 

Nanodrop 2000c spectrophotometer (Thermo Scientific). Samples were either subjected 

to a PCR (15|j.l input DNA and 30|il sample DNA; 2.5.3) and prepared to  run on a gel 

(2.5.4) or subjected to  semi-quantitative PCR (2.5.6).

2.5.6 Semi-quantitative real time PCR

Semi-quantitative real tim e PCR, or qPCR, allows detection and quantification o f specific 

DNA sequences in a sample. This technique differs from conventional PCR in that it 

measures the amount o f amplified DNA template throughout the reaction rather than 

assessing the amount o f the template at the end. By focusing on measuring during the 

exponentionai phase o f the reaction it allows fo r accurate quantification o f the samples. 

The PCR products are detected by using fluorescent dyes tha t bind to  dsDNA.
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In this case, the fluorescent dye used was SYBR Green (Qiagen). Experiments were 

carried out on the LightCycler 2.0 (Roche Diagnostics, Switzerland). 80ng starting 

material was used in the PCR reactions. Reactions were prepared in standard 20|il 

LightCycler capillaries (see table 2.15 fo r reagents).

Table 2.15: qPCR reaction reagents

Reagent Am ount

SYBR Green Master Mix (Qiagen) 10nl

1.25nM Primer Mix (table 2.5.3.b) l \ i \
Template cDNA 80ng

DNAse-free dH20 Up to 20|il

A standard curve was generated for each gene o f interest using serial dillutions of input 

cDNA (neat -  1:10,000). Capillaries were then loaded onto the LightCycler and run under 

the conditions listed in table 2.16.

Table 2.16: Run conditions for qPCR reactions

qPCR Product Denature Anneal Extend No. of
Temp Time Temp Time Temp Time Cycles

(°C) (s) (°C) (s) (°C) (s)

Myc mRNA 94 15 60 20 72 20 50

MMP9 mRNA 94 15 60 20 72 20 50

P-Actin mRNA 94 15 60 20 72 20 42

Endogenous reference gene was (3-Actin. Analysis is based on relative quantification. The 

target gene of interest as well as (3-Actin was amplified from  the same sample and the 

normalised value was determined to allow comparison of gene expression between the 

samples.
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2.6 Translational Research

Ethical approval fo r studies on human samples was obtained from the Medical Ethics 

Committee, Beaumont Hospital, Dublin 9. Biological samples were only used from 

patients who provided informed consent fo r the use of the ir tissue. Detailed information 

about the patient cohort and the construction o f the TMA can be found in chapter 5.

2.6.1 Immunohistochemistry

Immunohistochemistry (IHC) is a technique used to  assess the presence and cellular 

localisation o f a specific protein in the context o f intact tissue.

IHC was performed on formalin fixed paraffin embedded tissue in form  of previously 

prepared full face tum our sections or tissue micro arrays (TMAs) that consisted o f 0.8 

mm diameter cores o f patient tum our samples. Slides were baked at 65°C for 6 hours to 

fix the tissue onto the slides. Tissue was deparaffinised by immersion in xylene for 3 

minutes followed by sequential passage for 3 minutes each through decreasing 

concentrations o f industrial methylated spirits (IMS; 100% - 100% - 70%). Slides were 

washed once in tap water and twice in PBS for 5 minutes. Endogenous peroxidase 

activity was depleted by treatm ent w ith 3% hydrogen peroxide (H20 2; Sigma Aldrich, 

Germany) twice fo r 10 minutes in the dark, followed by a 5-minute PBS wash. Heat- 

mediated antigen retrieval was conducted by submerging the slides in a container filled 

with 10 mM sodium citrate buffer (pH 6.0) and heating the closed container in a 

microwave fo r 7 minutes at maximum power, followed by 20 minutes cooling at room 

temperature. Slides were washed twice in PBS-T and non-specific binding of secondary 

antibody was minimised by pre-incubating slides with 3% of serum from the species in 

which the secondary antibody was raised, in this case goat serum, which was supplied 

w ith the Vectastain ABC kit (Vectorlabs), made up in PBS. Primary antibody 

concentrations were determined according to the manufacturer's instructions and 

optim isation in the lab. Primary antibody was diluted in PBS to  the required 

concentration as listed in table 2.17 and incubated fo r 90 minutes at room temperature.
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Table 2.17: Antibodies and conditions used for immunohistochemistry

Target
Protein

Blocking
Solution

1° antibody 1° antibody 
concentration

2° antibody

SRC-1 Goat
serum

Rabbit polyclonal anti 
SRC-1 (sc-8995)

1 in 100 
(2.0 ng/ml)

Anti rabbit 
IgG

MMP9 Goat
serum

mouse monoclonal anti 
MMP9 (sc-21733)

1 in 100
(2.0 ug/ml)

Anti mouse 
IgG

Myc Goat
serum

Rabbit polyclonal anti 
Myc (sc-517)

1 in 100 
(2.0 lig/ml)

Anti rabbit 
IgG

Slides were washed thrice in PBS for 5 minutes and incubated w ith the appropriate 

biotinylated secondary antibody at a dilution o f 0.5% in 1.5% block in PBS for 30 

minutes. The signal was then amplified by incubating the slides fo r an additional 30 

minutes w ith  an Avidin Biotin Complex (ABC) supplied w ith the kit. Slides were washed 

thrice w ith PBS for 5 minutes and product was developed using 3,3'-Diaminobenzidine 

tetrahydrochloride (DAB) (Sigma Aldrich) fo r 2 minutes until colour developed. Sections 

were counterstained w ith haematoxylin (Sigma Aldrich) for 3 minutes, after which slides 

were washed in running tap water fo r 5 minutes. Tissue was dehydrated again by 

passing though increasing concentrations o f IMS (70% - 100% - 100%) for 3 minutes 

each, followed by immersion in xylene tw ice fo r 3 minutes. Tissue was air dryed and 

mounted w ith  DPX (Sigma Aldrich) and a cover slip. Slides were left to dry and stored at 

room temperature.

Slides were scored under an inverted microscope (Olympus) by two observers using the 

Allred scoring system. The scoring system consists o f two scores: a proportion score to 

represent the area o f tissue stained (none = 0, <1% = 1, >1<10% = 2, >10%<33% = 3, 

>33%<66% = 4, >66% = 5) and an intensity score tha t represents the average intensity of 

the positive tum our cells (none = 0, weak = 1, medium = 2, strong = 3). The scores are 

then combined to  reach a total score between 0 and 8. A tota l score o f greater than 3 

was called positive.
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2.6.2 Colocalisation studies

In fluorescence microscopy, colocalisation refers to the observation o f the spatial 

overlap between signals o f tw o or more different fluorophores and is often used to 

visualise the biological interaction between proteins inside the cell (Kreft M et al., 2004, 

Adler J eta l., 2008). The ability to  demonstrate correlation between proteins was greatly 

enhanced by the introduction o f the Pearson's correlation coefficient R(r), which aids to 

characterise the degree o f overlap between images (Adler J and Parmryd I, 2010). It can 

have a value anywhere between -1 and 1; the larger r, the stronger the association 

between the variables. For example, an r of -1 or 1 means that the tw o variables are 

perfectly correlated whereas an r o f 0 Implies that there is no correlation between the 

variables.

To assess the colocalisation between SRC-1 and ER and SRC-1 and p-Ets2 respectively, 

paraffin-embedded full-face tum our sections were pre-treated as described in 2.6.1 in 

detail. In short, sections were deparaffinised, followed by endogenous peroxidase 

activity depletion and heat-mediated antigen retrieval. Non-specific binding of 

secondary antibody was minimised by pre-incubating slides fo r 90 minutes w ith 10% of 

serum from  the species in which the secondary antibody was raised, in this case goat 

serum. Slides were washed in PBS for 5 minutes. The first primary antibody was diluted 

in 10% human serum in PBS to  the required concentration as listed in table 2.18 and 

incubated fo r 90 minutes at room temperature.

Table 2.18: Antibodies and conditions used for colocalisation studies

Target
Protein

Blocking
Solution

1° antibody 1° antibody 
concentration

2° antibody

SRC-1 Goat
serum

Rabbit polyclonal anti 
SRC-1 (sc-8995)

1 in 100 
(2.0 jig/ml)

Anti rabbit 
488

ER Goat
serum

Mouse monoclonal anti 
ER (NCL-ER-6F11)

1 in 100 

(2.0 ng/ml)

Anti mouse 
568

SRC-1 Goat
serum

Mouse monoclonal anti 
SRC-1 (05-522)

1 in 100

(10ng/ml)

Anti mouse 

488
p-Ets2 Goat

serum
Rabbit polyclonal anti 

p-Ets2 (441105G)
1 in 50 

(2.0^g/ml)
Anti rabbit 

594
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Slides were washed thrice in PBS for 5 minutes and incubated fo r 60 minutes with the 

appropriate fluorescent secondary antibody at a dilution o f 1 in 200 in PBS. Slides were 

washed thrice in PBS fo r 5 minutes and blocked in 3% of goat serum for 90 minutes. 

Slides were washed fo r 5 minutes in PBS and incubated w ith the second primary 

antibody for 90 minutes. Slides were washed thrice in PBS for 5 minutes and incubated 

for 60 minutes w ith the appropriate fluorescent secondary antibody at a dilution o f 1 in 

200 in PBS. Slides were washed in PBS and incubated w ith DAPI (1:15,000; Invitrogen) 

for 5 minutes to  counterstain the cell nucleus. Slides were washed in water for 5 

minutes and mounted w ith a fluorescein mounting media (DAKO). Staining was viewed 

under a Zeiss Confocal microscope and the Pearson's coefficient fo r nuclear 

colocalisation between SRC-1 and p-Ets2 was assessed using the WCIF colocalisation 

plug-in fo r the ImageJ image analysis software.
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2.7 Immunofluorescence

Immunofluorescence is a technique that uses fluorophore-labeled antibodies to visualise 

a certain protein w ith in  a cell. To assess the cellular localisation of SRC-1 upon 

treatm ent, Aro and LetR cells were grown on collagen-coated coverslips. A collagen 

solution w ith the concentration of 50 |ig/m l was prepared in 0.115% Acetic Acid (17.4 N) 

/  PBS. The coverslips were washed in 70% IMS and then dried for 20 mins prior to 

coating them w ith the collagen solution. Coverslips were incubated at 37°C for 30 

minutes and then washed w ith PBS for 5 minutes. Cells were plated at a density of 2.5 x 

104 cells /  well and steroid depleted fo r 72 hours. Cells were then treated w ith the 

androstenedione, estrogen, letrozole and a combination of androstenedione and 

letrozole at the concentrations listed in table 2.1 for 45 minutes. Cells were fixed with 

4% paraformaldehyde (PFA) fo r 10 minutes at room tem perature and permeabilised 

w ith  0.5% Triton in PBS fo r a further 10 minutes at 4°C. Cells were washed thrice in PBS 

fo r 5 minutes. Cells were blocked with 10% goat serum in PBS for lh  at room 

temperature. Cover slips were washed fo r 5 minutes in PBS. 100^1 of SRC-1 antibody 

(1:50) was added to each coverslip and covered w ith parafilm to prevent evaporation of 

the solution. A fter lh  o f incubation, coverslips were washed thrice in PBS for 5 minutes. 

Secondary Antibody was added fo r 45 minutes, followed by three 5-minute PBS washes. 

Cytoskeleton was stained with Phalloidin 594 (Molecular Probes) at a dilution o f 1:200 

fo r 20 minutes and the nucleus was stainined using DAPI at a dilution o f 1:15,000 for 5 

minutes, followed by a rinse in tap water. Coverslips were fixed on a slide w ith mounting 

media (DAKO).
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2.8 Statistical Analysis

Anonymous patient databases were maintained in Microsoft Excel (Microsoft, USA). 

Multivariate analysis was performed using STATA 10 data analysis software (Stata Corp., 

Texas, USA). Fisher's exact test was used fo r comparison of categorical data. Student's t 

test was used for continuous variables. A p value smaller than 0.05 was considered 

significant.
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C h a p t e r  3  

C h a r a c t e r i s a t i o n  o f  a n  A l  r e s i s t a n t  c e l l  m o d e l
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3.1 Introduction

To understand the mechanisms of aromatase inhib itor resistance and identify novel 

approaches to  develop better therapies to overcome resistance, designing cellular 

models fo r endocrine resistant breast cancer appeared to be essential.

Until the 1990s, the most common method for screening aromatase inhibitors was an in 

vitro  enzyme assay using aromatase expressing human placental microsomes. However, 

this assay represented a very artifical environment, as NADPH-cytochrome P450 

reductase and a NADPH-regenerating system needed to  be added to the assay. Another 

method established by Hausler in 1989 used luteinising hormone (LH)-treated adult 

female hamster ovarian tissue, but, since this method used animal tissue it was prone to 

issues related to tissue heterogeneity as well as species-related differences. Another 

downside o f this assay was the large number o f animals needed to  harvest enough 

tissue fo r the assay (Hausler A et al., 1989).

The obvious choice was to  use cultured human breast cancer cells. Since Als are used in 

the treatm ent o f ER+ breast cancer a cell line expressing ERa was needed. One ER+ 

breast cancer cell line tha t has proven to be the model o f choice is the MCF7 cell line as 

it responds to estrogen stimulation as well as anti-estrogen suppression. Yet, MCF7 cells 

appear to express the aromatase enzyme at very low levels, probably because in the 

body, aromatisation happens in several other organs besides the breast (Zhou D et al., 

1990). Therefore, the firs t step in creating an Al resistant cell line was to generate an 

aromatase overexpressing cell line. In 1990, Shiuan Chen's group successfully 

constructed an expression plasmid containing the full-length aromatase cDNA CYP19 

and transfected it into the MCF7 cells. An enzyme assay could be carried out w ith an 

extremely short incubation period o f 30 minutes due to  high levels of aromatase stably 

overexpressed in those cells (Zhou D et al., 1990). A reliable cell model that mimicks the 

estrogen production in postmenopausal women was generated and was from now on 

called MCF-7aro or MCF-7Ca (Yue W et al., 1994).
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Two other ER+ breast cancer cell lines tha t are frequently used to  study ER-mediated 

response are T47D and ZR75-1 and aromatase expressing versions of these cell lines, 

T47Daro and ZR75-laro, have recently been generated and used to study Al resistance 

(Wong C and ChenS, 2012).

Two fairly d ifferent approaches were taken to generate a cell model that could be 

employed to  investigate mechanisms involved in Al resistance:

One approach was to  grow breast cancer cells in complete absence of estrogen. 

Resistance to  aromatase inhibitors is thought to be, in part, a result of estrogen 

hypersensitivity or estrogen-independent activation o f ER due to  a constant lack of 

estrogen caused by the Als. To address this question, several groups created long-term 

estrogen deprived (LTED) cells by continuously growing MCF-7 cells in steroid depleted 

media (M artin LA et al., 2005; Nicholson Rl, 2004; Sabnis GJ et al., 2005). LTED cells as 

well as UMB-ICa cells (aromatase overexpressing LTED cells) (Sabnis GJ et al., 2007) are 

characterised by an increased activity of GF pathways, HER2 and IGF-1R in particular, but 

also an increase in ER expression. These finding suggested that, in this setting, GF 

receptors may crosstalk w ith ER, resulting in activation and phosphorylation of the 

receptor in a ligand-independent manner (Chen S et al., 2006). Recent studies have 

shown that LTED cells are a model fo r late stage acquired resistance as those cells show 

no response to  Als or tamoxifen any more (Chen S, 2011).

To generate a physiologically more relevant cell model, aromatase overexpressing 

breast cancer cells were exposed to  aromatase inhibitors until they became resistant to 

the drug. MCF7-aro cells were exposed to testosterone and the three Als exemestane, 

anastrozole and Letrozole for a prolonged time (>8 months) (Chen S et al., 2006). Angela 

Brodie's group generated a similar model at the same time by culturing early passage 

MCF-7Ca cells in steroid-depleted medium containing the aromatase substrate 

androstenedione and the Al letrozole. Cells began to proliferate after 8 weeks of 

treatm ent and gradually lost sensitivity to letrozole until they were completely
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insensitive to  the Al at about 52 weeks o f treatm ent w ith the drug. These cells were 

therefore designated long term  letrozole cultured or LTLC (Belosay A et al., 2006). The 

group also generated a long-term letrozole treated (LTLT) cell model by inoculating mice 

with the MCF-7Ca cells and treating those animals for 56 weeks w ith the Al until 

tumours were growing despite administration o f the drug. The Al resistant tumours 

were excised and cells were isolated (Jelovac D et al., 2005).

It was decided to generate a cell model very similar to  the LTLC model. A construct 

containing the full-length aromatase gene was designed and transfected into ER+ MCF7 

breast cancer cells. To generate an Al resistant cell model, cells stably overexpressing 

the aromatase enzyme, designated Aro, were cultured in steroid free medium 

supplemented w ith androstenedione and the Al letrozole for a minimum of 12 weeks 

prior to experiments. To check if the cells were resistant to  the Al, a proliferation assay 

was performed in which Aro and LetR cells were treated w ith letrozole. Proliferation was 

inhibited by letrozole in the normally cultured Aro cells but not in the Aro cells subjected 

to  the Al fo r 12 weeks, suggesting that they have become insensitive to the drug (O'Hara 

J et al., 2012). These cells were designated LetR (Letrozole Resistant).

Based on previous findings by other labs tha t endocrine resistance is often characterised 

by a switch from endocrine- to  growth factor signaling, the Al resistant model was 

expected to  be less responsive to steroids and more responsive to  growth factors. To 

investigate this a proliferation assay was performed where cells had been treated with 

either estrogen or EGF after 48 hours o f steroid depletion followed by 24 hours of serum 

starvation. As expected, the LetR cell model showed loss o f response to the steroid and 

an increased response to the growth factor in comparison to  the Al sensitive, steroid 

dependent Aro cells (Figure 3.1) (McBryan J et al., 2012), suggesting tha t a shift from 

steroid- to growth factor responsiveness might be involved in the transition from Al 

sensitivity to  Al resistance in vitro.
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*

Estrogen: - + - + EG F: - + - +
Aro LetR Aro LetR

Figure 3.1: LetR cells show reduced response to the steroid Estrogen and increased 
response to the epidermal growth factor EGF. The Al-resistant cells (LetR, black bars) 

show reduced proliferative response to  steroids and increased growth factor response 

when compared w ith the Al-sensitive cells (Aro, grey bars). Results are mean SEM (n = 3) 

(* p<0.01).
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3.2 Aims

The aim o f this chapter was to  characterize the letrozole resistant LetR cell line in 

comparison to  the AI sensitive Aro cell line in regards to the following:

• Hormone receptor expression

• M igratory capacity

• 3D organization and polarization

• Invasiveness
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3.3 Results

3.3.1 Expression of hormone receptors in LetR cells

In ER positive breast cancer patients, development o f resistance to endocrine therapy 

often comes w ith a loss o f ER and PR and a gain o f HER2 receptor status. To characterise 

the Al sensitive and resistant cell models, to ta l protein was examined fo r hormone 

receptor status by western blot analysis.

