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A b s t r a c t

The intestinal epithelium is a monolayer of cells that lines the entire surface of 

the gastrointestinal tract from mouth to anus. A key function of the intestinal 

epithelium is the absorption and secretion of fluids and electrolytes. The 

intestinal epithelium is primarily an absorptive tissue, but under normal 

conditions secretion also occurs. In conditions of disease the delicate balance 

between absorption and secretion can become dysregulated leading to the 

onset of diarrhoea. Chloride (Cl ) secretion, which is the primary driving force 

for intestinal fluid secretion, is highly dependent on the availability of oxygen 

(0 2) for generation of cellular energy. Hypoxia inducible factor (HIF) 

hydroxylases are the primary intracellular sensors of 0 2 availability. While 

recent studies have revealed that hydroxylases are important regulators of 

intestinal epithelial barrier function, there is still little known of their role in 

regulating epithelial fluid and electrolyte transport. This thesis set out to 

address this gap in our knowledge. These studies show that inhibition of 

hydroxylases exerts profound antisecretory effects in vitro  and in vivo. The 

antisecretory effect of hydroxylase inhibition occurs via specific inhibition of the 

activity of epithelial sodium potassium adenosine triphosphatase (Na+/K+- 

ATPase) pumps, the energy-dependent step of the Cl" secretory process. 

Investigations into potential mechanisms involved in the antisécretory actions 

of hydroxylase inhibition led to the identification of Modulator of Na+/K+- 

ATPase (MONaKA), a negative regulator of Na+/K+-ATPase function which, upon 

hydroxylase inhibition, displays increased expression at the basolateral 

membrane and forms part of a multimeric complex with Factor Inhibiting HIF 

(FIH-1) and the Na+/K+-ATPase itself. We propose that this complex acts as a 

molecular switch that, upon hydroxylase inhibition, downregulates epithelial 

secretory function. Our data have important implications for our understanding
'-v

of how epithelial fluid and electrolyte transport can be regulated under 

physiological and pathophysiological conditions and suggest that by virtue of



their ability to alter epithelial transport, hydroxylases may be good targets for 

the development of new drugs to treat diarrhoeal diseases.
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C h a p t e r  1

G e n e r a l  I n t r o d u c t i o n
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1 - 0  S t a t e m e n t  o f  P u r p o s e

Intestinal disorders associated with diarrhoea are common and represent a 

significant social and economic problem globally. However, therapeutic options 

for treatment of diarrhoeal diseases are limited and new, more effective drugs 

for their treatment are constantly being sought. Although the epithelial 

transport processes that drive fluid movement in the intestine represent 

excellent targets for the development of new anti-diarrhoeal drugs, there are 

few therapeutic options that act in this way. This Is largely due to our 

incomplete understanding of the molecular mechanisms by which epithelial 

fluid and electrolyte transport are regulated. This thesis sets out to address this 

area of research by studying the role of a family of enzymes, known as 

hydroxylases, in regulating epithelial transport function and the possibility that 

these enzymes could be targeted for treatment of diarrhoeal diseases. The 

following General Introduction aims to set these studies in context.
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1-1 The Gastrointestinal Tract

1 -1 .1  I n t r o d u c t io n

The gastrointestinal (Gl) tract represents the largest mucosal membrane surface 

in the human body. The Gl tract can also be viewed as a complex system of 

glands, tissues and organs that work in a concerted fashion to  facilitate food 

intake and discharge of waste in a safe manner. It serves four main functions; 

namely mixing and transporting of food, secretion of digestive enzymes, 

electrolytes and fluids, digestion and absorption (Moffett et a/., 1993). Ingested 

food is digested by mechanical, chemical and biological means. Mechanically 

this involves mastication, swallowing, peristalsis and defecation (Reed and 

Wickham, 2009). Biochemically, the digestive process involves the breakdown 

of food into simple building blocks, which can then be absorbed by the 

epithelium. Digestion starts in the mouth where enzymes, such as a  amylase, 

initiate the breakdown of complex to simple carbohydrates (Kaczmarek and 

Rosenmund, 1977). Hydrochloric acid (HCI) secretion by parietal cells of the 

stomach facilitates reduction of food into a broth-like material called chyme. 

HCI also denatures proteins and nucleic acids, transforms the inactive precursor 

forms of secreted enzymes into their active forms and destroys ingested 

bacteria. Digested food is transported mechanically through the intestine by 

the peristaltic motion of the muscularis and as it moves through the small 

intestine and colon, nutrients, electrolytes and fluids are continually absorbed 

and secreted across the epithelial layer. Since it is continuously exposed to a 

wide range of noxious substances and pathogens, the Gl tract also plays an 

important role in immune surveillance and the intestinal immune system is the 

first line of host defence against mucosal microbial pathogens. Mucosal barrier 

function is further enhanced by a biologically active lubricant layer of mucus, 

composed of mucin secretions from goblet cells, which forms a crucial 

physiological barrier between the intestinal mucosa and the luminal contents.
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1-1.2 Gross Anatomy
The anatomy of the Gl tract is shown in Figure 1-1.

Salivary Glands
Parotid
Submandibular 
Sublingual

Pharynx
Tongue

Liver

Gallbladder

Duodenum

Common 
bile duct

Colon

Transverse colon 

Ascending colon 

Descending colon-

Cecum —  

Appendix

Stomach

Pancreatic
duct

Ileum 
(small intestine)

Anus

Figure 1-1 Anatom y o f the gastrointestinal tract. The Gl tract is comprised o f the 

mouth, pharynx, salivary glands, oesophagus, stomach, pancreas, liver, gall bladder, 

small intestine, colon, rectum and the anus and intrinsic to  its function is the splanchnic 

circulation and the enteric nervous system. This figure was downloaded from  

W ikimedia.org w ithou t any conditions from  the author.
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The first fluid with which ingested food comes into contact is saliva. 

Components of saliva include enzymes for digestion, growth factors, vasoactive 

serine proteases and regulatory peptides, to name but a few. Salivary secretion 

is promoted by neurohormonal agonists, such as acetylcholine (ACh), vasoactive 

intestinal polypeptide (VIP), norepinephrine, substance P, neurotensin and 

epidermal growth factor (EGF), to name but a few (He et al., 1989; Ship et al., 

1990; Buck and Burcher, 1985; Turner and Yu, 1991; Jaeger and Lamar, 1992). 

These mediators increase second messengers within the cells and activate 

mechanisms responsible for protein exocytosis and fluid secretion. These 

secretions are mixed with food and masticated in the oral cavity and are then 

transported to the stomach via the oesophagus (Johnson, 1994).

1-1.2.2  S tom ach

The stomach lies below the diaphragm and is surrounded by several layers of 

smooth muscle. Goblet cells of the mucosa secrete mucus which helps form a 

protective layer over the mucosa, whereas parietal cells secrete HCI. Other 

cells, such as chief cells produce lipases which help digest dietary fats and which 

also require an acid environment for activity (Gargouri et a l,  1989). The 

activation of the gastric pump or parietal H+/K+-ATPase is regulated by gastrin, 

ACh and histamine. Gastrin is released by G cells in the antrum upon the 

presence of food and amino acids and both gastrin and ACh then stimulate the 

release of histamine from enterochromaffin-like (ECL) cells in the fundic wall to 

stimulate activation of H+/K+-ATPase pumps (Walsh, 1988; Berglindh, 1984; 

Black et a l,  1972). When food exits the stomach, somatostatin inhibits acid 

secretion by preventing histamine release from ECL cells (Prinz et al., 1993). 

From here, the chyme is released into the duodenum via the pyloric sphincter, a 

structure comprised of concentrated smooth muscle.

1-1.2.1 Mouth
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The liver can be considered an accessory organ of the gastrointestinal tract and 

has numerous functions. It produces bile, it aids in metabolism and storage of 

nutrients, minerals and vitamins and it synthesises and deactivates clotting 

factors, to name but a few functions. Hepatocytes are the primary cell type of 

the liver and they function to secrete lipids, bile acids and cholesterol into the 

canaliculi and ultimately via the bile ducts, into the duodenum. The liver has 2 

blood supplies; the hepatic artery which supplies 0 2 for metabolism and the 

hepatic portal vein which transports nutrient-rich blood from the intestine 

(Reed and Wickham, 2009):

1 -1.2.4  Gall b la d d e r

The gallbladder is essentially a storage unit for bile, where it is kept until it is 

required for digestion. During overnight fasting about half of the bile produced 

by the liver enters the gallbladder (van Berge Henegouwen and Hofmann, 

1978). The sphincter of Oddi regulates the entry and release of bile into the 

gallbladder and is hormonally regulated. Upon ingestion of food, bile exits the 

gallbladder into the duodenum. Bile drains back into the gallbladder during 

fasting (Johnson, 1994).

1-1.2.5 Pancreas

The pancreas is a mixed endocrine-exocrine gland, with the exocrine portion 

accounting for approximately 85 % of the organ. The exocrine pancreas is 

composed of acinar cells which produce alkaline secretions of proteins, 

electrolytes and fluid, which are drained by the main pancreatic duct into the 

duodenum (Scheele, 1980). Proteins produced in the pancreas are important 

for digestion, such as active enteropeptidase, which converts inactive 

trypsinogen to active trypsin which, in turn, activates other digestive zymogens 

in the lumen of the gut (Stevenson et a/., 1986). In fact, the pancreas produces

1-1.2.3 Liver
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more protein per gram of tissue than any other organ, with up to 20 g protein 

and 2.5 litres of fluid being secreted in 24 hours (Johnson, 1994).

1-1.2.6  Sm all In te s tin e

The majority of digestion and absorption occurs in the small intestine. The 

small intestine is over 7 metres long in adults, but the surface area for 

absorption is greatly increased by the abundance of villi. Up to 9 litres of fluid 

cross the intestinal epithelium every day, with up to 78 % of this being absorbed 

by the small intestine (Yamada and Alpers, 2009). The small intestine is 

composed of the duodenum, the jejunum, and the ileum. The duodenum 

receives the highly acidic chyme from the stomach, and secretions from the 

liver and the pancreas which aid in digestion of the chyme. Approximately 10 % 

of the epithelial cells of the duodenum are mucus-secreting goblet cells, and 

similar to the stomach, the surface cells of the duodenal epithelium secrete 

bicarbonate (HCO3 ) into the mucus layer to protect against the acidic chyme 

(Johnson, 1994). The duodenal epithelium also secretes enteropeptidase, a 

protein that cleaves pancreatic enzymes into active forms (Stevenson et al., 

1986). The jejunum which joins the duodenum at the Ligament of Treitz, is the 

next section of the intestine. The lumen of the jejunum has a pH of 7-9, and 

contains very few Peyer's patches or Brunners Glands in comparison to the 

duodenum and ileum, respectively. Absorption of nutrients and fluids is the 

primary function of the jejunum. The ileum follows the jejunum, and here the 

villi absorb the nutrients produced by digestion, and transport them via the 

hepatic portal vein to the liver. The ileum is distinguishable from the jejunum 

by the abundance of Peyer's patches, accumulations of lymphoid follicles. The 

epithelium covering the follicles consists of microfold cells (M cells), which are 

specialised for the uptake and transcytosis of macromolecules and 

microorganisms (Miller et al., 2007; Corr et al., 2008). Following transcytosis, 

antigens are presented to the underlying lymphoid aggregates (Hathaway and 

Kraehenbuhl, 2000). M cells have thus been exploited for the development of
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vaccines, and are of great interest in diseases with an immunological 

component, such as Crohn's disease (Gullberg and Soderholm, 2006). The ileum 

ends at the ileocecal valve, which controls the entry of the small intestinal 

contents into the large intestine.

1-1.2.7 Large In te s tin e

The caecum represents the beginning of the colon and is from where the 

appendix protrudes. The appendix has no digestive function and consists 

mostly of lymphoid tissue. It is thought to be a vestigial organ, but more recent 

research has implicated it as being an important component of mucosal 

immune function that may have become defunct in industrialised societies due 

to better hygiene practices (McCabe, 1912; Darwin, 1871; Zahid, 2004; Laurin et 

al., 2011). The colon can be separated into 4 separate anatomical areas 

namely: the ascending, the transverse, the descending, and the sigmoid colon. 

The main function of the colon is to absorb salt and water from the faeces, and 

it cárries out these functions in a spatially distinct manner, displaying segmental 

heterogeneity in its ion transporting properties. By the time the faeces reaches 

the sigmoid colon it is solid, and then passes into the rectum.

1-1.2.8 S tru c tu re  o f  th e  g a s tro in te s tin a l tra c t

The intestine is composed of 4 main layers: the serosa, muscularis, submucosa,

and mucosa (Figure 1-2). The serosa is the outermost layer of the Gl tract and

is essentially comprised of connective tissue that has a surface of mesothelium.

Adjacent to the serosa is the muscularis externa. In the mouth and pharynx this

layer is composed of striated muscle cells that aid in swallowing, while in the

rest of the Gl tract it consists of circular and longitudinal muscle layers that aid

in peristalsis of food throughout the tract (Reed and Wickham, 2009). The

submucosa lies inside the muscularis externa and is a connective tissue that

contains blood vessels, lymphatic vessels, submucosal glands, and the

Meissner's plexus. Inside the submucosa lies the mucosa, which consists of the

18



epithelium, the lamina propria, and the muscularis mucosa. The muscularis 

mucosa is a thin layer of smooth muscle that separates the mucosa from the 

submucosa and serves to keep the mucosal surface and underlying glands in a 

constant state of motion. This layer aids in the expulsion of substances from 

the crypts and in the absorption of nutrients from the lumen. The lamina 

propria is composed of connective tissue and serves several key functions, such 

as providing the epithelium with blood and lymphatic vessels, thereby 

delivering nutrients to, and transporting nutrients from, the lumen. The lamina 

propria is also infiltrated with lymphocytes and lymph nodules, such as the 

Peyer's patches. The intestinal epithelium is described in detail in the following 

section.

SER O SA
Longitudinal muscle 

Circular muscle

SU BM U CO SA  
Muscularis mucosa 
Lamina propria

M U SCU LA R IS EXTER N A

M UCOSA

Blood vessels

Epithelium

Figure 1-2 Cross section of the intestine. The intestine is composed of 4 main layers: 

the serosa, muscularis, submucosa, and mucosa. The innermost layer is the epithelium, 

which performs the barrier and transporting functions of the intestine, and which is of 

primary interest in this thesis.
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1 - 2  I n t e s t i n a l  E p i t h e l i u m

1 -2 .1  I n t r o d u c t io n

Epithelial cells serve to exchange substances between the body and the external 

environment, or between Internal body compartments. They surround organs 

that control fluid homeostasis and thus express a wide variety of proteins that 

enable the transport of nutrients, fluids and electrolytes between 

compartments; Epithelial cells from different parts of the intestine have 

different properties and can be arranged in a "leaky" or "non leaky" fashion. 

They are joined to one another by a dynamic arrangement of extracellular and 

transmembrane spanning proteins, known as the zonula occludens, or tight 

junctions. Epithelial cells have an added structural rigidity in the form of a 

basement membrane (Wills et a i,  1996). The epithelium exists as a monolayer 

of cells lining the entire surface of the gastrointestinal tract from mouth to 

anus. It performs several key functions, including absorption of nutrients, 

acting as a barrier to infection, and absorbing and secreting fluids and 

electrolytes. Given that the Gl tract performs different functions along its 

length, it is not surprising that the epithelial cells in different areas can have 

different characteristics. Such different characteristics arise from differential 

expression of proteins within the cells. Another key distinguishing feature of 

epithelial cells is their ability to specifically target transport proteins to different 

poles of the cell, or in other words, to polarise. This polarisation allows 

epithelial cells to perform vectorial transport of ions and nutrients across the 

barrier to the appropriate compartment.

1 -2 .2  F u n c t io n

The functions of the intestinal epithelium are essentially 3-fold. Firstly, 

absorption of nutrients is a critical function of the epithelium. In order to 

facilitate this, the intestinal epithelium expresses several transport proteins that
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are capable of absorbing carbohydrates, amino acids, peptides and proteins, 

lipids, minerals, and vitamins. Carbohydrates, which account for up to 50 % of 

the caloric intake of Western diets are almost completely hydrolysed by the 

salivary and pancreatic enzyme, a  amylase (Johnson, 1994). Products of 

a  amylase are further degraded by brush border expressed glucosidases, such 

as glucoamylase, isomaltase, and sucrase, into monosaccharides. These 

molecules can then be transported across the cell by transporters, such as SGLT- 

1 in the case of D-glucose (Goodman, 2010). Protein breakdown into amino 

acids is more complicated given that there are 20 amino acids. Proteolysis 

begins in the stomach by pepsin, and is followed by pancreatic enzymatic 

digestion in the duodenum, which results in the production of approximately 40 

% free amino acids and 60 % peptides (Johnson, 1994). The unprocessed 

peptides can be further processed by peptidases, or they can be absorbed intact 

as di-and tri-peptides by active transport systems, such as peptide transporter 1 

(PepTl) (Daniel, 2004). However, given the widely different physicochemical 

properties of the 20 amino acids, and the 8000 chemically distinct combinations 

of tri-peptides that can be formed by protein digestion, a variety of transporters 

are required for their absorption.

The second function of the intestinal epithelium is to act as a barrier to prevent 

the entry of harmful substances and microbial infection. This is a crucial role, 

when one considers that there are approximately 10 times more bacteria in the 

healthy human gut than there are cells in the entire body (Savage, 1977). Given 

that up to 60 % of the dry weight of faeces is composed of bacteria (Guarner 

and Malagelada, 2003), it is evident that the intestinal mucosa is constantly 

exposed to luminal antigens. Being the first layer of defence, the epithelium 

must be able to sense and respond appropriately to these luminal antigens, 

without over-reacting.

The third main function of the intestinal epithelium is to absorb and secrete 

fluids and electrolytes. As already mentioned, absorption occurs primarily in
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the small Intestine. Fluid secretion is also a very important function of the 

intestinal epithelium which allows mixing and movement of the luminal 

contents throughout the length of the Glv tract and which lubricates and 

protects the delicate epithelial layer. However, the finely-tuned balance 

between absorption and secretion can become dysregulated in disease, leading 

to the onset of diarrhoea, a primary symptom of several infectious and non- 

infectious Gl disorders such as inflammatory bowel disease (IBD), irritable bowel 

syndrome (IBS), iatrogenic diarrhoeas and bile acid malabsorption.

1 -2 .3  S t r u c tu r e

A key feature of the intestinal epithelium is its ability to form an electrically 

tight monolayer, or a barrier, that is selectively permeable to molecules as small 

as ions and water. As already mentioned, a second key feature of epithelial 

cells is their ability to polarise transport protein expression. This is essential for 

the different functions of the epithelium throughout the Gl tract. A third key 

feature of the structure of epithelial cells is their plasticity. These cells change 

their phenotype from secretory to absorptive cells as they migrate from the 

crypt base to surface in the colon, or the villus in the small intestine (Geibel, 

2005). A fourth key structural feature of the epithelium is its ability to maintain 

its barrier function during the sloughing process. With the entire epithelium 

being replaced approximately every 7 days, a huge amount of cell loss occurs on 

a continuous basis. Despite this, the epithelium remains tight, and recent 

studies suggest that mechanisms underlying this phenomenon involve 

cytoskeletal rearrangements in cells adjacent to apoptotic cells that prevent 

luminal contents breaching the barrier (Watson et al., 2009).

1-2.3.1 T ig h t ju n c tio n s

For the epithelial barrier to remain functional the paracellular, or shunt 

pathway, must be tightly regulated. This is accomplished by the zonula
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occludens, or tight junctions. Tight junction physiology is an area of epithelial 

research that is incredibly dynamic and interesting. Great advances in 

understanding the molecular biology of these structures have been made in the 

recent past and are discussed in depth in numerous reviews (Shen et al., 2011; 

Tsukita et al., 2001; Matter and Baida, 2003). Tight junction formation is a key 

step in the segregation of apical and basolateral compartments in cells. Once 

the endogenous extracellular matrix has been formed, the tight junctions 

become restricted to the apicolateral membrane boundary where they form an 

intramembranous fence to prevent the mixing of domain-specific proteins and 

lipids (Yeaman et al., 1999). Importantly, we now know that aberrant tight 

junction function is implicated in numerous pathophysiological conditions, such 

as breast cancer (Brennan et al., 2010; McSherry et al., 2011) and IBD (Edelblum 

and Turner, 2009).

c

Figure 1-3 The apical junctional complex, a) Transmission electron micrograph of 

apical junctional complexes between two villous enterocytes. The tight junction (TJ) is 

just below the microvilli (Mv), with the adherens junction (AJ) located below this and 

the desmosomes (D) further below, b) Freeze-fracture electron micrograph of a. c) 

Schematic representation of interactions between the cytoskeleton, zona occludens-1 

(ZO-1), claudins, tight junction-associated marvel proteins (t a m p s ), junctional 

adhesion molecule (JAM), and the coxsackie adenovirus receptor (CAR). This figure is 

adapted from (Shen et al., 2011).

23



As seen in Figure 1-3 tight junctions are located within apical junctional 

complexes. The first tight junction associated protein, zonula occludens-1 (ZO- 

1) was identified in 1986, with the second, cingulin, being identified the 

following year (Stevenson et al., 1986; Citi et al., 1988). However, it was the 

discovery of the tetraspanning protein, occludin, in 1993 that confirmed the 

hypothesis that integral membrane proteins are present in tight junctions 

(Furuse et a!., 1993). Somewhat surprisingly however, occludin knockout 

animals were found to have normal intestinal epithelial physiology, thus leading 

the authors to conclude that occludin is not required for the formation of tight 

junction strands (Saitou et al., 2000). Since these early discoveries, other 

trans'membrane spanning proteins have been discovered in tight junctions. 

Importantly, a large family of claudin proteins has been identified and have 

subsequently been associated with ion transport across the tight junction 

(Anderson and Van Itallie, 2009; Weber et al., 2010). Research has shown that 

expression of different claudins change the electrical properties of epithelial 

monolayers, therefore, it has been suggested that claudins determine the tight 

junction barrier properties (Van Itallie and Anderson, 2004). Other research has 

more directly demonstrated that expression of specific claudin family members 

confers specific ion selectivity to epithelial monolayers (Van Itallie et al., 2001). 

In summary, tight junctions are highly dynamic areas of cell-to-cell contact that 

maintain adhesion of epithelial cells to each other and which regulate the 

passage of molecules, ions and fluid across the epithelial layer.
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1 - 3  E p i t h e l i a l  i o n  t r a n s p o r t

1 -3 .1  In t r o d u c t io n

One of the primary functions of the intestinal epithelium is to transport 

electrolytes and fluids to and from the lumen. Intestinal fluid movement is 

driven by osmotic gradients that are, in turn, established by active ion transport 

across the epithelium. Fluid absorption normally predominates and is 

promoted by Na+ absorption, while fluid secretion is driven predominantly by Cl‘ 

and HC03" secretion. In normal circumstances, a fine balance exists between 

fluid absorption and secretion which favours absorption of the 9 litres of fluid 

that enters the intestine every day (Yamada and Alpers, 2009). However, this 

balance can become disrupted in conditions of disease and can result in the 

clinical manifestation of diarrhoea. Chronic diarrhoea is a primary symptom of 

several gastrointestinal disorders, including IBD, diarrhoea-predominant IBS, 

iatrogenic diarrhoeas, such as those induced by chemotherapy, microscopic 

colitis and bile acid mal-absorption (Carter et al., 2004; Maroun et al., 2007; 

Oelkers et al., 1997; Hofmann, 2009). Often, one of the main therapeutic goals 

of treating patients with these intestinal disorders is to treat the primary 

symptoms, including diarrhoea (Sohrabpour et al., 2010). Ion transport in the 

colon is facilitated by several transport proteins that display considerable 

intrinsic segmental heterogeneity (Sandle et al., 1986; Sandle, 1989). Transport 

is stimulated by multiple factors, including luminal and systemic influences, such 

as hormones and neuro-immune agonists, which can act as either 

secretagogues or absorptagogues. Secretagogues, such as ACh and VIP, 

typically act by binding to their cognate receptors on intestinal epithelial cells to 

stimulate the production of intracellular second messengers, such as Ca2+ and 

cAMP, respectively. In turn, second messenger generation drives Cl* secretion 

from the cell, through the concerted action of several ion transport proteins on 

the cell membrane. The extracellular accumulation of Cl' then promotes 

paracellular Na+ transport and fluid movement by osmosis (Murek et al., 2010).
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Similarly, Na+ absorption across the intestinal epithelium is facilitated by several 

transport proteins that also show considerable intrinsic segmental 

heterogeneity (Sandle et a/., 1986; Sandle, 1989). Luminal influences on 

epithelial ion transport processes are diverse and range from paracrine 

stimulation, such as the release of gastrin by G cells in the stomach causing the 

release of histamine from ECL cells and activation of H+/K+-ATPase pumps, to 

effects of the intestinal micro-flora and their by-products(Walsh, 1988; 

Berglindh, 1984; Black et al., 1972). A good example of luminal factors that 

regulate transport are bile acids. These molecules enter the lumen of the 

duodenum after ingestion of food where they emulsify fats and aid in their 

digestion. Most bile acids are recycled from the small intestine back to the liver, 

but with each cycle of the enterohepatic circulation, a small percentage enters 

into the colon. Here, the bile acids can alter intestinal epithelial transport 

processes (Keating et a/., 2009; Keating and Keely, 2009). However, they can 

also be metabolised by the intestinal micro-flora, with the resulting secondary 

bile acids having distinct effects on ion transport (Edenharder and Knaflic, 1981; 

Lepercq et al., 2004; Kelly et al., 2009b).

The epithelial transport proteins that facilitate the movement of ions across 

epithelial cells comprise a diverse array of protein families. These proteins can 

be classified according to certain characteristics. ATPases, as their name 

suggests, cleave ATP to pump ions across membranes, ion channels allow 

passive movement of ions down electrochemical gradients, and exchangers 

transport ions of equal charge in opposite directions across the membrane. The 

diversity of ion transport proteins can be simplified by their organisation into 

categories, as outlined in the next section.
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1 - 4  E p i t h e l i a l  t r a n s p o r t  p r o t e i n s

Ion transport proteins in the intestinal epithelium perform many tasks from pH 

regulation, to volume regulation, to  vectorial fluid absorption and secretion.

1 -4 .1  A T P a s e s

ATPases are membrane-bound ion transport proteins that utilise a molecule of 

ATP during the transport process. There are many different forms of ATPases 

that have been classified as F-, V-, A-, P- and E-ATPases based on functional 

differences. ATPases generate membrane potentials and are thus critical for all 

ion transport processes across the intestinal epithelium.

1-4.1.1 Na+/K +-ATPase

The Na+/K+-ATPase is known as a P-type ATPase because it catalyses auto- 

Phosphorylation of a conserved aspartate residue within the pump. The 

importance of the Na+/K+-ATPase is such that it is expressed on the membrane 

of every mammalian cell where it creates a separation of charge across the 

membrane (Kaplan, 2002). The P-type ATPases all interconvert between El and 

E2 conformations, which are essentially conformations at which the pump has 

greater affinities for different ions (Morth et al., 2011). This P-type ATPase 

drives both K+ and Na+ against their electrochemical gradients, and cleaves ATP 

in the process. Three Na+ ions are extruded from the cell, while 2 K+ ions are 

imported by the pump for each ATP molecule cleaved. This non-equivalent 

transport is electrogenic and leads to the generation of a transmembrane 

electrical potential of approximately -70 mV, at which point the extrusion of K+ 

and the influx of Na+ are at equal rates.

The Na+/K+-ATPase provides the driving force for intestinal Cl secretion and Na+ 

absorption and is basolaterally located (Skou, 1998; Kaplan, 2002). With
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respect to the Cl' secretory pathway, the extrusion of Na+ from the cell creates 

an electrochemical driving force for entry of Na+ through the basolateral 

Na+/K+/ 2Cr co-transporter (NKCC1), while in absorptive cells, the pump creates 

the driving force for apical Na+ entry through ENaC and SGLT1. Na+/K+-ATPase 

pumps exist as heterodimers in the plasma membrane, with one a  and one P 

subunit (Craig and Kyte, 1980; Horowitz et a i,  1990). There are several 

isoforms of the Na+/K+-ATPase which are comprised of different a  and 

P subunits. 4 a  and 3 p subunits are known to exist and in the intestine the 

heterodimer formed is an a ip i heterodimer (Morth et a/., 2011). Resolution of 

the crystal structure of the Na+/K+-ATPase in the recent past however, also 

revealed the presence of Na+/K+-ATPase y subunits in renal extracts (Morth et 

a/., 2007). The catalytic a  subunit contains 10 transmembrane domains that 

contain binding sites for ATP, Na+, K+, cardiac glycosides and the 

phosphorylation site for catalytic activity (Lutsenko and Kaplan, 1995). The p 

subunit has a single membrane spanning domain and interacts with the a 

subunit via the p ectodomain (Fambrough et ai., 1994). Much research over the 

years has shown that there are multiple mechanisms by which the pump can be 

regulated, for example by protein kinases, such as PKA and PKC (Begum et a/., 

1994; Feraille et a/., 2000). Its regulation under hypoxic conditions has also 

been well documented and is discussed in more detail in ' Chapter 4. 

Furthermore, additional studies show that Na+/K+-ATPase pumps can exist in a 

complex of multiple proteins, allowing for tissue-specific regulation (Garty and , 

Karlish, 2006; Yoon et a i,  2006). Again, this is discussed in greater detail in 

Chapter 5. Thus, our knowledge of the structure of the IMa+/K+-ATPase is 

constantly evolving, but remains incompletely understood. Na+/K+-ATPase 

regulation is multifaceted, and thus has potential to be exploited for 

therapeutic intervention.
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Ion channels are pore-forming proteins that exist in the plasma membrane and 

help to create and maintain voltage gradients created by ATPases. Ion channels 

allow for the passive transport of ions down their electrochemical gradients, but 

they may still require ATP for functionality, or for gating. Ion channels may be 

voltage, ligand, or ATP-gated.

1-4.2.1 ENaC

The epithelial sodium channel (ENaC) is a hetero-multimeric protein consisting 

of at least 3 subunits, namely a, p and y, which together form an active channel 

with a stoichiometry of 2a : P : y (Rossier et a l,  2002; Firsov et a l,  1998). ENaC 

is expressed in aldosterone-responsive epithelia and is highly expressed in the 

distal colon (Due et a l,  1994; Bubien, 2010; Garty and Palmer, 1997). ENaC is 

reported to be the rate-limiting step of electrogenic Na+ absorption and 

prevents Na+ loss in the stool. The channel has heightened importance in 

conditions of disease, or when dietary sodium intake is low and aldosterone 

levels are high (Rossier et a l,  2002; Schultheis et a l,  1998; Kunzelmann and 

Mall, 2002; Sandle, 1998). ENaC is also important in the kidney where it plays 

an important role in the regulation of blood pressure and fluid homeostasis 

(Takahashi et a l,  2011; Bubien, 2010; Garty and Palmer, 1997). Some 

researchers have queried the, role that ENaC plays in the intestine, suggesting 

that there is redundancy of its function due to the presence of other Na+ 

absorbing proteins, such as NHEs and SGLTs (Hummler and Horisberger, 1999). 

The activity of ENaC is regulated in a tissue-specific manner, and in the colon it 

is regulated by mineralocorticoid and glucocorticoid-induced upregulation of p 

and y ENaC (Epple et a l,  2000). Regulation of ENaC activity is complex and 

involves serine proteases, protein kinases, and cytokines, amongst others 

(Rossier and Stutts, 2009; Diakov and Korbmacher, 2004; Amasheh et a l,  2004). 

More recent research has shown the existence of a 8 subunit of the human

1-4.2 Channels
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ENaC, which when over expressed, dramatically increases ENaC activity 

(Haerteis et al., 2009).

1-4.2.2 A p ica l Cl“ channe ls

Cl" secretion in the colon requires the concerted activities of all the transport 

proteins that comprise the Cl" secretory pathway. Cl" enters epithelial cells 

through basolateral NKCC1 co-transporters, and exits to the lumen through 

apical Cl' channels. There are several types of apical Cl' channels present on the 

apical membrane of intestinal epithelial cells. Second messengers, such as Ca2+ 

and cAMP, can orchestrate apical Cl" secretion through different Cl" channels, 

however there does appear to be some redundancy with regard to Ca2+- 

stimulated activation of the cAMP-regulated cystic fibrosis transmembrane 

conductance regulator (CFTR) (Namkung et al., 2010).

CFTR

CFTR is a cAMP activated Cl" channel and belongs to the family of ATP-binding

cassette (ABC) transporters (Riordan et a l,  1989). While CFTR functions as an

ion transport protein on the apical membrane of epithelia, it has also been

proposed to play roles in vesicular trafficking and acidification of organelles

(Bradbury, 1999). It is composed of five domains: two membrane-spanning

domains, two nucleotide-binding domains that bind ATP and regulate gating of

the channel, and a regulatory (R) domain, the phosphorylation of which

determines channel activity (Sheppard and Welsh, 1999). Stimulation of CFTR

by cAMP occurs by at least 2 mechanisms. Firstly, it is regulated by

phosphorylation. For example, cAMP stimulates cAMP-dependent protein

kinase (PKA)-mediated phosphorylation and activation of CFTR channels in the

plasma membrane (Cheng et a l,  1991; Tabcharani et al., 1991). It is also known

that PKC and phosphatases can regulate channel activity/and can modulate

PKA-dependent binding of the R domains (Berger et al., 1993; Chappe et al.,

2005; Seavilleklein et al., 2008). Secondly, cAMP has been shown by some
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groups to stimulate trafficking of CFTR from an intracellular pool to the plasma 

membrane, while also inhibiting the rapid clathrin-dependent endocytosis of 

CFTR into endocytic pools (Lehrich et al., 1998; Prince et al., 1994; Lukács et al., 

1997). However, the regulation of CFTR by intracellular trafficking is not a view 

shared by all and some studies in T84 cells indicate no alteration in CFTR at the 

apical membrane following cAMP elevation (Huflejt et al., 1994).

Ca2+-activated Cl“ channels (CaCC)

Ca2+-activated Cl" currents in the intestinal epithelium are short lived upon 

stimulation by agonists such as ACh, purines, or histamine. These agonists serve 

to increase intracellular Ca2+ by either releasing it from intracellular stores, or by 

causing an influx from the extracellular space (Hartzell et al., 2005). Ca2+ may 

activate the CaCCs by either binding directly to the channel, or by binding to 

Ca2+-dependent enzymes such as Ca2+/calmodulin-dependent protein kinase II 

(CaMKII) (Worrell and Frizzell, 1991). Other second messengers, such as inositol 

3,4,5,6-tetrakisphosphate (IP4), can inhibit the activity of Ca2+ activated Cl" 

channels (CaCC) by inhibiting activation by CaMKII (Xie et al., 1996). However, 

the physiological relevance of these channels in the intestine has remained 

questionable over the years. For example, a study in 1988 showed that the 

intestinal tissue of patients with CF does not demonstrate secretory responses 

to Ca2+-dependent agonists, suggesting such agonists may normally elicit their 

secretory effects through CFTR (Berschneider et a/., 1988). The identity of 

intestinal Ca2+-activated Cl" channels remained elusive until recent studies 

identified the transmembrane (TMEM) family of proteins. TMEM16A has been 

shown to mediate Ca2+-activated Cl" currents in neonatal mouse colon 

(Ousingsawat et al., 2009). However, this is in contrast to work by the Verkman 

group, who recently showed that Ca2+-dependent Cl" secretion also occurs via 

CFTR (Namkung et al., 2010). Further research is required to resolve these 

discrepancies, although recent w ork by the  Kunzelman group has added new 

weight to the potential physiological significance of TMEM16A. This study
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suggested that rotavirus-induced diarrhoea is caused by activation of 

TMEM16A, coupled to inhibition of Na+ absorption by SGLT-1 and ENaC 

(Ousingsawat et al., 2011). Since it has only recently been discovered, 

regulation of this channel is poorly understood compared to CFTR. However, a 

recent study has shown that the Ca2+-binding protein, calmodulin, is necessary 

for activation of TMEM16A (Tian et al., 2011a). Finally, the precise 

identification of Cl’ channels that mediate responses to Ca2+-dependent 

secretagogues is further complicated by recent findings that CFTR can interact 

with CaCCs, thereby modulating their activity, while Ca2+-dependent agonists 

can also cause CFTR activation through activation of PKA (Wei et o/., 2001; 

Namkung et al., 2010).

1-4.2.3 B aso la te ra l K* channe ls

K+ channels constitute the largest family of ion channels in humans. There are 

several types of K+ channel, which are regulated by diverse stimuli, such as 

changes in membrane voltage, Ca2+i; phosphorylation, cAMP levels, pH, hypoxia 

and cell swelling, to name but a few. K+ that enters the cell through NKCC1, the 

H+/K+-ATPase, and the Na+/K+-ATPase can be recycled through 2 types of 

basolateral K+ channel; the cAMP-activated K+ channel, KCNQ1, and the Ca2+- 

activated basolateral intermediate K+ conductance channel, KCNN4 (Schroeder 

et al., 2000; Flores et al., 2007). Basolateral K+ transport in colonic epithelia is 

essential to maintain a membrane potential that sustains apical anion and fluid 

secretion, and it has been shown that inhibition of basolateral KCNN4 with 

clotrimazole (CLT) inhibits apical Ca2+-dependent Cl' secretion (Rufo et al., 

1997). More recent work has demonstrated that there are several isoforms of 

KCNN4 in the colon (Barmeyer et al., 2010) and that apical KCNN4 may also be 

involved in anion secretion (Nanda Kumar et al., 2010). KCNN4 is regulated by 

calmodulin, which is tightly coupled to the channel and activated by changes in 

intracellular Ca2* levels (Fanger et al., 1999). The K* channel that supports 

cAMP-activated Cl“ secretion is a complex formed by KCNQ1 and its p subunit,
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KCNE3 (Kunzelmann et a l,  2001; Schroeder et a l, 2000). In the intestine both 

proteins co-localise in crypt epithelial cells. Interaction of KCNQ1 with its P 

subunit converts the voltage-dependent KCNQ1 into a voltage-independent, 

constitutively open, channel complex (Schroeder et al., 2000).

1 -4 .3  E x c h a n g e rs  

1-4.3.1 C I'/H C O j' exchangers

Cr/HCCV exchange in the colon acts in conjunction with NHEs to mediate NaCI 

absorption across the epithelium. Apical CI7HC03' exchangers are present in 

the colonic epithelium, and probably the best known of these is SLC26A3, or 

down regulated in adenoma (DRA), mutations of which cause congenital 

chloride diarrhoea (Hoglund et al., 1996; Makela et al., 2002; Wedenoja et al., 

2011; Worrell e ta l,  2005).

1-4.3.2 Na+/H + exchangers

There are 9 members in the mammalian Na+/H+ exchanger family (SLC9 family) 

which can be subdivided into 2 groups based on their cellular expression (Brett 

et a l,  2005). NHEs 1-5 are expressed in the plasma membrane, 6, 7 and 9 are 

expressed on intracellular organelles, whereas the expression profile of NHE8 

has not yet been fully elucidated. The main NHE responsible for Na+ absorption 

from the intestinal lumen is NHE3, with NHE2 being involved to a lesser degree 

(Ikuma et a l,  1999; Zachos et a l,  2005). NHE1 and 4 are basolaterally located 

where they contribute to regulation of cellular pH (Pizzonia et a l, 1998; Beltran 

et a l,  2008). Individual NHEs have different physiological roles and 

interestingly, studies show that the expression of NHE3 can be altered in 

intestinal diseases such as IBD (Khan and Ali, 1999; Larmonier et a l,  2011; 

Sullivan et a l,  2009). Regulation of NHE3 is highly complex and involves a 

variety of signalling proteins, including sodium hydrogen exchanger regulatory
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factors (NHERF)s, ezrin, and other PDZ domain-containing proteins (Donowitz et 

al., 2009).

1 -4 .4  C o - t r a n s p o r te r s

Co-transport, or secondary active transport, refers to the simultaneous 

movement of molecules or ions across the plasma membrane. The molecules 

or ions can be transported in the same (symport) or opposite (antiport) 

directions so long as the charge balance is equal. For this process to occur at 

least one of the molecules being transported must be passively travelling down 

its concentration gradient.

1-4.4.1 NKCC1

NKCC, of which there are 2 isoforms, facilitates the entry of Na+, K+, and 2 Cl’ 

into epithelial cells. NKCC1 has been identified as the isoform expressed in the 

intestinal epithelium and its function has been well characterised (Matthews et 

al., 1992; Matthews et al., 1994; D'Andrea et al., 1996; Haas and Forbush, 2000; 

Del Castillo et al., 2005; Payne et al., 1995). The initial identification of the 

human NKCC was made in T84 cells by Payne et al in 1995 (Payne et al., 1995). 

Following the initial identification, its localisation to the basolateral membrane 

of intestinal epithelial cells was characterised, and its association with the 

cytoskeleton was initially proposed (D'Andrea et a/., 1996). NKCC1 is known to 

be regulated by both low intracellular [Cl ] and by cell shrinkage, indicating that 

the co-transporter plays an important role in maintaining cell volume. NKCC1 is 

also regulated by protein phosphatase 1 (PP1), PKC, Ste20-related proline- 

alanine-rich kinase (SPAK), PKA, and through its interaction with the 

cytoskeleton (Darman et al., 2001; Matthews et al., 1994; Piechotta et al., 2003; 

Dowd and Forbush, 2003; Bachmann et al., 2003; Haas and Forbush, 2000). 

More recent studies have also implicated PKC isoforms as regulators of NKCC1 

trafficking to the basolateral membrane (Del Castillo et al., 2005).
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Secretagogue-induced regulation of NKCC1 was nicely described by Reynolds 

and co-workers, where they showed that Ca2+ -dependent agonists sequentially 

caused the activation, internalisation and degradation of NKCC1 (Reynolds et 

al., 2007). This was followed by re-expression of the co-transporter several 

hours later, thereby completing the cycle of regulation by such agonists. The 

authors also showed that cAMP-dependent secretagogues caused sustained 

activation of the co-transporter, but that this could be curtailed by co

stimulation by Ca2+-dependent agonists that activate PKC.

1-4.4.2  SGLT-1

Sugars are transported across the brush boarder membrane from the lumen by 

two different transporters, sodium glucose transporters (SGLTs) and glucose 

transporters (GLUTs). There are several SGLT isoforms expressed in human, 

with SGLT1 being the primary co-transporter expressed in the intestine (Wright 

et al., 2011). SGLT-1 transports glucose or galactose from the gut lumen into 

epithelial cells along with Na+, in a ratio of 1 : 2. The sugar moieties can then be 

transported from the cell via the basolateral transporter GLUT2, whereas Na+ is 

transported basolaterally via Na+/K+-ATPase pumps. In order to maintain 

osmolarity, Cl' and HC03" are also absorbed across the epithelium, followed by 

water. This process forms the basis of oral rehydration therapy (ORT) (Wright et 

al., 2011). The pathway by which water is transported across the epithelium 

has been the subject of much investigation and it is likely that several pathways 

exist including, passive diffusion across the phospholipid bilayer, solvent drag 

through the tight junctions and transport through water channels, such as 

aquaporins (Madara and Pappenheimer, 1987; Agre et al., 1993). Other studies 

have proposed SGLT1 as a water transporter itself (Wright and Loo, 2000; 

Meinild et al., 1998). The capacity for SGLT-1 to move water is large, with one 

study suggesting that 210 water molecules are transported across the 

epithelium with each cycle of transport activity.
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1 - 5  H y p o x i a

Hypoxia is defined as the state when cellular oxygen demand exceeds supply. 

This is such a common occurrence that every cell in the body is equipped to deal 

with it, and to mount an appropriate hypoxic response. Such is the 

sophistication of physiological responses to hypoxia that changes can occur 

from the molecular to the whole-body level. For example, reduced arterial 

oxygen is sensed by carotid bodies, highly vascularised organs located at 

bifurcations of the carotid arteries. These carotid bodies contain polarised cells 

that have 02-sensitive K+ channels located on their plasma membranes. 

Conditions of low 0 2 inhibit the K+ channels leading to Ca2+ influx, membrane 

depolarisation, subsequent neurotransmitter release, and changes in 

respiration rate and cardiac output (Peers and Kemp, 2001).

Among the most important molecular elements of hypoxic responses is hypoxia 

inducible factor (HIF). The identification HIF by Semenza et al led to the 

discovery of an extremely well-conserved signalling pathway that allows 

organisms to appropriately respond to changes in the amount of oxygen 

available to them (Semenza and Wang, 1992). However, the precise mechanism 

of how HIF itself detected oxygen eluded researchers for a further 10 years until 

the discovery of the HIF hydroxylases by two groups in 2001 (Epstein et al., 

2001; Bruick and McKnight, 2001). These proteins are the molecular 'oxygen 

sensors' that determine the fate of HIF.

1 -5 .1  H IF

HIF is a transcription factor that functionally exists as a heterodimer comprised 

of the constitutively expressed HIF-lp, or aryl hydrocarbon receptor 

translocator (ARNT), with a labile HIF-a subunit. There are 3 HIF-a subunits, 

with HIF-la being the most extensively studied. HIF-a is an oxygen-dependent 

protein that is post-translationally regulated by HIF hydroxylases. During
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conditions of normal oxygen tension, HIF-a subunits are hydroxylated at specific 

proline and asparagine residues by HIF hydroxylases. This proline hydroxylation 

targets HIF-a for ubiquitination by the von Hippel-Lindau tumour suppressor 

protein (pVHL) and ultimately, degradation via the proteasomal pathway. As a 

consequence of the action of the HIF hydroxylases, in normoxic conditions HIF- 

la  is turned over at a very high rate, thus keeping steady-state levels low 

(Huang eta/., 1998).

1 -5 .2  H IF  h y d r o x y la s e s

Studies published by several research groups in 2001 identified proline 

hydroxylation of HIF-la as the mechanism by which HIF is recognised and 

targeted for destruction by an E3 ubiquitin ligase containing pVHL (Ivan et a i,  

2001; Jaakkola et a i,  2001; Masson et a i,  2001). However, these initial studies 

did not identify the enzymes responsible for HIF hydroxylation until later the 

same year, when 2 groups independently published articles identifying an 

evolutionary conserved family of proteins known as HIF prolyl hydroxylases 

(PHD1-3) (Epstein et a i,  2001; Bruick and McKnight, 2001). An asparaginyl 

hydroxylase of HIF-la, factor inhibiting HIF (FIH-1), was later identified in 2002 

(Lando et a i,  2002a). It was initially thought that the PHDs hydroxylated a 

consensus motif within substrate proteins, until subsequent studies 

demonstrated that the only obligatory residue for proline hydroxylation is the 

proline residue itself (Huang et a i,  2002). Since their discovery in 2001 there 

has been an increasing growth in research interest in these proteins and their 

roles in regulating cellular function in health and disease (Figure 1-4).
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Figure 1-4 The number of published articles relating to HIF prolyl hydroxylases since 

2000. More than 500 articles were found using the search term "HIF prolyl 

hydroxylase" since the year 2000.

The PHDs trans-4-hydroxylate Pro564 and Pro402 of HIF-la thus targeting it for 

recognition by pVHL (Ivan et al., 2001; Jaakkola et al., 2001; Masson et al., 

2001). In contrast, FIH-1 p-hydroxylates asparagine 803 on HIF-la to prevent 

its interaction with the co-activator p300/CBP, thereby inhibiting its 

transactivation domain and keeping it transcriptionally silent (Lando et al., 

2002a; Lando et al., 2002b). The activity of PHDs is dependent on binding of a- 

ketoglutarate and Fell and mutational studies have identified the locations of 

their, binding sites on the hydroxylases (McNeill et al., 2002). Intracellular 

expression patterns of hydroxylases appear to vary greatly among different 

tissues, with PHD1 being present exclusively in the nucleus of osteocarcinoma 

cells and COS-1 monkey kidney cells, but being present in both the cytoplasm 

and nucleus of other cells (Metzen et al., 2003; Huang et al., 2002; Berchner- 

Pfannschmidt et al., 2008). Interestingly, studies have shown that different 

PHDs have different preferences for the HIF-a isoform they hydroxylate, with 

PHD2 being more specific for HIF-la and PHD3 preferentially hydroxylating HIF- 

2a (Appelhoff et al., 2004). Several studies have attempted to identify the 

isoforms involved in particular conditions or phenomena, and reports suggest it 

is PHD2 that is the primary 0 2 sensor involved in HIF-la hydroxylation in 

normoxia (Berra et al., 2003).
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The great potential for modulating HIF hydroxylases in therapeutic settings did 

not go unnoticed, and prolyl hydroxylase inhibitors (PHIs) were rapidly adopted 

by pharmaceutical companies for the treatment of anaemia, and are currently 

in Phase 2 clinical trials (Mole et al., 2003; Fraisl et a l,  2009; Provenzano et a l,  

2011) (http://www.fibrogen.com/press/release/pr_1304365050).

Of the PHIs so far developed, and the most widely used for molecular biology 

has been dimethyloxalylglycine (DMOG) (Baader et a l,  1994). This is a non-

selective inhibitor of HIF hydroxylases, collagen 4-hydroxylase and other a-
i

ketoglutarate-dependent dioxygenases (Elvidge et a l,  2006). It was initially 

developed as a fibrosuppressive agent to inhibit prolyl-4 hydroxylase-regulated 

collagen synthesis (Baader et a l,  1994). Interestingly, DMOG itself is a poor 

inhibitor of proline hydroxylation in purified extracts, but intracellularly it is a 

potent inhibitor. This is thought to be due to enzymatic processing of DMOG in 

a manner similar to the processing of diethyl 2-4 pyridine-2,4-dicarboxylic acid 

(2,4-PDCA) (Tschank et a l,  1991). Other PHIs have been developed by 

biotechnology companies such as FibroGen Inc. and have been described in 

detail elsewhere (Salnikow et al., 2004; Fraisl et al., 2009; Tian et a!., 2011b).

The specificity of the HIF hydroxylases is not confined to HIF and it is now 

known that they hydroxylate residues on many other proteins, with FIH-1 being 

the least specific. An important non-HIF target of proline hydroxylases is IKK(3, 

with the consequent inhibition of NFkB under normoxic conditions (Cummins et 

al., 2006). FIH-1 has been discovered to hydroxylate ankyrin repeat domains 

(Cockman et a l 2006), and in fact its affinity for hydroxylation of the 

intracellular domain of Notch is greater than that its effects on HIF-la (Zheng et 

al., 2008). Given the plethora of ankyrin repeat domain-containing proteins, 

researchers have been keen to attribute a physiological purpose to this 

phenomenon. A proposed function for hydroxylation of ankyrin substrates is 

that they sequester FIH-1 away from HIF-la, and thus increase HIF-la 

transcriptional activity by reducing its asparagine hydroxylation (Coleman et al.,
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2007). Other more recent studies have suggested that ankyrin hydroxylation by 

FIH-1 is more common than previously thought, and that it serves to stabilise 

ankyrin repeat domain folds, which facilitate protein-protein interactions (Kelly 

et al., 2009a). Finally, the cytoskeletal ankyrin domain-containing family has 

also been shown to be hydroxylated by FIH-1 leading to alterations in protein- 

protein interactions (Yang et al., 2011). HIF hydroxylases are not just oxygen 

sensors, they are also sensitive to the levels of the cofactors and substrates that 

they require for activity (Pan et al., 2007). Thus, some researchers have also 

dubbed them "metabolic sensors". This feature is highlighted in FIH-l'^ mice, 

which exhibit reduced body weight, increased metabolic rate, and improved 

glucose and lipid homeostasis (Zhang et al., 2010),

A physiological role for hydroxylases in the intestine was initially postulated in 

2004 when a study revealed that HIF-1 exerted protective effects in a hapten- 

based murine model of colitis (Karhausen et ai., 2004). In this study, 

constitutively active HIF-1 ameliorated the onset and severity of colitis, whereas 

constitutive inhibition of HIF-1 led to increased disease severity. Further to this 

study in 2006, Cummins et ai. published an article highlighting a non-HIF-1 

target of the HIF hydroxylases, namely NFkB (Cummins et al., 2006). This line of 

research culminated in 2008 with 2 studies being published back to back in 

Gastroenterology, both of which investigated the effects of hydroxylase 

inhibition in the development and progression of mouse models of colitis 

(Cummins et ai., 2008; Robinson et al., 2008). These studies revealed that 

activation of HIF and NFkB pathways via inhibition of hydroxylase activity was 

protective against the onset of disease, and suggested that hydroxylases 

represented potential new targets for the development of therapies for IBD. Of 

particular relevance to this thesis, hypoxia occurs as a pathophysiological 

response in conditions of intestinal inflammation and can lead to alterations in 

several important aspects of intestinal physiology, including fluid and 

electrolyte transport (Eisenhut, 2006).
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1-6 Hypoxic regulation of intestinal epithelial 

Cl' secretion

1 -6 .1  In t r o d u c t io n

Previous sections have highlighted how epithelial transport function is 

dependent on cellular oxygen and energy supply, and how during conditions of 

hypoxia, epithelial transport can become dysregulated. Under physiological 

conditions the intestinal epithelium is exposed to one of the highest oxygen 

gradients in the body. Although the serosa is supplied by the splanchnic 

circulation with amply oxygenated blood, the epithelium is exposed to the harsh 

anoxic environment of the lumen (Taylor and Colgan, 2007). Add to this the 

highly dynamic nature of the splanchnic circulation, and the result is a hugely 

fluctuating oxygen supply to this tissue. Pathophysiological conditions, such as 

those underlying inflammation, can also result in hypoxia, and consequently the 

epithelial cells must be able to mount an appropriate response in order to 

survive. HIF, as already mentioned, is the master regulator of hypoxia and plays 

a key role in regulating metabolism, but is also known to regulate epithelial 

transport processes in the intestine. Some studies have shown that HIF can 

directly regulate the expression of epithelial ion transport proteins, while others 

have shown that intermediary steps, such as the generation of prosecretory 

second messengers can be altered in hypoxia (Ibla et a i,  2006; Zheng et a i,  

2009; Taylor et al., 1998).

1 -6 .2  H y p o x ia  r e g u la te s  t r a n s p o r t  p r o te in s

One of the many effects of hypoxia on the intestinal epithelial Cl" secretory 

mechanism is its actions on the transport proteins themselves. This topic has 

received a good deal of attention, however is most well-documented with 

respect to hypoxic regulation of the Na+/K+-ATPase. While HIF itself is a 

transcription factor, two recent studies have demonstrated how it can act as a
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transcriptional repressor of both CFTR and NKCC1. In the case of CFTR, initial 

studies demonstrated that hypoxia suppresses CFTR mRNA expression, not only 

in the intestine but also in other tissues, and subsequent investigations revealed 

that this occurs by a HIF-l-dependent mechanism (Guimbellot et a i,  2008; 

Zheng et a i,  2009). In other tissues, such as sinonasal respiratory epithelia, 

both CFTR and TMEM16A activity is attenuated by exposure to chronic hypoxia, 

an effect that is associated with decreased CFTR and TMEM16A mRNA 

expression (Blount et al., 2011). Thus, it is clear that hypoxia has the capacity to 

negatively regulate Cl" channels on the apical membranes of epithelial cells.

NKCC1 is also known to be regulated by hypoxia, and more specifically by HIF-1 

which suppresses co-transporter expression at the transcriptional level (Ibla et 

a i,  2006). However, despite its importance to intestinal secretion, there is still 

a paucity of studies on NKCC function under conditions of hypoxia. Studies 

conducted by Yoo et a i,  using a model of chemically-induced hypoxia in 

cultured epithelia, show that PKC e suppresses Cl" secretion upon activation by 

specific agonists (Yoo et a i,  2001). More recent research by the same group 

demonstrates that NKCC1 is rapidly internalised upon PKC activation, an event 

that was sensitive to PKC e inhibition (Del Castillo et a i,  2005). Studies by other 

groups have shown PKC e can be activated by hypoxia in cardiac myocytes (Ogbi 

and Johnson, 2006). Taken together these data suggest that hypoxia may 

activate signalling mechanisms, whereby PKC e activation induces NKCC1 

internalisation to downregulate epithelial secretion.

\ 1
Na+/K+-ATPase pumps provide the driving force for all epithelial electrolyte 

transport processes, and this transporter has been demonstrated in numerous 

studies to be regulated under hypoxic conditions (Skou, 1998; Kaplan, 2002; 

Planes et a i,  1996; Mairbaurl et a!., 2002; Carpenter et a i,  2003; Dada et a i , 

2003; Gusarova et a i,  2011). Initial studies indicated that hypoxia attenuated 

the activity of lung epithelia) Na+/K+-ATPase, without altering its expression 

(Planes et a i,  1996; Carpenter et a i,  2003). The mechanisms involved are
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complex and involve mitochondrial ROS, which is produced during hypoxia, 

which activate Ca2+/calmodulin-dependent kinase kinase P (CaMKKP). Activated 

CaMKKp eventually results in the phosphorylation of Ser-18 on Na+/K+-ATPase 

a i7 culminating in clathrin-dependent pump endocytosis (Dada et al., 2003; 

Chen et al., 2006). This process was shown to require the ubiquitin-conjugating 

system and to be pVHL-dependent, but interestingly was HIF-independent 

(Cornelias et al., 2006; Dada et a i,  2007; Zhou e t al., 2008).

K+ channels play a critical role in 0 2 sensing in the carotid bodies, however there 

is a paucity of information on their regulation by hypoxia in the Gl tract (Wyatt 

et al., 2007; Patel and Honoré, 2001; Ross et al., 2011). The regulation by AMPK 

of KCNQ1 has been demonstrated under conditions of metabolic stress in 

kidney cells, and while it is possible that such effects may also occur in hypoxia, 

this has not been demonstrated in intestinal epithelial cells (Alzamora et al., 

2010). Research by other groups has shown that serum and glucocorticoid- 

responsive kinase-1 (SGK1) regulates KCNQ1/KCNE3 endocytosis (Seebohm et 

al., 2007). Interestingly, SGK1 is known to be regulated by hypoxia in other 

systems, suggesting that KCNQ1 may be regulated under conditions of hypoxia, 

or by hydroxylase inhibitors, through activation of SGK1 (Aoyama et al., 2005; 

Rusai et al., 2009). Studies on the role of hypoxia in regulating Ca2+-activated K+ 

channels are limited to those in the carotid body (Ross et al., 2011).

Thus, by virtue of their ability to regulate epithelial transport proteins through a 

variety of different transcriptional and post-transcriptional mechanisms, 

hypoxia-dependent signalling pathways represent good targets for the 

development of drugs to treat intestinal disorders associated with dysregulated 

fluid and electrolyte transport.
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1-7 Pharmacological intervention in the 

treatment of diarrhoea

The word "diarrhoea" is derived from the Greek term "to flow through" [6ia 

(dia, "through") + pew (rhed, "flow")] and is a common manifestation of 

gastrointestinal disease. In developing nations diarrhoea kills approximately 1.5 

million children each year, and globally affects up to 2 billion people(Wardlaw et 

al., 2010). Diarrhoeal diseases can be classified as being infectious or non- 

infectious, with infectious diarrhoea, e.g. rotavirus infection, accounting for up 

to 40 % of hospitalisations due to diarrhoea in children under 5 worldwide, 

including developed countries (Wardlaw et al., 2010; WHO, 2008). Non- 

infectious chronic diarrhoea, with a duration of > 4 weeks, is a primary 

symptom of several gastrointestinal disorders, including IBD, diarrhoea- 

^predominant IBS, iatrogenic diarrhoeas, such as those induced by 

chemotherapy, microscopic colitis and bile acid malabsorption (Carter et al., 

2004; Maroun et al., 2007; Oelkers et al., 1997; Hofmann, 2009). Together, 

these conditions represent a huge financial burden to Western societies in 

terms of healthcare and lost hours of work.

Many diarrhoeal deaths are due to dehydration, and in children with diarrhoea, 

rehydration and prevention of malnutrition are amongst the main therapeutic 

objectives. Anti-diarrhoeal drugs are not routinely used in children since this is 

not the primary objective, and such drugs can have sometimes fatal 

consequences (WHO, 1990). Dehydration caused by diarrhoea can be 

effectively treated by oral rehydration therapy.

For adults the primary therapeutic approaches for treating diarrhoea include 

adsorbents, such as cholestyramine, which bind the toxins causing the 

diarrhoea, or antimotility drugs, such as loperamide or codeine. These latter 

drugs effectively act by paralysing intestinal smooth muscle, thereby slowing 

motility and allowing increased time for absorption to occur (Read, 1983).
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However, none of these treatments are safe for children and cannot be used in 

the long-term for the treatment of chronic diseases (WHO, 2005). To date, 

there are no therapeutic options available to clinicians that allow direct 

targeting of epithelial transport processes for the treatment of diarrhoea.

1-8 Overall aim

The overall aim of this thesis was to investigate the potential role that HIF- 

hydroxylases play in regulating intestinal epithelial Cl' secretion and to 

determine the therapeutic potential of hydroxylase inhibitors in the treatment 

o f diarrhoeal diseases.
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C h a p t e r  2

M a t e r i a l s  a n d  M e t h o d s
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2 - 1  A n i m a l  s t u d i e s

All animal studies were performed In compliance with Irish Department of 

Health and Children regulations and were approved by the Beaumont Hospital 

Ethics Committee.

Animal licence number: B100/4159

Research Ethics Committee number: 628

2 - 1 .1  A n im a l  t r e a t m e n t s  f o r  e le c t r o p h y s io lo g ic a l  s tu d ie s

Male C57BL/6 mice and male Sprague Dawley rats were bred and maintained in 

the environmentally controlled Biomedical Research Facility at Beaumont 

Hospital. Male animals were used to avoid the confounding factor oestrogen, 

which can alter colonic epithelial ion transport (O'Mahony et al., 2007). 

Experiments were performed on 6-9 week old mice ranging from 20-25 g, and 

on 240-260 g rats of Indiscriminate age. Animals were treated with either 

DMOG or PBS as vehicle control. DMOG was prepared In endotoxin-free PBS, 

and was administered by intraperltoneal (IP) Injection to mice (320 mg/kg) as 

previously described, or to rats (40 mg/kg) as previously described (Cummins et 

al., 2008; Zhao et al., 2010). All mice were sacrificed 24 hours later by cervical 

dislocation, whereas rats were first anaesthetised by exposure to aerosolised 

Isofluorane, before being sacrificed by cervical dislocation. The Intestines of the 

animals were removed and placed in an ice-cold Ringer's solution, and were 

then treated as described in the relevant Methods sections. All drugs and 

equipment used to treat animals were sterile and endotoxin-free.
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2 - 1 . 2  M o u s e  m o d e l  o f  o r a l  a l le r g e n - in d u c e d  d ia r r h o e a

These experiments were carried out in collaboration with Professor Padraic 

Fallon and Dr. Sylvie Amu, Trinity College Dublin, and were based on a 

previously published protocol (Brandt et al., 2003; Perdue et al., 1991). The 

premise behind the protocol for oral allergen-induced diarrhoea is that It Is a 

classic clinical feature of numerous gastrointestinal allergic disorders, such as 

food allergies and eosinophil-associated gastrointestinal disorders. Allergic 

diarrhoeas are associated with significant changes in /sc and Cl' secretion, and 

previous research has shown that OVA-lnduced diarrhoea is predominantly due 

to mast-cell stimulated Cl" secretion (Harari et al., 1987; Perdue et al., 1991). 

Other researchers have corroborated this finding and have suggested that the 

enhanced Intestinal secretion associated with allergic diarrhoea is also 

associated with decreased gut permeability (Wasserman et al., 1988; Field, 

2003; Barrett, 1991; Barrett et al., 1990). Male BALB/c strain mice were 

sensitised twice, 2 weeks apart, with 50 jig of OVA in the presence of 1 mg of 

aluminium potassium sulphate adjuvant by IP injection. Two weeks following 

the Initial sensitisation, the animals were each challenged with oral 

administration of 50 mg OVA in sterile saline, 3 times per week, which previous 

studies have shown to be the lowest dose to induce diarrhoea in this model 

(Brandt et al., 2003). Prior to each oral challenge the animals were fasted for 4 

hours to limit antigen degradation in the stomach. Mice were monitored for 1 

hour following oral OVA administration, and those with profuse watery stool 

were diagnosed as diarrhoea-positive. Mice were treated with either DMOG 

(IP; 160 mg/kg), or PBS alone, 24 hours before each oral challenge with OVA.
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The T84 cell line ¡s a human colonic carcinoma cell line that was established in 

BALB/c nude mice. It was isolated from a lung metastasis from a patient with a 

colon carcinoma, and injected subcutaneously into nude mice. The resulting 

tumour was isolated, homogenised, and cultured in growth medium (Murakami 

and Masui, 1980). When grown on permeable supports, Tg4 cells form a well- 

differentiated, electrically tight, columnar epithelium (Madara and 

Dharmsathaphorn, 1985). They have the appearance of native crypt epithelial 

cells and retain many of their characteristics, including vectorial Cf secretion in 

a basolateral to apical direction (Dharmsathaphorn et al., 1984). While Tg4 cells 

may lack the absorptive phenotype seen in surface cells, the simplicity of the 

model makes it ideal for examining molecular mechanisms that regulate 

intestinal epithelial Cl" secretion. T84 cells were cultured, in DMEM Ham's F12 

media supplemented with 5 % bovine calf serum, 1 % penicillin/streptomycin, 

and 1 % glutamate (Toumi et al., 2011). Culture medium was replaced every 

second day, and on the 7th day, or when cells were approximately 90 % 

confluent, they were passaged by trypsinisation. For trypsinisation, cells were 

first washed with trypsin (0.25 %), and then incubated with trypsin for several 

minutes. Trypsin was deactivated by the addition of culture medium containing 

serum. Trypsinised cells were counted using a haemocytometer and were 

seeded at the densities shown in Table 2-1.

2 - 2  T 84  c e l l  c u l t u r e
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Table 2-1 TM cell culture seeding conditions. T^ cells were trypsinised and counted 

using a hemacytometer. Cells were seeded at various densities ranging from 100,000 -  ' 

2,000,000 cells, depending on the area of the receptacle. MCE = mixed cellulose esters; 

PET = Polyethylene Terephthalate

Hanging

insert

Standing

insert

Standing

insert

Glass

bottom

petri-dish

T75

Application Confocal Ussing Protein/RNA Imaging Culture

Porosity 1 (iM 0.45 (iM 0.45 |iM - -

Material PET MCE MCE glass Plastic

Supplier Millipore Millipore Millipore MatTek Starstedt

Cat PIRP12R48 PIHA01250 PIHA03050 P35G-0- 83.1813.500

number 14-C

Area 0.33 cm2 0.6 cm2 4.2 cm2 1.54 cm2 75 cm2

Number of 1 x1 0 s 5 x10s 2 x 106 5 x10s 2 x 10s

cells

For electrophysiological studies, Tg4 cells were cultured on 0.6 cm2 permeable 

supports and were considered to be suitable for experimentation when their 

transepithelial resistance (Rte) had stabilised at > 1000 Q/cm2, typically between 

7-21 days post seeding. Cells were cultured on 4.2 cm2 inserts for protein 

extraction, RNA isolation, cAMP assays, biotinylation studies, and co- 

immunoprecipitation studies, and were considered to be suitable for 

experimentation once their Rte had stabilised at > 1000 Q/cm2, typically 

between 7-21 days post seeding. The filters used for culturing Tg4 cells were 

composed of MCE and had a resistance of 74.9 ± 1.4 Q/cm2. Time courses for 

the development of Rte across Tg4 cells grown on 0.6 and 4.2 cm2 inserts are 

shown in Figure 2-1.
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Figure 2-1 Time course of the development of ffte across monolayers of TM cells on 

permeable supports. A) Ts4 cells were cultured on 0.6 cm2 permeable supports and the 

ffte was recorded each day for several days. Data are expressed as kflcm 2 (n = 5-6) for 

each point shown. B) T^ cells were cultured on 4.2 cm2 permeable supports and the 

/?te was recorded each day for several days. Data are expressed as kQ.cm2 (n = 4 for 

each point shown).

2 - 2 .1  C e ll t r e a tm e n ts

Once the /?te of the cells had stabilised at plateau levels, Tg4 monolayers were 

routinely washed once on the apical and basolateral sides with serum-free 

culture medium. The inserts containing the monolayers were then transferred 

to a new well of the culture dish, and were cultured in serum-free medium for 

24 hours. This served to synchronize the cells in the quiescent GO phase, to 

prevent confounding effects of serum components, and to prevent serum 

components from binding to and/or enzymatically cleaving the drugs that were 

to be used. T ^  cell culture in serum-free medium for 24 hours caused an
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increase in the basal /?te from 1665.4 ± 90.9 to 1970.8 ± 97.5 Q.cm2 (*p < 0.05; n 

= 48). Following the 24 hour period in serum-free medium, cells were treated 

accordingly, with all treatment solutions being diluted in serum-free medium. 

When pharmacological inhibitors were used they were incubated with the cells 

bilaterally for a minimum of 30 minutes prior to treatment with hydroxylase 

inhibitors. Table 2-2 lists the inhibitors employed, their intended targets, and 

the concentrations at which they were used. The exception to  bilateral 

treatment was methyl p cyclodextrin (MpCD), which was used basolaterally 

only. The mechanisms of action of the inhibitors used in the current studies are 

listed below:

• Dimethlyoxallylglycine (DMOG) is a non-selective inhibitor of HIF 

hydroxylases, collagen 4-hydroxylase and other a-ketogluta rate- 

dependent dioxygenases (Elvidge et al., 2006; Fraisl et al., 2009). DMOG 

was initially developed as a fibrosuppressive agent to inhibit prolyl-4

* hydroxylase-regulated collagen synthesis (Baader et al., 1994). 

Interestingly, DMOG itself is a poor inhibitor of proline hydroxylation in 

purified extracts, but is a potent intracellular inhibitor. This is thought to 

be due to enzymatic processing of DMOG in a manner similar to the 

processing of diethyl 2-4 pyridine-2,4-dicarboxylic acid (2,4-PDCA) 

(Tschank et al., 1991). DMOG was the primary HIF-hydroxylase inhibitor 

used throughout the current studies. While cellular responses to 

hydroxylase inhibition by DMOG and hypoxia are known to differ, 

previous studies in a breast cancer cell line, MCF-7, have found there to 

be striking concordance between patterns of gene expression induced 

by hypoxia and by DMOG (Elvidge et al., 2006). While many of these 

genes are HIF-1 or HIF-2-dependent, not all of the hypoxia or DMOG- 

regulated genes were targets of HIF, highlighting the importance of non- 

HIF targets of hydroxylases (Elvidge et al., 2006).
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FG-4497 is a proprietary compound developed by FibroGen Inc. to 

inhibit the activity of HIF-hydroxylases. FG4497 has been reported to 

inhibit HIF hydroxylases by binding to the active site of the enzymes 

(Fraisl et a i, 2009). The optimal working concentration of FG4497 was 

determined in these studies and it was found to be more potent than 

DMOG.

CoCI2 was used to inhibit H IF -la  degradation by preventing its 

interaction with von Hippal Lindau protein (pVHL), thereby inhibiting its 

proteasomal degradation (Kanaya and Kamitani, 2003; Yuan et a i, 

2003). More recently C0 CI2 was shown to deplete ascorbate in the cell, . 

hence inhibiting the HIF hydroxylases and thereby stabilising H IF -la  

(Salnikow et a!., 2004). The optimal working concentration of .this 

inhibitor was determined in this study.

Actinomycin D (AD) was used to inhibit gene transcription. This drug 

inhibits transcription in a non-specific manner by forming a stable 

complex with double-stranded DNA via deoxyguanosine residues at the 

transcription initiation complex, thereby inhibiting DNA-primed RNA 

synthesis (Sobell, 1985). AD also causes single-strand breaks in DNA.

Cycloheximide (CHX) was used to inhibit protein translation (Schneider- 

Poetsch et a i, 2010). Recent reports show that CHX blocks the 

translocation step in elongation by binding to 60S ribosomal subunits in 

the ribosome. The optimal working concentration of this inhibitor was 

determined in this study.

H89 was used to inhibit cAMP dependent protein kinase (PKA) activity. 

H89 is a non-selective inhibitor of PKA that at higher concentrations is 

also known to inhibit other kinases, such as S6K1, MSK1, ROCK-II, PKBa, 

and MAPKAP-Klp (Davies et a i, 2000). H89 is thought to work by



competitively inhibiting thè binding of ATP to the kinase, and was used 

in these studies at a concentration previously reported to inhibit PKA in 

Tg4 cells (Chijiwa et a i, 1990; Rudolph et al., 2004).

•  BMS-345541 is a highly selective inhibitor of IkB Kinase (IKK) and thus is 

an inhibitor of NFkB activity. BMS-345541 binds to either the peptide 

binding site on IKK, or an allosteric site that changes the binding site, 

thus preventing peptide-binding (Burke et al., 2003).

•  GF 109203X (GF) is reported to be a specific inhibitor of PKC (Toullec et 

al., 1991). It inhibits both classical and novel PKC isoforms via 

competitive inhibition with ATP (Roberts et al., 2005).

•  PP2 is a potent Src family-selective tyrosine kinase inhibitor that works 

via competitive inhibition with ATP (Hanke et al., 1996). It was used in 

these studies at concentrations previously shown to inhibit Src in TM 

cells (Keely et a i, 2000) (20 jiM).

•  Acriflavine specifically binds to the PAS-B domain of H IF -la  and 2a. 

Acriflavine thus prevents HIF-a and HIF-ip dimerisation, and inhibits 

HIF-DNA binding and transcriptional activity (Lee et a i, 2009).

•  MpCD disrupts lipid rafts by chelating cholesterol. It was used in these 

studies at a concentration previously reported to deplete cholesterol 

and disrupt lipid rafts in Tg4 cells (Wolf et a i, 2002). Optimal treatment 

times for the drug were investigated in the present studies.