A strong increase in HER2 expression was observed in the Al resistant LetR cell model 

compared to the Al sensitive Aro cells (Figure 3.2). This observation is consistent with 

both clinical findings and the increased responsiveness o f LetR cells to growth factors 

(Figure 3.1). However, the LetR cells also displayed a slight increase in ER and PR protein 

levels (Figure 3.2), despite the finding tha t these cells are less responsive to  steroids 

than the sensitive Aro cells (Figure 3.1).

ERa 

PR

Her2

Actin

Figure 3.2: LetR cells show a slight increase in ER and PR and a dramatic increase in 
HER2 protein expression. Aro and LetR cells were lysed and run on a 6% polyacrylamide 
gel fo r  HER2 and a 10% gel fo r  ER and PR. Gels were transferred and probed with 
antibodies against the respective receptor. Western b lo t analysis showed a slight 
increase in ER and PR protein expression and a severe increase in HER2 protein 
expression in LetR cells when compared with Aro cells.

Aro LetR
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3.3.2 LetR cells exhibit a decrease in differentiation

The development o f resistance to endocrine treatm ent results in metastasis, a process 

that is preceeded by endothelial to mesenchymal transition (EMT). It is believed that 

EMT promotes cancer cell progression and invasion into the surrounding 

microenvironment. EMT is a process by which cancer cells undergo molecular changes 

that cause dysfunctional cell-cell adhesion and junctions and reorganisation of the 

cytoskeleton, resulting in the loss of apical polarity as well as the acquisition of a more 

spindle-like shape (Creighton CJ et al., 2010).

To investigate if the letrozole resistant cell model LetR possesses a less polarised and 

organised phenotype, sensitive and resistant cells were subjected to a 3D assay. A 3D 

assay is used to assess if cells can form organized and polarised acini or mammospheres 

in a three dimensional matrix. Cells were grown in matrigel for 16 days and stained for 

Phalloidin and DAPI. It was observed that Aro cells were able to form highly organized 

and polarized acini structures with a hollow lumen, comparable to the highly 

differentiated, non tumourigenic MCF10A cell line. The LetR cells on the other hand 

displayed a lack of organization as well as the lack of a hollow lumen, appearing more 

similar to the poorly differentiated, metastatic SKBR3 cells (Figure 3.3).

M C F 1 0 A

Figure 3.3: LetR cells display a loss of organisation and polarisation. Aro cells form  3D 
organized structures with hollow lumen similar to the highly polarized MCF10A cells. 
LetR cells fa il to hollow out a lumen and remain disorganized, more comparable to 
SKBR3 cells. Cells are stained with DAPI (blue) and phalloidin (red) and images are 
representative o f three separate experiments. (Scale bars 20pm).
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3.3.3 LetR cells show an increase in M M P9 mRNA and express the active, proteolytic 

form of MM P9

For a cell to be able to invade the tum our microenvironment and metastasise to distant 

organs in the body it has to  be able to  degrade its surrounding basement membrane. 

MMP9 is a member o f the family o f gelatinases that can degrade gelatine as well as 

collagen type IV, a major component o f the basement membrane (Stellas D et al., 2010). 

IVIMP9 has frequently been implicated in cancer cell progression and invasion (Hyuga S 

et al., 1994; Beliveau A et al., 2010). Owing to the decrease in differentiation in LetR 

cells, it was decided to  examine MMP9 expression in these cells.

RNA was extracted from  Aro and LetR cells and was subjected to a PCR using MMP9 

primers. At transcript level an increase in MMP9 mRNA was observed in the LetR cells 

when compared to  the highly differentiated Aro cells (Figure 3.4, left).

To assess active levels o f the MMP9 enzyme, conditioned medium from both cell lines 

was collected and analysed by zymography. Zymography is an electrophoretic technique 

to measure enzymatic activity of a certain protein. Samples are run on a so-called 

zymogram; a gel tha t contains a particular protein tha t serves as a substrate. Since 

MMP9 is a gelatinase, the conditioned media was run on a gel containing gelatine. The 

gel is then subjected to  a developing buffer at 37°C for digestion followed by staining 

w ith Coomassie Blue. The areas o f digestion appear as clear bands on a blue 

background. These bands indicate the size of the enzymatic protein tha t has degraded 

the substrate.

In contrast to Aro cells, LetR cells express the active, proteolytic form o f MMP9, 

indicating tha t cells tha t become resistant to  the Al letrozole are able to degrade ECM 

components to invade the ir surrounding tissue and disseminate to distant sites o f the 

body (Figure 3.4, right).
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Aro LetR

Figure 3.4: LetR cells express high levels of MM P9 mRNA and express the active form  
of the proteolytic enzyme. mRNA was extracted from  Aro and LetR cells and PCR was
performed using MMP9 primers. Conditioned media from  Aro and LetR cells was 
subjected to a zymography gel, stained according to protocol and bands were visualised 
on a ligh t box.
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3.3.4 LetR cells display higher migratory capacity than Aro cells

The LetR cells appeared to be less organized and polarized in 3D than the Al sensitive 

Aro cells. Therefore, it was decided to investigate if they displayed an increase in motility 

in comparison to the sensitive Aro cells. Migratory capacity is an important prerequisite 

for a cell's ability to  metastasise.

Cells were seeded into a collagen coated 96-well plate onto a lawn o f fluorescent beads. 

As they move across the well they push away and phagocytose the beads, clearing a 

track behind them. The track area is proportional to the cells' ability to migrate. After an 

incubation period o f 22h cells were fixed, stained with rhodamin phalloidin and 

visualised under a microscope. Track area was measured in urn2.

The LetR cells were significantly more motile than Aro cells displaying more than 6 times 

the migratory capacity during the 22-hour analysis period (4,945 pm2 per Aro cell 

compared to  30,572 pm 2 per LetR cell) (Figure 3.5). In relation to other cell lines, LetR 

cells displayed a similar migratory capacity to the highly invasive MDA-MB231 cells 

(35,579 pm2 per cell).

Aro LetR MDA
M D A-M B231

Figure 3.5: LetR cells are more motile than Aro cells. Cells are seeded onto a lawn o f 
microscopic fluorescent beads (blue), fixed after 22h and stained fo r  Rhodamine 
Phalloidin (red). Graph shows migration area per cell in ¡xm2 + SEM (n=3). MDA-MB231 
cells were used as a positive control (Scale bar 200ixm, * p=0.0001).
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3.3.5 LetR cells are more motile thatAro cells independent of treatment conditions

Since LetR cells are cultured under slightly d ifferent conditions than Aro cells, a cell 

m otility assay was performed using various treatments. LetR cells were steroid depleted 

fo r 72 hours and treated w ith Androstenedione, Letrozole and a combination of the two 

fo r 8 hours before subjecting them to a migration assay. Cells were treated for another 

22 hours, then fixed and stained as described before. Images of the tracks were taken on 

an inverted microscope and migration area in urn2 per cell was measured using iCell 

software.

A slight increase in migration was seen between the different treatments, w ith the 

biggest increase being between the vehicle sample and the Androstenedione + Letrozole 

treated cells (Figure 3.6). However, this increase was not significant (p=0.2375). As 

observed under basal conditions, the LetR cells treated w ith vehicle were significantly 

more motile than the Aro cells (p=0.0001).
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Figure 3.6: Effect of steroid treatment on migration. Cells were treated with Vehicle (V), 
Androstenedione (A), Letrozole (L), or a combination (A+L). Aro cells were added fo r  
comparison. Histogram shows the mean m igratory area per cell (¡J.m2) + SEM (n=3). 
(*p=0.0001)
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3.3.6 LetR cells are capable of invading an artificial matrix membrane

To further investigate the cells' potential to  metastasise, sensitive and resistant cells 

were subjected to  an invasion assay. Invasion assays have been developed to  mimic the 

process o f a cancer cell crossing a basement membrane to  disseminate to  distant organs 

in the body. The assay is set up by applying a layer o f reconstituted basement 

membrane, matrigel, on top  o f a microporous membrane. The membrane is attached to 

an insert tha t can be placed into a well filled w ith  a chemoattractant o f choice. The idea 

is tha t the cells move towards the chemoattractant and by doing so, breaking down the 

basement membrane to  migrate through the pores into the well. The membrane is 

stained, invading cells are counted and an average percentage o f invading cells can be 

calculated.

Aro cells failed to  cross the basement membrane and migrate into the pores (5.3% 

invasion) (Figure 3.7). The resistant LetR cells, however, displayed a dramatic increase in 

invasion (87.8%), comparable to  the highly invasive MDA-MB231 cells (80.6%), and 

appeared to be significantly more invasive than the non-invasive Aro cell line (pcO.OOOl).

Aro LotR MDA

Figure 3.7: LetR cells are highly invasive. Aro, LetR and the highly invasive MDA-MB231 
cells were seeded into invasion chambers. 24h la ter the artific ia l membranes were 
removed from  the chambers, fixed and stained with crystal violet. Invading cells were 
visualized under a microscope and 5 different fie lds were counted. Graph shows average 
percentage o f invading cells + SEM (n=3; * p<0.0001).
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3.4 Discussion

In the patient, development o f resistance to  endocrine therapy is frequently 

accompanied by a loss in hormone receptor status and an increase in growth factor 

receptor status commonly known as a phenomenon called receptor switching. Even 

though a dramatic increase in HER2 expression was found, no decrease was found in 

hormone receptor protein expression in the Al resistant cell model; in fact, the resistant 

cells exhibited a slightly higher level of hormone receptor protein. Still, other groups 

studying cell models o f endocrine resistance have reported similar findings (Belosay A et 

al., 2006). For example, the Brodie LTED cell model UMB-lCa exhibited an increase in ER 

expression, which was thought to be due to ligand independent activation of the 

receptor by crosstalk w ith  GF signalling pathways (Brodie A et al., 2005). By contrast the 

LTLT-Ca cells, which were isolated from MCF-7Ca tumours o f mice treated w ith the Al 

Letrozole fo r 56 weeks, display a decrease in hormone receptor expression (Jelovac D et 

al., 2005). To date, the LetR cells generated in our lab have not yet been used to 

generate tumours in mice; however, we successfully generated a xenograft model by 

inoculating tamoxifen resistant LY2 cells. Preliminary findings show a loss of ER and PR 

as well as a gain in HER2 in cells isolated from LY2 tumours. These results in combination 

w ith the proliferation data shown in Figure 3.1 suggest that LetR cells have lost steroid 

responsiveness but signals from  the tum our microenvironment may be required for 

complete loss o f expression o f these receptors. In fact, a recent paper reported that 

macrophages elicit loss o f ER and that crosstalk w ith the tum our microenvironment 

offers an alternative mechanism that can lead to  endocrine resistance (Stossi F et al., 

2011).

Breast cancer progression and subsequent metastasis is a multi-step process that 

involves a range o f events such as epithelial to mesenchymal transition (EMT), 

expression o f matrix degrading proteins and an increase in m otility and invasion.
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In healthy mammary tissue, differentiated epithelium is composed o f tw o epithelial cell 

linings that form an inner apicobasal-polarised luminal layer and a basal layer of 

myoepithelial cells, which is surrounded by a basement membrane (Dairkee SH et al., 

1985). The void in the middle of those acinar structures is generated through apoptosis 

and is referred to as a hollow lumen. The integrity of these polarised, highly organised 

acinar structures, so called mammospheres or acini, is highly influenced by cell-cell and 

cell-stromal interactions and is necessary fo r the maintenance o f epithelial cell function 

(Grobstein C, 1967; Bissell M eta !., 1982).

One of the first characteristics o f metastasis is a process known as EMT during which 

cancer cells lose polarity and epithelial differentiation (Krause et al., 2008). Another 

prominent feature of EMT is the loss o f E-cadherin, a protein tha t is responsible for 

stable cell-cell adhesion between epithelial cells. In vitro, this process can be replicated 

by growing cells in 3D cultures using reconstituted basement membrane as matrix to 

allow the form ation o f mammary gland structures resembling the ones found in vivo 

(Swamydas M et al., 2010). MCF10A cells are often used as a positive control as they are 

a perfect example o f well-differentiated cells tha t form polarised acini w ith a hollow 

lumen. The less differentiated a cell, the less polarised it usually is. Acini formed by less 

differentiated cells also lack a hollow lumen, which is a result of anti-apoptotic signaling 

inside those cells. As expected, the Al sensistive Aro cells, which are derived from the 

well-differentiated, non-motile MCF7 breast cancer cells, behaved very similar to 

MCF10A cells when grown in 3D cultures. The Al resistant LetR cells however, displayed 

a clear lack o f organisation and polarisation and the absence o f a hollow lumen, 

suggesting tha t those cells were undergoing EMT.

A common result o f dedifferentiation and loss o f polarisation is the invasion o f the 

surrounding tum our microenvironment. Extracellular matrix (ECM) degradation, 

mediated by matrixmetalloproteinases (MMPs), is an essential step that needs to occur 

prior to invasion. An MMP that is highly implicated in human cancer is MMP9, also 

known as gelatinase B. This MMP degrades collagen IV, a major component of the
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basement membrane (Opdenakker G et al., 2001; Timpl R and Dziadek M, 1986). 

Crossing the basement membrane is a crucial step in invasion and metastasis. MMP9 has 

previously been shown to  be regulated by the steroid receptor coactivator AIB-1 to 

promote breast cancer metastasis to  the lung in a mouse mammary tum our model (Qin 

L etl al, 2008). Another recent study has shown tha t MMP9 is involved in osteolysis to 

promote breast cancer metastasis to the bone (Nannuru KC et al., 2010). LetR cells 

expressed high levels o f the active form o f MMP9, whereas Aro cells only expressed the 

inactive precursor, pro-MMP9. The LetR cells did indeed exhibit a dramatic increase in 

invasion over the Al sensitive Aro cells. The LetR cells also displayed a severe increase in 

motility, which allows the cell to  move to  distant sites in the body.

Taken together, these findings suggest that Aro cells tha t have become resistant to  the 

Al letrozole are driven towards a more aggressive phenotype and may obtain metastatic 

properties.
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C h a p t e r  4

F u n c t i o n a l  r o l e  o f  S R C - 1  i n  A l  r e s i s t a n c e
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4.1 Introduction

SRC-1 is known to  be involved aggressive cancer behaviour as described earlier. Findings 

from our lab have proposed a role fo r SRC-1 in the development o f resistance to 

tamoxifen. The aim o f this chapter is to  establish a potential role for SRC-1 in conferring 

the aggressive Al resistant phenotype described in chapter 3.

Initially portrayed as nuclear receptor coactivator proteins, SRC-1 and SRC-3 (AIB1), two 

members of the p l6 0  family of steroid receptor coactivators, have been shown to 

interact w ith transcription factors downstream of growth factor (GF) pathways. These 

interactions may represent one o f the consequences of GF pathway cross-talk described 

in the development o f resistance to endocrine therapies and tum our recurrence (Myers 

E et al., 2004; Osborne CK et al., 2003; Redmond AM et al., 2009). Functional 

interactions between SRC-1 and transcription factors other than ER, like the MAP-kinase 

dependent TFs Ets2 and PEA3, have previously been reported and these interactions 

have been shown to  regulate target genes tha t are implicated in tum our progression and 

metastasis, such as Myc and MMP-9 (Myers E et al., 2004; Al-azawi D et al., 2008; Qin L 

e ta /., 2009).

4.1.1 Myc

c-Myc (Myc) is a transcription factor and the most extensively studied member of the 

bHLH proteins, a superfamily of transcriptional regulators that are involved in critical 

cellular processes (Ledent V et al., 2002). It was first discovered in Burkitt's lymphoma, 

where cancer cells show chromosomal translocation o f the gene on chromosome 8 

(Dalla-Favera R et al., 1982). It was identified as a v-Myc avian myelocytomatosis viral 

oncogene homolog by restriction endonuclease mapping of the gene (Vennstrom B et 

al., 1982). Myc regulates up to 15% of human genes and controls cellular processes such 

as cell proliferation, metabolism, differentiation and apoptosis, making it the most 

influential transcription factor (Dang CV et al., 2006).
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Figure 4.1: Regulation and functional role o f Myc. Myc is regulated by a variety of signal 

transduction pathways to induce proliferation, differentiation, survival and genetic 

stability (gray box). Recent findings have elucidated mechanisms by which Myc can 

directly regulate genes involved in cell migration, invasion and EMT (green box). It is also 

believed that the effect of Myc on chromatin conformation may set a "metastasis 

enabling" epigenomic landscape (purple box). EGF, epidermal growth factor; ERK, 

extracellular signal regulated kinase; HGF, hepatocyte growth factor; MEK, MAP/ERK 

kinase; PDGF, platelet derived growth factor. Adapted from  Cancer Research Reviews 
(W olferA and Ramaswamy S, 2011).

In cancer cells, the Myc oncoprotein promotes proliferation, cell survival, inhibition of 

differentiation, genetic instability and angiogenesis, all of which are thought to indirectly 

contribute to metastasis (Figure 4.1) (Grandori C et al., 2000; Ma L et al., 2010; Rapp UR 

et al., 2009). Over the recent years, Myc has been established as one of the most 

important somatically mutated oncogenes and is frequently deregulated and 

overexpressed in a variety of human cancers where it hijacks the cell's diverse intra- and 

extracellular mechanisms that promote normal cell proliferation (Eilers M and Eisenman 

RN, 2008; Meyer N and Penn LZ, 2008). Since Myc was found to be amplified and 

overexpressed in human breast cancer in 1986, a number o f studies have investigated
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the status of Myc in breast cancer (Escot C et al., 1986). It was found that amplification 

of Myc consistently correlated w ith tum our progression and poor outcome (Chen Y and 

Olopade 01, 2008). Myc is a downstream effector o f a variety o f signaling pathways, 

including the Wnt, Notch, Ras/Raf/MAPK and TGF(3 pathways (Figure 4.1) (Chen Y, 2008), 

all o f which are critical in breast cancer and may be potential drug targets (Xu J et al., 

2010). Furthermore, Myc has been shown to  be regulated by cis regulatory elements as 

well as other transcription factors (Wierstra I and Alves J, 2008). It has previously been 

established tha t the transcription factor Ets2 can regulate Myc through E2F binding 

motifs in its prom oter region (Roussel MF et al., 1994; Carbone GM et al., 2004). 

Additionally, our group has revealed that SRC-1 can utilise Ets2 to  regulate the oncogene 

Myc in tamoxifen resistant breast cancer cells (Al-azawi D et al., 2008). A recent study 

has also elucidated a direct role fo r Myc in controlling invasion and m otility and 

subsequently metastasis by regulating expression o f specific downstream programs such 

as EMT (Smith AP et al., 2009). Taken together, these studies suggest a role fo r Myc in 

the development o f resistance to endocrine therapies (McNeil et al., 2006).