•  5-(N-Ethyl-N-ìsopropyl)amìloride (EIPA) inhibits NHEs with 

concentration-dependent specificities (Chambrey et a i, 1997; Beltran et 

a i, 2008). Amiloride and its derivatives are thought to bind to the
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external Na+ binding site of NHEs, thus inhibiting their activity (Masereel 

eta!., 2003).

Table 2-2 Concentrations of drugs employed and their intended cellular targets. This

table summarises the inhibitors used and their concentrations employed.

Inhibitor Target Working Concentration

DMOG PHDs 1 mM

FG-4497 PHDs 50 jiM

CoCI2 HIF-la-pVHL interaction 500 |iM

H89 PKA 30 (iM

BMS-345541 IMFk B 10 |iM

GF PKC 5 (iM

Acriflavine H IF-la-H IF-ip  dimérisation 5 \xM

Cycloheximide 60S Ribosomal subunit 5 piM

Actinomycin D Double-stranded DNA 250 ng/ml

EIPA NHE 50 nM

PP2 Src 20 piM

Methyl p cyclodextrin Lipid rafts 4 mM
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2 - 3  E l e c t r o p h y s i o l o g i c a l  m e a s u r e m e n t s

Electrophysiological measurements were performed using VCC MC8 Voltage 

clamps. All epithelial preparations, both tissues and cell cultures, were 

mounted in Ussing chambers (Figure 2-2), bathed in a physiological Ringer's 

solution(s) (see individual protocols below), aerated with a 95 % 0 2, 5 % C02 

mix, and maintained at 37°C ± 1°C. All preparations were clamped to zero 

potential difference (PD), and drug treatments were initiated once baseline 

short circuit current (/sc) and Rte had stabilised. /sc and PD were recorded for 

each experiment, and using Ohms Law, Rte and conductance were calculated. 

All current recordings were normalised and expressed as A /sc (jiA/cm2).

Figure 2-2 Photograph of an Ussing chamber. The Ussing chamber is composed o f 2 

hemi-chambers separated by an epithelial preparation. The epithelium is bathed in 

Ringer's solution, aerated w ith  95 % 0 2, 5 % C02, and maintained at 37°C by a heating 

block. A voltage is applied across the epithelium, which is then clamped to zero 

potential difference, and the current that is applied via the current electrodes to  

maintain the zero potential difference is recorded as /sc.
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Tg4 colonic epithelial cells were grown on 0.6 cm2 permeable supports as 

described in Section 2-2"  ̂- -All monolayers "were washed in appropriate 

physiological solutionis), mounted in Ussing chambers, and bathed in 

physiological solutions according to each individual protocol.

2-3.1.1 Electrogenic Cl secretion

Tg4 monolayers were mounted in Ussing chambers and bathed in Ringer's 

solution (Table 2 -3 ) unless otherwise stated. Under such conditions, 

secretagogue-induced A /sc responses across Tg4 monolayers have been shown 

to be wholly reflective of changes in electrogenic Cl' secretion 

(Dharmsathaphorn et a/., 1984; Cartwright et al., 1985; Dharmsathaphorn et al.,

1985). The prototypical secretagogues, carbachol (CCh) and forskolin (FSK), 

were used to stimulate Ca2+ and cAMP activated Cl' secretory responses, 

respectively. The effects of these drugs on T ^  cells have been well- 

characterised. CCh was employed at a concentration of 100 jaM, and was added 

basolaterally, where it acts at muscarinic M3 receptors (Cuthbert et al., 1987). 

FSK (10 fiM) was added apically only since previous results from our laboratory 

showed that no additional increase in currents were observed upon bilateral 

addition of the compound.

2 -3 .1  T 84 c o lo n ic  e p it h e lia l  c e l ls
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Table 2-3 Composition of Ringer's solution. Ringer's solution is an isotonic 

physiological solution that contains a balance of salts and sugars to sustain animal 

tissue in a viable state for long periods of time. It was introduced by the physiologist 

Sidney Ringer in 1882 for studies of frog heart. Once prepared, Ringer's solution was 

aerated with a 95 % 0 2, 5 % C02 mix to achieve a pH of 7.4 and an osmolarity of 285 ± 5 

mOsms.

Component Concentration (mM)

Na+ 140

K+ 5.2

Ca2+ 1.2

Mg2+ 0.8

cr 119.8

h c o 3‘ 25

h 2p o 4‘ 2.4

D-glucose 10

Table 2-4 Composition of D-fructose Ringer's solution. D-glucose is replaced with 

equi-molar D-fructose in D-fructose Ringer's solution. Once prepared, D-fructose 

Ringer's solution was aerated with a 95 % 0 2, 5 % C02 mix to achieve a pH of 7.4 and an 

osmolarity of 285 ± 5 mOsms.

Component Concentration (mM)

Na+ 140

K+ 5.2

Ca2+ 1.2

Mg2+ 0.8

cr 119.8

h c o 3* 25

h 2p o 4‘ 2.4

D-fructose 10

58



Apical CFTR currents were measured by modifying previously published 

protocols (Rochwerger et al., 1994; Bijvelds et a l,  2009; DuVall et a l, 1998). 

After mounting in Ussing chambers, an apical to basolateral Cl" gradient (119 .8 - 

4.8 mM) was imposed across the epithelium. Normal Ringer's solution was 

applied to the apical reservoir (Table 2 -3 ), whereas low Cl' Ringer's solution was 

added basolaterally (Table 2-5). While this gradient is opposite to the 

physiological direction of intestinal epithelial Cl" secretion, experiments were 

conducted in this way in order to remove any influence of basolateral 

transporters from the current and to prevent cell swelling. Tg4 monolayers were 

allowed to equilibrate for 15 minutes and were then basolaterally 

permeabilised by the ionophore, nystatin (100 |ig/ml), to allow the passage of 

monovalent anions. After a further 35 minutes, when the basal /sc had re

stabilised, cells were stimulated with apical FSK (10 jiM ). Under these 

conditions changes in /sc wholly reflect changes in apical Cl" currents through 

CFTR. This was confirmed in the current studies by the use of CFTRmhm (10|aM), 

which attenuated FSK-stimulated lsc responses by 78 %.

2-3.1 .2  A pical Cl cu rrents

Table 2 -5  Composition of low Cl' Ringer's Solution. NaCI was replaced with equi- 

molar Na-gluconate in low Cl’ Ringer's solution. Once prepared, low Cl' Ringer's solution 

was aerated with a 95 % 0 2, 5 % C02 mix to achieve a pH of 7.4 and 285 ± 5 mOsms.

Component Concentration (mM)

Na+ 140

K+ 5.2

Ca2+ 1.2

Mg2+ 0.8

cr 4.8

hco3 25

h2pcv 2.4

D-glucose 10

Gluconate 115
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2-3.1.3 Basolateral K+currents

Basolateral Ca2+-induced K+ currents (KCNN4) were measured as previously 

described (Kirk and Dawson, 1983). Monolayers of T84 cells were mounted in 

Ussing chambers and were apically permeabilised using the ionophore, 

amphotericin B (50 ^M). After baseline /sc had stabilised over 30 minutes K+ was 

driven from the apical to the basolateral compartment by the imposition of a K+ 

gradient (123.2-5.2 mM), created by addition of a high K+ Ringer's solution 

(Table 2 -6 ) to the apical reservoir. The Na+/K +-ATPase-specific inhibitor, 

ouabain (100 juM), was added basolaterally to remove any contribution of 

Na+/K+-ATPase activity to /sc responses. Under these conditions changes in /sc 

are wholly reflective of changes in basolateral K+ currents through KCNN4.

Table 2 -6  Composition of high K+ Ringer's solution. NaCI was substituted with K+- 

gluconate in high K+ Ringer's solution. Once prepared, high K+ Ringer's solution was 

aerated with a 95 % 0 2, 5 % C02 mix to achieve a pH of 7.4 and an osmolarity of 285 ± 5 

mOsms.

Component Concentration (mM)

Na+ 25

K+ 123.2

Ca2+ 1 .2

Mg2+ 0 .8

cr 4.8

HC03‘ 25

h 2p o 4' 2.4

D-glucose 1 0

Gluconate 115
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Na+/K +-ATPase activity was measured by a method based on previously 

published protocols (DuVall et al., 1998; Gomes and Soares-Da-Silva, 2002; Lam 

et al., 2003). Monolayers of Ts4 cells were mounted in Ussing chambers and 

bathed bilaterally in low sodium Ringer's solution (Table 2 -7 ). The monolayers 

were apically permeabilised by the ionophore, amphotericin B (50 juM). 

Following permeabilisation, the monolayers were allowed to re-equilibrate prior 

to stimulation with basolateral CCh (100 juM). Under these conditions changes 

in /sc are wholly reflective of electrogenic transport by the Na+/K+-ATPase.

Table 2-7 Composition of low Na+ Ringer's Solution. NaCI was substituted with 

equimolar N-methyl-D-glucamine (NMDG)-CI' In the low Na+ Ringer's solution. Once 

prepared, low Na+ Ringer's solution was aerated with a 95 % 0 2, 5 % C02 mix to achieve 

a pH of 7.4 and an osmolarity of 285 ± 5 mOsms.

2-3 .1 .4  N a+/K +-A T P a se  activ ity

Component Concentration (mM)

Na+ 25

K+ 5.2

Ca2+ 1 .2

Mg2+ 0 .8

cr 119.8

HC03‘ 25

h 2p o 4" 2.4

D-glucose 1 0

NMDG 115
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All intestinal tissues were transported to the laboratory in ice-cold physiological 

Ringer's solution(s), the specific type of which dependent on the transporter to 

be investigated. Animal tissues with the exception of murine jejunum were 

microscopically stripped of underlying muscle layers. Murine tissues were 

mounted on inserts with an aperture o f 0.3 cm2, whereas rat tissues were 

mounted on larger inserts with an aperture of 0.5 cm2

2-3.2.1 Colonic epithelial Cl' secretion

The large intestine was transported on ice to the laboratory in Ringer's solution 

(Table 2-3). All experiments were performed on distal colon which was 

distinguished from proximal colon by the lack of striation distinct to the 

proximal colon. The mesenteric fat and blood vessels were trimmed from the 

colon. The colon was then cut longitudinally along the mesenteric boarder and 

luminal contents were removed and the colon was washed in ice-cold Ringer's 

solution. The colonic tissue was then microscopically dissected, separating the 

epithelium from the underlying muscle layers. The colon was then cut laterally 

into 2 -3  sections. Tissues were then mounted on inserts, and bathed in 

Ringer's solution (Table 2 -3 ) in Ussing chambers at 37°C. Tissues were 

equilibrated for 25 minutes during which time PD, /sc, and conductance (G) were 

recorded. Once the /sc had stabilised, amiloride (100 jaM) was added to the 

apical bath to inhibit Na+ absorption by ENaC, thereby removing any possible 

contribution of apical Na+ absorption to the observed current. Ca+-activated Cl" 

secretion was then stimulated by the basolateral addition of CCh (100 ^iM), and 

once the /sc had returned to pre-stimulated levels, FSK (10 ^iM) was added to  

the apical bath to stimulate cAMP-activated Cl" secretion. Bumetanide (100 

^M) was added at the end of each experiment to the basolateral bath to inhibit 

NKCC1 activity, and thus provide a measure of the contribution of Cl' secretion 

to observed /sc responses.

2 -3 .2  In t e s t in a l t is s u e

62



Studies of SGLT-1 mediated absorption ¡n mouse intestine were carried out 

using a protocol modified from previously published studies (Grubb, 1995). The 

small intestine was transported on ice to the laboratory in mannitol Ringer's 

solution (Table 2-8). This solution lacked D-glucose so as to maintain glucose 

transporters in a quiescent state. To identify the jejunum, the Ligament of 

Treitz was first identified, with the jejunum beginning approximately 4 cm distal 

to this and extending distally for approximately 10 cm. The mesenteric fat and 

blood vessels were trimmed away and the jejunum was cut longitudinally and 

then laterally into several sections. Unlike colonic tissue, jejunal tissue was 

mounted unstripped of underlying muscle layers. This was due to the 

abundance of lymphoidic Peyer's patches in jejunum which add to the fragility 

of the tissue and create technical difficulties for stripping away the muscle 

layers. SGLT-1 is known to be expressed apically in murine jejunum, therefore 

mannitol-contaming Ringer's solution (5 mM) was added to the apical bath 

(Table 2-8), and D-glucose-containing Ringer's solution (5 mM) to the 

basolateral bath (Table 2-9). The concentrations of the carbohydrates used 

were adapted from a previously published protocol (Grubb, 1995). Tissues were 

allowed to equilibrate for 25 minutes to allow the /sc to stabilise. Bumetanide 

(100 |iM ) was added to the basolateral bath to inhibit NKCC1 and thus any 

contribution of Cl' secretion to observed currents. Amiloride was not routinely 

added to jejunal preparations since initial investigations revealed there was.no 

observable ENaC-mediated current in these tissues. Na+ absorption by SGLT-1 

was stimulated by the addition of D-glucose (25 mM) to the apical bath. 

Mannitol (25 mM) was simultaneously added to the basolateral bath to 

maintain equi-osmolarity. The D-glucose-stimulated SGLT-1 current recorded 

was attenuated by the SGLT-specific inhibitor, phloridzin (1 m M).

2-3.2.2  SG LT-1  activ ity
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Table 2-8 Composition of manhitol-containing Ringer's solution. Mannitol-containing 

Ringer's solution lacks D-glucose which is substituted with 5 mM mannitol. Once 

prepared, mannitol-containing Ringer's solution was aerated with a 95 % 0 2, 5 % C02 

mix to achieve a pH of 7.4 and an osmolarity of 285 ± 5 mOsms

Component Concentration (mM)

Na+ 140

K+ 5.2

Ca2+ 1.2

Mg2+ 0.8

c r 119.8

h c o 3* 25

H2P04' 2.4

Mannitol 5

Table 2-9 Composition of D-glucose-containing Ringer's solution. D-glucose- 

containing Ringer's solution has less D-glucose (5 mM) than normal Ringer's solution 

(10 mM) (Table 2-3). Once prepared, 5 mM D-glucose Ringer's solution was aerated 

with a 95 % 0 2, 5 % C02 mix to achieve a pH of 7.4 and an osmolarity of 285 ± 5 mOsms.

Component Concentration (mM)

Na+ 140

K+ 5.2

Ca2+ 1.2

Mg2+ 0.8

c r 119.8

h c o 3' 25

H2P04’ 2.4

D-glucose 5
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Na+ absorption by ENaC was recorded from rat rectal tissue using a protocol 

modified from previously published studies (Inagaki et a l, 2004). Anatomically, 

the rectum of the rat is located in the pelvic cavity, behind the pelvis. 

Surrounding fat and muscle tissues were rem oved. before excision of the 

rectum, which extends approximately 3 cm proximal from the anus. The tissue 

was isolated and transported to the laboratory in ice-cold Ringer's solution 

(Table 2 -3 ). The tissue was microscopically stripped of underlying muscle layers 

and the mucosa was then mounted in Ussing chambers. The tissue was 

equilibrated in Ringer's solution for 25 minutes prior to addition of amiloride 

(10 ^iM) to the apical bath to inhibit ENaC activity.

2 - 3 .2 3  EN aC activ ity
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2 - 4  P r e p a r a t i o n  o f  p r o t e i n  l y s a t e s  f r o m  a n i m a l

t i s s u e

Segments of tissue were isolated from animals that has been treated with 

DMOG or vehicle control. The segments were cleaned of luminal debris using 

ice-cold Ringer's solution (fable 2-3) and were then snap-frozen in liquid 

nitrogen. Tissues were then stored at -80°C until required. Segments of tissue 

were ground to a fine powder in liquid nitrogen using a pestle and mortar kept 

on dry ice. The ground tissue was then weighed and NP-40 lysis buffer (Table 

2-10) was added in a ratio of 1 g tissue: 5 ml lysis buffer. Samples were 

immediately vortexed and incubated on ice for 45 minutes, with intermittent 

vortexing every 10 minutes. Samples were then centrifuged at 10,621 x g for 20 

minutes at 40C. The supernatant was retained and analysed for protein content 

(Section 2-6). Protein content of each sample was then normalised using lysis 

buffer as a diluent. Samples were then separated by sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE) (Section 2-7), and proteins were 

detected by western blotting.

2 - 5  P r e p a r a t i o n  o f  p r o t e i n  l y s a t e s  f r o m  c e l l s

Ts4 cells were cultured for protein extraction as described in Section 2-2. 

Following treatment, monolayers were washed twice in ice-cold 1 x phosphate 

buffered saline (PBS). Cells were then lysed in situ using Nonidet P40 (NP40) 

lysis buffer containing protease and phosphatase inhibitors (Table 2-10) for 45 

minutes at 2-8°C. Lysed cells were scraped from inserts and were sonicated (3 

x 10 second pulses) to solubilise membrane proteins. Sonicated lysates were 

centrifuged at 15,294 x g for 10 minutes at 4°C. The supernatant was retained 

and analysed for protein content (Section 2-6).
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2 - 6  A n a l y s i s  o f  p r o t e i n  c o n t e n t

The amount of protein in cell and tissue lysates was measured using the Lowry 

method (Lowry et al.f 1951). Using bovine serum albumin (BSA), a standard 

curve was prepared for each set of samples, an example of which is illustrated 

in Figure 2-3. A coefficient of determination (R2), which is a statistical measure 

of how well the regression line approximates the real data points, was created 

from the standards. An R2 of 1.0 indicates that the regression line perfectly fits 

the data. An R2 of > 0.95 was determined to be the cut-off point, and any 

standard curves with R2 values below this were repeated. Protein content was 

estimated from the standard curve using the equation: y = mx + c.

[ B S A ]  (m g / m l)

Figure 2-3 An example of a standard curve for protein determinations. Known 

concentrations of BSA (0-4 mg/ml) were prepared in lysis buffer. BSA standards and 

samples were incubated with Folin reagent for 20 minutes, and their absorbance was 

then measured at 750 nm. Protein concentrations in samples were calculated from the 

standard curve using the equation, y = mx + c.
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2 - 7  W e s t e r n  b l o t t i n g

Protein content of each sample was normalised using lysis buffer as a diluent. 

Samples were mixed with a half volume of 2 x loading buffer (Table 2-11) and 

then heated to either 37°C or 95°C to aid in the protein-denaturing process. 

Samples were then separated by SDS-PAGE using the appropriate percentage of 

acrylamide to separate proteins based on their size (Table 2-12). Separated 

proteins were transferred onto polyvinylidene difluoride (PVDF) membranes 

using a semi-dry electrophoretic transfer apparatus. Membranes were 

routinely blocked with appropriate blocking reagents (Table 2-13) for 1 hour 

with horizontal rotation prior to addition of the appropriate primary antibody 

diluted in the blocking reagent (Table 2-14). Following 2 washes in Tris buffered 

saline with 1 % tween. (TBST), the secondary HRP-linked antibodies, diluted in 

the blocking reagents were routinely added for 1 hour with rotation at room 

temperature. Secondary antibody solutions were then removed and the 

membranes were washed a further 4 times. Immuno-reactive proteins were 

detected by enhanced chemiluminescence (ECL). Table 2-14 shows the transfer 

times used for each protein of interest, the blocking reagent used, the primary 

and secondary antibody concentrations used, and the optimum exposure time 

in ECL or ECL plus reagent.
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Table 2-10 Composition of NP40 lysis buffer: NP40 is a non-ionic, non-denaturing 

detergent used to solubilise membrane proteins (Stephens, 1985). 

Phenylmethanesulfonyl fluoride (PMSF) is a serine and cysteine-protease inhibitor that 

also inhibits acetylcholinesterase, whereas sodium orthovanadate (Na3V04) inhibits 

ATPase, alkaline phosphatase and tyrosine phosphatase (Turini et al., 1969; Huyer et 

al., 1997). Complete mini EDTA-free protease inhibitor tablets from Roche Diagnostics 

inhibit serine and cysteine proteases.

Component Concentration

Nonidet P40 1%

NaCI 150 mM

Trisbase 50 mM

PMSF 0.1 mg/ml

Complete mini EDTAfree protease 1 tablet /  10ml

inhibitor tablet -

Na3V 0 4 1 mM

Table 2 - i l  Composition of 2 x gel loading buffer. DL-Dithiothreitol (DTT) is used in 

sample loading buffers to reduce protein disulfide bonds prior to SDS-PAGE. Glycerol 

(5-10 %) increases the density of a sample so that the sample will layer at the bottom 

of the sample well. It also acts as a protein stabiliser and storage buffer component. 

SDS is a non-ionic detergent used to denature proteins and to confer them with a

negative charge.

Component Concentration

Tris HCI 50 mM

DTT 100 mM

Glycerol 40%

SDS 4 %
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Table 2-12 Polyacrylamide gels. Low percentage gels are recommended for the 

analysis of larger proteins and vice versa. The following protein molecular weights are 

approximate and were transcribed from Fermentas.com.

Recommended poly acrylamide gel (%) Protein molecular weight range (kDa)

8 40 -  250

10 3 0 -2 0 0

12 20 -1 5 0

Table 2-13 Composition of blocking reagents for western blotting. Dried milk (Marvel) 

was used as a blocking reagent for most antibodies employed in these studies. 

However, for some antibodies more complex blocking reagents were used, such as goat 

serum for p-kBa, as previously described (Taylor et al., 1999).

Component

Milk Blocker

Concentration 

Goat Blocker BSA Blocker

Milk 5% - -

Normal Goat serum - 5% -

BSA ■. 3% 5%

1 x TBST + - +

NaCf - 250 mM -

Tween 20 - 0.02 % -
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Table 2-14 Parameters for western blot analysis of proteins. Conditions detailed below were optimised for use of antibodies with T84 cell lysates,
with the exception of mHIF-1 a, which was optimised for lysates from murine intestine.

Protein Protein

size

(kDa)

Lysate

quantity

(Mg)

Incubation

temperature

(°C)

Transfer

time

(mins)

Blocking

reagent

Primary 

antibody 

. dilution

Primary.

antibody

source

Cat.

number

Developing

reagent

Exposure

time

(mins)

ATP Synthase a 55 30 95 60 Milk 1/10,000 BD 612516

+uLU 0.5

ß-actin 42 30 3 7 /9 5 any any 1/20,000 Sigma A5316 ECL+ 1

CFTR 168 40 37 90 Milk 1/800 Upstate 05-583 ECL+ >120

FIH-1 40 30 95 40 Milk 1/1000 Santa Cruz sc-26219 ECL+ 0.5

HIF-la 120 30 37 80 Milk 1/500 BD 610959

+—iuLU 30

KCNN4 40 40 95 60 BSA 1/2000 Sigma P4997 . ECL + 0.5

KCNQ1 75 30 37 80 Milk 1/400 Sigma P5372

+—iuLU 0.5

mHIF-la 120 40 37 80 Goat 1/3000 Calbiochem 400080 ECL+ 0.5

MONaKA 65 30 95 65 Milk 1/3000 Santa Cruz sc-100107

+uLU 1

Na+/K+-ATPase ct] 112 30 37 80 Milk 1/10000 Abeam . ab7671 ECL 2

N a+/K+-ATPase ßi 35-55 30 37 45 Milk 1/3000 Abeam ab8344 ECL+ 2

NKCCl Í30 30 95 80 Milk 1/1000 Santa Cruz * sc-21545 ECL 4

phospho-kBa 40 40 95 40 Goat 1/1000 Upstate 9246 ECL+ 12

PKCÇ 80 30 95 60 Milk 1/2000 Upstate 22080 ECL 0.5
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2 - 8  C e l l  s u r f a c e  b i o t i n y l a t i o n .

The surface expression of Na+/K+-ATPase a i  was analysed by employing a 

biotinylation technique adapted from previously published studies (Del Castillo 

et al., 2005; Liu et al., 2002). Tg4 cells were cultured for protein extraction, as 

described in Section 2-2. Following DMOG (1 mM; 24 hours) treatment, 

monolayers were washed thrice in ice-cold PBS. Biotinylation buffer was 

prepared fresh for each experiment as 1 mg/ml sulfo- N-hydroxysuccinimide 

(NHS)-biotin in PBS. The biotinylation buffer was added to the basolateral side 

of Tg4 monolayers on ice for 15 minutes with horizontal rotation, during which 

time biotin binds to amine groups of extracellular proteins. Due to the short 

half-life of sulfo-NHS-biotin at alkaline pH, the biotinylation buffer was replaced 

with a second fresh aliquot for a further 15 minutes with rotation. The reaction 

was stopped by addition of glycine (100 mM), the amine groups of which bind 

to and quench unbound biotin. Cells were then lysed in NP40 lysis buffer (Table 

2-10) for 30 minutes at 2 -8 °G  Cell lysates were prepared and centrifuged 

(14,000 x g; 6 minutes; 4°C). Protein content of the supernatant was 

determined and 500 |ig of protein was incubated with vertical rotation 

overnight at 2-8°C in the presence of 40 |iL streptavidin-agarose beads, which 

bind strongly to biotin-protein complexes.. The following day the beads were 

centrifuged, washed thrice in lysis buffer to remove any unbound proteins, and 

mixed with 2 x loading buffer (Table 2-11). Samples were heated (55°C; 30 

minutes) and protein complexes were isolated from the beads by centrifuging 

through spin columns. Samples were prepared for SDS-PAGE, but were not 

boiled so as to prevent aggregation of Na7K+-ATPase subunits that can occur 

through binding of the hydrophobic residues within their transmembrane 

domains (Yan et al., 2004; Ura et al., 1996; Donnet et al., 2001): Proteins were 

then separated by SDS-PAGE and Na+/K+-ATPase a i  was detected by western 

blotting (Section 2-7). Densitometric analysis of blots was performed and 

surface expressed Na+/K+-ATPase a i  was calculated by the following equation:
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Where:

x = Na+/K+-ATPase surface expression 

b = biotinylated Na+/K+-ATPase 

a -  p-actin

t -  total Na+/K+-ATPase a a

2 - 9  C o - i m m u n o p r e c i p i t a t i o n

Tg4 monolayers were grown on 4.2 cm2 permeable supports as described in

Section 2-2. Cells were lysed in situ by apical addition of NP40 lysis buffer

(Table 2-10) for 30 minutes at 2-8°C. The cells were scraped from the inserts

and the lysates centrifuged at 15,294 x g for 10 minutes at 4°C. The lysates

were 'pre-cleared' to remove any non-specific antigen-antibody interactions by

incubating the samples with donkey serum for 1 hour at 2-8°C  with vertical

rotation. The lysates were next incubated with protein-G sepharose beads for 1

hour with vertical rotation at 2-8°C to remove serum-bound antigens and any

non-specific antibodies. These bead-lysate suspensions were then centrifuged

at 14,000 x g for 10 minutes at 4°C. The supernatant was retained and further

incubated with the relevant primary antibody for 1 hour at 2-8°C with vertical

rotation. Protein-G bead suspension was then added to the antibody-antigen

solution, and incubated at 2-8°C overnight with vertical rotation. On the

second day the protein-G beads-antibody-protein complexes were added to

spin columns and the supernatant was discarded. The beads were washed

thrice with ice-cold NP40 lysis buffer. Aliquots of these washes were used to

detect protein content to ensure optimal washing conditions, and no protein

was detected even after 1 wash. The bound proteins were finally eluted.

Proteins were then separated by SDS-PAGE and detected by western blotting

(Section 2-7). The concentrations of the antibodies used to immunoprecipitate

(IP) and immunoblot (IB) the protein of interest were determined from

preliminary experiments (Figure 2-4), as were the pre-clearing steps and
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n um ber o f washes em ployed  to  rem ove unbound p ro te ins. Expression o f P- 

actin  was investiga ted  since it  should n o t co-IP w ith  e ith e r Na+/K +-ATPase c ii, 

Na+/K +-ATPase P i, o r MONaKA, and th e re fo re  served as a negative co n tro l fo r  

these studies.

IP: Na+/K*-ATPase a, in p u t

u
L

! Ft1 N a +/ K +- 

A T P a s e  P j

p A c t in

Figure 2-4 p-actin was absent from anti-Na+/K+-ATPase oti subunit 

immunoprecipitates. T84 cells were grown as monolayers on permeable supports until 

/?te stabilised at plateau levels. cells were lysed and were immunoprecipitated using 

the following dilutions of Na+/K+-ATPase oti antibody: lanes 1 and 2, 1/250; lanes 3 and 

4, 1/500; lanes 5 and 6, 1/1000. The red boxes highlight the optimum antibody 

dilutions for IP identified from these studies. Lane 7 was empty, whereas lanes 8 and 9 

contained the total lysate, or input, p-actin was absent from the anti-Na+/K+-ATPase oti 

antibody immunoprecipitates in Lanes 1-6.

N a +/ K +- 

A T P a s e  ctj
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The protocols for measurement of NKCC1 and NHE activities were adapted from  

those previously published (Heitzmann et at., 2000; Reynolds et at., 2007; 

Beltran et at., 2008; Ramirez et at., 2000). T84 cells were cultured on glass, 

bottom petri dishes (1.54 cm2) until they reached an optimal density of 70 -90  

%. The cells were treated as required and were washed twice with modified 

Krebs solution (37°C) (Table 2-15) prior to incubation with the pH-sensitive dye, 

2'-7’-bis(carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl (BCECF-AM). 

BCECF-AM was re-constituted to a concentration of 5 fiM in pluronic acid, which 

aids in the intracellular transport of the dye. BCECF is a pH-sensitive dye, and 

the acetoxymethyl (AM) ester derivative is membrane permeant, allowing bulk 

loading of cells. Once inside the cell, the lipophilic groups are cleaved by non

specific esterases, resulting in a charged form with 4 -5  negative charges at 

physiological pH values of approximately 7.4 (Han and Burgess, 2010). Cells 

were loaded with the dye diluted in modified Krebs solution (Table 2-15) for 60 

minutes at 37°C. The dye was removed and the cells were washed twice in 

modified Krebs solution, before being incubated in modified Krebs solution 

alone for a further 15 minutes in the dark at room temperature. The second 

incubation was necessary to facilitate leakage of dye from cells that could 

otherwise disrupt baseline readings during the experiments (Han and Burgess, 

2010). Cells were mounted in a perfusion chamber on an epifluorescence Nikon 

microscope stage. Cells were incubated at room temperature in modified Krebs 

solution (Table 2-15) for several minutes before perfusion with NH4 Krebs 

solution (Table 2-15). The initial rise in pH was due to NH3 uptake via NKCC1 

and the plateau phase acidification that follows is due to uptake of NH4+ by 

NKCC1 (Heitzmann et at., 2000). The acid-load was then performed upon the 

removal of the NH4-Krebs solution and perfusion with NMDG-Krebs solution 

(Table 2-15) for approximately 2 minutes to block the activity of NHEs and thus 

amplify the acidification. Under these conditions, acidification is due to the 

dissociation of H+ from NH4+ to form NH3 + H+. Cells were perfused with
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recovery after the acid load is due to the extrusion of H+ by NHEs, and thus
i

represents the activity of NHEs. The ratio of BCECF-AM fluorescence with 

excitation at 505 or 450 nm (F 505/450) was measured every 3 seconds and 

images were captured with an intensified charge-coupled device (CCD) camera 

(ICCD200) and a MetaFluor imaging system. The pH recovery rate is expressed 

in arbitrary units (AU) and calculated as the change from t = 0 to t = 1, 

normalised to the value at t = 0 and represented by the following equation:

modified Krebs solution (Table 2-15) for thè remainder of the experiment. pH

p H  re covery rate (A U )  = ^ s » '440 t 1
AF490/440 t -  0

Where: a value of 1 = no recovery in pH,

a value of > 1 = a recovery in pH,

and a value < 1 = negative recovery in pH.

The solutions used for pH imaging are detailed in Table 2-15 and were adapted 

from previously published studies (Beltran et ol.f 2008).
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Table 2-15 Composition of Krèbs solutions used for intracellular pH measurements.

Once prepared, modified Krebs solutions and NMDG-Krebs solutions were brought to a 

pH of 7.4 and an osmolarity of 285 ± 5 mOsms. NH4-Krebs solution was brought to a pH 

of 8.0 and an osmolarity of 285 ± 5 mOsms.

Compound Concentration (mM)

Modified n h 4 NMDG

KCI 5 5 5

NaCI 141 121 -

CaCI2 1 1 1

MgCI2 0.5 0.5 0.5

k h2p o 4 0.4 0.4 0.4

MgS04 0.4 0.4 0.4

Na2HP04 0.3 0.3 0.3

HEPES Na+ salt 10 10 10

D-glucose 0.6 0.6 0.6

NH4CI - 20 -

NMDG Cl - - 141
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T84 cells were cultured for RNA extraction as described in Section 2-2 . 

Following treatment, monolayers were washed twice in ice-cold PBS. The cells 

were scraped from the inserts re-suspended in 1 ml ice-cold PBS and then 

centrifuged (600 x g; 3 minutes; 4°C). The supernatant was discarded and the 

cell pellet was snap frozen in liquid nitrogen and stored at -80°C. Total RNA was 

isolated using a Qiagen RNeasy Mini Kit. The RNA was then treated with DNase-

I to digest and remove any genomic DNA contamination. RNA was quantified 

and reverse transcription reactions were performed using the purified and 

quantified RNA to create cDNA. A standard quantity of RNA was used for each 

reaction since it is technically difficult to quantify the resultant single-stranded 

cDNA. This is due to the presence of the single-stranded primers that interfere 

with the quantification of cDNA. RNA quality was determined using 

spectrophotometric methods. RNA has its absorption maximum at 260 nm and 

the ratio of absorbances at 260 and 280 nm was used to assess the purity of an 

RNA preparation, with proteins absorbing strongly at 280 nm. Pure. RNA 

measured in water has an A260/A280 of 1.8-2.0. A secondary measure of RNA 

purity is the A260/230 ratio. Carbohydrates and phenols absorb at 230 nm, and 

thus an A260/230 ratio of 1,8 generally means that there are more of these 

contaminants in the sample. An example of the absorbances of purified RNA is 

shown in Table 2-16.

Table 2-16 Purified total RNA measured by spectrophotometric analysis. RNA quality 

was measured on a Nanodrop 8000. Of interest are the A260/280 and A260/230 ratios 

which are an indication of the purity of the RNA.

Sample ID Cone. Units A260 A280 260/280 260/230
1 394.3 ng/ul 9.858 5.251 1.88 1.55
2 338.3 ng/ul 8.457 4.322 1.96 2.05
3 268.3 ng/ul 6.708 3.404 1,97 0.9
4 289.6 ng/ul 7.239 3.7 1.96 1.42
5 304.3 ng/ul 7.608 3.894 1.95 1.92
6 384.5 ng/ul 9.613 4.977 1.93 2.12
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Several of the primer sets employed in the current studies were obtained from  

previously published research (Table 2-1). Primer 3 primer design software was 

employed for genes for which no primer sequences had been previously 

published. The sequences obtained were cross referenced with the NCBI primer 

design Blast utility to ensure that there were no off-target amplicons. Primers 

were ordered from Invitrogen through Biosciences.

2 - 1 3  F i r s t  s t r a n d  c D N A  s y n t h e s i s ,  a n d  P C R

The Improm II reverse transcriptase kit from Promega was used to perform the

reverse transcription reaction. Once a cDNA library was created, amplification

of the genes of interest was performed by semi-quantitative PCR and was

performed using the primer sets shown in Table 2 -17. It was assumed that

reverse transcription occurred with equal efficiency in each reaction, and thus a

standard volume of the newly synthesised cDNA was used for each PCR

reaction. Amplicons were then separated and analysed by agarose gel

electrophoresis. Negative controls were run in each set of primers for each

experiment. The first negative control was for nucleic acid contamination

(Negative Control). In the Negative Control an equal aliquot of water replaced

RNA, and the RT reaction was run in parallel to the reactions containing RNA.

PCR conditions were then optimised for each set of primers. Variables that

were changed in order to optimise conditions were cycle number, annealing

temperature, and elongation time. PCR was then performed using the

optimised conditions, and samples were separated by agarose gel

electrophoresis. Presence of a signal in the Negative Control indicated nucleic

acid contamination of the reaction. The second control was that for genomic

contamination (GC). In the GC control the reverse transcription reaction was

performed without reverse transcriptase. PCR was then performed and

samples were separated by agarose gel electrophoresis. Presence of a signal in
79
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the GC control indicated genomic contamination of the reaction. Examples of 

these controls are shown in Figure 2-5.

Figure 2-5 Genomic contamination and RNA contamination controls for PCR. In the

Negative Control an equal aliquot of water replaced the RNA, and the reverse 

transcription reaction was run in parallel to the reactions containing RNA. PCR was 

then performed and samples were separated by agarose gel electrophoresis. Presence 

of signal in the Negative Control indicated nucleic acid contamination of the reaction. 

In the GC control the reverse transcription reaction was performed without reverse 

transcriptase. PCR was then performed and samples were separated by agarose gel 

electrophoresis. Lane 1 contains a cDNA sample of 18SrRNA amplified with 18SrRNA 

primers. Lane 2 is empty. Lanes 3 and 4 were loaded with the Negative Control 

sample, whereas lanes 5 and 6 were loaded with the GC control samples. In the 

experiment shown there were no bands in either the Negative Control or GC lanes, 

indicating no RNA or genomic contamination of the sample.
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Table 2-17 Sequences of primers used to amplify cDNA and quantitatively compare mRNA expression. Primers were designed to contain 

approximately 50 % GC content.

Gene Target Sense primer sequence 5'-3' Antisense primer sequence 5'-3' Amplicon 
size (bp)

Source

18SrRNA GTCCCCCAACTT CTT AG AG CACCTACGGAAACCTTGTTAC 421 -
CFTR CCAT C AG CCCCT CCG AC AG TACTAGCACATGGCAAGGG1 1 1 1C 424 -
FIH-1 ACAGTG CCAG CACCCACA A GCCCACAGTGTCATTGAGCG 188 (Metzen e ta i,  2003)
FXYD3 CCTGGACCATTCCAGGAAAA GGGACI 1 1GAGGCTTGTTGG 238 Primer 3
H IF -la CTCAAAGTCGGACAGCCTCA CCCTGCAGTAGGTTTCTGCT 314 (Zhou etal., 2006)
KCIMN4 GCCGTGCGTGCAGGATTTAGG GCCCGGCACCACGTCACCATAG 403 -
KCNQ1 CCAG GG CCG CGTCTACAA AGAACACCAG CACGATC 272 -
MONaKA CCAGCATCGAAGACTGACAA CCCCAG AT CCT G CTG AATT A 164 Primer 3
Na+/K +-ATPase oci TGTCCAGAATTGCAGGTCTTTG TGCCCGCTTAAGAATAGGTAGGT 77 (Murphy et al., 2004)
Na+/K +-ATPase Pi ACCAATCTTACCATGGACACTGAA ACCAATCTTACCATGGACACTGAA 80 . (Murphy et al., 2004)
NKCC1 ACAATGGCGAATGGTGACT CATGGGGTTACI 1 1 1 IGGTTAC 518 -
PHD1 ACGGGCTCGGGTACGTAAG CCCAGTTCTGATTCAGGTAATAGATACA 87 (Cioffi et al., 2003)
PHD2 G ACCT GAT ACG CCACT GT AACG CCCGGATAACAAGCAACCAT 83 (Cioffi et al., 2003)
PHD3 AACT G AAT CTGCCCT CACT G AAG AG AATT CAG G A ACCG TTACT AAA AT G A 82 (Cioffi et al., 2003)
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Tg4 cells were cultured on glass coverslips until they reached an optimal density 

of 80 %. Cells were treated with DMOG (1 mM; 24 hours) and were then 

washed twice with physiological salt solution (PSS) (Table 2 -18) at 37°C. 

Monolayers were then loaded with the Ca2+ biriding dye Fura-2/AM (5 jiM ) in 

PSS at pH 7.4 for 30 minutes. Fura-2/AM was reconstituted in 0.01 % pluronic 

F-127 plus 0.1 % DMSO. Cells were then washed in PSS and mounted in a 

perfusion chamber on an epifluorescence Nikon microscope stage. Cells were 

incubated in room temperature PSS for 5 minutes before addition of CCh (100 

jiM ). The ratio of Fura-2 fluorescence with excitation at 340 or 380 nm 

(F340/380) was measured every 3 seconds and images were captured with an 

intensified CCD camera (ICCD200) and the MetaFluor imaging system.

2 - 1 4  I n t r a c e l l u l a r  C a 2+ i m a g i n g

Table 2-18 Composition of physiological salt solution (PSS) for Ca2+ imaging! Once 

prepared the solution was adjusted to pH 7.4.

Compound Concentration (mM)

NaCI 140

KCI 5

CaCI2 1

D-glucose 10

HEPES-trimethylamine 10

82



cAMP levels in monolayers were measured using a commercially available 

kit, as per the manufacturers7 Instructions. The kit contains an enzyme-linked 

immunosorbent assay (ELISA) that uses a cAMP antibody to bind either cAMP in 

experimental samples or an alkaline phosphatase molecule bound to cAMP. 

Samples or standards, alkaline phosphatase conjugate, and antibody are 

simultaneously incubated at room temperature in a well coated with secondary 

antibody. Excess reagents are then washed away, substrate is added, and the 

resulting colour generated is spectrophotometrically analysed at 405 nm (Figure

2-6). The colour intensity 1s representative of the amount of alkaline 

phosphatase bound, which is inversely proportional to the amount of cAMP in 

the experimental sample.

Ts4 cells were cultured as described in Section 2 -2 . Following DMOG (1 mM; 24 

hours) treatment, monolayers were stimulated with apical FSK (10 |iM ) for 5 

minutes at 37°C, before being lysed on ice with HCI (100 mM) for 10-30  

minutes. HCI also serves to inhibit endogenous phosphodiesterases, which 

hydrolyse cAMP to AMP, thus interfering with the assay. Monolayers were 

scraped and the lysates centrifuged (15,300 x g; 10 minutes; 4°C). Cell pellets 

were discarded and cAMP levels were detected in supernatants that were 

diluted 1:10 with assay buffer. Since basal levels of cAMP in T ^  cells are low, 

samples were acetylated to increase the sensitivity of the assay. cAMP 

acetylation results in a molecule that more closely mimics that of the 

immunogenic conjugate, i.e. the compound against which the antibody was 

originally raised. Therefore, acetylated cAMP has a higher affinity for the cAMP 

antiserum and raises the sensitivity of the assay. cAMP levels were quantified 

from 2 separate standard curves for acetylated and non-acetylated cAMP. 

Results were expressed as pmol cAMP/mg protein.

2 - 1 5  c A M P  a s s a y

83



« j  cAMP bound to  
’ tracer

O  free cAMP

antiserum to cAMP

Y  secondary antibody 
adsorbed to well

Figure 2-1 Schematic representation of the cAMP EIA. Antiserum, sample or standard, 

and cAMP-bound tracer were added simultaneously to the wells of a 96-well plate. 

Wells were washed, substrate was added, and the absorbance of the resulting colour 

was read at 405 nm.
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2 - 1 6  L a c t a t e  d e h y d r o g e n a s e  a s s a y

The lactate dehydrogenase (LDH) assay was performed using a commercially 

available kit. LDH is an enzyme that interconverts pyruvate and lactate with the 

coincidental interconversion of NAD and NADH. LDH is a relatively stable 

enzyme in the cytosol, which is rapidly released from the cell upon damage to 

.the plasma membrane. In the assay NAD gets reduced to NADH by LDH. NADH 

is then used to reduce a tetrazolium dye which forms a coloured compound 

upon reduction. Tetrazolium redox dyes scavenge electrons from  

oxidation/reduction reactions and are intracellularly reduced to brightly 

coloured formazan precipitates.

Tg4 cells were cultured as described in Section 2-2. Following DMOG (1 mM; 24 

hours) treatment, culture medium from control and DMOG-treated cells was 

analysed for LDH release. A separate set of cells was incubated with lysis buffer 

at 37°C for 45 minutes, and the culture medium from these cells served as a 

positive control. Sterile serum-free culture medium was used as a negative 

control, the value of which was subtracted from sample readings. An equal 

volume (40 jal) of apical and basolateral media were combined and placed in the 

wells of a 96-well plate. Assay reagent was added to each well at a volume 

equal to twice that of medium sample used, and the reaction was incubated in 

the dark at room temperature for 25 minutes. The reaction was terminated 

upon the addition of 1 /10 volume of HCI (1 M) (24 |il). The absorbance was 

then measured spectrophotometrically at 490 nm.
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2 - 1 7  S e r u m  a l a n i n e  a m i n o t r a n s f e r a s e  ( A L T )  

m e a s u r e m e n t

Aminotransferases are enzymes which catalyse the reversible transformation of 

a-keto acids into amino acids by the transfer of amino groups. Alanine 

aminotransferase (ALT) is present in the cytosol of hepatocytes, and increased 

levels of ALT in the serum indicates a reduction in the integrity of hepatocyte 

plasma membrane. Thus, serum ALT was used in these experiments as a 

measure of liver toxicity in mice treated with DMOG. The reaction is based on 

the following principle: ALT in the presence of pyridoxal phosphate transfers 

the amino group of alanine to a-ketoglutarate to form pyruvate and glutamate. 

Pyruvate then enters an LDH-catalysed reaction with NADH to form lactate and 

NAD+. Decreases in absorbance due to the consumption of NADH are measured 

at 340 nm and are proportional to ALT activity in the sample.

A L T
a-ketoglutarate + L-alanine ---------------> L-glutamate + pyruvate

L D H
pyruvate + NADH + H+ ---------------> L-lactate + NAD+

Blood was collected from mice and coagulated at room temperature for 20 

minutes. Samples were then centrifuged (1200 x g; 15 minutes; 4°C), and the 

serum was retained for analysis. The ALT assay was performed using an 

Olympus Analyser and results were expressed as international units per litre 

(IU/L).
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Creatinine is a break-down product of creatine phosphate in muscle, and is 

usually produced at a fairly constant rate by the body. Creatinine is a 

spontaneously formed cyclic derivative of creatine and is filtered out of the 

blood by the kidneys. Deficient kidney filtration causes creatinine blood levels 

to rise. Thus, serum creatinine levels can be used to calculate creatinine 

clearance, which reflects the glomerular filtration rate and which, in turn, is a 

measure of renal function. The reaction is based on the following principle: 

Creatinine forms a yellow-orange coloured compound with picric acid in an 

alkaline medium. The rate of change in absorbance at 520/580 nm is 

proportional to the creatinine concentration in the sample.

creatinine + picric acid --------> creatinine picrate complex

Blood was collected from mice and coagulated at room temperature for 20 

minutes. Samples were then centrifuged (1200 x g; 15 minutes; 4 °C), and the 

serum was retained for analysis. The creatinine assay was performed using an 

Olympus Analyser and results are expressed mM per sample.

2 - 1 8  S e r u m  c r e a t i n i n e  m e a s u r e m e n t
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The ATP levels in Tg4 monolayers were measured using a commercially available 

kit as per the manufacturers' instructions. Tg4 cells were cultured as described 

in Section 2 -2 . Following treatment (DMOG 1 mM; 0 -2 4  hours) cells were 

washed twice in ice-cold PBS. Cells cultured on 0.6 cm2 inserts were then lysed 

on ice in 200 jil of hypotonic lysis buffer (Table 2-19), before being frozen in situ 

at -80°C until use. The assay uses recombinant luciferase to catalyze the 

following reaction:

ATP + D-luciferin + 0 2 -> oxyluciferin + AMP + PPi + C02 + light (560 nm)

A 1/200 dilution of samples was made prior to analysis. An equal volume of 

diluted sample and substrate were mixed in a black 96-well plate and 

luminescence was detected. Protein content was also measured (Section 2 -6 ) 

and results were expressed as nmol ATP per jig protein.

Table 2-19 Hypotonic Lysis Buffer

2 - 1 9  A T P  a s s a y

Component Concentration

Tris base 100 mM

EDTA 2 mM

Acetic acid As required to bring to pH 7.75
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2 - 2 0  M e s o  s c a l e  d i s c o v e r y  ( M S D )  a s s a y

The MSD electro-chemiluminescence technology uses SULFO-TAG™ labels 

which emit light upon electrochemical stimulation at an electrode surface. The 

electrode is located at the base of the well of a 96-well plate. The antibody of 

interest (H IF -la  and HIF-2a) was purchased from MSD pre-adsorbed to the 

base of the well. The wells were blocked with 3 % Blocker A (MSD catalogue 

number R93AA-1) for 1 hour at room temperature. Wells were then washed x 3 

with PBS + 0.05 % tween 20 (PBS-T). Lysate (25 |il) was then added to each well 

for 1 hour at room temperature with horizontal rotation. The wells were once 

again washed x 3 with PBS-T. Detection antibody (1 |ig/ml labelled HIF-2a 

antibody + 10 nM labelled H IF -la  antibody in 1% Blocker A in PBS-T + 0.2 % IgG) 

was then added for 1 hour, and the plate was again washed x 3 in PBS-T. A 

detection buffer (Read buffer) which contains reactants that allow for 

amplification of the signal emitted by the labelled antibody was then added to 

the wells. A voltage was applied and the tags emit light to indicate the presence 

of substrate. The MSD assay platform utilises ruthenium (II) tris-bipyridine-(4- 

methylsulfone) [Ru(bpy)3] that, once conjugated to the analyte, serves as the 

tracer in competitive assays. The Ru(bpy)3-based tag undergoes a rapid redox 

reaction that emits light in the presence of an applied voltage. Only label bound 

in proximity of the electrode is detected and the plates are read at 620 nm in a 

Mesoscale Sector® Imager 2400 (Figure 2-7).
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A B

Figure 2-7 Schematic representation of meso scale discovery (MSD) assay.

A) Antibodies are adsorbed to the electrode, after which substrate binds. Labelled 

antibody is then loaded and light is emitted once an electrical current received from 

the electrode stimulates the tag. B) The format used in these experiments was the 96 

well 4-spot format, from which multiple analytes can be measured from the same well. 

BSA was used as a loading control and standard curves were created with known 

concentrations of recombinant HIF-la and HIF-2a.

2 - 2 1  s i R N A

siRNAs are double stranded RNAs with 2 nucleotide-long 3' overhangs. Once 

they enter the cell they form a ribo-nuceloprotein complex called RNA induced 

silencing complex (RISC). RISC separates the double stranded siRNA, by 

argonaute 2 cleaving the sense strand. RISC and the antisense-strand then bind 

to the target sense strand mRNA. Slicer protein, part of RISC, then cleaves the 

target mRNA which is then degraded by the cell (Figure 2-8). siRNAs were 

purchased from Ambion. NeoFX transfection reagent was used to transfect 

cells as per the manufacturer's protocol. The optimum conditions for negative 

control transfection were 30 nM siRNA, using 4 % transfection reagent for 24

90



hours. This was assessed by analysis th e  FAM -labelled negative  co n tro l siRNA 

by im m unofluo re scence  as o u tlin e d  in Section 2 -2 3 . The perinuc lea r sta in ing  

ind ica tive  o f successful tra n s fe c tio n  was p resent fo r  24 hours b u t had dissipated  

by 3 days.

SiRNA

Y A Y A Y >

Long dsRNA

V A Y A Y A Y A Y A Y A

VAVAV/

/ / /

Target mRNA recognition 

/
I '  RecydedRISC siRNA

Target mRNA cleavage activated complex

\ / \ / v  i y \ / \ / v
Cleaved sense straod

\ / \ / Y  Sense strand 

‘V / \ / V  Antisense strand 

’ \  /  \  /  \ . Target mRNA

Nature Reviews | Drug Discovery

Figure 2-2 Mechanism of RNA interference and gene expression knockdown. siRNAs 

enter the cell and associate w ith  RISC. The sense-strand o f the siRNA is cleaved, and 

the RISC-siRNA anti-sense strand then binds to and cleaves target mRNA, thus silencing 

the target gene. This figure was adapted from  (Whitehead et ai, 2009).
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2 - 2 2  C r y p t  o f  L i e b e r k i i h n  i s o l a t i o n

There are several methods by which colonic crypts may be isolated (Wildrick et 

a i, 1997). The approach employed in these studies used a combination of Ca2+ 

chelation and mechanical perturbation techniques. Colons from mice and rats 

were transported to the laboratory in ice-cold physiological solution (Table 2-3, 

Table 2-20). Human resected colonic tissue was transported to the lab from the 

Pathology Department at Beaumont hospital. This tissue was removed proximal 

to the resection margin and was determined by the pathologist to be normal. 

Tissues were cleaned of any debris using ice-cold Krebs Heinsleit solution (Table

2-20), and were then cut longitudinally and laterally into several pieces, and 

placed in crypt isolation buffer (Table 2-21) for 20 minutes at room 

temperature. The tissue was then vortexed vigorously for 1 minute to release 

the crypts, after which the tissue pieces were discarded. Crypts were then 

centrifuged at 600 x g at room temperature for 3 minutes. The supernatant was 

removed and the crypts were re-suspended in room temperature Krebs 

Heinsleit solution (Table 2-20), before centrifuging at 600 x g at room 

temperature for a further 3  minutes. The supernatant was again decanted, and 

the isolated crypts were re-suspended in 1 ml of PBS. Crypts were visualised at 

40 x magnification under a light microscope to confirm isolation and integrity 

(Figure 2-9). Isolated crypts were then attached to chamber slides using Cell- 

Tak™ (Section 2-22), washed with PBS, and once again visualised to ensure 

attachment. The crypts were then fixed in 100 % ice-cold methanol for 20 

minutes. Crypts were then stained as per the confocal microscopy protocol 

detailed in Section 2-23.
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C o lo n ic  c r y p t

Figure 2-9 An isolated rat colonic crypt. Following isolation, colonic crypts were 

visualised using 40 x magnification under a light microscope. The different cell types 

indicated are approximate in location and were adapted from previously published 

studies (Barker et al., 2009).
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Table 2-20 Crypt isolation buffer. This buffer is Ca2+ and Mg2+-free and contains Ca2+ 

chelators that serve to dislodge crypts from their basement membranes. Sorbitol and 

sucrose aid in the sedimentation of the crypts. DTT was used to dissolve mucus and 

was added freshly to the crypt isolation buffer each day as it is unstable in solution. 

The pH was adjusted to 7.4 by the addition of NaOH, and the osmolarity was 380 ± 5 

mOsms.

Component Concentration (mM)

NaCI 96

KCI 1.5

EDTA 27

Sorbitol 55

HEPES free acid 10

Tris base 10

Sucrose 44

DTT 1

Table 2-21 Krebs-Heinsleit solution. The Krebs-Heinsleit solution was adjusted to pH 

7.4 by the addition of HCI and the osmolarity was recorded as 290 ± 5 mOsm.

Component Concentration (mM)

NaCI 140

KCI 5

MgCI2,6H20 1

CaCI2.2H20 2

HEPES free acid 10

Tris base 10

D-glucose 10
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Chamber slides were used to visualise isolated colonic crypts. However, the 

slides had to be first prepared with Cell-Tak™, a protein solution that 

immobilises cells and tissue. Each well of the chamber slide was coated with 

200 [i\ of Cell-Tak™ solution (Table 2-22). Cell-Tak™ was allowed to adhere to 

the slides for at least 40 minutes before being aspirated. Wells were then 

washed thrice with de-ionised water, air dried, and stored at 2-8°C  for 10-14  

days until use.

Table 2-22 Cell-Tak™ preparation. Cell-Tak™ was prepared in order to add 

approximately 50 jig per chamber. The solution was prepared fresh and NaOH was 

only added immediately before use since Cell-Tak™ is unstable at basic pH ranges for

2 - 2 3  S l i d e  p r e p a r a t i o n  w i t h  C e l l - T a k ™

long periods.

Component Quantity (|il)

Cell-Tak™ 6

NaOH (1 M) 3

NaHC03 (0.1 M; pH8) 191
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Laser scanning confocal microscopy is a widely used technique, employed to 

visualise deep within specimens. It allows for the control of depth of field, the 

elimination of out-of-focus information, and the ability to collect serial optical 

sections from specimens whose thickness exceeds the immediate plane of 

focus. Light emitted from the laser passes through a pinhole aperture, and via a 

dichroic mirror, focuses a scanning point on the specimen. The fluorescence of 

the excited probe in the specimen is passed back through the dichroic mirror 

and focussed as a confocal point at the detector pinhole aperture. Any out of 

focus light is omitted from the image. Samples are scanned and pixel 

information is composed to form an image.

2 - 2 4  C o n f o c a l  m i c r o s c o p y .
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Figure 2-10 Schematic representation of a confocal laser scanning microscope. A

confocal microscope is composed o f multiple laser sources, a scan head w ith  optical 

and electronic components, detectors, and a computer. This image was downloaded 

from  the Carl-Zeiss Inc. website.
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Tg4 cells for confocal imaging were grown on transparent permeable supports as 

described in Section 2 -2 . After treatment cells were washed thrice in ice-cold 

PBS. Both Tg4 cells and isolated colonic crypts (Section 2—21) were fixed on ice 

for 20 minutes with ice-cold methanol (100 %), washed thrice x 5 minutes, and 

permeabilised in Triton X-100 (0.4 %) for 3 minutes at room temperature. After 

a further 3 x 5  minute washes in PBS, non-specific binding was blocked with 10 

% BSA in PBS for 15 minutes at room temperature. Cells or crypts were then 

incubated with the appropriate primary antibodies diluted in 5 % BSA in PBS for 

2 hours at room temperature. Table 2 -23  describes the optimal dilutions of 

antibodies used in these studies. Following 3 x 5  minute washes in PBS, cells or 

crypts were incubated with appropriate Alexa Fluor ®  secondary antibodies, as 

detailed in Table 2 -23, for 30 minutes in the dark at room temperature. Cells 

and crypts were washed a further 3 x 10 minutes in PBS. In the case of T ^  cells, 

membranes were cut out of the hanging inserts and air dried, and mounted 

apical-side-up on glass slides. All preparations were then stained with hard-set 

Vectashield ®  containing DAPI for nuclear detection. A cover-slip was gently 

placed over the sample and the slides were then dried in the dark at room 

temperature for at least 30 minutes, followed by overnight storage at 2-8°C. 

Confocal analyses were carried out using laser scanning microscopes (LSM) 710 

and LSM 510 Zeiss microscopes. Negative controls for each of the Alexa Fluor 

©-conjugated secondary antibodies used were incorporated into the 

experimental design, whereby confocal staining was performed in the absence 

of primary antibody (Figure 2-11). The capture settings of the microscope were 

then calibrated to this negative control, so that any signal could be confirmed to 

be due to binding of the primary antibody, and not due to non-specific binding 

of the secondary antibody, or auto-fluorescence.

97



Nuclei Na+/K+-ATPase a t Merge

Primary 
antibody

Primary 
antibody 
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Figure 2-11 Antibody control for immunohistochemical studies. T84 cells were 

cultured as monolayers on permeable supports until Rte stabilised at plateau levels. 

Cells were washed in PBS, fixed in 100 % methanol, permeabilised with Triton X-100, 

and then treated with DAPI and anti-Na+/K+-ATPase ax antibodies, or BSA alone, 

followed by secondary rabbit anti-mouse Alexa Fluor 488. Pseudo-colours were 

assigned to the various fluorophores, with Na+/K+-ATPase a i being represented in 

green and nuclei in blue.
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Table 2-3 Antibodies used for immunohistochemical studies. Conditions detailed below were optimised for use with T84 cells in the current 

studies.

Protein Primary
antibody

source

Incubation
time

(mins)

Dilution
factor

Secondary
antibody

source

Cat
number

Species
reactivity

Excitation 
X (nm)

Emission 
X (nm)

Incubation
time

(mins)

Dilution
factor

F-actin Sigma 120 1/2000 - P1951 - 551 573 - -
FIH-1 Santa Cruz 120 1/1000 Molecular

Probes
A11079 rabbit anti goat 

Alexa 568
576 603 30 1/500

KCNQ1 Sigma 120 1/2000 Molecular
Probes

A1108 goat anti rabbit 
Alexa 488

493 520 30 1/500

MONaKA Santa Cruz 120 1/100 Molecular
Probes

A11079 rabbit anti goat 
Alexa 568

576 603 30 1/500

NaVK+- 
ATPase a i

Abeam 120 1/400 Molecular
Probes

A21204 rabbit anti 
mouse Alexa 

488

493 520 30 1/500

IMa+/K+-
ATPaseßi

Abeam 120 1/400 Molecular
Probes

A21204 rabbit anti 
mouse Alexa 

488

493 520 30 1/500

NKCC1 Santa Cruz 120 1/500 Molecular
Probes

A11078 rabbit anti goat 
Alexa 488

493 520 30 1/500
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2 - 2 5  S t a t i s t i c a l  a n a l y s i s

All results are expressed as mean ± standard error of the mean (SEM) for a 

series of n experiments. Statistical analyses were performed using GraphPad 

Instat software, by paired t-test for comparisons of paired treatments between

2 groups, unpaired t-tests for comparisons of unpaired treatments between 2 

groups, and one way ANOVA using Tukey multiple comparisons test for 

treatments of 3 groups or more, p values < 0.05 were considered to be 

significant.

2 - 2 6  M a t e r i a l s .

Ambion, TX, USA: DNase I; Neo FX siRNA.

Antibodies: All antibody sources are indicated in Table 2 -14  and Table 2-23.

BD Biosciences, NJ, USA: BD CELL-TAK™.

Calbiochem, Darmstadt, Germany: Bisindolylmaleimide I, BMS-345541.

Cayman, Frankfurt, Germany: DMOG.

FibroGen Inc., CA, USA: FG4497.

GE Healthcare, UK: PVDF membrane.

New England Biolabs, Inc., UK: lOObp DNA ladder, lkb  DNA ladder.

Pierce, IL, USA: Sulfo-NHS-biotin, spin columns.

Promega, Wl, USA: Improm II reverse transcriptase kit; ENLITEN® ATP Assay. 

Qiagen, Hilden, Germany: Qiagen RNeasy Mini Kit, RNA later.

Roche, Basel, Switzerland: Nonidet P40.

Sigma Aldrich, Wicklow, Ireland: All chemicals, kits and reagents, unless 

otherwise stated.

Thermo Scientific, IL, USA: Lab-Tek™ Chamber Slide™ System, HyClone bovine 

calf serum, Restore™ western blot stripping buffer.

Tocris, Bristol, UK: H89,4-phenylbutyrate.

Vector Laboratories, CA, USA: VECTASHIELD HardSet Mounting Medium with 

DAPI.
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H y d r o x y l a s e s  r e g u l a t e  i n t e s t i n a l  e p i t h e l i a l  i o n

t r a n s p o r t

C h a p t e r  3
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3 - 1  I n t r o d u c t i o n

One of the primary functions of the intestinal epithelium is to transport 

electrolytes and fluids across the epithelium. Intestinal fluid movement is 

driven by osmotic gradients that are, in turn, established by active ion transport 

across the epithelium. Fluid absorption normally predominates and is promoted 

by Na+ absorption, while fluid secretion is driven by Cl‘ secretion.

All epithelial transport, whether it is absorption or secretion, is highly 

dependent on the availability of 0 2 for generation of cellular energy (Mandel 

and Balaban, 1981; Durand et al., 1988; Carra et al., 2011). HIF hydroxylases are 

the primary intracellular sensors of 0 2 availability (Epstein et al., 2001; Bruick 

and McKnight, 2001; Metzen and Ratcliffe, 2004). They are enzymatically active 

in the presence of sufficient a-ketoglutarate, Fe II, ascorbate, and 0 2 which they 

use to hydroxylate target proteins. The 3 HIF prolyl hydroxylase enzymes 

(PHD1-3) and 1 HIF asparaginyl hydroxylase, known as Factor Inhibiting HIF 

(FIH-1), hydroxylate H IF -la  at prolines 402 and 564 and asparagine 803, 

respectively (Mahon et al., 2001; Lando et al., 2002a). Proline hydroxylation 

targets H IF -la  and HIF-2a for degradation via interaction with pVHL, whereas 

asparagine hydroxylation inhibits the binding of the p300/CBP transcriptional 

co-activator proteins to H IF -la , thus inhibiting HIF-1 transcriptional activity.

Acute hypoxia has been shown to affect intestinal electrogenic transport, and 

although chronic hypobaric hypoxia is known to have whole-body physiological 

implications in those living at higher altitudes, there are few studies relating to 

the effects of chronic hypoxia in the intestine (Saravi et al., 1996; Chinn and 

Hannon, 1969). Recent studies have implicated HIF-1 and HIF hydroxylases as 

being important regulators of intestinal epithelial barrier function. These 

studies have shown that increased HIF activation in the colon was protective 

against the onset of chemically-induced colitis in mouse models (Karhausen et 

a l, 2004; Cummins et al., 2008; Robinson et al., 2008). Our collaborators, and
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others have shown that hydroxylase inhibition was protective against colitis, by 

inhibiting apoptosis associated with the onset of disease, and by activating HIF- 

1 and NFkB pathways (Robinson et al., 2008; Cummins et al., 2008). More 

recently our collaborators have identified that the anti-apoptotic effect of 

hydroxylase inhibition is PHDl-dependent (Tambuwala et al., 2010). Both the 

HIF and NFkB pathways are associated with protective roles in intestinal 

epithelial cells, as shown using conditional intestinal epithelial cell knockout 

mice for H IF-la  and IKKp, respectively (Karhausen et al., 2004; Greten et al., 

2004; Chen et a i, 2003). PHD inhibition has been investigated in other systems 

for exploitation of its therapeutic potential and has been shown: A) to be 

protective against post-ischemic cardiac injury via induction of the unfolded 

protein response (UPR) (Natarajan et al., 2009), B) to delay neuronal cell death 

caused by trophic factor deprivation (Lomb et a i, 2007), and C) to be beneficial 

in the treatment of anaemia (Muchnik and Kaplan, 2011). PHD inhibition has 

also been hypothesised to have beneficial effects in disease conditions, such as 

stroke (Ratan et al,, 2004).

With these previous studies in mind, we hypothesised that HIF-hydroxylases 

might also be useful targets for development of new therapies for intestinal 

disorders associated with dysregulated fluid and electrolyte transport. 

However, little was known of the role that hydroxylases play in the regulation of 

intestinal epithelial transport function.
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3 - 2  A i m

Based on the hypothesis that HIF-hydroxylases may be important regulators of 

intestinal fluid and electrolyte transport, the main aim of this chapter was to  

investigate their potential role in regulating epithelial secretory function in vitro 

and in vivo (Cummins et ai., 2008; Robinson et al., 2008).

More specifically, the primary aims of the chapter were:

1. To determine the effects of hydroxylase inhibition on intestinal epithelial 

Cl' secretion in in vitro and in vivo models.

2. To test the efficacy of hydroxylase inhibitors in preventing diarrhoea in 

vivo.

3. To investigate the effects of hydroxylase inhibition on intestinal 

absorptive processes.

104



3 - 3  R e s u l t s

3-3.1 HIF hydroxylase inhibition increases H IF-la  

expression in T8 4 cells

Previous studies have shown that although individual PHD isoforms differ in the 

relative abundance of their mRNA, all 3 show a ubiquitous pattern of expression 

across various tissues. PHD2 has been found to be expressed in all tissues 

examined, PHD1 ¡s expressed most highly in the testes, and PHD3 in the heart 

(Fong and Takeda, 2008; Lieb et al., 2002; Wiliam et al., 2006). As a starting 

point for these studies, expression of the HIF prolyl hydroxylase isoforms in Tg4 

cells was examined. Using primer sequences modified from those previously 

published, mRNA expression of the 3 HIF prolyl hydroxylases (PHD1-3) was 

analysed by semi-quantitative RT-PCR (Demidenko et al., 2005). In agreement

with previous studies in mouse colonic epithelium, all three HIF PHDs were
i

found to be expressed at the mRNA level in T84 cells (Figure 3 -1 ) (Robinson et 

al., 2008).

bp PHD1 PHD2 PHD3
200 

100

Figure 3 -1  PHDs 1-3 are expressed in colonic epithelial cells. T84 cells were grown 

on permeable supports until transepithelial electrical resistance (flte) stabilised at 

plateau levels and total RNA was isolated. Analysis of the expression of the transcripts 

of PHDs 1-3 was performed by semi-quantitative reverse transcription polymerase 

chain reaction (RT-PCR).
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In further studies the expression of PHD isoforms was also analysed following 

treatment of T84 cells with the hydroxylase inhibitor, DMOG. It was found that 

in line with previous findings, although PHD1 mRNA expression was unaltered 

by DMOG treatment (Figure 3 -2  A), both PHD2 (Figure 3 -2  B) and PHD3 (Figure

3 -2  C) mRNA were increased (Epstein et a!., 2001; Berra et a/., 2003; Marxsen et 

o i, 2004). Interestingly, PHD3 appeared to be significantly downregulated at 3 

hours, compared to 1 hour, but remained elevated thereafter.
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Figure 3—2 Hydroxylase inhibition increases PHD2 and PHD3 mRNA expression.

cells were grown on permeable supports until Rte stabilised at plateau levels. Cells 

were treated bilaterally with DMOG (1 mM) for various periods of time indicated 

above. Following this, total RNA was isolated and PHD mRNA expression was analysed 

by semi-quantitative RT-PCR. 18SrRNA was used as a loading control (n = 4-5; ANOVA; 

*p < 0.05, **p < 0.01, ***p  < 0.001 compared to controls; + p < 0.05 compared to 1 

hour time point).
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The expression of the asparaginyl hydroxylase, FIH-1, was also investigated both 

at the mRNA and protein levels. Analysis of FIH-1 mRNA revealed that it is 

expressed in T& cells but, in contrast to PHD2 and PHD3, its expression is not 

altered by hydroxylase inhibition (Figure 3 -3  A). This was confirmed by analysis 

of FIH-1 protein levels in control and DMOG (1 mM; 24 hours)-treated cells 

(Figure 3 -3  B).

A B

DMOGImM (hours)

Figure 3-3 FIH-1 expression in TM cells is not altered by hydroxylase inhibition. A) Tg4

cells were grown on permeable supports until Rte stabilised at plateau levels. Cells 

were treated bilaterally with DMOG (1 mM) for various periods of time indicated in 

panel A, and for 24 hours in panel B. Total RNA was isolated and FIH-1 mRNA 

expression was analysed by semi-quantitative RT-PCR. 18SrRNA was used as a loading 

control (n = 4). B) FIH-1 protein expression was analysed by western blot, p-actin was 

used as a loading control (n = 4).

Given their primary role in regulating cellular H lF -la  levels, it was expected that 

hydroxylase Inhibition would Increase H IF -la  expression in T^ cells. This was 

found to be the case with DMOG treatment increasing H IF -la  levels in a dose-
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dependent manner as measured by western blotting (Figure 3-4). Conversely, 

mRNA expression of HlF-la was significantly reduced after 24 hours treatment 

with DMOG (1 mM).
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Figure 3 -4  Hydroxylase inhibition increases HIF-la protein expression, but decreases 

HIF-la mRNA abundance. cells were grown on permeable supports until Rte 

stabilised at plateau levels. Cells were treated bilaterally with DMOG (1  mM) for 

various periods of time indicated above, after which A) HIF-la mRNA expression was 

measured by semi-quantitative RT-PCR. 18SrRNA was used as a loading control (n = 4; 

ANOVA, *p < 0.05 compared to control). B) HIF-1 a  protein expression was measured 

by western blot, p-actin was used as a loading control (n = 4; ANOVA; *p ^ 0.05, **p < 

0 .0 1  compared to control).

HIF-a levels were also quantified in T84 cells using an MSD assay. Ts4 cells were 

cultured as monolayers on permeable supports, and were treated with DMOG 

(1 mM), at various concentrations, for 24 hours. Proteins were isolated, and HIF 

levels were quantified. Using this approach both HIF-la and HIF-2a proteins 

were found to accumulate in Tg4 cells in response to DMOG-treatment, in a
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concentration-dependent manner. HIF-la protein levels were 560 ± 170 rig/ml 

in control cells, rising to 1194.4 ± 369.5 ng/ml following DMOG treatment, while 

HIF-2a protein levels were 43.4 ± 22.8 ng/ml in control cells, rising to 171.2 ± 

21.5 ng/ml following DMOG treatment (Figure 3-5).

Control

[DMOG] (\M)

200
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50 è A l l
Control 1 10 100 1000 
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Figure 3-5 Hydroxylase inhibition by DMOG resulted in accumulation of HIF-la and

HIF-2a in TM cells. T84 cells were grown as monolayers on permeable supports until Rte 

stabilised at plateau levels. Cells were treated bilaterally with various concentrations 

of DMOG in serum free medium for 24 hours, after which proteins were extracted. 

Concentrations of A) HIF-la and B) HIF-2a were extrapolated from the standard curves 

generated for each (n = 4; ANOVA; * p < 0.05 compared to control).