4.1.2 M M P9

Matrix metalloproteinases (MMPs) are a family o f zinc-dependent endopeptidases that 

play a key role in remodelling of the ECM (Vu T and Werb Z, 2000) and have therefore 

been associated w ith cancer invasion and metastasis (Fingleton B, 2006). In fact, MMPs 

are overexpressed in almost every human cancer and the ir expression is often an 

indicator fo r poor survival. They can increase cancer cell proliferation, motility, invasion, 

angiogenesis and metastasis by cleaving a range of substrates such as structural 

components o f the ECM, growth-factor-binding proteins, GF precursors, RTKs and cell- 

adhesion molecules (Egeblad M and Werb Z, 2002). MMPs are synthesised as inactive 

precursors, which are referred to  as pro-MMPs or zymogens. Activation o f MMPs 

frequently takes place outside the cell and requires cleavage o f the propeptide 

prodomain by other activated MMPs or serine proteases (Sternlicht MD and Werb Z, 

2001). MMPs were originally divided into groups depending on their specificity fo r ECM 

components but w ith  the growing list o f MMP substrates a sequential numbering system
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has been put into place. MMP9 is a member o f the gelatinases, a group o f secreted 

MMPs that degrades denatured collagens (gelatin) and type IV collagen, a major 

component o f the basement membrane (Egeblad M and Werb Z, 2002). MMP9 has been 

found to  be expressed in the cytoplasm of malignant as well as stromal cells and positive 

expression in the stroma was related to  HER2 overexpression as well as shorter 

recurrence-free survival (RFS; p = 0.0389) and breast cancer-related survival (BCRS; p = 

0.0081) in ER+ breast cancer (Pellikainen, JM et al., 2004). In vivo studies have revealed 

tha t intravenously injected cancer cells were less able to  metastasise to the lungs of 

MMP-9 deficient mice when compared to wild-type animals indicating that MMP9 plays 

a key role in tum our invasion and metastasis (Itoh T et al., 1999).

A range o f Ets transcription factors have been shown to  play an im portant role in the 

activation o f MMPs tha t are involved in invasion and metastasis. It has been revealed 

tha t Mmp9  contains an Ets binding site in its prom oter region (Figure 4.2) (Oikawa T, 

2004).

Ets transcription factors E tsl and Ets2 play im portant roles in embryonic angiogenesis 

and studies on isolated murine aortic endothelial cells revealed a function fo r E tsl and 

Ets2 in directly regulating Mmp9  as well as antiapoptotic genes (Wei G et al., 2009). In 

cancer, MMP9 has been identified as an Etsl-responsive protease to promote cancer 

cell progression, particularly in highly invasive breast cancer cells such as MDA-MB231 

(D ittm er J, 2003, 2004). Recently, E tsl has also been found to  upregulate MMP9 

expression in prostate cancer cells, resulting in a chemoresistant and highly invasive 

phenotype (KatoT e ta l., 2012).

MMP-9
ETS ; api)
-540 -533 -79

Figure 4.2: Ets b inding site in the MM P9 gene prom oter. A Ras responsive element 

(RRE) consisting o f an Ets and API binding site is located in the promoter of the MMP9 

gene, a matrix metalloproteinase tha t is involved in invasion and metastasis. Adapted 
fro m  Cancer Science (Oikawa T, 2004).
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4.3 Aims

The aims o f this chapter were to:

• Examine the expression and regulation of SRC-1 in the letrozole resistant cell line

• Assess the functional contribution o f SRC-1 to  the LetR aggressive phenotype

• Elucidate the molecular mechanism o f SRC-1 action in LetR cells
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4.3 Results

4 .3 .1  SRC-1 e x p re s s io n  is  in c re a s e d  in  Le tR  ce lls

It has previously been reported that the steroid receptor coactivator SRC-1 is aberrantly 

expressed in tamoxifen resistant cells (Al-azawi D et al., 2008). In the patient, SRC-1 

positive tumours significantly associate with increased occurrence of distant metastases 

and poor outcome (Redmond AM e ta i ,  2009).

To see if SRC-1 was increased in the LetR cell model, RNA as well as protein was 

extracted from the parental MCF7 as well as the Aro and LetR cells.

An increase in SRC-1 mRNA as well as protein levels was observed in the Al resistant 

LetR cells in comparison w ith  the Al sensitive Aro and MCF7 cells (Figure 4.3), indicating 

a potentially similar role fo r the steroid receptor coactivator in the development of 

resistance to letrozole.

SRC-1

Actin

F ig u re  4 .3 : Le tR  ce lls  e x p re s s  h ig h e r  le v e ls  o f  SRC-1 m R N A  a n d  p ro te in .  L e ft :  RNA was
extracted from  MCF7, Aro and LetR cells. cDNA was generated and subjected to PCR 
using primers fo r  SRC-1; R ig h t :  Protein was extracted from  the cells and run on a 6% gel. 
Western Blot was perform ed using an antibody against SRC-1. Actin was used as a 
loading control.
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4.3.2 SRC-1 has afunctional impact on motility in LetR cells

To assess if the significant increase in SRC-1 protein levels is essential for the migratory 

phenotype of LetR cells, the expression of the protein was knocked down using siRNA. 

LetR cells were transfected w ith a non-targeting siRNA and siRNA against SRC-1 fo r 72h 

and subsequently subjected to a m otility assay.

LetR cells transfected w ith a non-targeting siRNA displayed a high level o f motility 

(21,605 nm2), which was lost upon transfection with a siRNA directed against SRC-1 

(7,256 nm2). The loss of migratory capacity in those cells was highly significant 

(p=0.0007), comparable to the non-motile phenotype of the Al sensitive Aro cell line 

(4,900 nm2) (Figure 4.4). Thus, SRC-1 appears to be essential for the migratory 

phenotype of LetR cells.

L e t R  n t  s i R N A L e t R  S R C - 1  s i R N A
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Figure 4.4: SRC-1 knockdown decreases motility in LetR cells. Histogram shows mean 
migratory area per cell (nm2) ± SEM and was significantly (*) less fo r  SRC-1 knockdown 
than fo r  non-targeting (nt) control (p=0.0007). Aro cells are shown fo r  comparison. (Scale 
bars 200nm). Western b lot confirms SRC-1 protein knockdown (n=3). Images show cells 
stained with rhodamine-phalloidin.
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4.3.3 Motility in LetR cells is not dependent on ERa

SRC-1 is an established nuclear receptor coactivator. However, nuclear coactivators have 

been shown to  act independent o f ERa. To investigate if SRC-1 has a role independent of 

ERa in Al resistance, LetR cells were transfected with siRNA against ERa and subjected to 

a m otility assay.

LetR cells transfected w ith a non-targeting siRNA displayed a high level o f migratory 

capacity (22,076 nm2), whereas knockdown o f ERa only caused a slight decrease in 

motility (13,017 nm2). SRC-1 knockdown had a significantly greater impact on migration 

when compared with ERa (6,067 pirn2; p=0.0377) (Figure 4.5).

L e t R  E R a  s i R N A
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L e t R  y R L  - 1  s i R N / siRNA nt ERa SRC-1

Figure 4.5: Functional migratory role o f SRC-1 in Al resistance is not dependent on ERa.
Western blot confirms successful ERa knockdown with siRNA. Histogram shows only a 
marginal decrease in the mean migratory area per cell in LetR cells follow ing ERalpha 
knockdown. These cells migrate significantly more than LetR cells with SRC-1 knockdown 
(shown fo r  comparison, p=0.0377). Images show cells stained with rhodamine-phalloidin.
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4 .3 .4  SRC-1 o v e re x p re s s io n  h a s  n o  e f fe c t  o n  m ig r a to r y  c a p a c ity  in  A ro  ce lls

Since LetR cells display an increase in SRC-1 and motility, we wanted to investigate if 

SRC-1 overexpression in non-motile Aro cells would increase their capacity to migrate. 

LetR cells were maintained in antibiotics free media fo r 24h and transfected with SRC-1 

fo r 72 hours. Cells were then subjected to  a migration assay as described before.

Aro cells transfected w ith the SRC-1 plasmid did not display a significant increase in 

m otility (p = 0.3947). Their migration area per cell (6,167 nm 2) changed minimally in 

comparison to that o f Aro cells transfected w ith the empty vector (5,384 pirn2) and 

therefore, the LetR cells presented a significantly higher ability to migrate than the SRC-1 

expressing Aro cells (30,572 |im 2; p < 0.0001) (Figure 4.6). Thus, although SRC-1 is 

essential for the migratory phenotype of LetR cells, temporary overexpression o f SRC-1 

alone is not sufficient to  induce this phenotype in Aro cells.

35000

empty SRC-1

Aro LetR

F ig u re  4 .6 : SRC-1 o v e re x p re s s io n  d o e s  n o t  in c re a s e  m o t i l i t y  in  A ro  ce lls . Aro cells were 
transfected with a pcDNA3.1 empty vector and SRC-1 overexpression vector. Western 
Blot analysis illustrates successful overexpression o f SRC-1. Histogram shows the mean 
m igratory area per cell (nm2) ± SEM (n=3). LetR cells were added fo r  comparison.
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4.3.5 SRC-1 has a functional impact on 3D organisation in LetR cells 

LetR cells display a severe loss o f 3D organisation and polarisation. Since those cells 

express a high level o f SRC-1 we wanted to examine if knockdown of this protein would 

restore the cells ability to form acini structures.

Cells were transfected with SRC-1 siRNA and subjected to a 3D assay as before.

LetR cells transfected w ith a non-targeting siRNA displayed a severe loss o f polarisation 

and formed less organised acini. In contrast, LetR cells transfected w ith siRNA targeted 

against SRC-1 regained the ability to  form  organised 3D acini structures and hollow out a 

lumen, comparable to  the differentiated Al sensitive cell line (Figure 4.7).

L e t R  n t  s i R N A  B _ e t R  S R C - 1  s i R N A  H A r o

Figure 4.7: SRC-1 knockdown increases ability to form polarized, organized 3D acini in 
LetR cells. LetR cells transfected with siRNA against SRC-1 form  3D organized structures 
with hollow lumen similar to the polarized Aro cells. LetR cells transfected with non­
targeting siRNA fa il to hollow out a lumen and remain disorganized. Cells are stained 
with DAPi (blue) and phalloidin (red) and images are representative o f three separate 
experiments (Scale bars 20\xm).
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4 .3 .6  SRC-1 h a s  a fu n c t io n a l  im p a c t  o n  in v a s iv e n e s s  o fL e tR  ce lls

LetR cells display Invasive potential as shown in chapter 3. To investigate if invasion is 

regulated by SRC-1 in those cells, a knockdown was performed using siRNA against the 

coactivator. LetR cells were subsequently subjected to  an invasion assay as described 

before. Four individual areas o f the membrane were imaged and invading cells were 

counted. The level o f invasiveness was calculated as a percentage o f cells blocking the 

pores o f the membrane.

LetR cells transfected w ith  a non-targeting siRNA displayed a high level of invasiveness 

(84%) as expected from  previously described findings. The LetR cells transfected with 

siRNA against SRC-1, however, failed to invade the matrigel-covered membrane as they 

were not able to  migrate into the pores (11.2% invasion), similar to  the non-invasive Aro 

cell line (5.3%), revealing a significant role fo r SRC-1 in regulating invasion of letrozoJe 

resistant cells (p=0.0001) (Figure 4.8).
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F ig u re  4 .8 : SRC-1 k n o c k d o w n  In  L e tR  ce lls  In h ib its  in v a s iv io n . LetR cells transfected with 
siRNA against SRC-1 are able to Invade m atrigel and migrate into pores o f the membrane 
inside an invasion chamber. LetR cells transfected with non-targeting siRNA fa il to invade 
the m atrigel layer and cannot migrate into the pores. Aro cells were added fo r  
comparison. Cells are stained with Crystal Violet. Invasive potentia l is expressed in % o f  
cells invading the membrane.
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4.3.7 Ets2 protein expression is increased in letrozole resistant cells

Since SRC-1 seems to  act independent o f ERa in LetR cells we wanted to  identify the 

transcription factor SRC-1 interacts w ith to  confer the AI resistant phenotype. Our lab 

has previously reported that, in Tamoxifen resistance, SRC-1 can recruit the MAP-Kinase 

dependent transcription factor Ets2 to  regulate the expression of pro-proliferative genes 

(Al-azawi D et a i,  2008).

The first step was to  assess if Ets2 expression was increased in LetR cells in comparison 

to  AI sensitive cells. RNA was extracted from  MCF-7, Aro and LetR cells and subjected to 

PCR to  look for changes of Ets2 on a transcriptional level. Protein extracted from Aro, 

LetR and MCF-7 cells was resolved by SDS-PAGE and immunoblotted fo r overall and 

phosphorylated Ets2.

No change in Ets2 mRNA levels was observed. However, Ets2 protein levels were 

elevated w ith a dramatic increase in the phosphorylated form  of the transcription factor 

(Figure 4.9). These findings reflect the expression pattern of SRC-1 and support a role 

for SRC-1 and Ets2 in the development of resistance to Als.

aro LetR MCF7 aro LetR MCF7 aro LetR MCF7

Figure 4.9: Ets2 and P-Ets2 protein levels, but not Ets2 mRNA levels, are increased in 
LetR cells. RNA was extracted from  MCF7, Aro and LetR cells. cDNA was generated and 
PCR was performed using primers fo r  Ets2. Protein was extracted from  from  MCF7, Aro 
and LetR cells. Western Blot was performed using an antibody against Ets2 and the 
phosphorylated fo rm  o f the protein (P-Ets2). Actin was used as a loading control. PCR 
and Western b lot images are representative (n=3).

123



Chapter 4: Functional role of  SRC-1 in Al resistance

4.3.8 Ets2 binds to SRC-1 in the presence of Androstenedione

To show that SRC-1 binds to the MAP Kinase dependent transcription factor Ets2, Co- 

immunoprecipitation (Co-IP) was performed. Aro cells were treated w ith 

androstenedione for O', 45', 2h, 3h and 4h. Cell lysate was immunoprecipitated w ith an 

antibody against Ets2 immobilised on protein A beads, protein was eluted from the 

beads and run on SDS-PAGE. The gel was transferred onto a membrane, which was 

immunoblotted for SRC-1 and Ets2. The results o f the Co-IP showed that the steroid 

receptor coactivator SRC-1 and the transcription factor Ets2 can interact after 45 

minutes of Androstenedione treatm ent (Figure 4.10).

Androstenedione: 0 45’ 2 h 3 h 4 h

IP: Ets2 IB: SRC-1

IP: Ets2 IB: Ets2

Figure 4.10: SRC-1 and Ets2 co-immunoprecipitate with strongest interaction after 45 
minutes steroid treatment. Aro cells were treated with androstenedione fo r  0-4 hours. 
Protein was immunoprecipitated (IP) with an anti-Ets2 antibody and immunoblotted (IB) 
fo r  SRC-1 and Ets2.

4.3.9 Myc expression is increased in LetR cells

Myc has previously been identified as an SRC-1 and Ets2 target in tamoxifen resistance 

by ChIP and luciferase (Al-azawi D et at., 2008). Additional ChlPseq analysis performed in 

tamoxifen resistant LY2 cells confirmed these findings, revealing a strong SRC-1 binding 

peak located w ithin the proximal prom oter region of the oncogene (Figure 4.11) 

(McBryan J et al., 2012).
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Chromosome 8: 1128748000 . 1128749000

SRC-1 
ChlPseq

E2F binding site

F igure 4 .1 1 : Location o f  SRC-1 b in d in g  p e a k  w ith in  th e  p ro x im a l p ro m o te r  reg ion  o f  

M y c  g en e  as d e te c te d  b y  ChIP sequencing  analysis in endocrine  res is tan t LY2 cells. RNA
sequencing confirms expression o f Myc mRNA in these cells. X marks the location o f an 
E2F-binding site w ithin the Myc promoter.

To see, if Myc is involved in the development of resistance to aromatase inhibitors, RNA 

was extracted from MCF-7, Aro and LetR cells and subjected to PCR to assess changes in 

Myc at a transcriptional level. Protein was extracted from MCF-7, Aro and LetR cells and 

analysed for Myc expression by Western Blot analysis.

An increase in Myc mRNA levels was found in the Al resistant cells LetR when compared 

to the steroid dependent Aro and MCF7 cells (Figure 4.12), indicating a potentially 

similar role for the steroid receptor coactivator in the development of resistance to 

letrozole. A substantial increase was also observed in Myc protein levels in the LetR 

cells. These findings together with the observation that SRC-1 interacts with Ets2 

suggest a role for these proteins in regulating the expression of the oncogene Myc in Al 

resistance.

aro LetR  M CF7

Myc

Actin

aro LetR MCF7

Figure 4 .1 2 : LetR cells express h ig h e r levels o f  M y c  m R N A  a n d  p ro te in . RNA was
extracted from  MCF7, Aro and LetR cells. cDNA was generated and PCR was performed 
using primers fo r  Myc. Protein was extracted from  MCF7, Aro and LetR cells and resolved 
on a 10% gel. Western Blot analysis was performed using an antibody against Myc. Actin 
was used as a loading control. PCR and Western blot images are representative (n=3).
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4 .3 .1 0  SRC-1, Ets2 a n d  M y c  p ro te in  expression is insensitive  to  le tro zo le  in  LetR cells

To investigate molecular changes induced by steroid treatment, cells were steroid 

depleted for 72h and treated with estrogen, androstenedione, letrozole and a 

combination of androstenedione and letrozole for 8h and protein expression was 

analysed (Figure 4.13).

We found that SRC-1 and Myc protein expression increased upon steroidal treatment 

but decreased upon treatment with letrozole in Aro cells. However, expression of both 

proteins was insensitive to Letrozole in the resistant cells. In fact, protein expression of 

both SRC-1 and Myc seemed to be slightly increased upon Al treatment to the same 

extent, supporting our theory that SRC-1 is regulating Myc. Ets2 expression was not 

regulated by steroid treatments or letrozole in either cell line.
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Figure 4 .1 3 : Response o f  SRC-1, Ets2 a n d  M y c  to  s te ro id  tre a tm e n ts  SRC-1 and Myc 
protein expression is sensitive to letrozole treatm ent in Aro cells but insensitive to 
letrozole in LetR cells. Ets2 expression is not regulated by steroid treatments in either cell 
line. Cells were treated with Vehicle (V), Estrogen (E), Androstenedione (A), Letrozole (L), 
or a combination (A+L). Western b lo t images are representative and densitometry 
graphs represent relative mean normalized expression (n=3). Error bars represent SEM.
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4 .3 .1 1  Localisation o f  SRC-1 upon s te ro id  tre a tm e n t

As a transcriptional coactivator, SRC-1 is active when it is located in the nucleus and 

interacting with transcription factors to regulate expression of target genes.