Next, the possibility that DMOG may have toxic effects on T84 cells at the 

concentrations employed was examined. One of the characteristics of colonic 

epithelial cells is that they form electrically 'tight' monolayers. This tightness is 

referred to as the Rte and ¡s generally high in healthy cells but is reduced in 

damaged cells. Thus, Rte can be used as a marker of epithelial cell viability. It 

was found that treatment of T84 cells with DMOG (1 mM) significantly increased 

Rte by 18.4 ± 7.1 % (n = 21 individual filters from 7 independent experiments;



paired t-test; * p < 0.05) indicating that ¡t does not exert toxic effects on the 

cells (Figure 3-6 A). Another, more direct, measure of toxicity is the release of 

lactate dehydrogenase (LDH). In further experiments, cells were treated with 

DMOG (1 mM) for 3 and 24 hours, time points corresponding to when the 

antisecretory actions of the drug are initiated and are maximal, respectively 

(Figure 3-9 A). As seen in Figure 3-6 B, analysis of the culture medium in which 

the cells were grown, revealed that treatment with DMOG (1 mM) for either 3 

or 24 hours did not cause an increase in LDH release compared to untreated 

control cells.
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Figure 3 -6  DMOG does not exert toxic actions on TM cells. T84 cells were grown as 

monolayers on permeable supports until Rte stabilised at plateau levels. A) Cells were 

treated bilaterally with DMOG (1 mM) for 24 hours and subsequent Rte measurements 

were recorded using an epithelial voltohmeter, EVOM2 (n = 21; * p < 0.05). B) Cells 

were treated bilaterally with DMOG (1 mM) for 3 or 24 hours. Lysate cells were 

treated with lysis buffer for a minimum of 30 minutes prior to analysis. An equal 

aliquot of apical and basolateral culture medium was taken, and LDH released into the 

culture medium was detected using a commercially-available assay (Section 2-16) (n =

3-6; ANOVA; * * *  p < 0.001 compared to control).
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3-3.2 Hydroxylase inhibition attenuates Cl' secretion 

across T84  cells

The effects of hydroxylase inhibition on epithelial secretory function were next 

examined. /sc responses to CCh (100 jaM) and FSK (10 jiM) have previously been 

shown to be due to Cl" secretion in T84 cells (Dharmsathaphorn and Pandol,

1986). It was found that treatment of T84 monolayers with DMOG (1 mM) for 

24 hours exerted a profound antisecretory effect on the cells. When 

monolayers were mounted in Ussing chambers responses to the Ca2+- 

dependent agonist, CCh (100 |xM), and the cAMP-dependent agonist, FSK (10 

jliM) were reduced to 20.2 ± 2.6 % (n = 16; p < 0.001) and 38.8 ± 6.7 % (n = 16; p 

< 0.001) of those in control cells, respectively (Figure 3-7).

Time (min)

Figure 3-7 Hydroxylase inhibition attenuates Cl" secretory responses in T^ cells. T84

cells were grown as monolayers on permeable supports until tfte stabilised at plateau 

levels. Cells were treated bilaterally with DMOG (1 mM) in serum-free medium for 24 

hours. Cells were washed, mounted in Ussing chambers and bathed in Ringer's 

solution (Table 2-3). After an initial stabilisation period Cl' secretory responses to CCh 

(100 jliM) and FSK (10 jllM) were measured as changes in /sc.
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Since DMSO was used as a vehicle for DMOG, in initial studies a 0.1 % solution 

of DMSO was routinely added to control cells. However, analysis of cells 

treated with vehicle (0.1 % DMSO) for 24 hours revealed no significant 

difference from those untreated, in secretory responses to CCh (100 jiM) 

(128.99 ± 17.63 %) or FSK (10 ¿iM) (86.79 ± 9.70 %) (n = 3 -4 ).

Ca2+-mediated Cl" secretory responses in T84 cells stimulated by CCh occur 

following G protein-coupled receptor activation. Thus, in order to determine 

whether the antisecretory effect of DMOG on Ca2+-mediated secretory 

responses occur at the level of receptor activation, thapsigargin (2 jaM) was 

employed. Thapsigargin acts by inhibiting Ca2+ ATPase pumps on the 

sarcoplasmic and endoplasmic reticulum, thereby elevating intracellular Ca2+ in 

a receptor-independent fashion (Treiman et a/., 1998). As shown in Figure 3-8, 

thapsigargin-stimulated secretory responses were also significantly attenuated 

in DMOG-treated (1 mM; 24 hours) cells.

Figure 3-8 Hydroxylase inhibition attenuates thapsigargin-stimulated Cl' secretory

responses. T^ cells were grown as monolayers on permeable supports until ffte

stabilised at plateau levels. T84 cells were treated bilaterally with DMOG (1 mM) in

serum-free medium for 24 hours. Cells were then washed, mounted in Ussing

chambers and bathed in Ringer's solution (Table 2-3). After an initial stabilisation.

period, Cl' secretory responses to bilateral addition of thapsigargin (2 fiM) were

measured (n = 3; paired t-test; **  p < 0.01).
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The effects of DMOG (1 m M) on agonist-induced secretory responses were 

time-dependent. When cells were treated with DMOG (1 m M) for several 

different time points, the antisecretory effects of DMOG on CCh (100 ^M ) and 

FSK (10 jxM)-stimulated responses were found to be half maximal at 

approximately 8  hours (Figure 3 -9  A). Effects of DMOG on Cl" secretion were 

also found to be concentration-dependent. When cells were treated with 

DMOG for 24 hours, antisecretory effects were maximal at a concentration of 1 

mM, the highest concentration employed (Figure 3 -9  B).
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Figure 3 -9  The antisecretory effects of hydroxylase inhibition in TM cells are time- 

and concentration-dependent. TM cells were grown as monolayers on permeable 

supports until flte stabilised at plateau levels. A) Cells were treated bilaterally with 

DMOG (1 mM) in serum-free medium for various time points. Cells were then washed, 

mounted in Ussing chambers and bathed in Ringer's solution (Table 2-3). After an 

initial stabilisation period, CP secretory responses to CCh (100 jljlM )  and FSK (10 jj.M) 

were recorded (n = 3-8; ANOVA; * p < 0.05, **  p < 0.01, * * *  p < 0.001 compared to 

control). B) Cells were treated bilaterally with various concentrations of DMOG in 

serum-free medium for 24 hours, and subsequent Cl' secretory responses to CCh (100 

#iM) and FSK (10 jaM) were measured (n = 8 ; ANOVA; * p < 0.05, * * *  p < 0.001 

compared to control).
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3-3.3 DMOG does not alter secretagogue-induced 

generation of second messengers in Tg4 cells

There are many potential mechanisms by which DMOG could exert its 

antisecretory effects on the colonic epithelium. One possibility is that it alters 

the production of pro-secretory second messengers in the cell. Secretory 

responses in epithelial cells are stimulated by endogenous agonists, such as ACh 

and VIP, which act by increasing the abundance of intracellular second 

messengers, such as Ca2+ and cAMP. These effects can be mimicked by CCh and 

FSK, respectively. However, analysis of both basal and stimulated second 

messenger levels revealed that there were no alterations in the levels of either 

Ca2+ (Figure 3 -10) or cAMP (Figure 3 -11) in cells that were treated with DMOG 

(1 mM; 24 hours) compared to control cells.
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A B

Figure 3-1 Hydroxylase inhibition does not alter CCh-stimulated Ca2+ mobilisation in 

Tm monolayers. T84 cells were cultured on glass cover slips and were treated with 

DMOG (1 mM) for 24 hours. Cells were then washed and loaded with the Ca2+-sensitive 

dye Fura-2 AM. A) Ca2+ mobilisation was analysed by recording Fura-2 fluorescence at 

intervals of 3 seconds. Data are expressed as mean fluorescence ratio at 340 and 380 

nm. B) Maximal changes in intracellular Ca2+ following stimulation with CCh (100 jiM) 

were calculated as the maximal change in fluorescence ratio before and after agonist 

addition (n = 3).
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Figure 3-11 Intracellular cAMP levels are unaltered by hydroxylase inhibition.

cells were grown as monolayers on permeable supports until Rte stabilised at plateau 

levels. Cells were then treated bilaterally with DMOG (1 mM) for 24 hours. Cells were 

stimulated with apical FSK (10 jiM) for 5 minutes, after which they were lysed in HCI 

(100 mM). cAMP levels were measured using a commercially available kit (Section 2- 

15). A) A standard curve was prepared for low concentrations of cAMP: B) A standard 

curve was prepared for higher concentrations of cAMP. C) Values are expressed as 

pmol cAMP per mg protein (n = 5).
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3-3.4 Hydroxylase inhibition attenuates Cl' secretion in ex 

vivo mouse colon and ameliorates allergic diarrhoea in 

vivo

Having shown that hydroxylase inhibition with DMOG exerts antisecretory 

actions in an in v itro  culture model, these studies were next extended to a more 

physiological setting. A mouse model (C57BL/6) was chosen since this model 

has been successfully used by other researchers investigating the effects of HIF 

activation on the development of colitis. Mice were treated with DMOG (320 

mg/kg) by IP injection. 24 hours later, the animals were sacrificed and their 

colons removed, stripped of underlying muscle layers, and mounted in Ussing 

chambers. Tissues were bathed in Ringer's solution (Table 2-3) and monitored 

for changes in /sc. Each preparation was treated with apical amiloride (100 |iM) 

prior to addition of secretagogues to prevent any contribution of ENaC to the 

observed (sc responses. Responses to both CCh (100 jiM) and FSK (10 jxM) were 

significantly attenuated in DMOG-treated tissues (Figure 3-12). It is known that 

CFTR can conduct both Cl“ and HC03", therefore at the end of each experiment 

basolateral bumetanide (100 juM) was added to determine the Cl'-dependent 

portion of the lsc response. Following inhibition of NKCC1, the remaining 

current was assumed to be predominantly apical HC03" secretion, as previously 

reported in murine duodenum and rat colon (Clarke et a/., 2001; Schultheiss e t  

a l., 1998).
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Figure 3-12 Hydroxylase inhibition exerts antisecretory effects in ex  vivo mouse 

colon. Mice were treated with DMOG (320 mg/kg) or PBS by IP injection. After 24 

hours, mice were sacrificed by cervical dislocation, and their colons removed. A) 

Colons were stripped of their muscularis layers by microdissection, mounted in Ussing 

chambers, and bathed in Ringer's solution (Table 2-3). Following a period of 

stabilisation, the epithelial sodium channel blocker, amiloride (100 jiM), was added to 

the apical bath. Cl‘ secretory responses were then stimulated with CCh (100 jiM) and 

FSK (10 jlaM ). Bumetanide (100 ¿iM) was added basolaterally at the end of each 

(experiment to confirm responses were largely due to Cl" secretion. B) Maximal 

responses to CCh and FSK were plotted as fold change over control A /sc responses (n = 

11; paired t-tests; * p < 0.05, *** p < 0.001).
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Having shown that hydroxylase inhibition exerts antisecretory effects in mouse 

colon, it was next investigated whether its effects could be translated into a 

pathophysiological model of diarrhoea. For these experiments an orally- 

induced allergic diarrhoea model was chosen, as was previously described 

(Brandt e t  a l ,  2003). Mice were sensitised with ovalbumin (OVA) by IP injection 

twice, 2 weeks apart Two weeks later, the animals were challenged orally with 

OVA 3 times per week and were monitored for stool output for 1 hour following 

oral administrations (Figure 3-13 A). Mice with profuse watery stool were 

recorded as being diarrhoea-positive. Mice were treated with IP DMOG (160 

mg/kg) or PBS alone, 24 hours before each challenge with OVA. As seen in 

Figure 3-13 B, mice treated with DMOG had normal faecal pellet formation in 

the colon. The occurrence of diarrhoea is shown graphically in Figure 3-13 C. It 

was noted that after just 4 allergen challenges 100 % of mice sensitised to 

ovalbumin were diarrhoea-positive, whereas in those pretreated with DMOG, 

only 20 % displayed symptoms of diarrhoea.
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Figure 3 -1 3  H ydroxylase in h ib it io n  am e lio ra tes a lle rgen-induced d ia rrhoea  in a 

m ouse m odel. Ovalbum in-sensitised m ice w ere p re -trea ted  w ith  in trape ritonea l 

DMOG (160 m g/kg) and a fte r 24 hours w ere challenged by ora l gavage w ith  OVA (50 

m g/m ouse). M ice w ere  trea ted  w ith  DMOG and OVA in th is  w ay every 2 days. A) M ice  

dem onstra ting  profuse diarrhoea w ith in  1 hour a fte r OVA challenge w ere  recorded as 

being d iarrhoea-positive  (n = 10). B) Colons o f the  m ice w ere  isolated and analysed fo r  

the  presence o f faecal pe lle t fo rm a tion , indicated by the  arrow s. C) Graphical 

rep resen ta tion  o f  the  incidence o f  d iarrhoea in the  m ice (n = 10).
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The possibility that DMOG might exert toxic effects in the mice was also 

addressed by measuring serum markers of liver and kidney toxicity/ALT and 

creatinine, respectively. From the results of this analysis shown in Figure 3-14, 

it was clear that DMOG (160 mg/kg) did not exert toxic effects in either the liver 

or kidneys. This data was in concordance with our in v itro  LDH data (c.f. Figure

3-6 B) showing that DMOG did not cause an increase in release of LDH from 

cultured colonic epithelial cells.

A B

DMOG - + + DMOG - - + +

Figure 3— 14 DMOG d id  n o t e xe rt liv e r o r k idney to x ic ity  in m ice. M ice w ere  trea ted  by 

IP in jection  w ith  DMOG (160 m g/kg) fo r  24 hours. Blood was collected from  the  mice 

and was analysed fo r  serum  m arkers o f kidney and liver to x ic ity  (Sections 2 -1 7  and 2 -  

18). A) Renal tox ic ity  was assessed by m easurem ent o f serum  creatin ine  levels (n = 5). 

B) Hepatic to x ic ity  was assessed by m easurem ent o f serum  ALT levels and is expressed 

as in te rna tiona l units per litre  (IU/L) (n = 5).
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In the ex  vivo  studies, mice were administered DMC)G.(320 mg/kg) by I.P 

injection using a dose that had previously been reported to increase the levels 

of mouse H IF-la  (m HIF-la) in the intestine (Cummins e t  a i ,  2008). However, 

we also carried out experiments to ensure that, at this concentration, DMOG 

was inhibiting hydroxylases, and in turn stabilising m HIF-la. Indeed, it was 

found that there was robust accumulation of m HIF-la following treatment with 

DMOG. The m HIF-la antibody was raised in mice to detect human HIF-la, and 

is cross reactive with mouse HIF-la. It has been used previously to detect 

m HIF-la (Cummins e t  a i ,  2008). As a control for non-specific binding of the 

mouse HRP-linked secondary antibody, 2 lanes of whole tissue lysate were also 

run but were not exposed to primary H IF-la antibody. It is clear from the blot 

that under the same exposure, there is little if any m HIF-la present in these 

lanes (Figure 3-15).
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Figure 3-15 Hydroxylase inhibition stimulates accumulation of HIF-la protein in 

mouse colonic tissue. Mice were treated with DMOG (320 mg/kg) by IP injection for 

24 hours. Intestinal tissue was harvested and lysed. Proteins were then resolved by 

SDS-PAGE and probed with antibodies to mHIF-la. The right-most 2 lanes were not 

treated with primary antibody. (3-actin was used as a loading control (n = 4; paired t- 

test; * p <0.05).
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3-3.5 Hydroxylase inhibition attenuates ENaC activity in T84 

cells

Having shown that hydroxylase inhibition exerts antisecretory actions on colonic 

epithelial cells, its effects on absorptive processes were next examined. cells 

are a model of Cl' secretion and do not express functional ENaC. However, a 

recent study (lordache and Duszyk, 2007) has shown that short chain fatty acids 

can cause T84 cells to change their phenotype to that of an absorptive 

enterocyte. By treating the cells with 4-phenyl butyrate (4-PBA) (5 mM), T84 

cells develop an amiloride-sensitive current. As shown in Figure 3-16, 

treatment of T^  cells with 4-PBA (5 mM) for 24 hours reliably induced an 

amiloride-sensitive current of 20.8 ± 0.5 nA/cm2. Treatment of the cells with 

DMOG (1 mM; 24 hours) to inhibit hydroxylase activity significantly reduced this

4-PBA-lnduced basal current (n = 5; * p < 0.05).
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Figure 3-16 Hydroxylase inhibition attenuates ENaC-mediated Na+ absorption in cells. T&
cells were treated with 4-PBA (5 mM; 24 hours) to  induce an amiloride-sensitive current. Cells 

were treated bilaterally with DMOG (1 mM; 24 hours) to  inhibit hydroxylase activity. A) Cells 

were washed, mounted in Ussing chambers and amiloride (10 jaM) was added to the apical 

compartment to inhibit Na+ absorption through ENaC (n = 5; paired t  tests; * p < 0.0S compared 

to control values of the same time point). B) Maximal amiloride-inhibited current was plotted as 

A /sc. (n = 5; paired t  test;** p < 0.01).
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3-3.6 Hydroxylase inhibition attenuates ENaC activity in 

rat rectal tissue

Electrogenic Na* absorption through luminal ENaC is confined to the surface

epithelium of the distal colon and it has been shown to contribute more to 

absorptive processes in humans and rats than it does in mice (Kunzelmann and 

Mall, 2002). Indeed, in C57BL/6 mice there was no detectable amiloride- 

sensitive current across stripped colonic tissue. Furthermore, pretreatment 

with DMOG (320 mg/kg) by IP injection for 24 hours did not alter the lack of 

sensitivity o f  these tissues to amiloride (Figure 3-17). The basal current shown 

in Figure 3-17 is composed of Cl" and HC03 secretion, and was significantly 

reduced in DMOG-treated tissues.
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Figure 3-17 Hydroxylase inhibition did not induce or reduce an amiloride-sensitive 

current in the mouse colon. Mice were treated with DMOG (320 mg/kg) by IP injection 

for 24 hours. The colons were removed, washed in Ringer's solution, and mounted in 

Ussing chambers. Amiloride (10 |iM) was added to the apical bath to inhibit Na+ 

absorption through ENaC (n = 3-5).
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In order to investigate the effects of hydroxylase inhibition on electrogenic Na+ 

absorption in intact intestinal tissue, the rectum of male Sprague Dawley rats 

was employed. It was found that under control conditions, muscle-stripped 

sections of rat rectum exhibited a basal current of 40.79 ± 6.61 jjA/cm2. As 

previously reported this current was approximately 58 % sensitive to amiloride, 

indicating a large component-is due to Na+ absorption through ENaC (Inagaki e t  

a l ,  2004). In rats treated with DMOG (40 mg/kg by I.P injection, a 

concentration previously employed (Zhao e t  a/., 2010)) for 24 hours the 

amiloride-sensitive current was significantly lower, being 67 ± 13.3 % of that of 

controls (n = 6; ** p < 0.01) (Figure 3-18).
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Figure 3-18. Hydroxylase inhibition attenuates Na* absorption through ENaC in rat 

rectum. Rats were treated by IP injection with DMOG (40 mg/kg) for 24 hours. A) Rats 

were sacrificed, their rectum removed, stripped of underlying muscle layers, and 

mounted in Ussing chambers for measurements of /sc. After an initial stabilisation 

period, amiloride (10 jiM) was added to the apical bath to inhibit Na+ absorption 

through ENaC (n = 6). B) Maximal amiloride-sensitive current was plotted as A /sc (n = 

6; paired t test;** p < 0.01).
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3-3.7 Jejunal SGLT-1 activity is unaltered by DMOG

SGLT-1 is an important transporter in the context of the jejunum (Wright e t  at., 

2011). It co-transports glucose and Na+ from the lumen of the Gl tract, with 

water following due to the osmotic gradients created. Mice were treated with 

DMOG (320 mg/kg by IP injection) for 24 hours, after which they were sacrificed 

arid unstripped segments of jejunum were mounted in Ussing chambers. 

Jejunal tissues were then bathed mucosally in a mannitol-Ringer's solution 

(Table 2-8) and serosally in D-glucose-Ringer's solution (Table 2-9) in order to 

maintain apical SGLT-1 in a quiescent state. As shown in Figure 3-19 A, 

bumetanide (100 jxM) was added to the serosal bath to inhibit Cl" secretion into 

the apical compartment and thus prevent its contribution to the observed 

currents. SGLT-1 activity was stimulated by the mucosal addition of D-glucose 

(25 mM) and the SGLT-1 specific inhibitor, phloridzin (1 mM), was added after 

the D-glucose-stimulated current had peaked. Treatment of mice with DMOG 

did not alter the phloridzin-sensitive D-glucose-stimulated influx of Na+ from the 

luminal compartment when compared to control tissues (Figure 3-19 B).
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Figure 3-19 Jejunal SGLT-1 activity is unaltered by hydroxylase inhibition. A) Mice 

were treated with DMOG (320 mg/kg) by IP injection. 24 hours later, mice were 

sacrificed and their small intestine was removed. A) The jejunum was isolated, opened 

along the mesenteric boarder, rinsed in ice-cold mannitol-Ringer's solution (Table 2-8), 

and segments were mounted in Ussing chambers. The apical bath contained 5 mM 

mannitol-Ringer's solution, whereas the basolateral compartment contained 5 mM D- 

glucose-Ringer's (Table 2-9). The NKCC1 inhibitor, bumetanide (100 jiM), was added 

to the basolateral bath, and SGLT-1 was stimulated by the addition of D-glucose 

apically (25 mM). SGLT-1 transport activity was inhibited by apical addition of 

phloridzin (1 mM). B) Maximal phloridzin-sensitive currents in control and DMOG- 

treated mice were plotted as A /sc (n = 6).
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3-3.8 Hydroxylase inhibition attenuates NHE activity in T84 

cells

Having already investigated the activity of 2 of the primary Na+ transporters, our 

attention next turned to the NHEs. IMHE3 is responsible for the majority of Na+ 

absorption in the intestine (Zachos e t  o i ,  2005), therefore we wished to 

investigate the effect of hydroxylase inhibition on NHE activity in T84 cells. 

However, recent studies have shown that cells do not express NHE3, but 

rather, they express NHE1 and NHE4 which are responsible for the maintenance 

of intracellular pH (Beltran e t  a l ,  2008). We found that hydroxylase inhibition 

attenuated NHE activity in T84 cells, as demonstrated by their inability to return 

to steady-state pH following an acid-load (Figure 3-20).
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Figure 3-20 Hydroxylase inhibition attenuates NHE activity in T84 cells. T84 cells 

cultured on glass cover slips were treated with DMOG (1 mM; 24 hours). Cells were 

then washed and loaded with the pH-sensitive dye, BCECF/AM (5 juM; 60 minutes). A) 

Intracellular pH was analysed by recording BCECF fluorescence at intervals of 3 

seconds. Cells were perfused with modified Krebs, followed by NH4 Krebs, followed by 

NMDG-Cr Krebs (indicated by N), and finally returned to modified Krebs for the 

duration of the experiment (Table 2-15). Data are expressed as mean fluorescence 

ratio at 490 and 440 nm. B) NHE activity was recorded as the rate of change in pH back 

to steady state following an acid load which occurs following removal of NH4 (n = 10; 

paired t-test; * *  p < 0.01 com pared  to  contro l) (c.f. Section  2-10). As a positive 

control, cells were treated with EIPA (25 jjJVI) to inhibit NHE activity (n = 2).

Having shown that hydroxylase inhibition attenuates NHE activity, we next

wished to investigate whether NHE inhibition, using the NHE-specific inhibitor

EIPA, alters epithelial secretory responses. Since chronic exposure to

hydroxylase inhibitors exerts antisecretory effects in T84 cells, we hypothesised

that chronic exposure to the NHE inhibitor, EIPA, might have similar effects.

However, we found that Cl" secretory responses from T84 cells treated with EIPA
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(25 |j,M; 24 hours; bilateral) alone were unaltered compared to controls (data 

not shown). Similarly, addition of EIPA (25 |iM) bilaterally to control T84 cells in 

Ussing chambers was without effect on Cl" secretion. However, co-treatment of 

T84 cells with EIPA (25 |aM; 24 hours; bilateral) and DMOG (1 mM; 24 hours; 

bilateral), reversed the antisecretory effects of the hydroxylase inhibitor (Figure

3-21). This effect was not seen upon addition of . EIPA (25 jaM) to DMOG- 

treated cells in Ussing chambers.
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Figure 3-21 Chronic, but not acute, treatment of Tg4 cells with EIPA reversed the 

antisecretory effects of DMOG. T84 cells were grown as monolayers on permeable 

supports until /?te stabilised at plateau levels. Cells were treated bilaterally with DMOG 

(1 mM; 24 hours) in serum-free medium in the presence or absence of EIPA (25 fiM; 24 

hours). Cells were washed, mounted in Ussing chambers and bathed in Ringer's 

solution (Table 2-3). After an initial stabilisation period EIPA was added acutely to 

designated chambers. CC secretory responses to A) FSK (10 |iM) and B) CCh (100 |iM) 

were measured (n = 3; ANOVA; ** p < 0.01, *** p < 0.001 compared to DMOG-only).
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3 - 4  D i s c u s s i o n

In the present study we confirmed the expression of the HIF prolyl and 

asparaginyl hydroxylases in the Tg4 colonic epithelial cell model. Previous 

studies found that the expression of the HIF hydroxylases was regulated by 

induction of hypoxia, while in this study it was found that the expression of the 

hydroxylases was regulated by hydroxylase inhibitors, such as DMOG (Epstein e t  

aL , 2001; Berra e t  aL , 2003; Marxsen e t  aL , 2004). While hydroxylase inhibition 

by DMOG and hypoxia are not one in the same, previous studies in a breast 

cancer cell line, MCF-7, have found there to be striking concordance between 

patterns of gene expression induced by hypoxia and by DMOG (Elvidge e t  aL,

2006). While many of these genes are HIF-1 or HIF-2-dependent, not all of the 

hypoxia or DMOG-regulated genes were targets of HIF, highlighting the 

importance of non-HIF targets of hydroxylases (Elvidge e t  a !., 2006). More 

recent studies have highlighted the sensitivity of the hydroxylases to varying 

levels of hypoxia versus hydroxylase inhibitors (Tian e t  aL , 2011b). For example, 

while proline hydroxylation is inhibited by 1 % hypoxia, asparagine 

hydroxylation is relatively insensitive to 1 % hypoxia, but is almost completely 

inhibited by DMOG. In agreement with other studies we found that hydroxylase 

inhibition caused a robust accumulation of H IF-la  and HIF-2a (Asikainen e t  aL,

2005). It was noted that H IF-la  mRNA expression was significantly reduced 

following treatment with DMOG. Interestingly, it has recently been shown by 

our collaborator's group that a negative feedback loop exists in which 

microRNA-155 induced by H IF-la  transcriptionally represses H IF-la  expression, 

thereby quenching the response (Bruning e t  aL , 2011). While the mRNA 

expression of PHD1 remained unaltered, PHD2 and PHD3 were transcriptionally 

upregulated in response to hydroxylase inhibition/ potentially through the 

actions of HIF-1, as previously demonstrated (Marxsen e t  aL , 2004). 

Interestingly, PHD3 mRNA expression which was upregulated 1 hour after 

treatment with DMOG, was significantly reduced by 3 hours. This drop in PHD3 

mRNA is coincident with the onset of the antisecretory effect of DMOG. With
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this in mind one could speculate that PHD3 mediates the antisecretory effect of 

hydroxylase inhibition, with the discrepancy in the time course for mRNA 

expression and antisecretory actions being explained by the time it takes for 

PHD3 protein translation to occur. Further studies would be required to 

determine if this is indeed the case. FIH-1 expression remained unaltered at 

both the protein and mRNA levels, which was in accordance with previous 

studies showing FIH-1 is not regulated by hypoxia in human kidney cells 

(Schodel e t  aL , 2010).

The primary finding of this chapter is that hydroxylase inhibition by DMOG 

attenuates colonic epithelial responses to secretagogues (Figure 3-22). Upon 

stimulation with either the Ca2+ dependent secretagogue, CCh, or the cAMP 

dependent secretagogue, FSK, secretory responses were found to be 

significantly attenuated in DMOG-treated monolayers. The antisecretory effect 

of hydroxylase inhibition was recapitulated by the use of a more specific and 

potent inhibitor of PHDs, FG-4497, and these results are discussed in more 

detail in Chapter 4 of this thesis. The antisecretory effect of hydroxylase 

inhibition was slow in onset, occurring over several hours, and being half- 

maximal by approximately 8 hours after treatment. This slow onset of response 

suggests that alterations likely occur at the level of protein expression. The 

effects of hydroxylase inhibition by DMOG were also concentration-dependent, 

occurring at concentrations previously reported to inhibit PHDs and FIH-1 in 

other systems (Cummins e t  aL, 2008; Floyd e t  aL , 2007; Lando e t  aL , 2002b). 

Stabilisation of H IF-la by hydroxylase inhibition temporally preceded the 

antisecretory effects, suggesting that DMOG may be exerting its antisecretory 

effects through altering H IF-la expression. In support of this idea HIF-1 has 

previously been shown to transcriptionally down-regulate several of the 

transport proteins involved in the Cl' secretory pathway (Zheng e t  aL , 2009; Ibla 

e t  aL , 2006). Acriflavine, an inhibitor of H IF-la, was employed to investigate 

the role of H IF-la in mediating the actions of DMOG, however acriflavine (5 

|iM) was found to be ineffective in attenuating the induction of the HIF-1 target,
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PHD2. Acriflavine also had no effect on the antisecretory actions of DMOG. 

Thus, further studies would be required to determine if HIF-i mediates the 

antisecretory effects of DMOG. Such studies could include the use of siRNAs to 

knock-down expression of HIF-la.

Importantly, the anti-secretory effects of DMOG were not associated with 

cytotoxic actions in T84 cells, as evidenced by analysis of LDH release. In fact, 

Rte, a reliable measure of epithelial integrity was significantly increased 

following treatment of the cells with DMOG. This is supported by previous work 

showing that DMOG can exert anti-apoptotic effects in murine colonic epithelial 

cells, and therefore the drug may promote intestinal barrier function in this way 

(Cummins e t  ah , 2008). More recently our collaborators have identified that the 

mechanism by which PHD inhibition antagonises apoptosis is PHDl-dependent. 

In fact, histological analysis of the intestine of PHD1 knock-out mice showed an 

increase in epithelial cell density, which could have implications for intestinal 

transport function (Tambuwala e t  a/., 2010).

Pro-secretory second messenger production is stimulated by agonists, such as 

ACh and VIP, which bind to their cognate receptors, thereby raising levels of 

intracellular Ca2+ or cAMP, respectively. The current studies show that both 

Ca2+- and cAMP-dependent Cl" secretory responses are attenuated by 

hydroxylase inhibition. Reports of the effects of DMOG on intracellular second 

messenger levels are lacking, however, previous research in renal carcinoma 

cells showed that increased intracellular Ca2+ contributes to H IF-la  degradation, 

by a mechanism involving the calpain system (Zhou e t  a i ,  2006). In the present 

study, DMOG caused a robust accumulation of H IF-la, suggesting that Ca2+ 

levels were unaltered, which was indeed the case. In fact, neither agonist- 

induced release of intracellular Ca2+, nor basal or stimulated levels of cAMP, 

were altered by treatment of T^  cells with DMOG. Furthermore, stimulation of 

cells with thapsigargin, an agent which increases intracellular Ca2+ levels in a
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receptor-independent fashion, indicated that thé antisecretory effect of DMOG 

on Ca2+-stimulated responses occurs downstream of receptor activation.

Although T84 cells are an excellent tool for investigating mechanisms that 

regulate epithelial secretory function, they are ultimately a reductionist model, 

and findings may not be entirely translatable to in vivo  situations. Thus, 

whether hydroxylase inhibition was also efficacious in inhibiting Cl" secretion in  

vivo  was investigated. A mouse model (C57BL/6) was employed since this 

model has been successfully used by other researchers for studying the effects 

of HIF-1 activation on the development of intestinal disease (Cummins e t  a i ,  

2008; Robinson e t  a i ,  2008; Karhausen e t  a i ,  2004). We found that similar to 

its effects in cultured colonic epithelial cells in v itro , hydroxylase inhibition in 

mice significantly reduced Cl" secretory responses to both CCh and FSK across ex  

vivo  colonic epithelium. The experiments carried out in mice were performed 

using a dose of DMOG previously reported to stabilise H IF-la  and to ameliorate 

colitis in mice, and which was found to increase cellular H IF-la  levels in the 

present study (Cummins e t  a i., 2008). Interestingly, there also appeared to be 

m HIF-la present in control tissues, although this may not altogether be 

unexpected given the high turnover rate of H IF-la  and the presence of mild 

hypoxia in healthy colonic epithelium (Taylor and Colgan, 2007). However, the 

low levels of H IF-la present suggest that it may not have a significant 

physiological role. Translation of these ex  vivo  findings into a 

pathophysiological model of diarrhoea was carried out using an allergic model 

of diarrhoea (Brandt e t  a i., 2003). Allergic diarrhoeas are associated with 

significant changes in /sc and Cl" secretion, and previous research has shown that 

OVA-induced diarrhoea is predominantly due to mast-cell stimulation of Cl" 

secretion (Harari et a i ,  1987; Perdue e t  a i., 1991). A lower dose of DMOG was 

required in these experiments based on experiments performed by our 

collaborators, which identified 160 mg/kg DMOG as being efficacious in 

ameliorating diarrhoeal disease. Strikingly, only 20 % o f  O V A -sen s itised  animals 

that were pre-treated with DMOG and then exposed to oral OVA were
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diarrhoea-positive after 4 allergen challenges, whereas 100 % of animals treated 

with OVA-alone had diarrhoea. These data suggest that hydroxylase inhibition 

prevents secretory diarrhoea in vivo  and could be of use in treatment of other 

diarrhoeal diseases, such as those associated with IBD, diarrhoea-predominant 

IBS, iatrogenic diarrhoeas such as those induced by chemotherapy, microscopic 

colitis, and bile acid malabsorption (Carter e t  a l., 2004; Maroun e t  o f.t 2007; 

Oelkers et a/., 1997; Hofmann, 2009).

The intestine is predominantly an absorptive tissue, therefore investigation of 

potential therapies for diarrhoeal disease must include examination of their 

effects on absorptive processes. Fluid absorption follows Na+ absorption by 

osmosis, therefore we first examined potential effects of DMOG on electrogenic 

Na+ absorption. Since no cell culture models for ENaC-mediated absorption in 

the intestine exist, we adopted a previously employed approach (lordache and 

Duszyk, 2007), where treatment of T84 colonic epithelial cells with the short 

chain fatty acid 4-PBA induces the expression of an amiloride-sensitive current. 

Following induction of active ENaC in T84 monolayers, inhibition of hydroxylases 

with DMOG caused a reduction in the basai ENaC current and by inference, a 

reduction in ENaC activity. Given that the mouse colon does not exhibit ENaC- 

mediated currents, our in v itro  work was translated into a rat model, since it is 

known that the rectum of the rat exhibits a comparatively large amiloride- 

sensitive current (Inagaki e t  a/., 2004). In accordance with our in v itro  work, at 

concentrations previously shown to inhibit hydroxylases in rats (Zhao et a i., 

2010), DMOG caused a reduction in the amiloride-sensitive current in ex vivo  rat 

rectum. The molecular mechanisms underlying this reduction remain to be 

elucidated, but may involve a reduction in the activity of the Na+/K+-ATPase, 

which is necessary for all transport processes in epithelial cells. This is discussed 

in more detail in Chapter 4 of this thesis. Hydroxylase inhibition specifically 

downregulated large intestinal ENaC activity, while small intestinal SGLT-1 

activity remained unaltered. Contrary to this however, previous research has 

shown that acute hypoxia of 1 hour duration, inhibits SGLT-1 activity in rat
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jejunum (Kies and Tappenden, 2002). However, these previous studies were 

conducted with supra-physiological levels of nutrients (120 mM). Since SGLT-1 

is such an important transporter in the context of the jejunum, it is beneficial 

from the perspective of an antidiarrhoeal, that DMOG has no effect on its 

activity (Wright e t  a !., 2011). Finally, NHE activity in T84 cells was found to be 

attenuated by hydroxylase inhibition. We suspect that this is more likely to play 

a role in the regulation of intracellular pH (pHj) as opposed to Na+ absorption, 

since NHE3 has been reported to be absent from T84 cells (Beltran e t  a t., 2008). 

Interestingly, co-incubation of EIPA with DMOG reversed the antisecretory 

effect of DMOG. It has been reported that chronic hypoxia elevated pH] by 

activating Na+/H+ exchange in pulmonary arterial smooth muscle cells and that 

this effect was inhibited by EIPA (Rios e t  a l ,  2005). Although our results 

indicate an inhibition of NHE activity by DMOG, the possibility remains that 

hydroxylase inhibition alters steady-state pHj, thereby attenuating Cl" secretion. 

However, it should also be noted that EIPA-induced effects occurred only at 

doses >25 |iM, which may indicate that this effect is due to non-specific actions 

of the inhibitor.

3-5 Summary

In summary these studies demonstrate a novel role for HIF hydroxylases in 

regulating intestinal epithelial ion transport in v itro  and in vivo. Hydroxylase 

inhibition attenuates Cl" secretion, an effect that in vivo  would be expected to 

prevent fluid secretion into the intestine. These findings are important for our 

understanding of how epithelial transport function may be regulated in health 

and disease and suggest that hydroxylases, and their associated signalling 

mechanisms, may provide good targets for the development of new drugs to 

treat intestinal disorders associated with diarrhoea.
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Figure 3-22 Hydroxylase inhibition attenuates colonic epithelial secretory function in 

vitro  and in vivo. Upon treatment with the hydroxylase inhibitor, DMOG, the activity 

of HIF hydroxylases is blocked, leading to HIF-a stabilisation in the cell. Cl' secretory 

responses to both Ca2+- and cAMP-dependent agonists are significantly attenuated and 

this effect is not due to alterations in the abundance of these prosecretory second 

messengers. DMOG-induced inhibition of Cl" secretion prevents fluid secretion into the 

intestinal lumen, thereby preventing diarrhoea.
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4 - 1  I n t r o d u c t i o n

Fluid secretion in the intestine is driven by the luminal secretion of Cl" from 

epithelial cells. The Cl' secretory pathway is tightly regulated and is composed 

of several transport proteins that work in concert to drive Cl" from the 

epithelium into the lumen of the gut. In the previous chapter we found that 

hydroxylase inhibition attenuated agonist-stimulated secretory responses 

across colonic epithelial cells. Thus, our data expand on previous studies which 

demonstrate that intestinal secretion can be regulated by hypoxia and its 

associated signalling mechanisms, including production of mitochondrial 

reactive oxygen species (ROS), reductions in ATP generation, and stimulation of 

H IF-la  and HIF-2a accumulation. Although mechanisms by which hypoxia 

regulates epithelial secretion are not well understood, previous studies suggest 

that hypoxic targets within epithelial cells can include transport proteins that 

comprise the Cl' secretory pathway.

The driving force for apical Cl' secretion and indeed, all epithelial electrolyte 

transport processes, is the basolaterally-located Na+/K+“ATPase (Skou, 1998; 

Kaplan, 2002). Several studies have shown the Na+/K+-ATPase to be regulated 

by hypoxia (Planes et al., 1996; Mairbaurl et o/., 2002; Carpenter et a l., 2003; 

Dada e t  a l., 2003; Gusarova et a l., 2011). Initiai studies indicated that hypoxia 

attenuated the activity of lung epithelial Na+/K+-ATPase, without altering its 

expression (Planes et a l., 1996; Carpenter et a l., 2003). The mechanisms 

involved are complex and involve mitochondrial ROS, which are produced 

during hypoxia, which activate Ca2+/calmodulin-dependent kinase kinase ¡3 

(CaMKKp). Activated CaMKKp then phosphorylates adenosine monophosphate- 

activated protein kinase (AMPK), which in turn phosphorylates PKC Ç (Gusarova 

e t  a l., 2011; Gusarova e t  a l., 2009). PKC Ç translocates to the plasma membrane 

where it phosphorylates Ser-18 on Na+/K+-ATPase a i, culminating in clathrin- 

dependent pump endocytosis (Dada e t  a l., 2003; Chen e t  a !., 2006). This 

process was shown to require the ubiquitin-conjugating system and to be pVHL-
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dependent, but interestingly was HIF-independent (Cornelias e t  a i ,  2006; Dada 

e t  a i ,  2007; Zhou e t  a i ,  2008). The aforementioned research was carried out in 

renal and alveolar epithelial cells, which are exposed to a p02 of approximately 

20-50 torr and 100 torr (16 % O2), respectively (Johannes e t  a i ,  2006). These 

levels of 0 2 are considerably higher than those to which intestinal epithelial 

cells are exposed, which when examined in the mouse, ranged from 58 torr in 

the stomach, to 3 torr in the colon (He e t  a i ,  1999). Nevertheless, the fact that 

the mechanism of Na+/K+-ATPase inhibition by PKC C, is conserved across renal 

and alveolar tissues, suggests that it may also be present in intestinal epithelia. 

Na+/K+-ATPase regulation is multifaceted, and thus has potential to be exploited 

for therapeutic intervention.

The activity of Na+/K+-ATPase pumps create an electrochemical driving force for 

entry of Na+ through basolateral Na+ K+.2CI" co-transporters (NKCC1). NKCC 

facilitates the entry of Na+, K+, and 2 Cl' into epithelial cells and its function has 

been well characterised in the colon (Matthews e t  a i ,  1992; Matthews e t  a i ,  

1994; D’Andrea e t  a i ,  1996; Haas and Forbush, 2000; Del Castillo e t  a i ,  2005). 

NKCC1 has been identified as the isoform expressed by human intestinal 

epithelium (Payne e t  a i ,  1995). Although it is known to be regulated by 

hypoxia and specifically by HIF-1, there is still a paucity of studies on NKCC 

function under such conditions (Ibla e t  a i ,  2006). However, since NKCC1 is a 

rate-limiting step in intestinal epithelial Cl' secretion, it too is likely to be an 

important factor in the alterations of epithelial transport function that occur 

during hypoxia (Barrett and Keely, 2000).

K+ ions that enter epithelial cells through NKCC1 are recycled through 

basolateral cAMP-activated K+ channels, KCNQ1, and basolateral Ca2+-activated 

K+ channels KCNN4 (Schroeder e t  a i ,  2000; Flores e t  a i ,  2007). More recent 

research has also implicated apically located K+ channels as being involved in 

luminal secretion of anions in the intestine (Nanda Kumar e t  a i ,  2010). Recent 

studies have implicated AMPK as being important in regulation of KCNQ1 under
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conditions of metabolic stress in kidney cells (Alzamora e t  a l., 2010). While it is 

possible that such effects may also occur in hypoxia, this has not been 

demonstrated in intestinal epithelial cells. However, since AMPK is not 

activated by hydroxylase inhibitors, it is unlikely to play a major role in 

mediating actions of DMOG described in the current studies (Emerling e t  a l.,

2007). Research by other groups has shown that serum and glucocorticoid- 

responsive kinase-1 (SGK1) regulates KCNQ1/KCNE3 endocytosis (Seebohm et 

a l., 2007). SGK1 is known to be regulated by hypoxia in other systems (Aoyama 

et a l., 2005; Rusai et a l., 2009). Thus, previous studies suggest that KCNQ1 can 

be regulated under conditions of hypoxia, or by hydroxylase inhibitors, through 

activation of SGK1. However, studies on the role of hypoxia, or hydroxylase 

inhibitors, on KCNN4 function are scarce.

Cl" accumulates in epithelial cells above its electrochemical equilibrium by its 

entry through NKCC1, and upon stimulation of the ceils by agonists such as 

acetylcholine or VIP, accumulated Cl" exits across the apical membrane (Figure

4-1). Luminal Cl“ exit is facilitated by Cl" channels, such.as cAMP-activated CFTR 

channels, and the more recently identified Ca2+-activated apical Cl" channel, 

TMEM16A (Ousingsawat e t  a l., 2009; Almaca et a l., 2009). Previous studies 

have indicated that hypoxia represses mRNA expression of CFTR in the intestine 

and other tissues, and further studies in the intestinal epithelium showed that 

this occurs by a HIF-l-dependent mechanism (Guimbellot et a l., 2008; Zheng e t  

a l., 2009). In sinonasal respiratory epithelia, both CFTR and TMEM16A mRNA 

transcripts have been shown to be significantly attenuated in hypoxic cultures 

(Blount et a l., 2011). Thus, in light of the antisecretory actions of DMOG 

observed in the current studies, the effects of hydroxylase inhibition on Cl" 

channel function warrants further investigation.

Each of the transport proteins that comprise the Cl" secretory pathway has been 

the subject of extensive previous research and various protocols have been 

established by which their activities can be investigated in isolation. For
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example, using simple modifications of the Ussing chamber/voltage clamp 

technique, the activity of several of these transport proteins can be measured 

as changes in /sc. However, electrophysiological studies are only useful where 

the transport process under investigation results in a net charge moving across 

the epithelium. For electroneutral transporters, such as NKCC1, other 

techniques must be employed, such as rubidium flux assays or ratiometric 

imaging using fluorescent probes, such as BCECF (Reynolds e t  a/., 2007). In 

order to further our understanding of the antisecretory effects of hydroxylase 

inhibition in intestinal epithelial cells, we employed some of these techniques, 

along with biochemical and molecular approaches, to more closely analyse the 

effects of DMOG on the expression and activity of transport proteins involved in 

the secretory process.
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Figure 4-1 Schematic representation of the Cl' secretory pathway in cells. This 

rather simplistic representation of the Cl' secretory pathway of T84 cells highlights the 

main types of transporters that contribute to Cl' secretion in this model. The 

electrochemical driving force for Cl' secretion is provided by the Na+/K+-ATPase on the 

basolateral membrane. The removal of 3 Na+ from the cell against their 

electrochemical gradient creates a driving force fo r the entry of Na+, K+, and 2 CP via 

basolateral NKCC1. Cl' and K+ accumulate within the cell, and upon stimulation by 

agonists such as ACh and VIP, which raise intracellular second messenger levels, 

basolateral K+ channels and apical Cl* channels open and luminal efflux o f Cl' occurs. 

The electrical gradient created by Cl' efflux promotes paracellular Na+ transport 

through tight junction pores and water follows passively by osmosis.
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4 - 2  A i m

The overall goal of this chapter was to investigate the impact of hydroxylase 

inhibition on the activity and expression of individual transport proteins that 

constitute the Cl' secretory pathway. Specifically, the aims of the chapter were 

to:

1. Identify alterations in transport protein activity and expression in 

response to hydroxylase inhibition.

2. Investigate molecular regulation of the Na+/K+-ATPase by hydroxylase 

inhibitors.

3. Investigate the potential involvement of HIF in the antisecretory effect 

of hydroxylase inhibitors.



4-3.1 Hydroxylase inhibition attenuates CFTR expression

We first set out to investigate the effects of hydroxylase inhibition on the 

activity of apical CFTR channels. Using a previously established protocol 

(Rochwerger e t  a i ,  1994); T84 cells were treated with DMOG (1 mM; 24 hours) 

and mounted in Ussing chambers. An apical to basolateral Cl' gradient of 

119.8-4.8 mM was established across the monolayers and the basolateral 

membranes were permeabilised by nystatin (100 jxg/ml). Following stabilisation 

of the current, FSK (10 (iM; apical) stimulated Cl'-currents were measured. 

Control Cl’ currents were inhibited 77.8 ± 2.3 %  by the CFTR inhibitor, CFTRinhi72 

(10 juM) (n = 6; *** p < 0.001), implying that the apical Cl" current was

predominantly CFTR-mediated. However, it was found that there was no
i

difference in FSK-induced changes in current (A /sc) when control and DMOG- 

treated cells were compared (Figure 4-2). CFTRinhi72 attenuated the current in 

DMOG-treated cells to a similar extent as that in control cells (78.6 ± 7.7 %; n = 

3; p < 0.001), suggesting that Cl" currents in DMOG-treated cells are also 

predominantly mediated by CFTR.

4 - 3  R e s u l t s
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Figure 4-2 Hydroxylase inhibition does not alter apical Cl' currents in cells. Tg4 cells 

were grown as monolayers on permeable supports until Rte stabilised at plateau levels. 

Cells were treated bilaterally with DMOG (1 mM) in serum-free medium for 24 hours 

and were then washed and mounted in Ussing chambers. The apical chamber 

contained normal Ringer's solution (Table 2-3), whereas the basolateral chamber 

contained a low Cl' solution, in which Cl' was replaced with equimolar gluconate (Table

2-5). A) Following 30 minutes of permeabilisation by nystatin (100 jig/ml), FSK (10 

\xW\) was added apically and changes in /sc were measured. B) Maximal changes in 

current in control and DMOG-treated cells were plotted as A lsc (n = 10).
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To determine whether CFTR expression is altered in intestinal epithelial cells by 

inhibition of hydroxylases, cells were treated with DMOG (1 mM) for several 

time points up to 24 hours. After treatment, analysis of CFTR mRNA and protein 

was performed by semi-quantitative PCR and SDS-PAGE, respectively. We 

found that there was a dramatic reduction in both CFTR mRNA and protein 

expression following treatment with DMOG (Figure 4-3). This is consistent with 

previous work showing that HIF-1 transcriptionally represses CFTR (Zheng e t  a l., 

2009).

A B

DMOG 1mM (hours) DMOG 1mM (hours)

Figure 4-3 Hydroxylase inhibition attenuates CFTR expression in colonic epithelial 

cells. T84 cells were grown as monolayers on permeable supports until Rte stabilised at 

plateau levels. Cells were treated bilaterally with DMOG (X mM) in serum-free medium 

for various times. A) mRNA was isolated from the cells and semi-quantitative PCR 

analysis was performed with primers specific for CFTR. 18SrRNA was used as a loading 

control (n = 4; ANOVA, * p < 0.05 compared to control). B) Total protein was isolated 

from cells and CFTR protein expression was measured by western blot, p-actin was 

used as a loading control (n = 5; ANOVA, * p < 0.05 compared to control).
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The effects of hydroxylase inhibition on the recently identified Ca2+ activated Cl" 

transporter TMEM16A were next investigated. TMEM16A has been implicated 

in facilitating Cl" secretion across various epithelia in the Gl tract, including the 

colon (Ousingsawat e t  a l., 2009; Almaca e t  a l., 2009). Recent research from our 

laboratory has implicated TMEM16A in mediating Ca2+ activated Cl‘ currents 

from Tg4 cells (Mroz and Keely, 2011). However, analysis of TMEM16A mRNA 

expression revealed no significant change after treatment with DMOG (1 mM) 

over several time points (Figure 4-4).
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Figure 4-̂ 4 Hydroxylase inhibition does not significantly alter TMEM16A mRNA 

expression in colonic epithelial cells. T84 cells were cultured as monolayers on 

permeable supports until Rte stabilised at plateau levels. Cells were treated bilaterally 

with DMOG (1 mM) in serum-free medium for several time points up to 24 hours. Total 

RNA was isolated from the cells, cDNA was created using reverse transcriptase, and 

semi-quantitative RT-PCR analysis was performed with primers specific for TMEM16A. 

18SrRNA was used as a loading control (n = 5).
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4-3.2 Hydroxylase inhibition attenuates NKCC1 expression

NKCC1 has previously been shown to be transcriptionally repressed by HIF-1, 

therefore NKCC1 activity was next investigated (Ibla e t  a l., 2006). Tg4 cells were 

cultured on glass petri-dishes and were treated with DMOG (1 mM) for 24 

hours. The cells were loaded with the pH sensitive dye BCECF and pHj was 

analysed by recording BCECF fluorescence. Cells were then perfused with a 

solution containing NH4CI. Addition of NH4+ led to an initial alkalinisation, 

corresponding to NH3 uptake. This was followed by an acidification, 

corresponding to NH4+ uptake. The plateau phase or rate of recovery following 

the acid load, is representative of the activity of the NKCC1 co-transporter 

transporting NH4+, a substrate for the co-transporter (Heitzmann e t  a l., 2000; 

Bachmann e t  a i ,  2003). The rate of recovery in cells treated with DMOG was 

similar to that of controls (Figure 4-5).
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Figure 4-5 Hydroxylase inhibition does not alter NKCC1 activity in T^ cells. T84 ceils 

were cultured on glass-bottomed petri-dishes until approximately 80 % confluent. Cells 

were treated with DMOG (1 mM; 24 hours) and then washed in modified Krebs 

solution (Table 2-15). Cells were loaded with BCECF-AM (5 |aM; 60 minutes), washed, 

and were then incubated in modified Krebs solution for a further 15 minutes to 

facilitate any passive leakage of the dye. A) pH was analysed by recording BCECF 

fluorescence at intervals of 3 seconds. Cells were perfused with modified Krebs 

solution, NH4-Krebs solution, or NMDG-CI' Krebs solution (indicated by N), and returned 

to modified Krebs solution for the remainder of the experiment. Data are expressed as 

mean fluorescence ratio at 490 and 440 nm. B) NKCC1 activity was recorded as the 

rate of change in pH, during the acidification(from t = 0, to t = 1) (NH4 uptake) stage (n =

3-10). Cells were treated with bumetanide (Bum) (100 |aM) to inhibit NKCC1 activity.
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The expression of NKCC1 mRNA and protein was next examined by semi- 

quantitative RT-PCR and western blotting, respectively. In agreement with 

published research showing that HIF-1 transcriptionally represses NKCC1, we 

found NKCC1 protein and mRNA expression to be significantly attenuated by 

hydroxylase inhibition following 24 hours treatment with DMOG (1 mM) (Figure

4-6) (Ibla e t  a l., 2006).

A B

DMOG 1mM (hours)

Figure 4-6 Hydroxylase inhibition attenuates NKCC1 expression in colonic epithelial 

cells Tg4 cells were cultured as monolayers on permeable supports until Rte stabilised at 

plateau levels. Cells were treated bilaterally with DMOG (1 mM) in serum-free medium 

for various periods of time. A) Total RNA was isolated from the cells and semi- 

quantitative PCR analysis was performed with primers specific for NKCC1. 18SrRNA 

was used as a loading control (n = 5; ANOVA; * p < 0.05 compared to control). B) Total 

protein was isolated from cells, and CFTR protein expression was measured by western 

blotting, p-actin was used as a loading control (n = 8; paired t-test; ** p < 0.01).
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NKCC1 expression was further analysed by confocal microscopy. Cells were 

cultured on transparent permeable supports until Rte stabilised at plateau levels 

and were then treated with DMOG (1 mM) for 24 hours. Figure 4-7 shows that 

NKCC1 (green) is highly expressed on the basolateral side of Tgvcells and that 

there appears to be no alteration in trafficking of the protein to the plasma 

membrane upon treatment with DMOG. Visualisation of the rhodamine- 

phalloidin-stained (red) actin collar around the apical membrane, and the 

basolateral nuclei stained with DAPI (blue) allows for orientation of the cells.

Control DMOG

Figure 4—7 Hydroxylase inhibition does not aiter NKCC1 membrane localisation in Tm 

cells. T84 cells were cultured as monolayers on permeable supports until tfte stabilised 

at plateau levels. Cells were treated bilaterally with DMOG (1 mM) in serum-free 

medium for 24 hours. Cells were then washed in PBS, fixed in 100 % methanol, 

permeabilised with Triton X-100, and stained with specific fluorophore-labelled 

antibodies as outlined in Section 2-24. Pseudo-colours were assigned to the various 

structures, with nuclei being represented in blue, f-actin in red and NKCC1 in green. 

Scale bars are 5 jim in length.
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4-3.3 Hydroxylase inhibition does not affect basolateral K+ 

channels, KCNN4 or KCNQ1

The basolateral K+ channel involved in Ca2+-activated Cl' secretion across colonic 

epithelial cells has been previously identified as the intermediate conductance 

K+ channel, KCNN4 (Flores e t  a l., 2007). The effect of hydroxylase inhibition on 

the activity of basolateral KCNN4 was next investigated using a previously 

established protocol (Kirk and Dawson, 1983). T^  cells were mounted in Ussing 

chambers and an apical to basolateral K+ gradient of 123.2-5.2 mM was 

established across the epithelium. Apical membranes were then permeabilised 

with amphotericin B (50 >iM) and after re-stabilisation of baseline current, 

basolateral K+ currents were stimulated by addition of basolateral CCh (100 

|aM). We found that basal state K+ currents were significantly increased in 

DMOG-treated cells, however, stimulated basolateral Ca2+-activated K+ currents 

were unaltered by hydroxylase inhibition (Figure 4-8).
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Figure 4-8 Hydroxylase inhibition does not alter Ca2+-stimulated K+ currents in T84 

cells. T84 cells were cultured as monolayers on permeable supports until Rte stabilised 

at plateau levels. Cells were treated bilaterally with DMOG (1 mM) in serum-free 

medium for 24 hours, washed, and mounted in Ussing chambers. The apical Ringer's 

solution contained high [K+] (Table 2-6), whereas the basolateral bath contained 

normal (low [K+]) Ringer's solution (Table 2-3). A) After mounting in Ussing chambers, 

cells were allowed to equilibrate for 15 minutes, after which amphotericin B (50 jaM) 

was added to the apical bath. After an additional 25 minutes, ouabain (100 îM) was 

added basolaterally to inhibit Na+/K+-ATPase activity. Basolateral CCh (100 îM) was 

then added to stimulate Ca2+-activated K+ channels in the basolateral membrane. B) 

Maximal changes in K+ currents were plotted as A /sc (n = 4).
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In order to further analyse potential effects of hydroxylase inhibition on KCNN4, 

we investigated whether there was any change in the overall abundance of the 

transporter after treatment with DMOG. KCNN4 mRNA and protein expression 

were analysed by semi-quantitative RT-PCR and western blotting, respectively. 

Cells were treated with DMOG (1 mM) for several time points, and mRNA and 

proteins were isolated in the usual manner. As shown in Figure 4-9, there was 

no change ¡n either mRNA or protein expression of KCNN4 following 

hydroxylase inhibition.

DMOG 1mM (hrs)

Figure 4-9 KCNN4 expression is unaltered by hydroxylase inhibition in cells. Tg*

cells were cultured as monolayers on permeable supports until Rte stabilised at plateau 

levels. Cells were treated bilaterally with DMOG (1 mM) in serum-free medium for 

various periods of time. A) mRNA was isolated from the cells and semi-quantitative RT- 

PCR analysis was performed with primers specific for KCNN4. 18SrRNA was used as a 

loading control (n = 5). B) Total protein was isolated from cells, and KCNN4 (40 kDa) 

protein expression was measured by western blotting, p-actin was used as a loading 

control (n = 4).
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As a logical progression of our studies, we next went on to investigate if 

hydroxylase inhibition alters the expression of the cAMP-regulated basolateral 

K+ channel, KCNQ1. Hydroxylases were inhibited with DM06 (1 mM) for 24 

hours and KCNQl expression was investigated at both the mRNA and protein 

levels by semi-quantitative RT-PCRand western blotting, respectively (Figure 4 - 

10). It was found that there were no alterations in the expression of either 

KCNQ1 mRNA or protein in DMOG-treated cells.
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Figure 4-10 KCNQl expression is not altered by hydroxylase inhibition in Ts4 cells. T84

cells were cultured as monolayers on permeable supports until Rte stabilised at plateau 

levels. Cells were treated bilaterally with DMOG (1 mM) in serum-free medium for 

various periods of time. A) mRNA was isolated from the cells and semi-quantitative RT- 

PCR analysis was performed with primers specific for KCNQl. 18SrRNA was used as a 

loading control (n = 4). B) Total protein was isolated from cells, and KCNQl protein 

expression was measured by western blot, p-actin was used as a loading control (n = 

4).
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KCNQl expression was further analysed by confocal microscopy. Cells were 

cultured on transparent permeable supports and were treated with DMOG (1 

mM) for 24 hours. As shown in Figure 4-11, KCNQl (green) is highly expressed 

on the basolateral side of T84 cell monolayers. There was also quite an amount 

of cytosolic staining and some staining towards the apical membrane. 

Furthermore, we found that there was no alteration in the trafficking of KCNQl 

to the membrane in DMOG-treated cells. Visualisation of the rhodamine- 

phalloidin-stained (red) f-actin collar around the apical membrane allows for 

orientation of the cells. Although nuclei were also stained using DAPI, they 

were omitted from these images so that KCNQl expression could be fully 

appreciated.

Control DMOG

Figure 4^11 Hydroxylase inhibition does not alter KCNQl trafficking in J M cells. T^

cells w ere  cu ltured as m onolayers on perm eable supports un til f lte stabilised a t plateau  

levels. Cells w ere  trea ted  b ila tera lly  w ith  DMOG (1 m M ) in serum -free m edium  fo r 24 

hours. Cells w ere  then  washed in PBS, fixed in 100 % m ethano l, perm eabilised w ith  

Triton X-100, and stained w ith  specific fluorophore -labe lled  antibod ies, as outlined  in 

Section 2 -2 4 . Pseudo-colours w ere assigned to  the various proteins, w ith  f-actin  being  

represented in red and KCNQl in green.
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4-3.4 Hydroxylase inhibition attenuates Na+/K+-ATPase 

activity in colonic epithelial cells

Our attention next turned to Investigating DMOG effects on the basolateral 

Na+/K+-ATPase. The Na+/K*-ATPase creates the electrochemical driving force for 

establishing the ionic gradients that drive ion transport across the epithelium. 

We used a well-established protocol to measure Na+/K+-ATPase pump activity 

(DuVall e t  a i ,  1998; Gomes and Soares-Da-Silva, 2002; Lam e t  a i ,  2003). 

However, preliminary experiments were first carried out to optimise this 

protocol, in order to more closely mimic physiological conditions under which 

the pump normally operates. To this end Na+/K+-ATPase activity was measured 

using 3 different concentrations of Na+; 0, 25, and 140 mM. A correlation 

between [Na+] and Na+/«+-ATPase activity was observed (Figure 4-12). For 

subsequent experiments 25 mM Na+ was employed, since this is more 

physiological than the 140 mM concentration employed in previous studies.

[Na4] (mM)

Figure 4^12 Na+/K+-ATPase activity is dependent on the concentration of Na+ present 

in the buffering solution. T84 cells were cultured on permeable supports until /?te 

stabilised at plateau levels. Cells were then washed, mounted in Ussing chambers, and 

bathed in modified Ringer's solutions containing 0, 25, or 140 mM Na+. Cells were 

apically permeabilised with amphotericin B (SO fiM) and were then stimulated by the 

basolateral addition of CCh (100 |iM). Maximal changes in current are plotted as A  /sc 

and expressed as jxA/cm2 (n = 3).
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Using the conditions optimised in Figure 4-12, cells were next treated with 

DMOG (1 mM; 24 hours) and Na+/K+-ATPase activity was measured. Cells were 

mounted in Ussing chambers and apically permeabilised with amphotericin B 

(50 (iM). Under basal conditions there was a significant reduction in the basal 

activity of the Na+/K+-ATPase in DMOG-treated cells (Figure 4-13 C). Similarly, 

hydroxylase inhibition significantly attenuated activity of the Na+/K+-ATPase in 

response to stimulation by CCh (100 j iM) (Figure 4-13 A, B). Basolateral ouabain 

(100 juM) practically abolished pump activity (Figure 4-13 B).

Time (mins)

B C

Figure 4-13 Hydroxylase inhibition attenuates Na+/K+-ATPase activity in T  ̂cells. T84 cells 

were cultured on permeable supports until Rte stabilised at plateau levels. Cells were treated 

with DMOG (1 mM; 24 hours), washed, mounted in Ussing chambers, and bathed in Ringer's 

solution containing 25 mM Na+ (Table 2-7). A) Cells were apically permeabilised with 

amphotericin B (50 ^iM) for 30 minutes until the current had stabilised. Basolateral ouabain 

(100 juM) was added to negative control cells, and basolateral CCh (100 (¿M) was added to  all 

cells to stimulate Na+/K+-ATPase activity. B) Maximal CCh-induced currents were plotted as A /sc 

(n = 5; ANOVA; * * *  p < 0.001). C) Basal /sc in control and DMOG-treated cells prior to addition of 

CCh was plotted as /sc (n = 5; ANOVA; **  p ^  0.01. * * *  p ^  0.001).
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Since the antisecretory effect of hydroxylase inhibition is slow in onset and 

occurs over several hours, we hypothesised that this effect is likely due to 

alterations in protein expression. Thus, Na+/K+-ATPase pump expression in the 

absence or presence of DMOG was next investigated in Tg4 cells. The catalytic 

Na+/K+-ATPase oti subunit was first investigated since this is the catalytic subunit 

that facilitates the transport of ions. However, we found that neither Na+/K+- 

ATPase a \  subunit mRNA or protein expression were significantly altered by 

hydroxylase inhibition over a period of 24 hours (Figure 4-14).

B
A

DMOG 1mM (hours) z DMOG 1mM (hours)

Figure 4-14 Hydroxylase inhibition does not alter Na+/K +-ATPase oti subunit 

expression in TM cells. T^ cells were cultured as monolayers on permeable supports 

until /?te stabilised at plateau levels. Cells were treated bilaterally with DMOG (1 mM) 

in serum-free medium for various periods of time. A) mRNA was isolated from the cells 

and semi-quantitative RT-PCR analysis was performed with primers specific for the 

Na+/K+-ATPase <Xi subunit (labelled as oti in the upper panel). 18SrRNA was used as a 

loading control (n = 4). B) Total protein was isolated from cells, and Na+/K+-ATPase oti 

protein expression was measured by western blotting (labelled as oti in the upper 

panel), p-actin was used as a loading control (n = 4-7).
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Since Na+/K+-ATPase gci subunit protein expression is unaltered by hydroxylase 

inhibition, we next examined the possibility that altered trafficking to be plasma 

membrane might be involved. To this end, we first employed an 

immunohistochemical approach. Cells were cultured on transparent permeable 

supports and treated with DMOG (1 mM) for 24 hours. As shown in Figure 4-15 

Na+/K+-ATPase oti subunit is highly expressed on the basolateral side of T84 cells. 

However, using this approach we found that there was no alteration in 

membrane localisation of the Na+/K+-ATPase a i  subunit in DMOG-treated cells.

Control DMOG

Figure 4-15 Hydroxylase inhibition does not alter Na+/K+-ATPase oti subunit 

membrane localisation in TM cells. T84 cells were cultured as monolayers on permeable 

supports until Rte stabilised at plateau levels. Cells were treated bilaterally with DMOG 

(1 mM) in serum free medium for 24 hours. Cells were then washed in PBS, fixed in 

100 % methanol, permeabilised with Triton X-100, and stained with specific 

fluorophore-labelled antibodies, as outlined in Section 2-3. Pseudo-colours were 

assigned to the various proteins, with the Na+/K+-ATPase a x subunit being represented 

in green. This image is representative of 4 similar experiments.
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As an alternative approach, surface expression of the Na+/K+-ATPase cti subunit 

was next investigated by cell surface biotinylation. In agreement with our 

immunohistochemical findings, these experiments revealed there to be equal 

amounts of Na+/K+-ATPase oti subunit present in the basolateral membrane of 

control and DMOG-treated cells (Figure 4-16).

Figure 4-16 Hydroxylase inhibition does not alter surface expression of the Na+/K+- 

ATPase a x subunit in cells. T84 cells were grown as monolayers on permeable 

supports until flte stabilised at plateau levels. Cells were treated bilaterally with DMOG 

(1 mM) in serum-free medium for 24 hours. Cells were then biotinylated and lysed, 

and surface Na+/K+-ATPase oil subunit protein expression was expressed as a factor of 

total protein. Protein expression was measured by western blot, p-actin was used as a 

loading control (n = 4).
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4-3.5 Hydroxylase inhibition does not alter ATP levels in 

^84 cells

As described above, the Cl" secretory mechanism is a highly energy dependent 

process that derives its electrochemical driving force from Na+/K+-ATPase pump 

activity. Na+/K+-ATPase pumps are known to use large quantities of cellular ATP 

(Milligan and McBride, 1985). Interestingly, the catalytic subunit of ATP 

synthase, which is responsible for ATP synthesis, contains a putative prolyl 

hydroxylation motif, LXXLAP (Table 4-1). Therefore, with this in mind, we next 

investigated if alterations in ATP synthase or ATP generation might underlie the 

effects of DMOG on Na+/K+-ATPase pump activity.

Table 4-1 ATP synthase a  amino acid sequence contains a putative prolyl 
hydroxylation motif.
HUMAN ATP synthase subunit a

MLSVRVAAAWRALPRRAGLVSRNALGSSFIAARNFHASNTHLQKTGTAEMSSILEERILG

ADTSVDLEETGRVLSIGDGIARVHGLRNVQAEEMVEFSSGLKGMSLNLEPDNVGVWFG

NDKLIKEGDIVKRTGAIVDVPVGEELLGRVVDALGNAIDGKGPIGSKTRRRVGLKAPGIIPRI

SVREPMQTGIKAVDSLVPIGRGQRELIIGDRQTGKTSIAIDTIINQKRFNDGSDEKKKLYCIY

VA1GQKRSTVAQLVKRLTDADAMKYTIVVSATASDAAPLQVLAPYSGCSMGEYFRDNGK

HALIIYDDLSKQAVAYRQMSLLLRRPPGREAYPGDVFYLHSRLLERAAKMNDAFGGGSLTA

LPVIETQAGDVSAYIPTNVISITDGQIFLETELFYKGIRPAINVGLSVSRVGSAAQTRAMKQV

AGTMKLELAQYREVAAFAQFGSDLDAATQQLLSRGVRLTELLKQGQYSPMAIEEQVAVIY

AGVRGYLDKLEPSKITKFENAFLSHVVSQHQALLGTIRADGKISEQSDAKLKEIVTNFLAGFE

A
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First, protein expression of the ATP synthase a  subunit was investigated. T84 

cells were treated with DMOG (1 mM) for different periods of time up to 24 

hours. After cell lysis, proteins were resolved by SDS-PAGE, and probed for the 

ATP synthase a  subunit by western blotting. It was found that protein 

expression of ATP synthase a  was not significantly altered following hydroxylase 

inhibition with DMOG (Figure 4-17).
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Figure 4^17 Hydroxylase inhibition does not alter ATP synthase a  protein expression 

in Tg4 cells. T84 cells were cultured as monolayers on permeable supports until flte 

stabilised at plateau levels. Cells were treated bilaterally with DMOG (1 mM) in serum- 

free medium for various periods of time. Cells were then lysed and ATP synthase a 

protein expression was analysed by western blotting, p-actin was used as a loading 

control (n = 4).
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Hypoxia is known to reduce cellular ATP production due to a metabolic switch 

from oxidative phosphorylation to glycolysis (Semenza, 2007). Such effects can 

be detrimental if insufficient ATP is produced to meet the requirements of the 

cell. D-fructose has been shown to prevent hypoxic cell death in the liver by 

supplying ATP via glycolysis (Anundi e t  a l., 1987) Therefore, we carried out 

similar experiments to determine if supplementation of the culture medium 

with D-fructose altered the antisecretory effect of DMOG treatment in T84 cells. 

However, as shown in Figure 4-18, we found that pretreatment with D-fructose 

(20 mM) did not ameliorate the antisecretory effects of hydroxylase inhibition 

in Tg4 cells.

d m o g  + - +

Figure 4^18 D-fructose does not ameliorate the antisecretory effects of hydroxylase 

inhibition in TM cells. T84 cells were cultured as monolayers on permeable supports 

until Rte stabilised at plateau levels. 24 hours prior to treatment, cells were cultured in 

D-glucose-free, high D-fructose (20 mM), medium. Cells were then treated bilaterally 

with DMOG (1 mM) for 24 hours in serum-free medium containing D-fructose. 

Monolayers were washed, mounted in Ussing chambers and bathed in D-fructose 

Ringer's solution (Table 2 -4 ) . Subsequent secretory responses to CCh (100 |iM) and 

FSK (10 |iM) were recorded. Data are expressed as maximal changes in stimulated 

current {A /sc) (n = 3, ANOVA; * p < 0.05; ** p < 0.01; *** p < 0.001 compared to 

respective controls).
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Since Na+/K+-ATPase pumps use large quantities of cellular ATP, the ATP content 

of control and DMOG-treated cells was next investigated (Milligan and McBride, 

1985). Using a commercially available kit, ATP levels of Tg4 cells treated with 

DMOG (1 mM) for 1, 3, or 24 hours were found to be no different to those of 

control cells. D-fructose treatment was also without effect on cellular ATP 

levels (Figure 4-19).
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Figure 4-19 Hydroxylase inhibition does not alter ATP levels in TM cells. T^ cells were 

grown as monolayers on permeable supports until Rte stabilised at plateau levels. Cells 

were treated bilaterally with DMOG (1 mM) in serum-free medium for 0, 1, 3, and 24 

hours. D-fructose (20 mM) was substituted for D-glucose in one set of treatments. A) 

A standard curve of ATP concentration was generated using reagents supplied with the 

commercially available kit. B) Cells were lysed and the ATP content of DMOG- and D- 

fructose-treated cells was measured by extrapolation from the standard curve (n = 13).
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4-3.6 The PHD inhibitor, FG-4497, exerts anti-secretory

actions in T84 cells and inhibits Na+/K+-ATPase activity

FG-4497 is a hydroxylase inhibitor developed by FibroGen Inc. This small 

molecule inhibitor, specific for PHD e n zy m e s , was previously disclosed in a 

patent filing, US20040254215A1. However, unlike DMOG, which is a pan

hydroxylase inhibitor, FG-4497 is reported to be specific for the HIF-prolyl 

hydroxylases. During the course of my PhD studies an opportunity to 

collaborate with FibroGen Inc. arose and we took this opportunity to employ 

FG-4497 to confirm our previous findings with DMOG. We first analysed the 

effects of FG-4497 on agonist-induced secretory responses and H IF-la levels 

(Figure 4-20).
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Figure 4-20 FG-4497 attenuates Cl' secretion, and causes H IF-la accumulation in a 

concentration-dependent manner in TM cells. cells were cultured as monolayers on 

permeable supports until Rte stabilised at plateau levels. Cells were treated bilaterally with 

various concentrations of FG-4497 for 24 hours. For protein expression analysis, cells were 

lysed and HIF-la expression was measured by western blotting. (3-actin was used as a loading 

control (n = 4; ANOVA, ### p < 0.001 compared to  0 \xM FG4497). For electrophysiological 

experiments, cells were mounted In Ussing chambers, bathed in Ringer's solution (Table 2-3), 

and stimulated with basolateral CCh (100 jaM), and apical FSK (10 ¿iM) (n = 4; ANOVA, * * *  p < 

0.001 compared to 0 fiM  FG4497).
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In collaboration with FibroGen Inc. we also measured HIFa levels by an 

alternative approach using an MSD assay developed in their laboratories; T84 

cells were cultured as monolayers on permeable supports, and were treated 

with FG-4497 at various concentrations for 24 hours. Hydroxylase inhibition by 

FG-4497 resulted in a robust accumulation of both HIFa isoforms. HIF-lot 

protein increased from 474.76 ± 149.84 ng/ml in controls to 1324.84 ± 397.96 

ng/ml in FG-4497 (50 jxM; 24 hours)-treated cells, while HIF-2a protein
r

increased from 19.06 ± 8.21 ng/ml in controls to 167.41 ± 34.48 ng/ml in FG- 

4497-treated cells (Figure 4-21).