To investigate if SRC-1 is located in different cell compartments upon treatment with the 

androgen androstenedione and the Al letrozole, cells were grown on cover slips, steroid 

depleted for 72h and treated for 40 minutes. The cells were then fixed and stained for 

SRC-1, Phalloidin and DAPI by Immunofluorescence (Figure 4.14).

In the sensitive Aro cells we found that SRC-1 staining intensity was increased and SRC-1 

localisation became more nuclear upon treatment with androstenedione. This effect 

was reversed in Aro cells upon treatment with the Al. In the resistant cell line however 

SRC-1 levels were already high, particularly in the nucleus, in the steroid depleted 

vehicle sample and didn't change upon treatment, neither with androstenedione nor the 

Al letrozole.

Aro LetR

A+L

DAPI SRC-1 Phalloidin Merge DAPI SRC-1 Phalloidin Merge

Figure 4 .1 4 : Localisation o f  SRC-1 upon s tero id  tre a tm e n ts . Confocal images o f SRC-1 
localisation in Aro and LetR cells in the presence and absence o f androstenedione and 
letrozole alone and in combination. Nuclear localisation o f SRC-1 increased in Aro cells in 
response to androstenedione and was reduced when letrozole was added. By contrast, 
nuclear intensity o f SRC-1 was strong in LetR cells independent o f treatments. Images are 
taken a t 40X magnification with a confocal fluorescent microscope and image exposures 
were kept constant fo r  ease o f comparison.
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4 .3 .1 2  SRC-1 a n d  Ets2 a re  re c ru ite d  to  th e  p ro m o te rs  o fM y c  a n d  M M P 9

To investigate if SRC-1 and Ets2 recruit to the promoter of the target genes Myc and 

MMP9, Chromatin Immunoprécipitation (ChIP) was performed at 45 minutes of 

treatment as previously established.

It was found that SRC-1 as well as Ets2 were recruited to the promoters of both Myc and 

MMP9 in response to estrogen and androstenedione. This recruitment was sensitive to 

letrozole in the Aro cells but not the Al resistant LetR cell line, reflecting the expression 

pattern of the target proteins (Figure 4.15).

Aro cells LetR cells Aro cells LetR cells
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Figure 4 .1 5 : SRC-1 a n d  Ets2 a re  re c ru ite d  to  th e  M y c  a n d  M M P 9  p ro m o ters . ChIP 
analysis in Aro and LetR cells. Cells were treated with vehicle (V), estrogen (E), 
androstenedione (A), letrozole (L), or a combination (A+L). Recruitment to both 
promoters was letrozole sensitive in Aro cells and letrozole insensitive in LetR cells. 
Graphs show real-time PCR relative quantification o f ChIP results. Anti-H4 antibody was 
used as a positive control and IgG as a negative ChIP control. Genomic DNA (+ve) and 
water (-ve) were used as PCR controls. A distal prom oter region was used to confirm 
specificity o f recruitment to the prom oter region.
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4 .3 .1 3  SRC-1 a n d  Ets2 re g u la te  expression o f  ta rg e t genes M y c  a n d  M M P 9

To see if SRC-1 and Ets2 have an effect on expression of those proteins we conducted 

transient overexpression studies in the Al sensitive Aro cells.

SRC-1 overexpression resulted in an increase of Myc and MMP9 at the transcript level. 

Myc protein expression was increased upon SRC-1 overexpression, but no change was 

observed in protein levels of the active, secreted form of MMP9, which was assessed by 

zymography (Figure 4.16 A).

An increase of Myc and MMP9 mRNA was also observed when Ets2 was overexpressed. 

Ets2 overexpression resulted in an increase in Myc protein levels, but no change in 

expression levels of the active, secreted form of MMP9 (Figure 4.16 B).

SRC-1 plasmid: 0  SRC1 0  SRC1 Ets2 plasmid: 0  Ets2 0  Ets2

F igure  4 .1 6 : M y c  a n d  M M P 9  a re  re g u la te d  b y  SRC-1 a n d  Ets2. A , Overexpression o f SRC- 
1 resulted in increased transcript levels o f both Myc and MMP9 (RT-PCR analysis) in Aro 
cells. Increased Myc expression was also seen a t the protein level (western blot) but no 
change in secreted levels o f MMP9 protein was observed (zymography). B, 

Overexpression o f Ets2 resulted in increased transcript levels o f both Myc and MMP9 (RT- 
PCR analysis) in Aro cells. Increased Myc expression was also seen a t the protein level 
(western blot) but no change in secreted levels o f MMP9 protein was observed 
(zymography). Images are representative (n=3).
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4 .3 .1 4  Ets2 induced  M y c  a n d  M M P 9  expression is d e p e n d e n t on SRC-1

To further assess if SRC-1 and Ets2 are acting in combination or independently to 

regulate Myc and MMP9 expression, LetR cells were simultaneously transfected with an 

Ets2 overexpression vector and siRNA directed against SRC-1. As previously shown in the 

Aro cells, overexpression of Ets2 caused an increase in Myc and MMP9 mRNA levels. 

However, this increase was abrogated when the cells were concomitantly transfected 

with siRNA against SRC-1, suggesting that the steroid receptor coactivator is required for 

the Ets2-mediated upregulation of Myc and MMP9 (Figure 4.17).

These findings reveal that SRC-1 coactivates Ets2 to regulate Myc and MMP9 expression 

in the aggressive Al resistant phenotype.

SRC-1 

Ets2 

Myc 

MMP9

Actin

SRC-1 siRNA:
Ets2 plasmid:

F igure 4.17: Ets2 overexpression  increases M y c  a n d  M M P 9  in an  S R C -l-d ep en d en t 

m a n n e r. LetR cells were transfected with empty vector or Ets2 and non-targeting and 
siRNA against SRC-1. Levels o f Myc and MMP9 mRNA were increased when Ets2 was 
overexpressed in those cells, but this increase was inhibited upon concomitant 
transfection with SRC-1 siRNA. Images are representative (n=3).
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4.4 Discussion

Steroid receptor coactivators, especially members of the pl60 family, have been 

implicated in a variety of human diseases such as metabolic syndrome and various 

cancers (Lanz RB et al., 2008; Yan J et al., 2008; York B and O'Malley BW, 2010). SRC-1 

has been shown to be overexpressed particularly in breast cancer. It has been reported 

to be overexpressed in up to 30% of samples and has been shown to positively correlate 

with breast carcinogenesis (Xu J et al., 2009). SRC-1 expression associates with poor 

disease-free survival and correlates positively with HER2 expression and resistance to 

tamoxifen (Fleming FJ et al., 2004a,b; Myers E et al., 2004). It has also been reported 

that SRC-1 mRNA levels are elevated in patients during neo-adjuvant treatment with Als 

(Flageng MH et al., 2009). Here we show that the steroid receptor coactivator SRC-1 is 

significantly increased in the aromatase inhibitor resistant cell model LetR, both at 

transcript and protein level.

To investigate the functional role of SRC-1 on migratory capacity and metastatic

potential, SRC-1 expression was abrogated by RNA interference. The experiment

revealed a dramatic decrease in motility and invasion in response to SRC-1 silencing,

suggesting that the coactivator plays a key role in regulating these cellular processes in

Al resistant breast cancer cells. Our results are consistent with results from xenograft

studies performed in Jianming Xu's and David Crowe's group. They revealed that, while

disruption of the SRC-1 gene did not affect tumour initiation or growth, it significantly

suppressed breast cancer metastasis to the lung in mice, supporting these findings

(Wang S et al., 2009; Qin L et al., 2009; Han JS and Crowe DL, 2010).

On the other hand, overexpression of SRC-1 in hormone sensitive Aro cells did not result

in an increase in motility. This might be due to the fact that SRC-1 cannot bind to DNA

directly. To promote cell motility SRC-1 needs to interact with other transcription factors

to induce genes that are implicated in migration (Edwards DP, 2000; O'Malley BW,

2007). Unless these TFs are endogenously expressed in abundance or artificially

overexpressed, an increase in SRC-1 might not be sufficient to affect the cells ability to

migrate. Another possible explanation might be that although SRC-1 is overexpressed, it
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may require activation, potentially by GF signalling, which is not active in Aro cells, in 

order to affect migration.

It is also possible that temporary overexpression of SRC-1 is not sufficient to induce 

cellular changes required for increased migration. After all, LetR cells only begin to 

exhibit the highly motile, SRC-1 overexpressing phenotype following months of drug 

exposure.

Silencing SRC-1 resulted in regained ability to form organised and polarised acini 

structures in 3D culture as well as the loss of invasiveness and motility in the LetR cell 

model. As discussed in chapter 3, EMT is an important event during cancer progression. 

Data from Jianming Xu's group revealed that SRC-1 can serve as a coactivator for PEA3 

to increase Twistl expression in breast cancer. Twistl is an EMT-promoting gene that 

enhances invasion and metastasis by recruiting the NuRD protein complex to inhibit E- 

Cadherin expression (Qin L et at, 2009; Fu J e t al., 2011). Another paper from the same 

group has recently reported that SRC-1 is involved in the upregulation of Integrin a5 

which results in the promotion of cell adhesion and migration (Qin L e t al., 2011). 

Therefore, knocking down SRC-1 may result in normal E-Cadherin expression and 

subsequent restoration of cell-cell adhesion, serving as an explanation for the findings 

presented in this chapter.

The members of the pl60 family of steroid receptor coactivators were originally thought 

to only be involved in the progression of hormone-dependent cancers, such as ER+ 

breast cancer, mainly by acting as transcriptional activators of nuclear steroid receptors. 

Clinical data however suggested that dysregulation of steroid receptor coactivators in 

hormone-independent cancers correlated with pathological factors and clinical 

prognosis (Lee K e t  a l., 2011). Our group has just recently shown that SRC-1 affects 

motility and 3D organisation in tamoxifen resistant breast cancer cells in an estrogen- 

independent manner (McCartan D e t a l., 2012). In line with these findings, the data 

shown here demonstrates that motility becomes ER-independent when breast cancer
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cells develop resistance to aromatase inhibitors. Overall, these findings suggest another 

role for SRCs in cancer besides just being a nuclear receptor coactivator.

It has frequently been suggested that SRC-1 may bind transcription factors other than 

nuclear steroid receptors to induce transcription of target genes. SRC-1 has previously 

been shown to interact with a range of TFs such as Ets2 to regulate Myc (Al-azawi D et 

al., 2008), MYB to regulate ADAM22 (McCartan D et al., 2012) and HOXC11 to regulate 

S100|3 (Mcllroy M eta l., 2010) in the tamoxifen resistant breast cancer cell line LY2. Here 

we chose to examine the interaction between SRC-1 and Ets2 in Al resistance. The TF 

Ets2 has been shown to be highly expressed in invasive breast tumour cell lines (Watabe 

T et al., 1998). Additionally, Ets2 expression associated with reduced disease free 

survival in a cohort of endocrine treated breast cancer patients with locally advanced 

disease (Al-azawi D et al., 2008). Findings from our group have demonstrated that SRC-1 

complexes with the transcription factor Ets2 in endocrine resistant breast cancer (Myers 

E et al., 2005) and that Ets2-mediated expression of the oncogene Myc was reliant on 

SRC-1 in those cells (Al-azawi D et al., 2008). The results presented in this thesis confirm 

a similar role for this signalling mechanism in the development of resistance to the 

aromatase inhibitor letrozole. Here we show that Ets2 and SRC-1 overexpression in Aro 

cells has a direct effect on regulating Myc and MMP9, yet, overexpression of Ets2 and 

concomitant knockdown of SRC-1 in LetR cells revealed that regulation of these target 

genes is dependent on SRC-1, suggesting a key role for SRC-1 in the development of Al 

resistance.

Furthermore, it has been shown that SRC-1, Ets2 and Myc protein expression as well as 

SRC-1 localisation in LetR cells is insensitive to steroidal and aromatase inhibitor 

treatment, again supporting our finding that this signaling mechanism is independent of 

ER in Al resistance. Although not examined here, EGF stimulation of SKBR3 cells has 

previously been shown to stimulate recruitment of Ets2 to the Myc promoter and

perhaps this is a possible mechanism by which growth factors are stimulating growth in
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LetR cells (Al-azawi D e t  a l., 2008). In the LetR cells, SRC-1 and Ets2 recruitment to the 

promoters of Myc and MMP9 was unaffected by letrozole treatment when compared to 

the Al sensitive Aro cells, indicating that Al treatment has no longer an effect on the 

regulation of target genes that are involved in proliferation and metastasis.

The results in this chapter successfully illustrate a functional role for SRC-1 in the 

development of resistance to aromatase inhibitors.
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C h a p t e r  5

C l i n i c a l  s i g n i f i c a n c e  o f  S R C - 1  i n  A l  r e s i s t a n c e

135



Chapter 5: Clinical significance o f SRC-1 in A l resistance

5.1 Introduction

In vitro cell models are valuable tools to investigate molecular mechanisms that are 

involved in oncogenesis and the development of resistance to aromatase inhibitors; yet, 

these cell lines are simply models and are not absolutely true representations of the 

disease itself (Chen S, 2012). Most Al resistant cell lines are derived from epithelial 

breast cancer cells that have been stably transfected to overexpress the aromatase 

enzyme. However, in breast tumours, the stromal cells surrounding the epithelial cells 

also express aromatase mRNA at high levels (Bulun SE et al., 1993; Harada N, 1997), 

suggesting that paracrine effects could be overlooked in the in vitro setting. Therefore, 

to fully determine the importance of observations made in the Al resistant cell model, 

they must be compared to in vivo results, either from animal models or ideally from 

clinical samples. However, the use of Als as initial adjuvant treatment of breast cancer in 

post-menopausal women has only been approved a little over five years ago and 

therefore obtaining clinical samples, both from the primary and resistant tumour, proves 

to be rather difficult, as recurrences are only emerging now.

Aromatase inhibitors were initially developed to serve as an alternative to tamoxifen in 

patients that exhibited cancer progression following antiestrogenic therapy. Als were 

approved by the FDA as second-line metastatic therapy in 1997 and as first-line 

metastatic treatment of locally advanced or metastatic disease in 2001 (Figure 5.1).

ADVANCED BREAST CANCER EXTENDED ADJUVANT INITIAL ADJUVANT

SECOND-LINE METASTATIC FIRST-LINE METASTATIC
progression after antiestrogen locally advanced or metastatic after 5 years of UvnoxJfjM Unnwj<t<.itc»v following fttfgtfy

Approved in 1997 Approved in 2001 Approved In 2004 Approved in 2005

Figure 5 .1 : T im eline  depicting  a p p ro v a l o f  th e  A l le tro zo le  (Fem ara® ) fo r  various b reas t 

cancer stages. Information derived from Femara.com.
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When results from comparative studies revealed that the non-steroidal Als letrozole and 

anastrozole were in fact superior to tamoxifen as first-line treatment in postmenopausal 

women, they were approved as initial adjuvant therapy in 2005 (Goss PE e t gl., 2003; 

Aydiner A, 2008).

5 .1 .1  P a tie n t in fo rm a tio n

In order to study mechanisms of Al resistance in the in vivo setting, clinical samples were 

gathered from a cohort of breast cancer patients. Following ethical approval, 159 

endocrine-treated breast cancer patients that were diagnosed between 2004 and 2008 

were included in this study. Core biopsy was used for diagnosis and to determine ER, PR 

and HER2 status by immunohistochemical staining. FISH was also used for HER2 calling 

where necessary and hormone receptor status was then used to determine the 

subsequent treatment strategy. Depending on the size, tumour stage and grade, 

patients underwent breast conserving surgery or mastectomy. Following surgery, the 

majority of patients received chemotherapy and radiation therapy prior to commencing 

adjuvant hormonal therapy. 75 patients received adjuvant tamoxifen therapy and 84 

patients received adjuvant aromatase inhibitor therapy. Those patients who were HER2 

positive also received herceptin.

Disease free survival was defined as the time of the initial surgery to the time of disease 

recurrence with a main follow up time of 56 months. Recurrent tumours that were 

biopsied or removed by surgery were also examined for hormone receptor status. 

However, not all recurrences were removed by surgery, depending on patient 

circumstances.
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5.2 Aims

The aims of this chapter were to:

• Examine the expression of SRC-1 in clinical samples

• Assess the association between SRC-1 expression and clinicopathologic variables

• Analyse the expression of the SRC-1 signaling pathway in clinical samples
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5.3 Results

5 .3 .1  SRC-1 associates w ith  p o o r  disease f r e e  su rv iv a l in  endocrine  t re a te d  p a tie n ts

A tissue microarray was constructed from primary tumours of 159 endocrine treated 

patients with a minimum of 4 cores per patient represented on the TMA. The TMA was 

then stained for SRC-1 by immunohistochemistry and scored. Strong positive staining for 

SRC-1 was detected in the cytoplasm as well as the nucleus of breast tumour epithelial 

cells (Figure 5.2 A). Kaplan-Meier survival estimates revealed that, in the overall 

endocrine treated patient cohort, expression of SRC-1 significantly associated with a 

reduced period of disease-free survival (p=0.0255) (Figure 5.2 B). When looked at the 

two treatments separately, SRC-1 positive primary tumours also significantly associated 

with reduced disease free survival in the breast cancer patients treated with tamoxifen 

(p=0.0326). However, this significant reduction in survival was not observed in the Al 

treated patient cohort (p=0.6894) (Figure 5.2 C).
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|-------SRC-1 Negative -------- SRC-1 Positive 1

Figure 5 .2 : A , Immunohistochemical staining o f SRC-1 in tissue microarray cores, 
counterstained with haematoxylin. Examples o f SRC-1 positive and negative primary 
tumours are shown. B,C, Kaplan Meier estimates of disease free survival in the overall 
endocrine (n=159), tamoxifen (n-75) and Al (n=84) treated populations. SRC-1 positive 
primary tumours (red line) significantly associated with reduced disease free survival in 
the overall endocrine (p-0.0255) and tamoxifen treated population (p=0.0326) but not 
significantly in the Al treated population (p=0.6894).
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5 .3 .2  SRC-1 associates w ith  recurrence a n d  tu m o u r s tag e  in endocrine tre a te d  p a tie n ts

This group has previously observed a significant association between SRC-1 and 

recurrence in a cohort of endocrine treated patients (Al-azawi D et al., 2008; Redmond 

AM et al., 2009). It was investigated if SRC-1 associated with clinicopathologic variables 

in the endocrine treated patient population. Fisher's exact test was used to assess PR 

and HER2 status, recurrence, nodal status as well as tumour grade and stage.

No significant association between SRC-1 and PR status, HER2 status, nodal status or 

tumour grade, neither in the overall endocrine nor the Al and tamoxifen treated cohorts 

was observed (Table 5.1). We did, however, see significant associations between SRC-1 

and recurrence (p=0.009) as well as tumour stage (p=0.003) in the overall endocrine 

treated patients. Interestingly, SRC-1 only significantly associated with recurrence in the 

tamoxifen treated (p=0.015) and not the Al treated population (p=0.494), but 

significantly associated with tumour stage in the Al treated patients (p=0.001) but not 

the tamoxifen treated patients (p=0.513).

Table  5 .1 : Associations o f SRC-1 with clinicopathologic variables using Fisher's exact test 
in endocrine, Al and Tamoxifen treated patient populations.

Parameter Endocrine treated population Al (n=84) Tamoxifen (n=75)

n=141 SRC-1 % p value SRC-1 % p value SRC-1 % p value

PR status

+ve 106 61.3 57.4 62.5

-ve 35 62.9 1.000 43.5 0.328 78.9 0.263

Her2 status

+ve 26 65.4 46.7 70.6

-ve 115 60.9 0.834 55.1 0.659 65.5 1.000

Recurrence

+ve 23 87.0 66.7 93.3

-ve 118 56.8 0.009 52.0 0.494 60.0 0.015

Node

+ve 71 67.6 79.5 70.7

-ve 68 55.9 0.167 50.0 0.658 61.8 0.466

Tumour grade

1 21 57.1 50.0 66.7

II 79 63.3 56.5 65.1

III 41 61.0 0.861 50.0 0.818 70.0 0.943

Tumour stage

1 56 53.6 41.9 62.1

II 64 57.8 50.0 63.9

III 18 94.4 100.0 85.7

IV 3 100.0 0.003 - 0.001 100.0 0.513
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5 .3 .3  SRC-1 in  p r im a ry  a n d /o r  m etas tas is  p red icts  p o o r  o u tco m e  in  A l tre a te d  p a tie n ts

The LetR cells exhibited a dramatic increase in SRC-1 protein expression in comparison 

to the Al sensitive Aro cells. To investigate if this change in SRC-1 expression can also be 

observed in patient samples, SRC-1 negative primary and SRC-1 positive resistant 

tumour samples were obtained. Out of the patients that relapsed (n=9), only three 

didn't express SRC-1 in the primary breast tumour. The matched primary breast tumour 

and resistant metastasis were stained for SRC-1 by immunohistochemistry.

SRC-1 protein was very weakly expressed in the cytoplasm of cells in the primary breast 

tumour. An increase in SRC-1 protein expression, especially in the nucleus, was observed 

in the Al resistant metastasis (Figure 5.3 A).

SRC-1 protein expression in the primary tumour didn't prove to be a significant indicator 

for poor disease free survival or recurrence in Al resistant patients. However, SRC-1 

expression in either the primary or the Al resistant metastasis significantly associated 

with poor disease free survival in patients treated with an Al (p=0.0106) (Figure 5.3 B).
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A

Primary tumour 
IgG control

Primary tumour Al resistant mets

B

analysis time (months)

--------SRC-1 Negative SRC-1 Positive

Figure 5 .3 : SRC-1 p o s itiv ity  in  p r im a ry  a n d /o r  m ets  associates w ith  reduced disease  

f re e  surv iva l in p a tie n ts  on A l therapy . A , SRC-1 protein expression was increased and 
more nuclear in the A l resistant tumours in comparison to the matched primary tumours. 
Images shown above are matched primary breast tumours and Al resistant metastases 
(n-3). IgG was used as a negative control. B, Kaplan Meier estimates o f disease free  
survival in an Al treated patient cohort (n=84) according to SRC-1 staining in the primary 
and/or resistant tumour. SRC-1 significantly associated with poor disease free survival 
(p=0.0106).
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5 .3 .4  A l res istance is ch arac terised  b y  h o rm o n e  re c e p to r sw itch ing

The development of resistance to endocrine therapy is thought to be marked by a switch 

from hormone to growth factor signalling which may result in a steroid independent 

tumour (Sabnis G and Brodie A, 2010).

To investigate this, hormone receptor status in an endocrine treated patient population 

was assessed. We found significant association between the lack of PR status in the 

primary tumour and a reduction in early response to Al treatments (p=0.02). However, 

this association was not significant in the tamoxifen treated patients (0.5079) (Figure 5.4 

A).

Matched primary and resistant metastasis of six Al treated breast cancer patients were 

analysed for hormone receptor status. A trend towards loss of ER and PR and occasional 

gain of HER2 was frequently seen in those patients. Two of the six patients showed the 

classical pattern of hormone switching: the primary breast tumour was staged 

ER+/PR+/HER2- whereas the resistant metastasis had switched to ER-/PR-/HER2+. Two 

patients had ER+/PR-/HER2- primary tumours with the resistant metastasis only 

displaying a loss of ER with no gain of HER2. One patient had an ER+/PR-/HER2+ tumour 

and the subsequent metastasis showed a loss of ER. Only one of these patients was 

positive for all three receptors in the primary tumour and the resistant metastasis 

surprisingly has lost HER2 expression (Figure 5.4 B).
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Al treated Time to recur Primary Resistant

Patient (months) ER PR Her2 ER PR Her2

1 12 +

2 18 + - + . +

3 34 + + - +

4 36 + + . +

5 70 +

6 79

Figure 5 .4 : D e v e lo p m e n t o f  resistance to  A l tre a tm e n t is accom panied  b y  horm one  

recep to r sw itch ing . A, Kaplgn Meier estimgtes o f disegse free survivgl in tamoxifen 
treated (n=77) and A l treated (n=89) patients according to PR expression. PR positive 
patients treated with an Al did significantly better than PR negative patients during the 
f irs t 2 years o f fo llow  up (p = 0.0206). B, Table showing hormone receptor status o f 
matched primary and resistant tumours fo r  6 A l treated patients. Changes in receptor 
status are highlighted in pink.
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5 .3 .5  D ifferences in S R C -l/E R a  expression p a tte rn  in p a tie n ts  w ith  sam e HR status

Breast cancer is a heterogenous disease meaning that most tumours are made up of a 

group of molecular subtypes. Although a tumour may be characterised ER+ and SRC-1+, 

it does not necessarily mean that ER and SRC-1 are expressed in the same cells of that 

tumour. To investigate this further, a number of ER/PR/SRC-1+ primary tumours (n=6) 

were co-immunostained to examine the localisation of SRC-1 and ER in these tumours (2 

examples are shown in figure 5.5). Tumour X is an example of a tumour with strong 

nuclear and cytoplasmic colocalisation of both proteins. By contrast, tumour Y is an 

example of a tumour, which is also positive for both proteins but where the two proteins 

do not colocalise to the same cells. Staining was mostly nuclear in this type of tumour. 

This implies, that SRC-1, if functional in those cells, is functioning independently of ERa. 

The patients whose primary tumours were stained had not relapsed on Al therapy and 

therefore no conclusion can be drawn about the significance of this staining in relation 

to disease progression.

DAPI SRC-1 ERa Merge

Figure 5 .5 : Im m u no flu orescen t analysis o f  SRC-1 (g reen ) a n d  ERa (red ) in p rim a ry  

b re a s t tu m o u r sam ples, co un ters ta in ed  w ith  DAPI. Primary breast cancer tissue from  
patients with same hormone receptor status (ER+ PR+ HER2-) show differences in SRC-1 
and ERa protein expression. P rim a ry  X  displays cytosolic and nuclear expression o f ERa 
and SRC-1. Merged images show colocalisation in every cell. P rim ary  Y displays more 
nuclear expression o f both proteins with occasional loss o f ERa in some cells (visible in 
merged image, indicated by arrows).
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5 .3 .6  SRC-1 colocalises w ith  Ets2 in th e  nucleus o fA l  res is tan t m étastasés

Data from our cell lines as well as results shown in 5.5 strongly suggest that SRC-1 acts 

independent of ERa. To investigate if SRC-1 interacts with the transcription factor Ets2 in 

the Al resistant phenotype matched primary breast tumour and Al resistant metastasis 

tissue samples were stained for SRC-1 and phospho-Ets2 by immunofluorescence.

SRC-1 seemed to be solely located in the cytoplasm and more perinuclear in the primary 

breast tumour. Phospho-Ets2 was found in the nucleus and in the cytoplasm, however, 

SRC-1 and phospho-Ets2 did not colocalise in the primary tissue cells. Also, the overall 

SRC-1 and phospho-Ets2 staining was quite weak, reflecting the protein expression in 

the aromatase expressing Al sensitive cell model.

The Al resistant metastasis tissue sample on the other hand displayed high expression 

levels of both proteins, particularly in the nucleus (Figure 5.6; white arrow). The extent 

of nuclear coassociation was analysed by Pearson's correlation and it was found that 

SRC-1 and phospho-Ets2 significantly colocalise in the nucleus (p=0.0004).

Primary
breast

tumour

Al
resistant

lung
metastasis

Figure 5 .6 : Im m u nofluorescent s ta in in g  o f  SRC-1 (g reen ) a n d  phospho-Ets2 (red ) in 

m a tc h e d  p r im a ry  b reas t tu m o u r a n d  A l res is tan t m etastasis  (n=3), coun tersta ined  w ith  

DAPI. Expression o f both proteins was stronger and more nuclear in the metastasis 
samples. Images shown are representative (n=3). Merged image shows that SRC-1 and 
phospho-Ets2 colocalise in the metastatic cells (indicated by white arrows). Magnitude o f 
coassociation was measured by Pearson's correlation, R(r), and is significantly higher in 
the metastatic tissue than in the primary tumour sample (p=0.0004).

DAPI SRC-1 phospho-Ets2 Merge
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5 .3 .7  A ! res is tan t m etastases  express h ig h e r levels o fM y c  a n d  M M P 9  p ro te in

In the Al resistant cell model LetR it was found that SRC-1 and Ets2 can regulate Myc and 

MMP9 expression. To confirm the in vitro findings in the patient setting, matched 

primary and resistant metastasis tissue samples were immunohistochemically stained 

for Myc and MMP9.

Myc was found to be weakly expressed in the cytoplasm of the primary tumour cells 

(Figure 5.7). In comparison to the primary tumour Myc was highly expressed in the 

cytoplasm and occasionally in the nucleus of the resistant metastasis cells. When stained 

for MMP9 it was found that the protein was weakly expressed in the cytoplasm in the 

metastasis with no expression in the primary tumour sample.

Myc
W~3

- i . ' V, . *  *4
*«•»'>- ‘ V i " !
--

Primary

Myc

MMP9 MMP9

Primary Metastasis IgG control

Figure 5 .7 : Im m u no h is toch em ica l analysis o f  M y c  an d  M M P 9  in m atch ed  p rim a ry  

b reas t tu m o u r a n d  m e ta s ta tic  tissue sam ples (n=3), co un tersta in ed  w ith  haem atoxy lin .

Images shown are representative (n=3). A , Myc was strongly expressed in the Al resistant 
metastatic tissue B, MMP9 was absent in the primary tumour and weakly expressed in 
the Al resistant metastasis.

Metastasis
rabbit 
IgG control
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5.4 Discussion

Based on previous results in tamoxifen resistance and observations made in our 

letrozole resistant cell line we were interested to see if the role of SRC-1 in the 

development of Al resistance can be translated into the patient.

Previous studies revealed that SRC-1 expression in the primary tumour is an 

independent predictor of poor disease free survival in tamoxifen treated patients (Myers 

E et al., 2004; Redmond A et al., 2009). These findings were confirmed in the overall 

patient cohort and the tamoxifen treated patients included in this study. However, SRC- 

1 did not significantly associate with poor disease free survival in the Al treated patient 

group. Additionally, results from the Fisher's exact test also revealed that SRC-1 only 

associated with recurrence in the overall endocrine and the tamoxifen treated patient 

group, which was not observed in the Al treated patients. The small size of the Al 

treated patient population could be one possible explanation for why SRC-1 did not 

associate with recurrence in this particular patient population. Therefore, a larger cohort 

would need to be examined in the future to see if significance can be reached. 

Interestingly though, SRC-1 associated with tumour stage in the Al treated patients, but 

not in the tamoxifen treated group. Tumour stage is a variable that describes the 

severity of a patient's cancer based on the extent of the primary tumour (stage I -  III) 

and whether or not the cancer has metastasised to distant sites in the body (stage IV). 

SRC-1 has been shown to play a crucial role in migration and invasion, both in this thesis 

and by other groups (Wang S et al., 2009; Qin L et al., 2009; Han JS and Crowe DL, 2010), 

which explains why expression of the coactivator strongly associated with higher tumour 

stage. In fact, analysis of initially SRC-1 negative primary breast tumours and their 

matched Al resistant metastasis showed a severe increase in SRC-1, suggesting that SRC- 

1 plays a role in driving the cell toward a more aggressive phenotype.

Two thirds of the patients that suffered a tumour recurrence displayed SRC-1 expression 

in the primary tumour. Those patients who were negative for SRC-1 in the primary,
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however, exhibited an SRC-1+ tumour recurrence, suggesting that SRC-1 may potentially 

play a role in driving the metastatic phenotype in Al resistance.

Breast cancer progression and the development of endocrine resistance are marked by a 

process that is known as hormone receptor switching (Sabnis G et al., 2010). It describes 

the shift from steroid-dependent to steroid-independent/growth factor dependent 

tumour status. It is well understood that only ER+ breast cancer responds to endocrine 

therapies, due to their method of action. It is also thought that only ER+/PR+ tumours 

would respond well to endocrine therapies. PR expression is regulated by ER activity. 

Therefore, it is believed that ER+/PR- tumours would be less responsive to endocrine 

therapy because lack of PR expression mirrors a non-functional ER pathway (McGuire 

WL et al., 1977). Supporting this hypothesis, it has been shown that lack of PR 

expression is associated with shorter time to treatment failure in patients treated with 

Als (Anderson H et al., 2011). In line with this, the results from this study showed that a 

decrease in PR expression is associated with increased early disease recurrence in 

patients receiving adjuvant Al therapy.

Additionally, the Al treated patients included in this study occasionally exhibited an 

increase in HER2 status, suggesting that tumour proliferation was driven by the growth 

factor pathway independent of ER signalling. In breast cancer patients taking tamoxifen 

over an extended time period, HER2 has been shown to be co-expressed with Ets-2 and 

SRC-1 (Myers E et al., 2005) and to associate with a decrease in disease free survival 

(Lipton e t al., 2005). In line with these findings, the increase in growth factor receptor 

expression as found in the Al treated breast cancer patients included in this study may 

result in increased proliferation and escape from hormonal therapy.

Even though approximately 75% of postmenopausal breast cancer patients are ER+ as 

indicated by immunohistochemical staining, not all ER+ patients respond equally well to 

endocrine treatment. This is caused by a selection process due to the heterogeneity of 

the disease. Each tumour is made up of ER+ and ER- cells and during treatment the 

number of ER+ tumour cells shrinks whereas the ER- cells become predominant,
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resulting in a tumour that does not respond to endocrine treatment any more. Because 

of the heterogeneity of the disease, we were interested to investigate the expression 

pattern of SRC-1 and ER in primary ER+/SRC-1+ tumours. Their status was based on 

immunohistochemical staining which was also used to determine the treatment strategy 

for the patient. However, our results revealed inter- as well as intra-tumoural 

differences in the expression pattern of the two proteins. Whereas SRC-1 was 

coexpressed with ER in every cell of one tumour, suggesting that it was still functioning 

as an original nuclear receptor coactivator, it was mostly expressed in the nucleus of 

cells that were lacking in ER in the other tumour, suggesting that it was acting 

independently of ER. These findings support the proposal that better diagnostic tools as 

well as personalised treatment options are desperately needed in the management of 

breast cancer.

To confirm that SRC-1 was in fact interacting with other TFs to confer Al resistance we 

assessed co-expression of SRC-1 and Ets2 in matched primary and Al resistant tumours. 

It was found that SRC-1 colocalises with the TF Ets2 in the nucleus of Al resistant 

metastases, supporting the in v itro  data from our LetR cell line. This is the first time this 

interaction has been reported in Al resistant patients. An increase was also found in the 

target genes Myc and MMP9 in the Al resistant metastases, suggesting that SRC-1 is 

coactivating Ets2 in those Al resistant tumours.

These findings strongly support our in v itro  data. It appears that during the 

development of resistance to Als, tumour cells lose their responsiveness to estrogen as 

well as endocrine treatment and develop an aggressive Al resistant phenotype that is 

driven by GF signaling. The coactivator SRC-1 appears to be involved in the development 

of a more aggressive resistant phenotype as previously observed in the Al resistant cell 

model LetR and we hypothesise that SRC-1 coactivation of Ets2 to regulate MMP9 and 

Myc is GF-dependent. However, it needs to be elucidated which specific pathways are 

involved in this process.
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C h a p t e r  6

G e n e r a l  D i s c u s s i o n
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Even though detection and treatment of breast cancer have dramatically improved over 

the last decades, there is still a high incidence of mortality as a result of recurrence and 

failure of therapies (Kamangar F e t at., 2006). One of the main obstacles in reaching an 

effective diagnosis and determining the right treatment strategy is tumour 

heterogeneity (Marusyk A and Polyak K, 2010). Different patients may have different 

types of breast cancer, known as inter-tumour heterogeneity, and gene expression 

profiling as well as biomarkers have helped a great deal to classify these subtypes and 

find appropriate individualised treatments for patients. Intra-tumour heterogeneity on 

the other hand refers to differences inside the same tumour and can have different 

causes as well as clinical outcomes. We have seen that global calling of ER does not 

necessarily group identical tumours. The results from the immunofluorescent staining of 

ER+ primary tumours cleary revealed major inter-tumour as well as intra-tumour 

differences in the expression pattern of ER. This observation can have a detrimental 

impact on the clinical management of breast cancer, as tumour staging by classical tools 

such as immunohistochemistry is only based on a particular area of a tumour and may 

not represent the heterogeneity of the whole tumour, resulting in unpredictable 

response to treatment. Additionally, tumour cells are plastic and may undergo additional 

genetic and epigenetic changes during tumour progression, leading to an increase in 

heterogeneity. We have observed that a loss of HR and gain in SRC-1 expression marks 

the development of resistance to Als, suggesting that it is essential to monitor tumours 

over time rather than assess a tumour profile at the point of diagnosis alone. Thus, inter- 

and intra-tumour heterogeneity as well as tumour evolution should be taken in 

consideration when assessing current therapies as well as designing novel, more 

effective anti-cancer drugs (Almendro V and Fuster G, 2011).