[FG4497] (mM)

B

[FG4497] (jiM)

Figure 4 -2 1  H ydroxylase in h ib it io n  by FG-4497 s tim u la te d  a ccum ula tion  o f H IF - la  

and H IF-2a in cells. T84 cells w ere  g row n as m onolayers on perm eable supports  

until /?te stabilised a t plateau levels. Cells w ere trea te d  b ila tera lly  w ith  various  

concentra tions o f  FG-4497 in serum  free m edium  fo r  24 hours. Proteins w ere  

extracted and MSD assays w ere  perfo rm ed  (Section 2 -19). Concentrations o f A) HIF- 

l a  and B) HIF-2a w ere  extrapo la ted  fro m  standard curves generated (n = 4; ANOVA, * 

p < 0.05; * *  p < 0.01; * * *  p < 0.001 com pared to  controls).
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Using the experimental conditions optimised in Figure 4-12, cells were next 

treated with FG-4497 (50 |aM; 24 hours) or DMOG (1 mM; 24 hours), and 

Na+/K+-ATPase activity was measured. Cells were mounted in Ussing chambers, 

apically permeabilised with amphotericin B (50 jiM) and stimulated with 

basolateral CCh (100 |iM). Similar to our previous observations with DMOG, we 

found that there was a significant attenuation of CCh-stimulated Na+/K+-ATPase 

activity in FG-4497-treated cells (Figure 4-22).

o

Control FG4497 DMOG

Figure 4-22 Na+/K+-ATPase activity is significantly attenuated in FG-4497-treated J M 

cells. T84 cells were cultured on permeable supports until ffte stabilised at plateau 

levels. Cells were treated with FG-4497 (50 pJVI; 24 hours),or with DMOG (1 mM; 24 

hours), washed, mounted in Ussing chambers, and bathed in Ringer's solution 

containing 25 mM Na+ (Table 2-7). Cells were apically permeabilised with amphotericin 

B (50 |iM) for 30 minutes. Basolateral CCh (100 |iM) was then added to the cells to 

stimulate Na+/K+-ATPase activity. Maximal CCh-induced currents were plotted as A lsc 

(n = 5-6; ANOVA; *** p < 0.001 compared to control).
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4-3.7 CoCI2 stabilises H IF-la protein expression and 

attenuates Cl' secretion independently of Na+/K+-ATPase 

activity

In order to further define the mechanisms by which hydroxylase inhibition 

might regulate epithelial secretory responses, we employed C0CI2. C0CI2 causes 

FIH-l-ihdependent accumulation of H IF-la  (Tian ef aL, 2011b), but also inhibits 

H IF-la  degradation in a different manner to DMOG and FG4497. CoCI2 inhibits 

VHL-mediated degradation of H IF-la  by directly blocking the binding site of 

pVHL on H IF-la (Yuan e t  aL , 2003). Co2+ is also known to deplete the cell of 

ascorbate, an essential cofactor for hydroxylase activity (Salnikow e t  aL , 2004). 

In initial experiments we set out to determine appropriate CoCI2 concentrations 

to employ by examining its effects on LDH release and /?te as indices of toxicity. 

There was no increase in LDH release from T84 cells treated with C0CI2 at 

concentrations as high as 1 mM (Figure 4-23 A). Similarly, after treatment with 

CoCI2 at a concentration of SOO îM, Rte did not significantly change compared to 

that of the cells prior to treatment (Figure 4-23 B).
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Figure 4^23 CoCI2 does not exert toxic effects on cells. T84 cells were cultured on 

permeable supports until /?te stabilised at plateau levels. A) Cells were treated 

bilaterally with varying concentrations of CoCI2 for 24 hours. Lysate cells were treated 

with lysis buffer for a minimum of 30 minutes prior to analysis. An equal aliquot of 

apical and basolateral culture medium was taken and LDH released into the culture 

medium was measured using a commercially available kit (Section 2-16) (n = 3-6; 

ANOVA; * p < 0.05; *** p < 0.001 compared to control). B) Cells were treated 

bilaterally with CoCI2 (500 |iM) for defined periods of time and subsequent ffte 

measurements were recorded using an epithelial voltohmeter (n = 4)
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We next examined the effects of CoCI2 on H IF-la  protein expression in Ts4 cells. 

Cells were treated with various concentrations of C0CI2 in order to determine an 

optimal concentration for CoCI2 -induced H IF-la stabilisation. As shown in 

Figure 4-24, H IF-la  robustly accumulates in T84 cells treated with 500 |iM CoCI2.
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Figure 4-24 CoCI2 stabilises HIF-la protein expression in J M cells. T84 cells were 

cultured on permeable supports until Rte stabilised at plateau levels. Cells were treated 

bilaterally with various concentrations of CoCI2 in serum-free medium for 24 hours, 

after which HIF-1 a  protein expression was measured by western blotting. P-actin was 

used as a loading control (n = 3; ANOVA, **p < 0.01 compared to control).
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The effects of CoCI2 on epithelial secretory function were next examined. 

Similar to DMOG, it was found that treatment of T84 monolayers with CoCI2 (500 

|iM) for 24 hours exerted a profound antisecretory effect on the cells. 

Secretory responses to CCh (100 |iM) and FSK (10 jaM) were attenuated to 

51.63 ± 8.12 % (n = 4; ** p < 0.01) and 53.03 ± 8.43 % (n = 4; ** p < 0.01) of

those in control cells, respectively (Figure 4-

A

Time (min)

■25).

B

Control CoCI2

Figure 4—25 CoCI2 attenuates agonist-induced Cl secretory responses in TM cells. T84

cells were cultured on permeable supports until Rte stabilised at plateau levels. Cells 

were treated bilaterally with CoCI2 (500 îM) in serum-free medium for 24 hours. Cells 

were then washed, mounted in Ussing chambers, bathed in Ringer's solution (Table 2- 

3), and subsequent Cl' secretory responses to basolateral CCh (100 p,M) and apical FSK 

(10 |iM) were measured (n = 4; ANOVA; ** p < 0.01 compared to control). Panel A 

shows the time course of these experiments while Panel B shows maximal secretory 

responses, measured as A lsc, to CCh and FSK in the absence or presence of C0CI2.
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In further experiments the effects of CoCI2 on agonist-stimulated Cl" secretion 

were found to be concentration-dependent. When cells were treated with 

CoCI2 for 24 hours, antisecretory effects were maximal at a concentration of 500 

j iM (Figure 4-26 A). The effects of CoCI2 (500 jiM) were also time-dependent, 

being maximal at 24 hours for cAMP-mediated responses and between 6-24 

hours for Ca2+-dependent responses (Figure 4-26 B).
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Figure 4-26 The antisecretory effect of CoCI2 in T** cells is time- and concentration- 

dependent. T84 cells were cultured on permeable supports until Rte stabilised at 

plateau levels. A) Cells were treated bilaterally with DMOG (1 mM) in serum-free 

medium for various time points. * Cells were then washed, mounted in Ussing 

chambers, bathed in Ringer's solution (Table 2-3), and subsequent Cl' secretory 

responses to basolateral CCh (100 jiM) and apical FSK (10 jiM) were measured (n = 4 - 

8; ANOVA, * p < 0.05; *** p < 0.001 compared to control). B) Cells were treated 

bilaterally with CoCI2 (500 pM) in serum-free medium for various times up to 24 hours 

before responses to basolateral CCh (100 jiM) and apical FSK (10 p,M) were measured 

in Ussing chambers (n = 4; ANOVA, * p ^ 0.05; *** p < 0.001 compared to control).
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Potential mechanisms underlying the antisecretory effect of CoCI2 in cells 

were next investigated. Apical Cl" currents, measured as previously described 

(Rochwerger e t  a l., 1994), were first investigated since CoCI2 has previously 

been shown to inhibit Cl" secretion in T84 cells (Taylor e t  a l., 1998). Apical Cl' 

conductance was found to be significantly attenuated by CoCI2 treatment 

(Figure 4-27 A). However, in direct contrast to our observations with DMOG, 

Na+/K+-ATPase activity was unaffected by treatment with CoCI2 (Figure 4-27 B).

A B

Figure 4-27 CoCI2 attenuates apical Cl' currents but not Na+/K +-ATPase activity in T84 cells. Tg4

cells were cultured as monolayers on permeable supports until Rte stabilised at plateau levels. 

Cells were treated bilaterally with CoCI2 (500 fiM) in serum-free medium for 24 hours. Cells 

were washed and mounted in Ussing chambers. A) For apical Cl' conductance experiments the 

apical bath contained Ringer's solution (Table 2-3), whereas the basolateral bath contained a 

low [Cl ] solution (Table 2-5). Cells were permeabilised by basolateral nystatin (100 |ag/ml) after 

which apical FSK (10 ^M ) was added to stimulate Cl" currents. Maximal changes in current were 

plotted as A /sc (n = 3; unpaired t-test; * p < 0.05). B) For measurements o f Na+/K+~ATPase 

activity, cells were bathed bilaterally in Ringer's solution containing 25 mM Na+ (Table 2-7). 

Cells were apically permeabilised with amphotericin B (50 (iM) after which basolateral CCh (100 

¿iM) was added to stimulate Na+/K+-ATPase activity. Maximal changes in current were plotted 

as A /sc (n = 3-6; ANOVA; * * *  p < 0.001 compared to  control).
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4-3.8 EIPA reverses the inhibitory effect of DMOG on 

IMa+/K+-ATPase activity

Finally, having previously shown that chronic inhibition of NHEs by EIPA, in the 

presence of DMOG, reversed the antisecretory effect of DMOG, we wished to 

investigate whether this was due to a reversal of the inhibitory effect of DMOG 

on Na+/K+-ATPase activity. Indeed, chronic treatment of cells with EIPA (50 |j,M; 

24 hours) in the presence of DMOG, reversed the inhibitory effects on Na+/K+- 

ATPase pump activity (Figure 4-28),
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Figure 4-28 Chronic NHE inhibition by EIPA reverses inhibition of the Na+/K+-ATPase 
by DMOG. T84 cells were grown as monolayers on permeable supports until Rte 

stabilised at plateau levels. Cells were treated bilaterally with DMOG (1 mM; 24 hours) 

in serum free medium in the presence or absence of EIPA (5-50 jxM; 24 hours). Cells 

were washed, mounted in Ussing chambers and bathed in low [Na+] Ringer's solution 

(Table 2—7). After an initial stabilisation period EIPA was added to designated 

chambers. Cells were apically permeabilised with amphotericin B (50 jj,M) after which 

basolateral CCh (100 jiM) was added to stimulate Na+/K+-ATPase activity. Maximal 

changes in current were plotted as A /sc (n = 6; ANOVA, ** p < 0.01 compared to 0 |iM 

EIPA).
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The main aim of this chapter was to identify specific transport proteins that may 

be targets of hydroxylase inhibitors in colonic epithelial cells and that could 

mediate their anti-secretory actions. Since previous studies have shown that 

CFTR may be a target of hydroxylase inhibition, we initiated these studies with 

experiments to study the effects of DMOG on CFTR function (Zheng et at.,

2009). Initially, the activity of CFTR was assessed using a modification of the 

Ussing chamber/voltage clamp technique (Rochwerger et at., 1994). In these 

experiments the term apical Cl" current was equated to CFTR activity based on 

the fact that the CFTR-specific inhibitor, CFTRinhi72, inhibited the apical Cl" 

currents by approximately 78 % (Caci et at., 2008). However, it was found that 

apical Cl' currents in Tg4 cells treated with DMOG (1 mM) for 24 hours were no 

different to those of controls. These findings were initially perplexing since, 

consistent with previous reports, expression analysis of CFTR showed a robust 

down regulation in response to hydroxylase inhibition (Zheng et at., 2009). One 

possible explanation for this was that DMOG might induce the expression of 

another type of apical Cl" channel that compensates for loss of CFTR expression. 

However, this does not seem likely since it was found that, similar to its effects

in control cells, CFTRinhi 72 also attenuated apical Cl' currents in DMOG-treated
\

T84 cells by 78%. Furthermore, DMOG did not alter the expression of the Ca2+- 

dependent Cl" channel, TMEM16A, at least at the level of mRNA expression. 

However, an alternative explanation for these apparently conflicting data, that 

CFTR activity is unaffected while its expression is abated, could come from  

previous observations that only 20 % of normal CFTR expression is required to 

maintain cAMP-dependent secretory responses in epithelial cells (De Jonge,

2006). Thus, despite the impact of hydroxylase inhibition on CFTR expression, it 

does not seem likely that this is a predominant factor mediating attenuation of 

intestinal secretory responses by hydroxylase inhibition.

4 - 4  D i s c u s s i o n
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Having ruled out the potential Involvement of altered apical Cl‘ conductances in 

mediating antisecretory actions of hydroxylase inhibitors, we next turned our 

attention to basolateral K+ channels. Recent studies have highlighted the role 

that K+ channels play in luminal anion secretion in the intestine, while others 

have shown that they are important regulators of fluid homeostasis (Flores et 

al., 2007; O'Mahony et al., 2007). Isolation of basolateral K+ conductances was 

achieved by modification of a previously published protocol (Kirk and Dawson, 

1983). However, these experiments did not reveal any differences in K+ 

currents stimulated by the Ca2+-dependent secretagogue, CCh, between control 

and DMOG-treated cells. However, it should be noted that this protocol is 

somewhat limited for 2 main reasons. Firstly, it only allows for the isolation of 

K+ conductances through basolateral KCNN4, and therefore potential effects on 

apical KCNN4 cannot be ruled out. It may be possible to investigate this in 

future studies by reversing the K+ gradient and permeabilising the basolateral 

membrane. However, if such an action of hydroxylase inhibition on apical 

KCNN4 occurs, it is not likely to be as a consequence of altered protein 

expression, since the 37 kDa band that represents the apical isoform was 

unaltered following DMOG treatment. Secondly, this protocol only allows for 

isolation of Ca2+-activated K+ currents, whereas cAMP-activated currents 

through KCNQ1 are not detected in this activity assay. Potential effects of 

hydroxylase inhibition on KCNQ1 activity would require further analysis. 

Interestingly, we did observe a small, but significant, increase in the basal K+ 

currents in DMOG-treated cells. This phenomenon could be explained by an 

increase in KCNQ1 activity, however, this hypothesis was not supported by any 

alterations in the expression of either KCNN4 or KCNQ1 at mRNA or protein 

levels.

We next turned our attention to studying a role for hydroxylases in regulating 

the Na+/K+-ATPase pump. The Na+/K+-ATPase pump consists of 2 subunits, a 

regulatory p subunit and a catalytic a  subunit that pumps 3 Na+ Ions from the 

cell in exchange for 2 K+ ions with each cycle of ATP cleavage (Skou, 1998;



Kaplan, 2002). The normal Ringer's solution which has been used throughout 

this thesis in unpermeabilised cells contains 140 mM Na+. Such levels of Na+are 

normally used in studies of epithelial function, as they are similar to those 

present in the intestine in vivo. However, since intracellular [Na+] is normally 

considerably lower (approximately 25 mM) than 140 mM, we speculated that at 

such high concentrations intracellular Na+ would drive the Na+/K +-ATPase pump 

at its Vmax, potentially masking any effects of hydroxylase inhibition. Thus, we 

employed a bathing solution which contained 25 mM Na+. Upon measurement 

of Na+/K+“ATPase activity, it was found that hydroxylase inhibition significantly 

attenuated CCh-stimulated pump activity. Interestingly, basal pump activity 

was also significantly reduced in DMOG-treated cells. This suggests that the 

mechanisms underlying the antisecretory actions of hydroxylase inhibition 

affect the pump itself, and are not due to alterations in the signalling pathway 

that links the muscarinic M 3 receptor to pump activation.

The relatively slow kinetics for the onset of the antisecretory effects of 

hydroxylase inhibition suggest that alterations in expression of the Na+/K+- 

ATPase may be involved. However, this does not appear to be the case, since 

neither mRNA nor protein levels of the catalytic subunit were altered in DMOG- 

treated cells. Several studies suggest that Na+/K+-ATPase activity can also be 

regulated through altered trafficking of the a  subunit to the cell membrane 

(Chow and Forte, 1995). However, examination of Na+/K+-ATPase a i  subunit 

localisation by confocal microscopy and cell surface biotinylation revealed that 

this too was unaltered by hydroxylase inhibition.

As already mentioned, the Na+/K+-ATPase requires a significant quantity of 

cellular ATP for its functioning, and hypoxia is known to reduce mitochondrial 

ATP production, therefore limiting its availability for the pump (Milligan and 

McBride, 1985; Papandreou et aL, 2006). HIF also has the capacity to 

downregulate ATP synthesis in conditions of hypoxia, while MYC-associated 

factor X interactors (MXIs) have been shown to attenuate mitochondrial
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biogenesis in response to HIF, and therefore cause ATP depletion (Semenza, 

2007; Zhang et al., 2007). Other research has shown that cellular damage and 

reductions in ATP levels that occur as a consequence of hypoxia/reperfusion 

injury, can be reversed by forcing the cell into glycolytic metabolism (Anundi et 

al., 1987; Kim et al., 2003). In this manner, D-fructose is taken up by the cell 

through apical GLUTS transporters, thereby promoting an increase in glycolytic 

generation of ATP. Furthermore, ATP synthase, an important enzyme for 

production of cellular ATP, contains a putative prolyl hydroxylation motif in the 

catalytic a  subunit which may have an impact on its expression or function.

Therefore, the question arose as to whether hydroxylase inhibition could 

attenuate the activity of the Na+/K+-ATPase by reducing cellular ATP levels. 

However, we found that hydroxylase inhibition by DMOG did not alter ATP 

levels in T84 cells. This may be accounted for by the fact that 0 2 is not a limiting 

factor in the present studies, and therefore glycolysis is being promoted in 

aerobic conditions, as occurs with the Warburg effect (Warburg, 1956; Ferreira, 

2010; Koppenol et al., 2011). Our findings are consistent with a previous study 

showing that DMOG does not cause an increase in cellular ROS production, 

indicating no uncoupling of the electron transport chain and thus no reduction 

of mitochondrial ATP synthesis (Emerling et al., 2007). Furthermore, another 

study showed that pretreatment of cardiomyocytes with DMOG preserved 

cellular ATP levels, even though 0 2 consumption was reduced by approximately 

85 % and ATP turnover rate was inhibited by 75 % (Sridharan et al., 2008). 

Preservation of ATP levels was due to a shift in cellular metabolism, with ATP 

production from glycolysis increasing to 40 %. Such shifts can occur when the  

ratio of energy supply to demand decreases, as in chronic hypoxia, and cellular 

homeostatic mechanisms attempt to balance ATP production to utilization 

(Budinger et al., 1996; Budinger et al., 1998; Chandel et al., 1997; Papandreou 

et al., 2006; Wheaton and Chandel, 2011). Therefore, ATP concentration can 

remain relatively stable during hypoxia and it is therefore not the most sensitive 

index of cellular energy status. To promote the glycolytic pathway of ATP
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synthesis, cells were cultured with D-fructose; However, we found that T84 cells 

cultured in D-fructose, with or without DMOG, exhibited no alterations in ATP 

content, nor was there a reversal of the antisecretory effect of hydroxylase 

inhibition. However, firm conclusions cannot yet be drawn from these 

experiments, since additional studies are required to investigate whether T84 

cells even express functional GLUT5 transporters. Finally, we found by western 

blot analysis that expression of the ATP synthase a  subunit, which contains a 

putative prolyl hydroxylation motif, is not altered by DMOG treatment, further 

supporting the idea that hydroxylase inhibition does not alter ATP levels in T84 

cells.

As previously stated DMOG is a non-specific 4-prolyl hydroxylase inhibitor and is 

not specific for hydroxylases activated during hypoxia. Therefore, in 

collaboration with FibroGen Inc., we obtained the use of their proprietary 

compound, FG-4497, which blocks the active site of the HIF hydroxylases (Fraisl 

et a l, 2009). Importantly, for the current studies, we found that effects of 

hydroxylase inhibition with DMOG, which works by mimicking a-ketoglutarate, 

were recapitulated with FG-4497. Antisecretory effects of FG-4497 were slow in 

onset and were only present at relatively high concentrations, in excess of those 

which stabilise H IF -la  and HIF-2a. Furthermore, FG-4497, similar to DMOG, 

also potently inhibited Na+/K +-ATPase activity. Thus, our data suggest that the 

antisecretory effects of hydroxylase inhibitors are mediated by HIF- 

hydroxylases, but in a manner that is independent of HIF-1 activation.

In order to further define the mechanisms by which hydroxylase inhibition 

might regulate epithelial secretory responses, CoCI2 was employed to stabilise 

HIF-a, by mechanisms distinct from those of DMOG and FG4497. C0 CI2 is well 

documented as a hypoxia mimetic and as a H IF -la  stabiliser, although little is 

known of the mechanism involved. Researchers investigating the molecular 

mechanisms of the CoCh-mediated stabilisation of H IF -la  have reported that 

C0 CI2 inhibits VHL-mediated degradation of H IF -la  by directly binding to the 2
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PER-ARNT-SIM domains on the N-terminal region of H IF-la , thus blocking the 

binding site for VHL on H IF -la  (Kanaya and Kamitani, 2003; Yuan et al., 2003). 

More recent studies showed that Co2+ depleted cells of ascorbate, an essential 

cofactor of the HIF hydroxylases and it is now known that CoCI2 causes the 

stabilisation of H IF-la, but with no effect on FIH-1 activity (Salnikow et al., 

2004; Tian et al., 2011b). In initial experiments, conditions with which to use 

C0 CI2 were optimised. While there was no increase in LDH release due to CoCI2 

treatment at any concentration tested, /?te was completely obliterated at a 

concentration of 1 mM, and therefore lower concentrations were employed for 

these studies. We found that CoCI2 increased the accumulation of H IF -la  in a 

concentration-dependent manner at concentrations that were not toxic to the 

cells. We also found that not only does CoCI2 attenuate cAMP-mediated Cl' 

secretion in Tg4 cells, as previously shown (Taylor et al., 1998), but it also 

attenuates Ca2+-mediated Cl' secretion. Further Investigation into the 

mechanisms involved revealed that while apical Cl' conductances were 

attenuated by CoCI2, Na+/K+-ATPase activity was unaltered. This is in direct 

contrast to the mechanism elicited by DMOG, which inhibited Na+/K+-ATPase 

but not CFTR activity, suggesting that the antisecretory effects of hydroxylase 

inhibition by DMOG are likely to be FIH-l-dependent. However, further studies 

will be required to verify this.

Similar to its effects on CFTR, NKCC1 expression has previously been shown to 

be transcriptionally repressed by HIF-1 (Ibla et al., 2006). In the current study 

we found that there was also a significant reduction in expression of NKCC1, 

both at the mRNA and protein levels, in response to treatment with DMOG. 

However, investigations into the activity of NKCC1 revealed no appreciable 

difference following hydroxylase inhibition. Previous studies have shown Cl' 

secretion and NKCC1 expression to be more potently attenuated after longer 

periods of hypoxia (> 24 hours), therefore longer exposure to DMOG may yield 

similar results (Ibla et al., 2006). The repression of NKCCl may be an important 

factor in mediating the antisecretory effects of hydroxylase inhibition since

182



NKCC1 is the primary entry pathway for Cl" ions into epithelial cells. Further 

experiments to investigate the activity and the expression of the co-transporter 

at later time points would be required to prove this.

4 - 5  S u m m a r y

In summary, our data suggest that the antisecretory effects of hydroxylase 

inhibition in intestinal epithelial cells occur, at least in part, through inhibition of 

Na+/K+-ATPase activity (Figure 4-29). The effects of hydroxylase inhibition 

appear to occur in a HIF-independent manner, and are likely to involve FIH-1. 

Furthermore, the mechanism by which hydroxylase inhibitors attenuate Na+/K +- 

ATPase activity does not appear to involve alterations in cellular ATP or 

localisation of the protein. Interestingly, previous studies show that there are 

multiple potential mechanisms by which Na+/K+-ATPase pump activity can be 

regulated without altering its membrane localisation. For example, FXYD 

proteins are membrane-associated proteins that can regulate pump activity 

without altering its surface expression (Garty and Karlish, 2006). Similarly, 

intracellular regulatory proteins, such as translationally-controlled tumour 

protein (TCTP) and sorting nexin 6  (SNX 6 ), are emerging as important 

regulators of Na+/K+-ATPase activity (Jung et a!., 2004; Yoon et al., 2006). In the 

next section of this thesis a more detailed analysis of how hydroxylase inhibitors 

might regulate Na+/K+-ATPase activity to exert antisecretory actions on colonic 

epithelial cells was conducted.
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Figure 4-29 Hydroxylase inhibition specifically attenuates Na+/K+-ATPase activity in 

Tg4 cells. Hydroxylase inhibition attenuates luminal Cl' secretion by a mechanism that 

involves attenuation of Na+/K+-ATPase activity, without altering expression of the pump 

at the basolateral cell surface. Although hydroxylase inhibitors reduce expression of 

apical CFTR channels, this does not appear to be a major contributing factor to their 

antisecretory actions. Our data suggest that the effects of hydroxylase inhibition are 

likely to occur in a HIF-independent, but FIH-l-dependent manner.
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5 - 1  I n t r o d u c t i o n

In the previous chapter we revealed a novel role for hydroxylases in regulating 

intestinal epithelial Na+/K+-ATPase activity, an effect that is likely to be 

important in mediating the antisecretory actions of hydroxylase inhibitors. 

When considering the use of such drugs as therapeutics, it is important to 

understand the molecular mechanisms involved. Thus, we next turned our 

attention to studying potential mechanisms by which hydroxylase inhibitors 

regulate Na+/K+-ATPase activity.

Na+/K+-ATPase pumps exist as heterodimers in the plasma membrane, with one 

a  and one p subunit (Craig and Kyte, 1980). However, resolution of the crystal 

structure of the Na+/K+-ATPase in the recent past, also revealed the presence of 

Na+/K+-ATPase y subunits in renal extracts (Morth et a/., 2007). Furthermore, 

additional studies show that Na+/K+-ATPase pumps exist as a complex of 

different subunits, allowing for tissue-specific regulation (Garty and Karlish, 

2006; Yoon et al.t 2006). Thus, our knowledge of the structure of the Na+/K+- 

ATPase is constantly evolving, but remains incompletely understood. There are 

many mechanisms by which the Na+/K+-ATPase pump can be regulated, and 

some of these were investigated in Chapter 4 of this thesis. In our studies, we 

found that hydroxylase inhibition of pump activity was not due to alterations in 

its expression or localisation at the plasma membrane, nor was it due to an 

altered availability of ATP. However, another way by which hydroxylase 

inhibition could alter Na+/K+-ATPase function is by altering its interactions with 

regulatory proteins.

The field of molecular regulation of the Na+/K+-ATPase js very complex, a fact 

that is highlighted by the plethora of recently identified proteins that can 

associate with, and regulate, pump activity (Sweadner and Rael, 2000; Geering, 

2006; Yoon et at., 2006; Mao et a i, 2005; Gorokhova et at., 2007). The proteins 

and molecules selected for investigation in this chapter were selected based on

186



published evidence of their involvement in pump regulation. For example, not 

only are endothelins known regulators of the Na+/K+-ATPase, they are also 

secreted from intestinal epithelial cells and are potently induced by hypoxia. 

Another example is FXYD3, which is known to be a negative regulator of the 

Na+/K+-ATPase and which is highly expressed in the colon. Several other 

proteins of interest are investigated in more detail throughout this chapter.

Endothelin (ET) 1, 2, and 3 are peptide hormones with potent vasoconstrictor 

properties which are synthesised and secreted predominantly by vascular 

endothelial cells (Rubanyi and Polokoff, 1994). One of the most potent inducers 

of ET-1 is hypoxia, and this is brought about by HIF-1 binding to the et-1 gene in 

conjunction with other transcription factors (Watanabe e t  a l., 1990; Tonnessen 

e t  a l., 1995; Yamashita e t  a l., 2001). More recent research has shown that 

hydroxylase inhibition by DMOG in rats can also induce ET-1 expression in vivo  

(Nagel e t  a l., 2011). ETs bind to ET receptors A (ETRA) and B (ETRB) and all 3 ETs 

and their receptors are expressed in the colonic epithelium (Takahashi e t  a l., 

1990; Takizawa e t  a l., 2005; Kalabis e t  a l., 2008; Egidy e t  a l., 2000). Several 

studies have revealed that ET-1 exerts pro-secretory actions in humans and rats, 

with its actions being mediated by cyclo-oxygenase products and enteric nerves 

via activation of ETRA (Kuhn e t  a l., 1997; Moummi e t  a l., 1992; Kiyohara e t  a l.,

1993). Interestingly, earlier studies conducted on renal tubular epithelial cells 

show that ET inhibits Na+/K+-ATPase activity, an effect that involves generation 

of prostaglandin E2 (PGE2) (Zeidel e t  a l., 1989). More recent studies 

demonstrate that activation of ETRB also inhibits Na+/K+-ATPase activity in renal 

proximal tubule cells (Liu e t  a l., 2009). Thus, since epithelial-derived ETs are 

known to have the capacity to acutely regulate Na+/K +-ATPase function, in the 

present studies their potential role in mediating the antisecretory actions of 

hydroxylase inhibition was investigated (Prasanna e t a l . ,  2001; Liu et a l., 2009).

Another mechanism by which Na+/K +-ATPase pump activity can be 

downregulated in epithelial cells is by its sequestration into lipid rafts. Lipid
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rafts are membrane microdomains that are rich in cholesterol and 

glycosphingolipids (Pike, 2009). They are of great interest in the context of this 

thesis for several reasons. First and foremost, lipid rafts are known to be 

regulated by hypoxia (Botto et al., 2008). Secondly, hypoxia regulates 

cholesterol biosynthesis, an important component of lipid rafts (Nguyen et al., 

2007). Thirdly Na+/K+-ATPase function, membrane cholesterol, and caveolin-1 

(an important constituent of caveolae), are inextricably linked at the molecular 

level (Chen et al., 2009; Chen et al., 2011; Cai et al., 2008). Finally, as much as > 

50 % of plasma membrane Na+/K+~ATPase can become sequestered into lipid 

rafts, where it is thought to function more as a signalling molecule than an ion 

transporter (Wang et al., 2004). Interestingly, Na+/K+-ATPase movement to and 

from lipid rafts is dynamic, and upon cholesterol or caveolin depletion, some of 

this non-pumping Na+/K+-ATPase can return to the pumping pool (Liang et al., 

2007). Thus, sequestration into lipid rafts causes reduced activity of the pump 

without alterations in its cellular expression, a phenomenon that could explain 

the effects of hydroxylase inhibitors observed in the current studies. In its 

capacity, as a signalling protein, the Na+/K+-ATPase has been shown to bind 

endogenous and exogenous cardiotonic steroids, such as ouabain, thereby 

evoking intracellular responses through interactions with downstream signalling 

proteins, such as Src (Liang et al., 2006). Importantly, Src is also known to be a 

regulator of intestinal epithelial Cl' secretion (Keely et al., 2000). Therefore, we 

investigated if lipid rafts or Src family kinases might have a role to play in 

mediating the effects of hydroxylase inhibition on Na+/K +-ATPase activity.

Another possible mechanism by which hydroxylases might regulate epithelial 

secretory function could involve NFkB. NFkB is a known target of HIF- 

hydroxylases and has been shown to regulate transport proteins, specifically 

CFTR, expression in airway epithelial cells in response to interleukin- 

1(3 (Brouillard et al., 2001). Indeed, interleukin-ip itself has been shown to be 

upregulated in macrophages by HIF-dependent mechanisms (Imtiyaz et al.,

2010). Thus, a potential role for NFk B in DMOG-induced downregulation of Cl‘
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secretion was investigated using BMS-345541, a highly selective inhibitor of IkB 

kinase (Burke et al., 2003).

There is a multitude of intracellular signalling pathways involved in regulating 

epithelial Cl' secretory responses, some of which directly regulate the activity of 

the Na+/K+-ATPase. One such signalling pathway protein is PKC, of which there 

are several isoforms, classified into different groups. The classical PKCs are a  

and pil; the novel PKCs consist of 5, 8 , 0, and rj; whereas the atypical PKCs are C, 

and X. PKC is a well characterised regulator of Cl‘ secretion via its regulation of 

CFTR and NKCC1, amongst others (Song et al., 2001; Matthews et al., 1994).

Interestingly, PKC 8  has also been shown to regulate Cl’ secretion across T84 cells
;

under conditions of chemically-induced ischemia, and as already mentioned in 

the introduction to Chapter 4, PKC C, is a known regulator of Na+/K +-ATPase 

function (Yoo et al., 2001). This PKC isoform translocates to the plasma 

membrane where it phosphorylates Ser-18 on Na+/K+-ATPase a i, culminating in 

clathrin-dependent pump endocytosis (Dada et al., 2003; Chen et al., 2006). 

Another protein kinase, PKA, is known to be regulated by hypoxia (Beitner- 

Johnson et al., 1998), and is an important regulator of epithelial Cl" secretion, 

being best known for its role in regulating CFTR gating (Singh et al., 1998; Forte 

et a i, 1992; Chappe et a i, 2005). Thus, we also investigated the potential 

involvement of PKC and PKA in mediating the antisecretory actions of 

hydroxylase inhibition.

In conditions of hypoxia, global transcriptional and translational processes are 

known to be dampened as a consequence of cellular energy conservation 

processes (Liu and Simon, 2004). Conversely the master regulator of hypoxia, 

HIF, becomes active during hypoxia and drives transcription of genes that aid in 

adaptive responses. Results from Chapter 4 indicated the antisecretory effects 

to be HIF-independent. However, given the profound transcriptionally- 

mediated effects of HIF during hypoxia, experiments were designed to more
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conclusively explore the role of HIF in mediating the antisecretory effects of 

hydroxylase inhibition.

The Na+/K+-ATPase p subunit is one of the most important regulators of Na+/K+- 

ATPase activity since the pump has been shown to be inactive when it is absent 

(Horowitz et a i, 1990). The P subunit spans the membrane only once and is 

thought to be important for the correct insertion of the ap heterodimer into 

the plasma membrane (Hasler et a i, 2001). More recent studies have shown 

that the polarised expression of Na+/K+-ATPase pumps in epithelia also depends 

on the association of p-subunits located in neighbouring ceils, thus highlighting 

the importance of each of the pump subunits in regulating its transport 

properties (Shoshani et a i, 2005; Padilla-Benavides et al.f 2010).

As previously mentioned, the Na+/K+-ATPase exists as a protein complex with 

several subunits, such as the p subunit and the y subunit (FXYD2) (Morth et al., 

2007). Another important family of proteins known to regulate Na+/K+-ATPase 

activity are the FXYD proteins. This family of 7 proteins are structurally 

characterised by an FXYD motif, 2 conserved glycines, and a serine residue 

(Sweadner and Rael, 2000). FXYD proteins are known to modify the transport 

properties of Na+/K+“ATPase pumps in a tissue-specific manner, without altering 

its expression (Delprat et al., 2006; Geering, 2006). More recent research also 

suggests that they contribute to stabilisation of the pump at the membrane 

(Mishra et a i, 2011). Previous studies have implicated FXYD3 in regulation of Cl" 

currents in Xenopus oocytes, although at the time it was not yet known to be a 

regulator of Na+/K+-ATPase activity (Morrison et al., 1995). Subsequent studies 

have found FXYD3 to be highly expressed in the colon (Crambert et a i, 2005), 

and studies conducted on intestinal epithelial cells have shown that it negatively 

regulates Na+/K+-ATPase activity (Crambert et a i, 2005; Bibert et a i, 2009).

A relatively recently identified protein known as Modulator of NaVK+-ATPase 

(MONaKA; PXK) is also of relevance to the current studies. This protein has been



shown to bind Na+/K+-ATPase p subunits and to negatively regulate pump 

activity (Mao et al., 2005). MONaKA has been proposed by one group to be a 

functional sorting nexin that is important in regulating cellular function via its 

interaction with the actin cytoskeleton (Takeuchi et al., 2010). Thus, we 

investigated if this protein might be involved in mediating the antisecretory 

effect of DMOG in colonic epithelial cells.