We employed the letrozole resistant LetR cell model to establish the role of SRC-1 in Al

resistance. A variety of cell models of Al resistance have been generated over the last

decades as discussed in chapter three. Initially, a majority of studies had been

performed in long-term estrogen deprived (LTED) cells. However, even though these

cells are subjected to estrogen depletion, which occurs during Al treatment, this setting
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was not optimal to investigate Al resistance, as these cells have never been exposed to 

the drug. Although they may also be resistant to Als, it is clear from our work that the 

cells are different and therefore both cell lines offer independent, useful models of 

resistance. Additionally, it has been suggested that the resistance mechanisms of the 

three Als anastrozole, letrozole and exemestane might be slightly different (Chen S, 

2011). Our patients usually received either anastrozole or letrozole, which both belong 

to the class of non-steroidal Als. However, close reflection of our results from the Al 

resistant cell model and patients suggests that SRC-1 pathways discovered in the LetR 

cells are relevant to multiple Al resistant mechanisms.

It has recently become evident that SRC-1 plays an important role in the development of 

metastasis (Wang S e t  a l., 2009; Qin L e t al., 2011). Here, we have established a clear 

role for SRC-1 in progression and metastasis. We have observed that SRC-1 is highly 

expressed in the LetR cell line and that it plays a key role in driving motility, invasion and 

de-differentiation. Additionally, we have shown that SRC-1 is highly expressed in Al 

resistant metastases; therefore, monitoring SRC-1 expression may be useful to screen 

for disease progression and detect disease advancement before metastases appear. 

However, since the detection of SRC-1 tissue levels is not feasible it is necessary to 

determine SRC-1 targets that can easily be detected in blood samples from patients. Our 

group has previously shown that serum levels of the SRC-1 target sl00|3 are highly 

elevated in patients resistant to tamoxifen, and therefore it would be interesting to see 

if this finding could be tranferred to Als (Mcllroy M e t  al., 2010).

Taken together, these findings strongly suggest that SRC-1 plays a pivotal role in the

development of Al resistance and could therefore serve as potential novel drug target.

As mentioned before, acquired resistance to endocrine therapy has been shown to be a

result of crosstalk between ER and HER2 or between signaling pathways downstream of

these receptors, namely PI3K/AKT/mTOR (Prat A and Baselga J, 2008). Our lab has

previously reported associations between HER2 and SRC-1 overexpression and poor DFS

in endocrine resistant breast cancer (Fleming FJ e t al., 2004) and several studies have
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shown that, in HER2+ patients, the concentration of coactivators can determine active 

AKT levels (Osborne CK e t al., 2003, Torres-Arzayus Ml e t al., 2004; Zhou G e t a l., 2003).

Therefore, it is thought that Als in combination with therapies that target signaling 

pathways that are involved in crosstalk may work better than alone. A number of trials 

are currently trying to establish if Als in combination with drugs such as signal 

transduction inhibitors, tyrosine kinase inhibitor, multikinase inhibitors or mTOR 

antagonists, may offer a solution to overcoming resistance or delaying its development 

(Bedard PL e t al., 2008). For example, it has been demonstrated that treatment with the 

Al anastrozole in combination with the monoclonal anti-HER2 antibody trastuzamab led 

to an improvement in disease free survival in HR+ metastatic breast cancer patients 

overexpressing HER2 (Kaufman B e t a l., 2009). Since trastuzamab may not inhibit 

proliferation of cells that express low levels of HER2, another trial was launched to 

evaluate the benefit of the anti-HER2 tyrosine kinase inhibitor lapatinib in combination 

with the Al letrozole. Published data from this trial revealed an improvement in DFS in 

patients that were treated with the combination therapy (Johnston S e t al., 2009).

The use of Src TKIs has also been suggested to be a logical strategy for the management 

of metastatic disease. Src is a non-receptor tyrosine kinase that is involved in breast 

cancer cell proliferation, invasion and metastasis, suggesting that it plays a role in the 

development of endocrine resistance. Additionally, it is involved in the regulation of 

osteoclast-mediated bone turnover, which can compromise bone strength, leading to 

osteoporosis, one of the major side effects associated with Al therapy. Results published 

by Hiscox e t al. demonstrated that combination therapy with Src inhibitors such as 

dasatinib and Als inhibited proliferation and metastasis of both endocrine responsive 

and resistant breast cancer cells lines more effectively than either therapy alone (Hiscox

S e t a l., 2010). Src inhibition was also able to suppress osteoclast formation, suggesting 

that the combination therapy may not only represent a novel approach to overcome 

acquired resistance but may also offer an alternative strategy to delay bone pathology.
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This lab is currently investigating the effect of Als in combination with dasatinib in the 

development of resistance.

Another potential approach to prevent the development of Al resistance is the use of Als 

in combination with the ER-degrading antiestrogen fulvestrant. A xenograft model was 

employed to assess the efficacy of this therapy in vivo. Animals were treated with 

letrozole, fulvestrant or a combination of the two. Whereas the size of tumours treated 

with the letrozole alone and fulvestrant alone had doubled after 10 and 21 weeks 

respectively, the tumours of animals treated with the combination therapy regressed 

over 29 weeks of treatment by 45%, making it more effective in suppressing growth than 

either letrozole of fulvestrant alone (Jelovac D e t al., 2005). Even though we have seen a 

loss of ER activity over time in our Al resistant cell model, this evidence suggests benefit 

from fulvestrant, potentially in preventing Al resistance from developing rather than 

treating Al resistant metastasis. Another potential benefit of this combination therapy 

could be seen in Al resistant cells that express a hyperactive ER. Loss of ER can inhibit 

interactions of coactivators such as AIB-1 with the receptor to drive Al resistance, as 

previously observed in our lab (O'Hara J e ta l . ,  2012).

However, the success of these combination therapies may still be limited, as the cancer 

cells might eventually begin to compensate for the downregulation of the particular 

pathways by upregulating other pathways, resulting in resistance to those novel 

therapies. Downregulation of SRC-1 itself offers a great potential as illustrated by the 

results from functional cell assays demonstrated in this thesis. Therefore, the 

development of small molecule inhibitors (SMIs) against SRCs to circumvent resistance 

would be an interesting approach in designing new breast cancer therapies, as targeting 

oncogenic coactivators could lead to simultaneous downregulation of a range of target 

genes that are involved in the progression and metastasis of cancer cells (Figure 6.1) 

(O'Malley BW and Kumar R, 2009).
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Traditional cancer chem otherapy
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Figure 6 .1 : T a rg e tin g  coactivators  fo r  an ti-c a n c e r th erap y . Left panel: Coactivator 
regulates expression of a variety of target genes (ER-responsive; HER2-responsive; NF- 
KB-responsive; PI3K/AKT-responsive), which are all required for proliferation and 
metastasis of cancer cells, Targeting the individual pathways with SERMs/Als (ER) or 
herceptin (HER2) only inhibits one or two pathways (in case of combination). Tumour 
growth is slowed, while other pathways are upregulated to compensate, potentially 
causing resistance to treatment. Right panel: Targeting and inhibiting the function of the 
coactivator leads to simultaneous suppression of all pathways, blocking compensatory 
upregulation of alternate pathways, potentially decreasing onset of drug resistance. 
Adapted from Cancer Research Reviews (O'Malley BW and Kumar R, 2009).

However, this was initially thought to be impossible as SRCs are large proteins that lack 

high affinity binding sites as well as other features that exist in regular so-called 

"druggable" targets. Still, SMIs against other regulatory proteins have lately been 

successfully designed (Wells JA and McClendon CL 2007).

Bert O'Malley's group has recently identified 2,2'-bis-(Formyl-l,6,7-trihydroxy-5- 

isopropyl-3-methylnaphthalene) (gossypol) as an SMI against SRC-1 and SRC-3 (Wang Y 

et al., 2011). Gossypol, a natural polyphenol found in cotton seeds, was initially 

considered as a male infertility drug. After it was declared unsuitable due to the risk of 

permanent infertility (Hadley MA and Burgos MH, 1986) it was proposed as a potential 

cancer drug based on its anticancer properties (Gilbert NE et al., 1995; Wolter KG et al.,
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2006; Zhang M e t a i ,  2003). The published data from O'Malley's lab revealed that 

gossypol selectively reduced the cellular protein concentration of SRC-1 and SRC-3 in 

MCF7 breast cancer cells, without changing expression of other proteins, in particular 

other coactivators (Wang Y e t al., 2011). These findings suggest that gossypol may have 

the potential to overcome acquired endocrine resistance.

In summary, we have established that SRC-1 has an essential role in Al resistance, which 

opens possibilities to expand the results gained from studies on SRC-1 in tamoxifen 

resistance to Al resistance. In the future, it would be interesting to analyse the serum 

levels of SRC-1 targets such as S100|3 in blood samples of Al resistant patients to 

investigate if conclusions gained from studies in tamoxifen resistant patients can be 

transferred to Al resistance. It is also necessary to perform a global ChlPseq of SRC-1 in 

Al resistant cells, because, although SRC-1 evidently has some similar roles in Al and 

tamoxifen resistance, there are also clear differences, probably due to the different 

molecular mechanisms of the drugs. Broadening our understanding of these differences 

and the SRC-1 signaling mechanism in general will help design more effective, targeted 

therapies for the treatment of Al resistant breast cancer.
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A p p e n d ix  I

Table 7.1: Primary Antibodies used

Antigen Primary antibody Product Code Concentration Supplier
SRC-1*++ Rabbit polyclonal sc-8995 200ng/ml Santa Cruz
SRC-1+ Mouse monoclonal 05-522 lmg/ml Millipore
c-MYC*+ Rabbit polyclonal sc-517 200ng/ml Santa Cruz
Ets2* Rabbit polyclonal sc-351 200|ig/ml Santa Cruz
pEts2+ Rabbit polyclonal 44-1105G 100ng/ml Invitrogen
ERct* Rabbit polyclonal sc-543 200ng/ml Santa Cruz
ERa+ Mouse monoclonal NCL-ER-6F11 3.9mg/ml Novocastra

MMP9+ mouse monoclonal sc-21733 200ng/ml Santa Cruz
ß-Actin* Mouse monoclonal A1978 Not specified Sigma Aldrich

* Used for western blotting. + Used for immunofluorescence. + Used for immunohistochemistry.

Table 7.2: Secondary Antibodies used

Species Product Code Suppliers
Anti mouse IgG A3682 Sigma Aldrich
Anti rabbit IgG A0545 Sigma Aldrich
Anti rabbit 488 A11008 Invitrogen
Anti mouse 568 A11004 Invitrogen
Anti mouse 488 A11001 Invitrogen
Anti rabbit 594 A11012 Invitrogen

Table 7.3: Cell culture reagents

Product Code Supplier

Minimum Essential Media (MEM) M4526 Sigma Aldrich
Leibovitz's L15 media 11415 Gibco (Invitrogen)
Fetal Bovine Serum F7524 Sigma Aldrich

Penicillin/Streptomycin P4333 Sigma Aldrich
Tryspin EDTA Solution T4174 Sigma Aldrich

L-Glutamine G7513 Sigma Aldrich
Charcoal Dextran C6241 Sigma Aldrich
Trypan Blue T8154 Sigma Aldrich
OPTIMEM 11058 Gibco (Invitrogen)

Phenol red free MEM M3024 Sigma Aldrich
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Table 7.4: Buffers used in Western Blotting

RIPA Lysis Buffer Running Buffer Semi dry Transfer 
Buffer

150mM sodium chloride 1.92M Glycine 390mM Glycine
1.0% NP-40 250mM Trizma base 480mM Trizma base
0.5% sodium 
deoxycholate

1% SDS 0.37% SDS

0.1% SDS 
(sodium dodecyl 
sulphate)

dH20 to 1L 20% methanol by 
volume

50 mM Tris, pH 8.0 dH20 to 1L

Table 7.5: Solutions for Zymography (all other buffers are supplied with the Novex® 
Zymogram Kit)

Coomassie Blue Stain Destain Buffer

0.05%  C oom assie  Brilliant
Blue R250

2 .5%  Acetic  Acid 10 %  Acetic Acid
50%  Ethanol 20%  M ethanol

Fill up with dH20 Fill up with dH20

Table 7.6: Buffers used in nucleic acid biochemistry

lOx TAE Buffer (1L)

48.4g Tris 
11.4ml glacial acetic acid 

~  20ml 0.5M EDTA
____ dH20 to 1 L ____ _

pH 8.0
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Buffers used for Chromatin Immunoprécipitation (ChIP)

Table 7.7: Buffers used in ChIP cell fixation

Formaldehyde Solution Glycine Solution PBS Ipegal
(20ml) (20ml) (100ml)

6ml 3 7 %  form aldehyd e  ( 1 1% ) 3 .7 5 g  Glycine 100m l PBS
(2.5M)

0.4ml 5M  NaCI (0 .1M ) 500^1 NP-40 (0.5%)
40nl 0 .5M  EDTA (pH 8.0)

(Im M )
1m l  1 M  HEPES (pH 7.9)

(50m M )
dH20  to  20ml dH20  to  20ml

Table 7.8: Buffers used in chromatin preparation during ChIP

SDS Lysis Buffer ChIP Dilution Buffer

1%  SDS 0 .0 1 %  SDS
lO m M  EDTA 1 . 1 %  Triton X - 1 0 0

50 m M  Tris Hcl 1 .2 m M  EDTA
16 .7 m M  Tris-HCI

16 7 m M  NaCI
pH: 8 . 1 0 pH: 8 . 10

Table 7.9: Wash buffers used in ChIP

LiCI Immune Low Salt Immune High Salt Immune TE
Complex Wash Complex Wash Complex Wash Buffer

Buffer Buffer Buffer

0 .2 5 M  LiCI 0 . 1 %  SDS 0 . 1 %  SDS lO m M  Tris-
HCI

1 %  NP40 1 %  Triton X - 10 0 1 %  Triton X -100 Im M  EDTA
1%  deoxycholic  acid 15 0 m M  NaCI 500 m M  NaCI

Im M  EDTA 2 m M  EDTA 2 m M  EDTA
lO m M  Tris Hcl 20m M  Tris-HCI 20m M  Tris-HCI

pH: 8 . 10 pH: 8 . 1 0 pH: 8 . 10 pH: 8.00
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A p p e n d ix  II

Publications, awards and presentations obtained during the course o f this research

Publication

"M etasta tic  progression with resistance to a ro m a tase  inhibitors is driven by the steroid

receptor  coactivator SR C -1 ."  McBryan J, Theissen SM , Byrne C, Hughes E, Cocchiglia S,

Sande S, O'Hara J, Tibbits P, Hill AD, Young LS. Cancer Res January 15, 2012; 72:548-559;

Published OnllneFirst November 22, 2011 (Appendix III).

Awards

■ Scholar-in-Training Award, San Antonio Breast Cancer Sym posium , aw ard ed  by AACR 

supported by Susan G. Komen for the  Cure, D ecem ber 2 0 1 1 .

■ Ireland-Northern Ireland Cancer Consortium Scholarship to  attend the NIH-NCI 

Su m m er Curriculum in M olecular Cancer Prevention in Bethesda, MD, August 2 0 1 1 .

Invited oral presentations

■ Invited sem inar talk: "A ro m a ta se  inhibitor specific m etastasis  is driven by the steroid 

receptor  coactivator  SR C -1."  Theissen SM, McBryan J, Byrne C, Hughes E, Cocchiglia 

S, Hill AD, Young LS. Women's Cancer Research Center, Pittsburgh, August 16, 2011.

■ Proffered p ap er talk: "N e w  signalling netw orks in a ro m atase  inhibitor resistant 

breast  cancer" .  Theissen SM , Byrne C, Sande S, Young LS. Irish Association fo r  Cancer 

Research Annual Conference, Galway, Ireland, March 3 - 5 ,  2010.

Poster presentations

■ "A ro m atase  inhibitor specific m etastasis  is driven by the  steroid receptor coactivator 

SR C -1 ."  Theissen SM , McBryan J, Byrne C, Hughes E, Cocchiglia S, Hill AD, Young LS. 

San Antonio Breast Cancer Symposium, December 6 -1 0 , 2011.
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"A ro m a tase  inhibitor specific m etastas is  is driven by the  steroid receptor  coactivator 

SR C -1 ."  Theissen SM , McBryan i, Byrne C, Hughes E, Cocchiglia S, Hill AD, Young LS. 

Young Life Scientists Ireland Symposium, Dublin, November 12, 2011.

"N e w  signalling netw orks in a ro m a ta se  inhibitor resistant breast  cancer."  Theissen 

SM , Byrne C, San de  S, Young LS. RCSI Research Day, April 7, 2010.
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M e t a s t a t i c  P r o g r e s s i o n  w it h  R e s i s t a n c e  t o  A r o m a t a s e  

I n h ib i t o r s  I s  D r iv e n  b y  t h e  S t e r o i d  R e c e p t o r  

C o a c t i v a t o r  S R C - 1

Jean  M cB ryan , Sarah M. T h e isse n , C h ris to p h e r B yrne , Eam on H ughes, S inead C o cch ig lia , 

S te p h e n  Sande, Ja n e  O 'H a ra , Paul T ib b itts , A rn o ld  D.K. Hill, and  Leon ie  S. Y o u n g

A b stract
Aromatase inhibitors (AI) are a standard-of-care treatment for postmenopausal, estrogen receptor-positive 

breast cancers. Although tumor recurrence on AI therapy occurs, the mechanisms underlying acquired resistance 
to AIs remain unknown. In this study, we examined a cohort of endocrine-treated breast cancer patients and used 
a cell line model of resistance to the AI letrozole. In patients treated with a first-line AI, hormone receptor 
switching between primary and resistant tumors was a common feature of disease recurrence. Resistant cells 
exhibited a switch from steroid-responsive growth to growth factor-responsive and endocrine-independent 
growth, which was accompanied by the development of a more migratory and disorganized phenotype. Both the 
resistant cells and tumors from Al-resistant patients showed high expression of the steroid receptor coactivator 
SRC-1. Direct interactions between SRC-1 and the transcription factor Ets2 regulated Myc and MMP9. SRC-1 was 
required for the aggressive and motile phenotype of Al-resistant cells. Interestingly, SRC-1 expression in primary 
and/or recurrent tumors was associated with a reduction in disease-free survival in treated patients. Moreover, 
there was a significant association between SRC-1 and Ets2 in the recurrent tissue compared with the matched 
primary tumor. Together, our findings elucidate a mechanism of Al-specific metastatic progression in which 
interactions between SRC-1 and Ets2 promote dedifferentiation and migration in hormone-dependent breast 
cancer. Cancer Res; 72(2); 1-12. ©2011 AACR.

Introduction

Endocrine therapies, including estrogen receptor (ER) mod­
ulators and aromatase inhibitors (AI), are first-line treatment 
for ER-positive breast cancer. The development of third-gen­
eration AIs has brought about a major change in the thera­
peutic approach to patients with hormone-sensitive breast 
cancer. A meta-analysis of trials comparing AIs and tamoxifen 
for the adjuvant treatment of women with early breast cancer 
concluded that AIs should be the treatment of choice in 
postmenopausal women (1, 2). AIs, however, do not remove 
all of the estrogen ligand— data from molecular and in vivo 
studies suggest that this can result in adaptive hypersensitivity 
of the intact ER via increased signaling through growth factor 
pathways (3). The significance of this hypersensitivity and
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resultant resistance to the AI therapy will only become evident 
as long-term follow-up becomes available.
The development of resistance to endocrine therapy, and 

resulting tumor recurrence, is due at least in part to cellular 
plasticity leading to a shift in the phenotype of the tumor 
cell from steroid dependence to steroid independence/ 
growth factor dependence. Consequently, the resistant can­
cer cells may also use steroid receptor-independent 
mechanisms to drive tumor progression. Alterations in 
steroid receptor profile observed in clinical studies between 
primary and metastatic breast cancer, in particular with 
loss of progesterone receptor (PR) status, support the 
phenomenon of tumor adaptability in endocrine-resistant 
patients (4). Furthermore, conversion from serum Her2 
negative to positive has been reported as an independent 
risk factor for decreased survival in both tamoxifen and AI- 
treated patients (5).
Aberrant expression of the pl60 steroid receptor coactiva- 

tors SRC-1 and SRC-3 (AIB1) in patients has been associated 
with resistance to endocrine therapies and the development of 
tumor recurrence (6-8). Although initially described as a 
nuclear receptor coactivator protein, SRC-1 has been shown 
to interact with transcription factors running downstream of 
an activated mitogen-activated protein kinase (MAPK) path­
way. These transcription factor interactions may represent one 
of the consequences of growth factor pathway cross-talk 
described in endocrine resistance. Functional interactions
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between SRC-1 and the Ets family of transcription factors, Ets2 
and PEA3, have previously been reported, and this relationship 
has been shown to be important in tumor progression and the 
development of metastasis (6, 9, 10).
In this study, negative PR status predicted early disease 

recurrence on AI treatment, and loss of steroid receptor 
status between matched primary and metastatic tumors was 
observed. In a cell model of AI resistance, developed using 
the AI letrozole, we found elevated cell migration and loss of 
differentiation compared with the parental endocrine sen­
sitive cells. We provide evidence that SRC-1 can drive this 
aggressive phenotype by partnering with Ets2 to regulate 
expression of Myc and MMP9. Furthermore, elevated SRC-1 
expression and functional transcriptional interactions were 
observed in AI-specific metastatic tumors. Taken together, 
these data suggest a role for SRC-1 in the steroid-indepen­
dent adaptation of breast cancer to AI therapy and subse­
quent disease recurrence.

M aterials and M ethods

Cell lines, treatments, and transfections
Breast cancer cells MCF-7, MDA-MB231, SKBR3 [American 

Type Culture Collection (ATCC)] and LY2 (kind gift from R. 
Clarke, Georgetown University, Washington, DC) were grown 
as previously described (11). MCF10A cells (ATCC) were cul­
tured in DMEM/F12 with 15 mmol/L hepes buffer, 5% horse 
serum, 10 (tg/mL insulin, 20 ng/mL EGF, 100 ng/mL choler- 
atoxin, and 0.5 |ig/mL hydrocortisone. AI-sensitive (Aro) cells 
were generated by stably transfecting MCF-7 cells with the 
aromatase gene, CYP19 (pcDNA DEST47 destination vector). 
Aro cells were cultured in MEM supplemented with 10% FCS, 
1% L-Glutamine, 1% Pen/Strep, and 200 |lg/mL Geneticin 
(G418, Gibco Invitrogen). Letrozole-resistant (LetR) cells were 
generated by long-term (>3 months) culture of Aro cells with 
letrozole (10-6 mol/L; Novartis) and androstenedione (25 x 
10-9 mol/L; Sigma Aldrich) in MEM supplemented with 10% 
charcoal-dextran-stripped FCS, 1% L-Glutamine, 1% Pen/ 
Strep, and 200 (ig/mL G418. All cells were maintained 
in steroid-depleted medium 72 hours prior to treatment 
with estradiol (10-8 mol/L; Sigma Aldrich), androstenedione 
(10-7 mol/L), or letrozole (10-6 mol/L). SiRNA (Ambion) 
directed against SRC-1 (AM16706) and ERa (4392421) were 
used to knock down gene expression. The pcDNA3.1 and pCGN 
plasmids containing full-length SRC-1 and Ets2, respectively, 
were used for overexpression studies. Empty plasmids were 
used as a negative control. Plasmids were constructed as 
previously described (11). Transfections were carried out using 
Lipofectamine 2000 (Invitrogen) as per manufacturer's instruc­
tions. For the motility assay and the 3-dimensional (3D) 
cultures, cells were seeded 72 hours after transfection. All 
other experiments were carried out 24 hours after transfection.

Cell motility, cell proliferation, and 3D culture assays
Cellomics Cell Motility Kit (Thermo Scientific, #K0800011) 

was used to assess individual cell movement after 22 hours as 
per manufacturer's instructions using cells seeded at 1 x 104 
cells/mL. Mean track areas (minimum of 90 cell tracks per

condition) were analyzed with Olympus cell imaging software 
and compared with a Student t test.
For proliferation, Aro and LetR cells were steroid depleted 

for 72 hours and seeded into 6-well plates at a density of 0.5 x 
104 cells per well. The cells were serum starved for a further 
24 hours before being treated with vehicle (acetic acid; 0.01%), 
androstenedione (100 nmol/L), or EGF (1 ng/mL) for 72 hours. 
Cells were stained with crystal violet solution (Cruinn), dis­
solved in 33% glacial acetic acid, and the absorbance measured 
at 620 nm using a plate reader (Greiner).
For 3D assays, 5 x 104 cells in 400 (J.L of their respective 

medium (as above) and 2% Matrigel (BD Biosciences) were 
seeded onto the growth factor reduced matrigel matrix in 8 
well-chamber slides (BD Biosciences) and cultured for 
14 days at 37°C/5% C02. Cells were fixed in 4% paraformal­
dehyde and permeabilized with PBS containing 0.5% Triton 
X-100 for 10 minutes at 4CC. Cells were blocked in 10% goat 
serum, 1% bovine serum albumin. Cells were stained 
with Phalloidin 594 (Molecular Probes) for 20 minutes and 
4',6-diamidino-2-phenylindole (DAPI) for 5 minutes. Alter­
natively, cells were stained with rat anti-human Bl-integrin 
antibody (552828, BD Transduction Laboratories) followed 
by goat anti-rat 633 secondary antibody (Alexa-Fluor) and 
DAPI. Slides were mounted (Dako) and examined by con- 
focal microscopy.

Zymography
Aro and LetR cells were seeded in a 6-well plate, and media 

were collected 24 hours later. Protein was concentrated with 
Amicon Ultra4 filters (50 K pore size, Millipore). Twenty 
micrograms of protein was loaded onto a 10% Gelatin Zymo­
gram Gel (Invitrogen) and run according to the manufacturer's 
instructions. The gel was stained with Coomassie Brilliant Blue 
and destained until bands were visible. Pro (92 kDa) and active 
(82 kDa) MMP9 bands were identified by size (12, 13).

Next-generation sequencing
SRC-1 ChIP sequencing (vehicle and tamoxifen-treated LY2 

cells) and RNA sequencing (tamoxifen-treated LY2 cells) were 
carried out using the Illumina Genome Analyzer System as 
previously described (11).

Coimmunoprecipitation and Western blotting
Protein was immunoprecipitated with mouse anti-SRC-1 

and blotted for SRC-1 and Ets2. Western blotting was carried 
out as previously described (14). Primary antibodies used 
were rabbit anti-human Ets2 (1:250, sc-351, Santa Cruz), 
rabbit anti-human SRC-1 (1:100, sc-8995, Santa Cruz), rabbit 
anti-human Myc (1:200, sc-788, Santa Cruz), mouse anti­
human ERa (1:500, sc-8002, Santa Cruz) or (3-actin (1:7,500; 
Sigma-Aldrich).

Chromatin immunoprécipitation assay and PCR
Aro and LetR cells were treated with vehicle, estrogen, 

androstenedione, letrozole or androstenedione and letrozole 
for 45 minutes, and chromatin immunoprécipitation (ChIP) 
analysis was carried out as previously described (14). Cell 
lysates were quantified after shearing using a Nanodrop
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(Thermo Scientific) to ensure equal starting material in each 
sample. The following antibodies were incubated overnight at 
4°C with rotation: 6 (lg rabbit anti-human Ets2 (sc-351, Santa 
Cruz), 6 (ig rabbit anti-human SRC-1 (sc-8995, Santa Cruz), 6 |ig 
rabbit immunoglobulin G (IgG) as a negative control or 7 |iL 
antiacetylated H4 (Millipore) as a positive control. Reverse 
cross-linking and DNA recovery were carried out with Chelex 
100 (Bio-Rad). Real-time PCR was carried out in duplicate by 
SYBR Green PCR (Qiagen) using a Lightcycler (Roche), and 
primers are listed in Supplementary Table SI. Semiquantitative 
reverse-transcriptase PCR (RT-PCR) was carried out using 
primers listed in Supplementary Table SI.

Patient information and construction of tissue 
microarray
Patient breast tumor samples were collected and data 

recorded as previously described (15). Data included patho­
logic characteristics (tumor stage, grade, lymph node status, 
ER status, recurrence) and treatment with radiotherapy, che­
motherapy, tamoxifen, or AIs. Detailed follow-up data (median, 
56 months) were collected on the patients to determine 
disease-free survival. Tissue microarray (TMA) construction 
was conducted as previously described (15).

Immunohistochemistry
Breast tissue and TMA sections were deparaffinized and 

incubated with rabbit anti-human SRC-1 (2 (ig/mL; Santa 
Cruz); rabbit anti-human Myc (2 (ig/mL; Santa Cruz), 
mouse anti-human MMP9 (2 (ig/mL; Santa Cruz) or control 
IgG for 1 hour at room temperature. The slides were then 
incubated with the corresponding biotin-labeled secondary 
(0.5% in PBS; Vector Laboratories) for 30 minutes, followed 
by peroxidase-labeled avidin biotin complex (Vector Lab­
oratories) for 30 minutes. Sections were developed in 3,3- 
diaminobenzidine tetrahydrochloride for 2 minutes and 
counterstained with hematoxylin for 3 minutes, then 
passed through increasing concentrations of Industrial 
Methylated Spirits (70% and 100%) and then xylene. The 
immunostained TMA slides were scored using the Allred 
scoring system (16). Independent observers, without knowl­
edge of prognostic factors, scored slides. Univariate statis­
tical analysis was carried out using Fisher exact test for 
categorical variables and Wilcoxon test for continuous 
variables.

Immunofluorescent microscopy and quantitative 
colocalization
Cell lines, grown on collagen coated coverslips, were fixed 

and permeabilized as per the 3D assay. Cells were blocked 
with 10% goat serum for 1 hour, incubated with rabbit anti­
human SRC-1 antibody (Santa Cruz) followed by goat anti­
rabbit 488 (Molecular Probes), phalloidin for 20 minutes, and 
DAPI for 5 minutes. Tumor sections were blocked in 10% 
goat serum for 1 hour, incubated with rabbit anti-human 
phospho-Ets2 (10 (Ig/mL in 10% human serum; Invitrogen) 
for 1.5 hours, and then Alexa 594 conjugated goat anti-rabbit 
antibody (1/200; Molecular Probes) for 1 hour. Sections were 
blocked again with goat serum for 1 hour, then incubated

with mouse anti-human SRC-1 (10 (ig/mL in 10% human 
serum; Upstate) for 1.5 hours, followed by a 1-hour 
incubation with Alexa 488 conjugated goat anti-mouse anti­
body (1/200; Molecular Probes). Sections were mounted 
using fluorescent mounting media (DAKO). Slides were 
examined under a Zeiss LSM 510 META confocal fluorescent 
microscope with the x40 objective lens (1.40 NA). Quanti­
tative colocalization analyses (minimum 9 images per sam­
ple) were carried out with Zeiss 510 META Software using 
the Pearson correlation coefficient, R(r) (17).

Resu lts

AI resistance is characterized by hormone receptor 
switching and a more motile and disorganized 
phenotype
Endocrine resistance is thought to involve, at least in part, 

a switch from steroid signaling to growth factor signaling, 
leading to a steroid-independent tumor (18). In keeping with 
this hypothesis, we identified a significant association 
between lack of PR expression in the primary tumor and 
reduced early response specifically to AI treatments (Fig. 1A, 
P = 0.02 at 2-year follow-up; Supplementary Fig. S1A). In 
addition, analysis of patients with matched primary and Al- 
resistant tumors highlighted that hormone receptor status 
regularly switched between primary and subsequent tumors. 
In particular, a trend for loss of ER and PR expression and 
occasional gain of Her2 expression were observed (Fig. IB). 
Analysis of a cell model system with AI sensitive (Aro) and 
Al-resistant (LetR) cells was also in keeping with this 
hypothesis of a signaling switch. Resistant cells, although 
they had slightly elevated expression of ERa (Fig. 1C), 
showed a reduced proliferative response to estrogen and 
an increased proliferative response to EGF compared with 
sensitive cells (Fig. ID).
To further characterize the Al-resistant phenotype, migra­

tory assays and 3D culture assays were carried out. The 
migratory assay identified a significant increase in motility 
between resistant cells and sensitive cells (approximately 5- 
fold; Fig. IE). As expected, the high motility of the resistant 
cells was not significantly affected by either steroid or AI 
treatment (Supplementary Fig. SIB). Consistent with the 
increased motility of LetR cells, increased levels of the 
matrix metalloproteinase MMP9 were also detected in these 
resistant cells compared with sensitive cells (both mRNA 
and levels of the secreted active MMP9 protein; Fig. IF). In 
3D culture assays, sensitive cells were capable of organizing 
into circular, hollow structures, similar to the highly orga­
nized acini of MCF10A cells (Fig. 1G). Resistant cells, by 
contrast, were more disorganized; failed to form round, 
hollow, polarized spheres; and were more comparable with 
the disorganized endocrine insensitive SKBR3 cells (Fig. 1G 
and Supplementary Fig. SIC). The increased migration and 
decreased polarization of Al-resistant cells is consistent with 
a metastatic phenotype. Combined, these results provide 
evidence of hormone receptor switching as an important 
feature involved in the development of an aggressive Al- 
resistant phenotype.
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Figure 1. AI resistance is characterized by hormone receptor switching and an aggressive phenotype. A, Kaplan-Meier estimates of disease-free survival in 
tamoxifen-treated (n =  77) and Al-treated (n =  89) patients according to PR expression. PR-positive patients treated with an AI did significantly betterthan PR- 
negative patients during the first 2 years of follow-up (P =  0.0206). B, table showing hormone receptor status of matched primary and resistant tumors for 6 
Al-treated patients. Changes in receptor status are highlighted in pink. C, Western blot analysis shows slightly increased expression of E R a  In LetR cells 
compared with Aro cells. D, Al-resistant cell model (LetR cells, black bars) shows reduced proliferative response to steroids and increased growth factor 
response compared with sensitive cells (Aro cells, gray bars). Results are mean ±  SEM  (n =  3).", P  < 0.01. E, LetR cells are more motile than Aro cells 
(P <  0.0001). Histogram shows the mean migratory area per cell ((im2) ±  SEM  (n =  3). The metastatic MDA-MB231 cells are shown for comparison. (Scale bars, 
200 urn). F, higher levels of both MMP9 mRNA by R T -P C R  and active MMP9 by gelatin zymography in LetR cells compared with Aro cells. G, LetR cells 
do not form organized acini in 3D culture. Aro cells, similar to the highly polarized MCF10A cells, form 3D organized structures with hollow lumen. LetR 
cells fall to hollow out a lumen and remain disorganized, more comparable with SK B R 3  cells. Cells are stained with DAPI (blue) and phalloldin (red), and 
images are representative of 3 separate experiments. (Scale bars, 20 Jim).
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SRC-1 and Ets2 interact to regulate expression of Myc 
and MMI’9 target genes in AI resistance
The steroid receptor coactivator SRC-1 has previously 

been shown to play an important role in endocrine resis­
tance, and expression of SRC-1 has been associated with 
reduced disease-free survival in a cohort of breast cancer 
patients with locally advanced disease (9). ChIP sequenc­
ing, conducted to identify molecular targets of SRC-1 in

endocrine-resistant cells, identified the oncogene Myc as a 
potential target gene, with a strong SRC-l-binding peak 
located within the proximal promoter (Fig. 2A). The tran­
scription factor Ets2 has previously been shown to regulate 
Myc expression through binding to an E2F-binding motif 
which is also located within the Myc proximal promoter 
(19, 20). To investigate possible SRC-1 signaling pathways 
in AI resistance, basal protein expression was compared

Figure 2. Response of S R C -1 , Ets2, 
and Myc to steroid treatments. A, 
location of SRC-1-binding peak 
within the proximal promoter region 
of Myc gene as detected by ChIP 
sequencing analysis in endocrine- 
resistant LY2 cells. RNA sequencing 
confirms expression of Myc mRNA in 
these cells. X  marks the location of an 
E2F-bindlng site within the Myc 
promoter. B, protein levels of S R C -1 , 
Ets2, phospho-Ets2 (pEts2), and 
Myc are higher in LetR than in Aro 
and MCF7 cells. Western blot images 
are representative, and densitometry 
graphs represent relative mean 
normalized expression (n — 3). Error 
bars represent SEM. C, SRC-1 and 
Myc protein expression is sensitive 
to letrozole treatment In Aro cells but 
insensitive to letrozole in LetR cells. 
Ets2 expression Is not regulated by 
steroid treatments in either cell line. 
Cells were treated with vehicle (V), 
estrogen (E), androstenedione (A), 
letrozole (L), or a combination (A+L). 
Western blot images are 
representative, and densitometry 
graphs represent relative mean 
normalized expression (n =  3). Error 
bars represent SEM. D, confocal 
images of SRC-1 localization in Aro 
and LetR cells In the presence and 
absence of androstenedione and 
letrozole alone and in combination. 
Nuclear localization of SRC-1 
increases in Aro cells in response to 
androstenedione and is reduced 
when letrozole is added. By contrast, 
nuclear intensity of SRC-1 is strong 
in LetR cells independent of 
treatments. Images are taken at x40 
magnification with a confocal 
fluorescent microscope.
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between Aro and LetR cells. SRC-1, Ets2, phospho-Ets2, and 
Myc expression was higher in resistant cells compared with 
sensitive Aro or parental MCF7 cells (Fig. 2B). To assess 
regulation of expression of these proteins both Aro and 
LetR cells were treated with estrogen and androstenedione 
in the presence or absence of letrozole (Fig. 2C). In Aro 
cells, expression of SRC-1 and Myc was increased in 
response to both estrogen and androstenedione. Letrozole 
inhibited this response to androstenedione, confirming 
the sensitivity of Aro cells to AIs (Fig. 2C, left). In LetR 
cells, expression of SRC-1 and Myc was higher than in Aro 
cells and increased further in response to androstenedione. 
This increase was not inhibited by the presence of letrozole 
(Fig. 2C, right). Consistent with these observations, immu- 
nofluorescent staining identified increased nuclear locali­
zation of SRC-1 in Aro cells treated with androstenedione 
compared with all other treated Aro cells. Strong nuclear 
localization of SRC-1 was observed in all LetR cells 
independent of treatments (Fig. 2D). Ets2 protein expres­
sion was not altered by steroid treatments, but its expres­
sion was constitutively higher in LetR cells than in Aro 
cells (Fig. 2C). Thus, expression of SRC-1 and Myc seems 
to have become dysregulated in the LetR model of AI 
resistance.
Coimmunoprecipitation analysis revealed that SRC-1 

and Ets2 can interact after 45 minutes of steroid treatment 
(Fig. 3A). ChIP studies were therefore carried out using 
this time point to investigate the potential recruitment of 
SRC-1 and Ets2 to the Myc and MMP9 promoters. Though 
MMP9 was not highlighted by the ChIP sequencing study, 
owing to the undetectable levels of MMP9 expression in 
the endocrine-resistant LY2 cells used for this analysis, 
bioinformatic analysis did identify both Ets and E2F-bind- 
ing motifs within the proximal MMP9 promoter. ChIP 
analysis confirmed that both SRC-1 and Ets2 were 
recruited to the promoters of Myc and MMP9 target genes 
in Aro and LetR cells (Fig. 3B). In Al-sensitive Aro cells, 
SRC-1 and Ets2 recruitment to the promoters was driven 
by steroids and inhibited by letrozole treatment, as con­
firmed by real-time PCR (Fig. 3B). By contrast, in the 
resistant LetR cells, SRC-1 and Ets2 were recruited to the 
target gene promoters independent of steroid treatment, 
and this recruitment was not inhibited by the presence of 
letrozole (Fig. 3B). Furthermore, overexpression of either 
SRC-1 or Ets2 in Aro cells resulted in increased mRNA 
expression of both Myc and MMP9 target genes (Fig. 3C 
and D). The increased transcript levels of MMP9 did not 
translate into increased levels of secreted MMP9 protein, 
suggesting that mechanisms other than SRC-1 or Ets2 may 
be important in the posttranslational modification and 
secretion of MMP9. Finally, Ets2 overexpression in LetR 
cells resulted in increased Myc and MMP9 transcript 
expression, and concomitant knockdown of SRC-1 using 
siRNA inhibited the increase (Fig. 3E). Combined, these 
results suggest that SRC-1 can interact with the transcrip­
tion factor Ets2 to regulate expression of Myc and MMP9 
and that this signaling pathway is dysregulated in AI 
resistance.

SRC-1 is required for the motile, disorganized phenotype 
of Al-resistant cells
To assess the functional role of the SRC-1 driven signaling 

pathway in AI resistance, SRC-1 was knocked down in LetR 
cells using siRNA. Reduced SRC-1 expression resulted in a 
significantly reduced ability of these cells to migrate (P =
0.0007), returning the LetR cells to a migratory phenotype 
comparable with that of the Al-sensitive Aro cells (Fig. 4A). 
Furthermore, the LetR cells with SRC-1 knockdown were 
capable of forming more organized 3D acini in a manner 
comparable with the Al-sensitive Aro cells (Fig. 4B).
Previous reports have indicated that SRC-1, although named 

as a nuclear receptor coactivator, may interact with other 
transcription factors such as Ets2, as shown here. In line 
with these findings, ERa knockdown had a minimal effect on 
migration (Fig. 4C). The significantly greater impact of SRC-1 
on migration in comparison with ERa (P = 0.0377, Fig. 4C) 
supports a steroid-independent mechanism for SRC-1 in driv­
ing Al-mediated metastasis.

SRC-1 is significantly associated with disease recurrence 
in Al-treated patients
To examine the significance of the SRC-1 signaling path­

way in the clinical setting, a tissue microarray was con­
structed with primary breast tumors from 150 patients who 
received endocrine therapy, 84 of whom received an AI and 
75 of whom received tamoxifen. Median follow-up on these 
patients was 56 months. SRC-1 protein expression was 
significantly associated with poor disease-free survival in 
the total endocrine-treated population (P = 0.0255, Fig. 5A 
and Supplementary Fig. S1A) and the tamoxifen-treated 
population (P = 0.0326, Fig. 5B) but not in the Al-treated 
population (P = 0.6894, Fig. 5B). SRC-1 also was associated 
with recurrence (independent of time to recurrence) in the 
tamoxifen-treated (P = 0.015) and total endocrine-treated 
(P = 0.009) populations but not the Al-treated (P = 0.494) 
population (Table 1). No associations were observed 
between SRC-1 expression and PR, Her2 or nodal status. 
However, a highly significant association was observed 
between SRC-1 and advanced tumor stage in both the 
endocrine-treated population (P = 0.003) and specifically 
within the Al-treated population (P = 0.001, Table 1). This 
association suggests that although SRC-1 may not be useful 
as a predictor of response to treatment, it may play an 
important role in mediating the metastatic phenotype of AI 
resistance.
Among the patients who displayed AI resistance (n = 9), 

only 3 primary tumors were scored as SRC-1 negative. 
Matched-resistant tumor tissue was collected for all 3 of 
these patients, and paired primary and resistant tumors 
were stained for SRC-1 protein expression. In each case, 
the resistant tumor tissue was SRC-1 positive (representative 
images shown in Fig. 5C). This finding is consistent with the 
proposed role of SRC-1 in mediating the metastatic pheno­
type of AI resistance. Indeed, expression of SRC-1 in either 
the primary or resistant tumor of Al-treated patients 
revealed a significant correlation between SRC-1 expression 
and reduced disease-free survival (P = 0.0106, Kaplan-
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Figure 3. SRC-1 and Ets2 regulate expression of target genes Myc and MMP9. A, SRC-1 and Ets2 coimmunoprecipitate with strongest interaction 
after 45-minute steroid treatment. Aro cells were treated with androstenedionefor 0 to 4 hours. Protein was immunoprecipitated (IP) with an antl-Ets2 antibody 
and immunoblotted (IB) for SRC-1 and Ets2. B, SRC-1 and Ets2 are recruited to the Myc and MMP9 promoters. ChIP analysis in Aro and LetR cells with the 
same treatments as in Fig. 2C. Recruitment to both promoters was letrozole sensitive in Aro cells and letrozole insensitive in LetR cells. Graphs show real-time 
P C R  relative quantification of ChIP results. Anti-H4 antibody was used as a positive control and IgG as a negative ChIP control. Genomic DNA (+ve) and water 
(-ve) were used as P C R  controls. A  distal promoter region was used to confirm specificity of recruitment to the promoter region. C, overexpression of 
SRC-1 resulted in Increased transcript levels of both Myc and MMP9 (RT-PCR analysis) in Aro cells. Increased Myc expression was also seen at the protein 
level (Western blot) but no change in secreted levels of MMP9 protein was observed (zymography). D, overexpression of Ets2 resulted in increased transcript 
levels of both Myc and MMP9 (RT-PCR analysis) in Aro cells. Increased Myc expression was also seen at the protein level (Western blot), but no change in 
secreted levels of MMP9 protein was observed (zymography). E, overexpression of Ets2 resulted in increased expression of Myc and MMP9 in an 
SRC-1-dependent manner. Myc and MMP9 mRNA expression was increased in response to Ets2 overexpression in LetR cells, but this increase was 
inhibited when the cells were concomitantly transfected with SRC-1 siRNA.
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Figure 4. SRC-1 has a functional 
role in migration and inhibits acini 
formation in LetR cells. A, SRC-1 
knockdown in LetR cells results in 
decreased migration. Histogram 
shows the mean migratory area per 
cell (urn2) ±  SEM and was 
significantly less for SRC-1 
knockdown than for nontargeting 
(nt) control (P =  0.0007). Aro cells 
are shown for comparison. (Scale 
bars, 200 (xm). Western blot 
confirms SRC-1 protein 
knockdown. B, SRC-1 knockdown 
in LetR cells results in increased 
ability to form organized 3D acini. 
Cells from 3D assay are stained 
with DAPI (blue) and phalloidin 
(red), and results are representative 
of 3 separate experiments. Aro 
cells are shown for comparison. 
(Scale bars, 20 |im). C , functional 
migratory role of SRC-1 in Al 
resistance is not dependent on 
ER a. Western blot confirms 
successful ER a  knockdown with 
siRNA. Histogram shows only a 
marginal decrease in the mean 
migratory area per cell in LetR cells 
following ER a  knockdown. These 
cells migrate significantly more 
than LetR cells with SRC-1 
knockdown 
(P =  0.0377).

colocalized, within the nuclei of the resistant tumor cells in 
comparison with the matched primary tumor (Pearson 
correlation coefficient, P = 0.0004, Fig. 5D). Consistent with 
these findings, strong Myc expression was observed in each 
of the AI-resistant tumors (representative images shown 
in Fig. 5E). Weak MMP9 expression was observed in the 
resistant tumors with no detectable staining in matched

Meier, Fig. 5C). To monitor the potential functional role of 
SRC-1 expression in these tumor samples, dual immunoflu- 
orescent staining for SRC-1 and phospho-Ets2 was carried 
out in the 3 pairs of matched primary and AI-resistant 
tumors. Expression of not only SRC-1 but also phospho-Ets2 
was higher in the resistant tumors (representative images 
shown in Fig. 5D). In addition, both proteins significantly
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Figure 5. SRC-1 significantly associates with disease recurrence in Al-treated patients. A, immunohistochemical staining of SRC-1 in tissue microarray cores, 
counterstained with hematoxylin. Examples of SRC-1 -positive and-negative primary tumors are shown. B, Kaplan-Meier estimates of disease-free survival in 
the tamoxifen- (n =  75) and A l- (n =  84) treated populations. SRC-1-positive primary tumors (red line) were significantly associated with reduced disease-free 
survival in the tamoxifen-treated population (P =  0.0326) but not significantly in the Al-treated population (P =  0.6894). C, expression of SRC-1 was increased 
and more nuclear in Al-resistant metastatic tumors than in matched primary tumors (n =  3). Representative images are shown of a matched primary breast 
tumor and a metastatic lung tumor from 1 Al-treated patient. IgG was used as a negative control, Kaplan-Meier estimates represent disease-free survival In the 
Al-treated population (n =  84) according to SRC-1 staining in the primary or resistant metastatic tumor. SRC-1 is significantly associated with reduced 
disease-free survival (P =  0.0106). (continued on follow ing page)

primary tumors (representative images shown in Fig. 5E). 
These clinical data confirm the importance of SRC-1 and its 
signaling pathway in mediating the aggressive phenotype of 
AI resistance and metastasis.

Discussion

The development of resistance to AI therapy is marked by a 
shift in cancer cell status from steroid dependent to steroid 
independent/growth factor dependent. Recent clinical studies 
of advanced breast cancer have revealed that PR expression is 
associated with increased time to AI treatment failure (21), 
suggesting that a move away from steroid signaling may mark 
the emergence of a more aggressive phenotype. Consistent 
with this, we observed an association between PR-negative 
status in the primary tumor and increased early disease 
recurrence on first-line AI treatment. Furthermore, there was 
a significant loss of steroid receptor status in metastatic tumor 
tissue in comparison with the matched primary tumor in Al-

treated patients. In the LetR cell line model, a slight increase in 
ERa expression was observed, consistent with the model of 
long-term letrozole treatment (22). However, we also observed 
an enhanced proliferative response to EGF in cells resistant to 
AIs, in comparison with the parental sensitive phenotype, 
indicating increased reliance on growth factor signaling path­
ways. The ability of Al-resistant tumors to alter their receptor 
status and increase sensitivity to growth factor pathways may 
be a consequence of increased cellular plasticity leading to the 
development of a steroid-independent phenotype.
Several cell model systems of AI resistance have been 

described in the literature, including the long-term estrogen 
deprived (LTED) model and an estrogen withdrawal breast 
cancer cell line overexpressing aromatase (UMB-ICa). Where 
the former model displays increased sensitivity to estrogen not 
observed in the UMB-ICa cells, both models show increased 
sensitivity to growth factor signaling (23, 24). In this study, 
LetR cells displayed a reduced proliferative response to steroid 
treatment and an increased sensitivity to growth factors in
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D  DAPI SRC-1 phospho-Ets2 Merge

Primary Metastasis Primary Metastasis

Figure 5. (C o n tin u e d ) D, immunofluorescent analysis of SRC-1 (green) and phospho-Ets2 (red) expression in matched primary breast and Al-resistant tumor 
samples (n =  3), counterstained with DAPI (blue). Expression of both proteins was stronger and more nuclear in the resistant samples. Representative images 
are shown (n =  3). Merged image shows that both proteins colocalize in the nucleus of these metastatic cells (white arrows). The extent of coassociation was 
measured by Pearson correlation, R(/), and is significantly higher in the resistant tissue than in the primary breast tissue (P =  0.0004, n =  3). E, 
immunohistochemical analysis of Myc and MMP9 in matched primary breast and Al-resistant tumor samples (n =  3), counterstained with hematoxylin. 
Representative images are shown. Myc was strongly expressed in resistant tumors. MMP9 was weakly expressed in resistant tumors and absent from primary 
tumors.

comparison with the parental endocrine sensitive cells. 
Similar elevations in growth factor signaling activity have 
previously been reported in models of resistance to both 
letrozole and anastrozole (25). Recently, Chen reported that 
growth factor/signal transduction pathways are upregulated 
after ERa-dependent pathways are suppressed by letrozole, 
anastrozole, and exemestane, and ERa can then be activated 
through different cross-talk mechanisms (26). Increased tumor 
plasticity occurs in endocrine-resistant breast cancer relative 
to endocrine-sensitive tumors (11). This is evident in our model 
of AI resistance, where a decrease in cellular differentiation and 
a concomitant increase in cell migration were observed. More­
over, alterations in migratory patterns were accompanied by 
increased activity of the metalloproteinase MMP9. These 
observations of a more aggressive phenotype are consistent 
with increased levels of invasion in Al-resistant models 
reported by Belosay and colleagues (22).
Aberrant expression of the pl60 steroid receptor coac­

tivators SRC-1 and SRC-3 (AIB1) in patients has been 
associated with resistance to endocrine therapies and the 
development of tumor recurrence (6-8, 27, 28). Unlike

other oncogenes, recent studies provide evidence of a 
specific role for SRC-1 in the development of metastasis 
(29, 30). Of interest, knockdown of SRC-1 can decrease cell 
proliferation, restore differentiation, and decrease migra­
tion in tamoxifen-resistant breast cancer cells (11). A 
steroid-independent role for SRC-1 has been established, 
and the coactivator has been shown to interact with 
transcription factors running downstream of an activated 
MAPK pathway. This group and others have reported 
functional interactions between SRC-1 and the Ets family 
of transcription factors, Ets2 and PEA3, and shown that 
this relationship is important in tumor progression and 
the development of metastasis (9, 10, 31). In the ER- 
negative PyMT SRC-1 knockout mouse model, SRC-1, 
though not required for mammary tumor initiation, is 
essential for the development of metastatic disease. This 
occurs in part through SRC-l-mediated TWIST suppres­
sing luminal markers such as E-cadherin and (3-catenin 
during epithelial-mesenchymal transition (10). Here, we 
show that SRC-1 can use Ets2 to regulate the production 
of Myc and MMP9. The production of both the oncogene
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Table 1. Associations of SRC-1 with clinicopathologic variables using Fisher exact test in endocrine, AI-, 
and tamoxifen-treated patient populations
Parameter Endocrine-treated population AI (N =  84) Tamoxifen [N = 75)

N =  141 SRC-1 % P SRC-1 % P SRC-1 % P

PR status

positive 106 61.3 57.4 62.5

negative 35 62.9 1.000 43.5 0.328 78.9 0.263

Her2 status

positive 26 65.4 46.7 70.6

negative 115 60.9 0.834 55.1 0.659 65.5 1.000

Recurrence

positive 23 87.0 66.7 93.3

negative 118 56.8 0.009 52.0 0.494 60.0 0.015

Nodal status

positive 71 67.6 79.5 70.7

negative 68 55.9 0.167 50.0 0.658 61.8 0.466

Tumor grade 

I 21 57.1 50.0 66.7

II 79 63.3 56.5 65.1

III 41 61.0 0.861 50.0 0.818 70.0 0.943

Tumor stage 

I 56 53.6 41.9 62.1

II 64 57.8 50.0 63.9

III 18 94.4 100.0 85.7

IV 3 100.0 0.003 — 0.001 100.0 0.513

NOTE: The percentage o f SRC-1 % patients within each parameter is listed. Parameters include recurrence (positive) or no recurrence 

(negative); node positive (1 or more nodes positive) or negative (no positive nodes).

and metalloproteinase was dysregulated in AI resistance, 
where treatment of the resistant cells with letrozole failed 
to prevent recruitment of SRC-1 and Ets2 to the promoters 
of Myc and MMP9 or inhibit their production. Moreover, 
at a functional level, knockdown of SRC-1 restored cellular 
differentiation and reduced cell migration in the Al-resis- 
tant cells. In line with SRC-1 mediating the metastatic 
phenotype through steroid-independent mechanisms, 
knockdown of ERa had no significant effect on Al-resis­
tant cell migration.
Expression of SRC-1 in the primary tumor is an inde­

pendent predictor of poor response to tamoxifen treatment 
in breast cancer patients (6, 8). Despite this, in patients 
treated first line with AI therapies, SRC-1 was not a 
significant predictor of response to treatment, suggesting 
that different mechanisms may be important in the initi­
ation of resistance to tamoxifen in comparison with AI 
therapy. From our patient population that suffered a tumor 
recurrence on AI treatment, two thirds expressed SRC-1 in 
the primary tumor. Those patients whose primary tumor 
was negative for SRC-1, however, all had an SRC-l-positive 
tumor recurrence. This switch from SRC-1 negative to 
positive in the recurrent tissue echoes the loss of steroid 
receptor status that can be observed in Al-resistant 
patients. Furthermore, a significant increase in functional

associations between the coactivator and Ets2, together 
with an increase in Myc and MMP9, were also found in the 
recurrent tumor compared with the matched primary 
patient tumor tissue. Taken together, these data indicate 
the significance of SRC-1 in advancing the metastatic 
phenotype in Al-resistant patients.
Increased tumor plasticity can enable endocrine- 

sensitive tumors to adapt to therapy through the promo­
tion of growth factor signaling. In this study, we provide 
evidence that SRC-1 can play a significant role in driving 
Al-related tumor metastasis through the regulation of 
dedifferentiation and promigratory pathways. Understand­
ing the mechanisms of how tumors can turn off and on key 
signaling networks in response to AI treatment will enable 
new strategies to be developed to detect and treat meta­
static disease.
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