Finally, another possible mechanism by which hydroxylase inhibition 

downregulates secretory function involves FIH-1. Studies carried out in Chapter 

4 showed that both DMOG and FG-4497 exert antisecretory actions at high 

concentrations, in excess of those required to stabilise HIF-la. At such 

concentrations FIH-1 is also known to be inhibited, and in fact FIH-1 was found 

to be more sensitive to inhibition by DMOG than were the prolyl hydroxylases 

(Tian et al., 2011b). Furthermore, FIH-1 is known to hydroxylate ankyrin repeat- 

containing proteins, including the cytoskeletal ankyrin family (Linke et al., 2007; 

Cockman et al., 2009; Yang et al., 2011). The ankyrin repeat is one of the most 

common protein-protein interaction motifs found in nature and has been 

postulated as a molecular signal for protein recognition (Mosavi et al., 2004; Li 

et al., 2006). This is interesting considering the Na+/K+-ATPase oil subunit 

possesses 2 cytoplasmic ankyrin-binding domains, and that these ankyrin 

binding domains are important in the regulation of the pump via interactions 

with the spectrin cytoskeleton (Devarajan et al., 1994; Zhang et al., 1998; 

Woroniecki et al., 2003). Thus, the possibility that FIH-1 mediates the effects of 

hydroxylase inhibition on Na+/K+-ATPase pump activity was further investigated 

in this chapter.
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5 - 2  A i m

From the preceding Introduction it is clear that there are many potential 

mechanisms by which the activity of the Na+/K+-ATPase can be regulated. 

Therefore, the general aim of this chapter was to investigate molecular 

mechanisms underlying regulation of the Na+/K+-ATPase by hydroxylase 

inhibitors.
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As described in the introduction to this chapter, the Na+/K+-ATPase is an 

important protein that plays critical roles in regulating epithelial transport and 

signalling under the control of multiple intra- and extracellular factors, many of 

which can be altered in conditions of hypoxia. Thus, a rather broad approach 

was first taken to identify potential signalling mechanisms that underlie the 

effects of hydroxylase inhibition on Na+/K+-ATPase function.

5-3.1 The antisecretory effects of hydroxylase inhibition 

are not mediated by an acutely acting soluble factor

Endothelins, which can be potently induced under conditions of hypoxia, are 

secreted molecules known to have the capability to acutely regulate Na+/K+- 

ATPase activity. Therefore, the possibility that hydroxylase inhibition of pump 

activity is mediated by the release of a soluble factor, such as ET-1, was next 

investigated. Hydroxylases were inhibited in T84 cells by DMOG (1 mM; 24 

hours). The apical and basolateral conditioned medium was then aspirated and 

applied to naive T84 cells for various periods of time ranging from 15 minutes to 

1 hour. Although DMOG is still present in this conditioned medium, we would 

not expect to see direct effects of the inhibitor over such short periods of time, 

and any effects observed should be due to factors secreted into the medium. 

However, as shown in Figure 5-1, the application of conditioned medium to 

naive T84 cells had no impact on subsequent Cl' secretory responses to either 

basolateral CCh (100 jiM) or apical FSK (10 jaM).

5 - 3  R e s u l t s
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Figure 5-1 The antisecretory effects of hydroxylase inhibition are not mediated by an 

acutely acting soluble factor. T84 cells were cultured as monolayers on permeable 

supports until ffte stabilised at plateau levels. Cells were treated bilaterally with DMOG 

(1 mM) in serum-free medium for 24 hours. After 24 hours the conditioned medium 

from the apical side of DMOG-treated cells was aspirated and applied to the apical side 

of naive cells (AP-AP) for various periods of time from 15 to 60 minutes. Similarly, 

basolateral conditioned medium was applied to the basolateral side of naive cells (BL- 

BL). Naive Tg4 cells had been cultured in serum-free medium for 24 hours prior to 

treatment with conditioned medium. A) Maximal changes in current in response to 

basolateral CCh (100 |iM) in control and treated cells were plotted as A /sc (n = 3). B) 

Maximahchanges in current in response to apical FSK (10 |j,M) in control and treated 

cells were plotted as A /sc (n = 3).
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5-3.2 Disruption of lipid rafts does not reverse ISIa+/K+- 

ATPase inhibition by hydroxylase inhibition

Na+/K+-ATPase pumps can become sequestered into lipid rafts under certain 

conditions, where it then acts as a signalling protein rather than an ion 

transporter. Thus, the effect of lipid raft disruption on Na+/K+-ATPase activity in 

DMOG-treated T84 cells was next investigated. As proof of principle that MPCD 

is working, cells were treated with MPCD alone, which should release 

sequestered Na+/K+-ATPase, and increase its activity. Pump activity was 

increased and was approaching significance in the presence of MPCD alone. 

However, it was found that basolateral treatment of the cells with MPCD with 

concentrations previously shown to deplete cholesterol in T 84 cells (Wolf et oi, 

2002), did not reverse the inhibitory effect of DMOG (Figure 5-2).

DMOG (1 mM) + - +

Figure 5-2 MpCD disruption of lipid rafts does not affect Na+/K+-ATPase activity in 

DMOG-treated TM colonic epithelial cells. T^ cells were cultured as monolayers on 

permeable supports until flte stabilised at plateau levels. Cells were treated bilaterally 

with DMOG (1 mM; 24 hours) in the presence or absence of basolateral MpCD (4 mM) 

for the final hour of DMOG treatment. Cells were washed, mounted in Ussing 

chambers, and bathed in Ringer's solution (Table 2-3). Maximal changes in current in 

response to basolateral CCh (100 juM) and apical FSK (10 jxM) in control and treated 

cells were plotted as A /sc (n = 3; ANOVA, ** p < 0.01, compared to untreated control).
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5-3.3 Post-translational modifications facilitate 

antisecretory actions of hydroxylase inhibition

Having ruled out the involvement of lipid rafts or an acutely acting secreted 

autocrine factor, a broad Investigation of the possible contributions of several 

different signalling pathways was next performed. NFkB is a known non-HIF 

target of hydroxylases that has been previously shown to have the capacity to 

regulate transport protein function (Cummins et 61., 2006; Brouillard et al., 

2001). Therefore, a potential role for NFkB activation in mediating hydroxylase 

effects on Na+/K+-ATPase activity was investigated. We employed BMS-345541 

to pharmacologically inhibit NFkB, with experiments first being conducted to 

determine the efficacy of the inhibitor. Treatment of T ^  cells with DMOG (1 

mM; 30 minutes) caused phosphorylation of IkBcc, as previously demonstrated, 

which was inhibited by BMS-345541 (Figure 5-3 A) (Cummins et al.r 2006). Basal 

levels of phosphorylated hcB a persisted in the presence of the inhibitor, which 

may be due to basal phosphorylation of the protein by other kinases, such as 

PKC (Steffan et a/., 1995). Next, T 84 cells were cultured on permeable supports 

with BMS-345541 in the presence or absence of DMOG (1 mM) for 24 hours. 

Cells were then mounted in Ussing chambers and secretory responses to CCh 

(100 jiM) and FSK (10 ^iM) were measured. We found that BMS-345541 had no 

effect on basal /sc or Rte, nor did it ameliorate the antisecretory effect of 

hydroxylase inhibition (Figure 5 -3  B).
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Figure 5 -3  NFkB does n o t m e d ia te  th e  a n tis e c re to ry  e ffe c t o f  hyd roxy lase  in h ib it io n  in  TM 

co lon ic  e p ith e lia l cells. cells w e re  cu ltu red  as m onolayers on perm eable  suppo rts  u n til /?te 

s tab ilised a t p la teau levels. A) Cells w e re  tre a te d  w ith  DMOG (1 m M ; 30 m inu tes) to  induce 

phospho ry la tion  o f IkBcx. NFkB was in h ib ite d  by p re tre a tm e n t o f cells w ith  BM S-345541 (10 

(¿M) fo r  30 m inu tes p r io r  to  D M O G -trea tm en t and then  fo r  th e  d u ra tio n  o f  D M O G -trea tm en t. 

Cells w e re  then  lysed and p ro te ins  w ere  separa ted by SDS-PAGE and analysed by w este rn  

b lo tt in g  fo r  phopho-licB a  (n = 3; ANOVA; * * *  p <  0.05). B) Cells w e re  tre a te d  b ila te ra lly  w ith  

DMOG (1 m M ) in se rum -free  m ed ium  fo r  24 hours e ith e r in the  absence o r  presence o f  BMS- 

345541. Cells w e re  washed, m oun ted  in Ussing cham bers, and ba thed  in R inger's so lu tion  

(Table 2-3). M ax im al changes in /sc in response to  basolatera l CCh (100 ^ M ) and apical FSK (10 

in c o n tro l and tre a te d  cells w ere  p lo tte d  as A !sc (n = 5; ANOVA; * * *  p <  0.001, com pared to  

respective con tro ls).

Having shown that NFk B was not likely to be involved in mediating the 

antisecretory effect of hydroxylase inhibition, we next examined Src family 

kinases. These important signalling proteins are known to regulate epithelial 

transport function and can also be regulated in conditions of hypoxia (Keely e t  

a l., 2000; Knock e t  a l., 2008). A potential role for Src family kinases was 

examined using PP2 (Hanke e t  a l., 1996). PP2 potentiated CCh (100 jaM)-
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stimulated responses to 191.51 ± 42.52 % of controls, but reduced FSK (10 jliM )- 

stirriulated responses to 64.62 ± 5.54 % of control similar to previous results 

(Keely e t  a l. ; 2000; Bertelsen e t  a l., 2002). Treatment with PP2 did not reverse 

the antisecretory effect of DMOG on Ca2+~dependent responses. Interestingly, 

however, PP2 significantly attenuated the antisecretory effect of hydroxylase 

inhibition on cAMP-dependent responses. DMOG alone inhibited FSK- 

stimulated responses to 29.40 ± 2.92 %  of those in controls. However, in the 

presence of both PP2 and DMOG, responses to FSK were 45.52 ± 5.15 % of 

controls (n = 5; ns compared to control) (Table 5-1). It is worth noting that the 

inhibition of FSK-stimulated current by DMOG in this set of experiments was 

greater than that initially reported and shown in Table 5-1 , We attribute this 

variation to variation between experiments.

Similar to Src family kinases, PKC is a critical regulator of epithelial transport 

protein function. Therefore, we also examined its potential involvement in 

mediating the antisecretory actions of hydroxylase inhibition. A well-described 

general inhibitor of the classical and novel PKC isoforms, GF 109203X, was 

employed. However, it was found that 24 hours treatment with GF 109203X in 

the presence of DMOG did not significantly reverse the antisecretory effects of 

the hydroxylase inhibitor (Table 5-1).

PKA is also known to be an important regulator of epithelial Cl' secretion (Singh 

et a l,, 1998). However, upon its inhibition with the specific inhibitor, H89, there 

was no reversal of the antisecretory effect of hydroxylase inhibition (Table 5-1) 

(Davies e t  aJ., 2000; Chijiwa e t  a  I 1990).

Finally, acriflavine (5 |iM), which was employed as a HIF inhibitor was also 

without effect on the antisecretory actions of hydroxylase inhibition (Table 5-1) 

(Lee e t  a l., 2009).
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Table 5-1 Pharmacological Investigation of the involvement of various signalling pathways in 

mediating antisecretory actions of DMOG. cells were cultured as monolayers on permeable 
supports until Rte stabilised at plateau levels. Cells were treated bilaterally with DMOG (1 mM; 
24 hours) in the presence or absence of various pharmacological inhibitors (Table 2-2). Cells 
were washed, mounted in Ussing chambers, and bathed in Ringer's solution (Table 2-3). Cl* 
secretory responses to basolateral CCh (100 ̂iM) and apical FSK (10 ̂ M) were then measured. 
Maximal responses to CCh and FSK are represented as % of respective control A /„ responses 
analysed by ANOVA for each inhibitor.

Treatment Target

BMS-345541 NFkB 
Control

Ì B f K i S l
IBMSI3355m  

PP2 Control Src-family 
kinases

AcrifKavine 

Control
ìdW g^ I  

B ftr iflw ìn fI 
H89 Control PKA

Response to CCh

(% of respective 
control)

128.81120.88  
(n = 3; ns)

76.32 ±11.78  
(n -  5; ns)

^ 5 jJ g § 1 0 ! l  

191.51 ±42.52  
(n = 4; p < 0.05)

78.99 ± 6.02 
(n = 6; ns)

30.76 ±3.18  
(n = 4; p < 0.001) 

B jJlsW jb fegj 

i( n a ^ fpEvotouì)]

Response to FSK

(% of respective 
control)

64.62 ± 5.53 
(n = 4; ns)

q g n p

M S B
80.78 ± 2.75 

(n = 6; ns)
m m tm

42.39 ± 1.71 
(n = 4; p < 0.001)

A potential role for new protein translation in mediating the antisecretory effect 

of hydroxylase inhibition was next investigated by use of the protein translation 

inhibitor, CHX. In order to verify the efficacy of CHX, experiments were first 

carried out in which HIF-la protein expression was induced by treatment of Tg4 

cells with DMOG (1 mM; 24 hours), in the presence or absence of various
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concentrations of CHX (0 -5  |iM). CHX (5 |xM) inhibited H IF -la  accumulation by 

64 % compared to DMOG alone (n = 2) (Figure 5 -4  A), similar to results 

previously obtained in T 84 cells (McRoberts et al., 1990). Tg4 ceils were next 

cultured with CHX (5 jxM ) in the presence or absence of DMOG (1 mM; 24 

hours). Cells were mounted in Ussing chambers and upon stimulation with 

basolateral CCh (100 |iM) and apical FSK (10 jiM), we found there to be no 

reversal of the antisecretory effect of hydroxylase inhibition (Figure 5 -4  B).

[CHX] (nM) o 
DMOG (1 mM) -

B

CHX (5 nM) 
DMOG (1 mM)

+ + 
+

Figure 5 -4  C ycfohex im ide  does n o t a lte r  th e  a n tis e c re to ry  e ffec ts  o f  h yd roxy lase  in h ib it io n  in 

Tb4 co lon ic  e p ith e lia l cells. cells w e re  cu ltu red  as m onolayers on pe rm eab le  suppo rts  u n til 

ffte stab ilised a t p la teau levels. A) Cells w ere  tre a te d  b ila te ra lly  w ith  DMOG (1 m M ; 24 hours) to  

induce H IF - la , in th e  presence o r absence o f CHX a t various con cen tra tion s  fo r  24 hours. Cells 

w e re  lysed and p ro te ins  w ere  separated by SDS-PAGE and H IF - la  was de tec ted  by w e s te rn  b lo t. 

(3-actin was n o t used as a load ing con tro l in these experim ents  as its expression w o u ld  also be 

expected to  decrease due to  C H X -treatm ent (n = 2). B) Cells w e re  tre a te d  b ila te ra lly  w ith  

DMOG (1 m M ; 24 hours) in th e  presence o r absence o f CHX (5 ^ M ). Cells w e re  washed, 

m ou n ted  in Ussing cham bers, and ba thed  in R inger's so lu tio n  (Table 2 -3 ). M axim al changes in 

cu rre n t in response to  baso la tera l CCh (100 jiM )  and apical FSK (10 ^ M )  in c o n tro l and tre a te d  

cells w e re  p lo tte d  as A  (n = 4; ANOVA; * p <  0.05; * * *  p <  0.001, com pared to  th e ir  respective  

con tro ls).
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The potential involvement of gene transcription in mediating the antisecretory 

effect of hydroxylase inhibition was also investigated using the transcriptional 

inhibitor, AD. Again, to test the efficacy of AD, cells were first treated bilaterally 

with AD (250 ng/ml) for 24 hours and 18SrRNA mRNA expression was 

determined by semi-quantitative RT-PCR. These experiments showed that AD 

inhibited transcription of 18SrRNA to 61.51 ± 7.18 % of that in control cells 

(Figure 5 -5  A). T 84 cells were next cultured with AD (250 ng/ml) in the presence 

or absence of DMOG (1 mM; 24 hours), mounted in Ussing chambers and 

stimulated with basolateral CCh (100 ^iM) and apical FSK (10 juM). AD reduced 

both the Ca2+ and cAMP-mediated Cl‘ secretory responses in control cells, but it 

was also clear that AD did not reverse the antisecretory effects of hydroxylase 

inhibition (Figure 5 -5  B).
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A B

18SrRNA

Contro l AD (250 ng/ml) 
DMOG (1 mM)

Figure 5-5 Actinomycin D does not attenuate the antisecretory effect of hydroxylase 

inhibition in TM colonic epithelial cells. T84 cells were cultured as monolayers on 

permeable supports until /?te stabilised at plateau levels. A) Cells were treated 

bilaterally with AD (250 ng/ml) for 24 hours. Total RNA was isolated and mRNA 

expression of 18SrRNA was analysed by semi-quantitative RT-PCR (n = 4; paired t-test; 

** p < 0.05). B) Cells were treated bilaterally with DMOG (1 mM) in serum-free 

medium for 24 hours in the presence or absence of AD (250 ng/ml). Cells were 

washed, mounted in Ussing chambers, and bathed in Ringer's solution (Table 2-3). Cl' 

secretory responses were then stimulated with basolateral CCh (100 |j.M) and apical 

FSK (10 juM). Maximal responses to CCh and FSK were plotted as A lsc responses (n = 6; 

ANOVA; ** p < 0.01; *** p < 0.001, compared to respective controls).
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5-3.4 Na+/K+-ATPase p1 protein expression is significantly 

increased by hydroxylase inhibition

Since it is insensitive to CHX and AD, our data suggested that the antisecretory 

effect of hydroxylase inhibition is likely mediated by a post-translational event. 

Thus, the expression of some known regulatory proteins of the Na+/K+-ATPase 

pump was next investigated. PKC as already discussed in the introduction to 

Chapter 4, was the first to be investigated. Hydroxylases were inhibited by 

DMOG (1 mM; 24 hours) and PKC £ protein expression was investigated by 

western blotting (Figure 5-6). No changes in the abundance of PKC ^ in DMOG- 

treated cells were observed.

Figure 5-6 Hydroxylase inhibition does not alter PKC C, expression in T^ colonic 

epithelial cells. T84 cells were cultured as monolayers on permeable supports until Rte 

stabilised at plateau levels. Cells were treated bilaterally with DMOG (1 mM) in serum- 

free medium for 24 hours. Cells were lysed, proteins were resolved by SDS-PAGE, and 

PKC C, expression was analysed by western blotting, p-actin was used as a loading 

control (n = 4).
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Another protein known the regulate NaVK+-ATPase pump activity in colonic 

epithelial cells is FXYD3. Expression of this regulatory protein was also 

investigated at the mRNA level. Hydroxylases were again inhibited by DMOG (1 

mM; 24 hours) and FXYD3 mRNA expression was investigated by semi- 

quantitative RT-PCR (Figure 5-7). However, there were no changes observed in 

FXYD3 mRNA expression in DMOG-treated cells.

C ontro l DMOG

Figure 5-7 FXYD3 mRNA expression is not altered by hydroxylase inhibition in T84 

colonic epithelial cells. cells were cultured as monolayers on permeable supports 

until rtte stabilised at plateau levels. Cells were treated bilaterally with DMOG (1 mM) 

in serum-free medium for 24 hours. mRNA was isolated from the cells and semi- 

quantitative RT-PCR analysis was performed. 18SrRNA was used as a loading control (n 

= 5).
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In further experiments, the expression of the regulatory subunit of the Na+/K+- 

ATPase heterodimer, Na+/K+-ATPase Pi, was also investigated. Hydroxylases 

were inhibited by DMOG (1 mM; 24 hours) and Na7K+-ATPase Pi expression 

was investigated at both the mRNA and protein levels by semi-quantitative RT- 

PCR and western blotting, respectively. Interestingly, we found that while there 

were no changes in mRNA expression (Figure 5-8 A), protein expression of the 

35 kDa Na+/K+-ATPase Pi subunit was significantly increased to 173.83 ± 17.27 % 

of that in control cells (Figure 5-8 B).

A B

DMOG 1mM (hours) Z  DMOG 1mM (hours)

Figure 5-8 Na+/K+-ATPase p1 protein expression is increased by hydroxylase inhibition  

in Tg4 colonic epithelial cells. T84 cells were cultured as monolayers on permeable 

supports until Rte stabilised at plateau levels. Cells were treated bilaterally with DMOG 

(1 mM) in serum-free medium for various periods of time. A) mRNA was isolated from 

the cells and semi-quantitative RT-PCR analysis was performed with primers specific for 

Na+/K+-ATPase pi (labelled as pi in the upper panel). 18SrRNA was used as a loading 

control (n = 5). B) Total protein was isolated from cells, and Na+/K+-ATPase p! protein 

expression was measured by western blotting (labelled as Pi in the upper panel), p- 

actin was used as a loading control (n = 3; ANOVA; * p < 0.05 compared to control).
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Having found that Na+/K+-ATPase pa subunit protein (35 kDa glycoprotein) 

expression is increased after treatment with DMOG, localisation of the protein 

at the plasma membrane in Tg4 cells was analysed by confocal microscopy. Cells 

were cultured on transparent permeable supports and treated with DMOG (1 

mM; 24 hours). As shown in Figure 5-9, Na+/K+-ATPase \s very specifically 

expressed basolaterally within one z-plane of T84 cells (indicated by arrows). In 

agreement with our western blot data, there also appeared to be an increase in 

the amount of Na+/K+~ATPase P i in the plasma membrane and cytosol of 

DMOG-treated cells.

Control DMOG

Figure 5-9 Na+/K+-ATPase pa expression in the plasma membrane is increased by 

hydroxylase inhibition in TM colonic epithelial cells. cells were cultured as 

monolayers on permeable supports until Rte stabilised at plateau levels. Cells were 

treated bilaterally with DMOG (1 mM) in serum-free medium for 24 hours. Cells were 

washed in PBS, fixed in 100 % methanol, permeabilised with Triton X-100, and stained 

with specific fluorophore-labelled antibodies as outlined in Section 2-23. Pseudo

colours were assigned to the various proteins where Na+/K+-ATPase p: js represented in 

green. This image is representative of 3 similar experiments.
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5-3.5 MONaKA is expressed at the plasma membrane of 

intestinal epithelial cells, and is increased by hydroxylase 

inhibition

The results thus far show that while Na+/K+-ATPase pump activity is attenuated 

by hydroxylase inhibition, expression of the Pi subunit of the protein is 

augmented. Thus, in the next series of experiments, the expression of MONaKA 

was investigated in T 84 cells. MONaKA is known to be an Na+/K+-ATPase pi- 

binding protein that attenuates pump activity (Mao et a/., 2005). Hydroxylases 

were inhibited by DMOG (1 mM) and after various periods of time MONaKA 

mRNA and protein expression were analysed. It was found that expression of 

MONaKA mRNA was significantly attenuated after 24 hours treatment with 

DMOG to 52.52 ± 6.32 % of that in control cells (Figure 5 -1 0  A). However, in 

contrast, MONaKA protein expression was significantly increased following 

hydroxylase inhibition to 199.62 ± 25.92 % of that in controls (Figure 5 -1 0  B).
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Figure 5-10 Hydroxylase inhibition attenuates MONaKA mRNA levels but increases 

MONaKA protein expression in TM colonic epithelial cells. cells were cultured as 

monolayers on permeable supports until Rte stabilised at plateau levels. A) Cells were 

treated bilaterally with DMOG (1 mM) in serum-free medium for various periods of 

time. mRNA was isolated from cells and semi-quantitative RT-PCR analysis was 

performed with primers specific for MONaKA. 18SrRNA was used as a loading control 

(n = 4; ** p < 0.01). B) Cells were treated bilaterally with DMOG (1 mM) in serum-free 

medium for 24 hours. Total protein was isolated from cells, and MONaKA protein 

expression was measured by western blotting, p-actin was used as a loading control (n 

= 14; ANOVA; ** p < 0.01 compared to control).
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Since results from our previous experiments with CHX (Figure 5-4) suggest that 

the antisecretory effect of hydroxylase inhibition is independent of d e  novo  

protein synthesis, effects of CHX on MONaKA protein expression were also 

investigated. As shown in Figure 5-11, DMOG-induced expression of MONaKA 

was not altered in the presence of CHX and was 176.55 ± 18.13 % of that in 

untreated controls. This result of this experiment is somewhat limited however, 

by the omission of a CHX-only treated control with which to compare.

Figure 5-11 Hydroxylase inhibition increases MONaKA protein expression 

independently of de novo  protein synthesis. T84 cells were cultured as monolayers on 

permeable supports until Rte stabilised at plateau levels. Cells were treated bilaterally 

with DMOG (1 mM; 24 hours) in the presence or absence of CHX (5 fiM) for 24 hours. 

Cells were lysed, proteins were separated by SDS-PAGE, and MONaKA was detected by 

western blotting. (3-actin was not used as a loading control in these experiments as its 

expression would be expected to decrease due to CHX-treatment (n = 6-20; ANOVA; ** 

p < 0.01; *** p < 0.001 compared to control).
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Next, MONaKA localisation at the plasma membrane was investigated using an 

immunohistochemical approach. Cells were cultured on transparent permeable 

supports and were treated with DMOG (1 mM; 24 hours). As shown in Figure 

5-12 , and in agreement with previous reports (Mao et ai., 2005), MONaKA was 

found to be expressed in control cells, with predominant expression in the 

membrane, but also with expression in the cytosol. However, following 

hydroxylase inhibition by DMOG (1 mM; 24 hours), there was a dramatic 

translocation of MONaKA, specifically to the basolateral membrane (indicated 

by arrows).

Figure 5—12 MONaKA expression in the basolateral membrane is increased by 

hydroxylase inhibition in TM colonic epithelial cells. T84 cells were cultured as 

monolayers on permeable supports until flte stabilised at plateau levels. Cells were 

treated bilaterally with DMOG (1 mM) in serum-free medium for 24 hours. Cells were 

washed in PBS, fixed in 100 % methanol, permeabilised with Triton X-100, and stained 

with specific fluorophore-labelled antibodies as outlined in Section 2-23. Pseudo

colours were assigned to the various proteins where MONaKA is represented in green. 

This image is representative of 3 similar experiments.
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Since our data suggest that MONaKA and Na+/K+-ATPase px subunits are both 

expressed basolaterally in Tw cells (Figures 5 -9  and 5-12), the possibility that 

MONaKA may co-localise with the pump was next investigated using confocal 

microscopy. As shown in Figure 5-13, MONaKA has a more pronounced 

membrane expression following hydroxylase inhibition. However, co

localisation appears to be more specific with the Na+/K+-ATPase Pi subunit, and 

is slightly offset with the N a7K +-ATPase cti subunit.

A 04 MONaKA Merge

Control 

DMOG

p! MONaKA Merge
B

Control 

DMOG

Figure 5-13 MONaKA co-localises with both the a x and pi subunit of the Na+/K+- 

ATPase pump in TM cells. T84 cells were cultured as monolayers on permeable 

supports until Rte stabilised at plateau levels. Cells were treated bilaterally with DMOG 

(1 mM) in serum-free medium for. 24 hours. Cells were washed in PBS, fixed in 100 % 

methanol, permeabilised with Triton X-100, and stained with specific fluorophore- 

labelled antibodies, as outlined in Section 2-23. Pseudo-colours were assigned to the 

various proteins where in A) Na+/K+-ATPase a* is represented in green and in B) Na+/K+- 

ATPase pi is represented in green. In both panels MONaKA is represented in magenta 

and the merge of the 2 colours is in white. This image is representative of 3 similar 

experiments. Scale bars are 5 |nm in length.



While confocal images suggest that MONaKA co-localises with both the Na+/K+- 

ATPase a i  and pi subunits, the spatial resolution of this approach is not 

sufficient the prove that protein-protein interactions are occurring. Thus, to 

further investigate potential interactions between MONaKA and the Na+/K+- 

ATPase, co-immunoprecipitations were carried out. As shown in Figure 5-14, 

MONaKA was found to co-immunoprecipitate with the Na+/K+-ATPase oti 

subunit. However, this experiment is somewhat limited by the omission of the 

IgG negative controls required to prove specificity of the protocol.

c
'554->
2  ~  
a  -5 1.4

8  c  1 2  « o 
(0 o  
« 1- 1 .0  Q. Q)
<  O 0.8
+ ’ a>
*  O) o.6

Z  £  0.4

<  2  o.2
*  £
Z  0.0
o
5

Na+/K +-ATPase a j 112 kDa 

MONaKA 65 kDa

t i p

- y&iteh:

S B ®

s p i t

Control DMOG

Figure 5-14 MONaKA co-immunoprecipitates with Na+/K+-ATPase oti subunit in TM 

cells. Tg4 cells were cultured as monolayers on permeable supports until Rte stabilised 

at plateau levels. Cells were treated bilaterally with DMOG (1 mM) in serum-free 

medium for 24 hours and Na+/K+-ATPase subunits were immunoprecipitated (IP). 

Immunoprecipitates were washed thrice, and bound proteins were eluted using a low 

pH elution buffer. Proteins were resolved by SDS-PAGE, and MONaKA and Na+/K+- 

ATPase a,i protein levels were measured by western blotting (IB) (n = 5).
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Next, to confirm our findings from T84 cells, MONaKA localisation in isolated 

colonic crypts was also analysed using an immunohistochemical approach. 

Colonic crypts were isolated from mouse, rat, and human tissue, stained for 

MONaKA, and imaged by confocal microscopy. As shown in Figure 5-15  A -D , 

MONaKA (green) is highly expressed in crypts isolated from each species. 

Furthermore, it is clear from Figure 5-15  B, where the apical domain is labelled 

with a red actin coWar, that MONaKA is predominantly localised to the 

basolateral membrane of crypt cells. Finally, but importantly, the pattern of 

expression of MONaKA appears to be conserved across the 3 species.

mouse B mouse

human

Figure 5-15 MONaKA is expressed basolaterally in mouse, rat, and human colonic 

crypts. Colonic tissue was isolated from vehicle-treated mice and rats, and human 

tissue was obtained from the Gastroenterology Department of Beaumont Hospital. 

Crypts were isolated using the protocol described in Section 2-21. Isolated crypts were 

then attached to chamber slides using Cell-Tak™ as described in Section 2-22. Crypts 

were washed in PBS, fixed in 100 % methanol, permeabilised with Triton X-100, and 

stained with specific fluorophore-labelled antibodies as outlined in Section 2-23. 

Pseudo-colours were assigned to the various structures, with nuclei being represented 

in blue, f-actin in red, and MONaKA in green (20 jim scale bars). Panel B shows the 

area defined by the square in panel A at higher magnification (5 îm scale bar).
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Next, to further confirm in vitro observations in T84 cells, co-localisation of 

MONaKA and the Na+/K+-ATPase pump was investigated in human crypts, again 

using an immunocytochemical approach. As shown in Figure 5 -16  A, MONaKA 

co-localises with the Na+/K+-ATPase oil subunit in the basolateral membrane (as 

indicated by arrow). The same was also found to be true for the Na+/K+-ATPase 

pi subunit as shown in Figure 5-16  B.

A

zoom

Nucleus p t MONaKA Merge

zoom

Figure 5-16 MONaKA co-localises w ith  Na+/K +-ATPase a ± and px subunits in human 

crypts. Resected human colonic tissue was obtained from the Gastroenterology 

Department of Beaumont Hospital. Crypts were isolated (Section 2-21) and were 

attached to chamber slides using Cell-Tak™ (Section 2-22). Crypts were washed in PBS, 

fixed in 100 % methanol, permeabilised with Triton X-100, and stained with specific 

fluorophore-labelled antibodies, as outlined in Section 2-23. Pseudo-colours were 

assigned to the various markers. In panel A) Na+/K+-ATPase oci (labelled a x) is 

represented in green and in panel B) Na+/K+-ATPase Pi (labelled Pi) is represented in 

green (20 jam scale bars). In both panels, nuclei are stained with DAPI and are 

represented in blue, MONaKA is represented in magenta, and the merge is in white. 

The lower panels of both A and B show the areas defined by squares at higher 

magnification (5 jim scale bars).
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Next, in order to directly investigate its role in regulating Na+/K+-ATPase 

function, a siRNA approach was attempted to knock down expression of 

MONaKA. Experiments were first carried out using 6 -carboxyfluorescein (FAM)- 

labelled negative control siRNA to determine an appropriate transfection 

protocol for T 84 cells. However, with the transient transfection methods 

employed, transfection efficiency was found to be very low. As shown in Figure 

5 -17  A, only 20 % of the cells displayed the expected perinuclear staining 

(indicated by arrow) of the FAM-labelled negative control siRNA, 24 hours 

following transfection. Using mRNA to quantify transfection efficiency, the 

manufacturers suggest that the siRNA should have an efficiency of 80 %. 

However, after 24 hours there was no knockdown of MONaKA mRNA as 

measured by semi-quantitative RT-PCR (data not shown). After 3 days (Figure 

5 -17  B) there was no distinct staining of the perinuclear space, although there 

was staining in the cytoplasm, and by 7 days (Figure 5 -17  C) the FAM signal was 

very diffuse. We believe that at these later time points, the FAM reporter may 

be still present in the cells, but the siRNA has been degraded.
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Figure 5-17 Transfection of TM cells with FAM-labelled siRNA. T84 cells were 

trypsinised and transfected with FAM-labelled negative control siRNA (30 nM) with 0.4 

% NeoFX transfection reagent from Ambion. Cells were cultured on permeable 

supports in serum-free medium for 24 hours post transfection. Cells were then stained 

with DAPI, and visualised by confocal microscopy. A) There was an approximately 20 % 

transfection efficiency after 24 hours (5 |um scale bar). B) Extra-nuclear cytoplasmic 

staining was present 3 days post-transfection (10 ¿im scale bar). C) Staining of the 

FAM-labelled negative control siRNA became very diffuse 7 days post-transfection (10 

^m scale bar).
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Similarly, attempts to use a siRNA approach to inhibit MONaKA expression in 

polarized T 84 monolayers were not successful, and work to optimise conditions 

for siRNA transfection into T 84 cell monolayers is continuing in the laboratory. 

Therefore, as an alternative, albeit indirect, approach to further investigate a 

potential role for MONaKA in mediating the antisecretory effects of hydroxylase 

inhibition, we investigated these effects after washout of DMOG from the 

culture medium. These experiments were carried out in order to temporally 

correlate changes in MONaKA expression with changes in Cl" secretion. In these 

experiments, cells were treated with DMOG (1 mM; 24 hours) to inhibit 

hydroxylases, increase MONaKA protein expression, and attenuate Cl' secretion. 

After 24, hours, the cells were washed of DMOG and then incubated for a 

further 24 hours in serum-free culture medium without the hydroxylase 

inhibitor. After this time, cells were mounted in Ussing chambers and secretory 

responses to CCh (100 |iM) and FSK (10 juM) were measured. Although partially 

attenuated, the antisecretory effects of hydroxylase inhibition were still 

apparent 24 hours after removing DMOG from the culture medium (Figure 5-18  

A). In similar experiments, expression of MONaKA was investigated using the 

same protocol for DMOG-treatment. As shown in Figure 5 -18  B, 24 hours after 

removal of DMOG (wash), MONaKA expression remained elevated and was 

216.87 ± 41.33 % of that in control cells. This indicates that MONaKA is a very 

stable protein in vitro. It is possible that its stability is promoted by its 

interaction with the Na+/K+-ATPase, or by some other post translational 

modification.
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Figure 5-18 Antisecretory effects and increased MONaKA protein expression 

associated with hydroxylase inhibition are sustained after removal of inhibitor.

cells were cultured as monolayers on permeable supports until rtte stabilised at plateau 

levels. Cells were treated bilaterally with DMOG (1 mM) in serum-free medium for 24 

hours, 48 hours, or for 24 hours in DMOG followed by a further 24 hours in serum-free 

medium without DMOG (indicated as 'wash' in panels A and B. A) Cells were mounted 

in Ussing chambers and stimulated with basolateral CCh (100 |xM) and apical FSK (10 

¿iM) (n = 3-4; ANOVA; ** p < 0.01; *** p < 0.001 compared to 24 hour no DMOG 

control). B) Cells were lysed, proteins resolved by SDS-PAGE, and MONaKA expression 

was analysed by western blotting, p-actin was used as a loading control (n = 4-5; 

ANOVA; * p < 0.05 compared to respective controls).
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5-3.6 Hydroxylase inhibition increases membrane 

expression of FIH-1 and its association with Na+/K+-ATPase

c t i

FIH-1 is known to hydroxylate ankyrin repeat domain-containing proteins and 

interestingly, the Na+/K+-ATPase a i  subunit contains 2 ankyrin-binding domains, 

suggesting FIH-1 may have an ability to interact with the pump. Earlier in these 

studies, FIH-1 expression In response to hydroxylase inhibition was investigated 

(Figure 3 -3) and was found to be unaltered at either the mRNA or protein level. 

Next, using an immunohistochemical approach, we investigated if FIH-1 

localisation might be altered in response to DMOG treatment. Cells were 

cultured on transparent permeable supports and treated with DMOG (1 mM; 24 

hours). As shown in Figure 5-19 , FIH-1 is specifically expressed basolaterally in 

untreated Tg4 cells. Furthermore, there was a clear increase in the abundance 

of FIH-1 in the basolateral membrane of DMOG-treated cells. Interestingly, 

there also appeared to be a translocation of the protein in the z plane, from a 

relatively dispersed state in control cells (indicated by arrow) to a more distinct 

location in DMOG-treated cells (indicated by arrow).
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Control DMOG

Figure 5-19 Hydroxylase inhibition increases FIH-1 expression in the basolateral 

membrane of T84 colonic epithelial cells. T84 cells were cultured as monolayers on 

permeable supports until Rte stabilised at plateau levels. Cells were treated bilaterally 

with DMOG (1 mM) in serum-free medium for 24 hours. Cells were washed in PBS, 

fixed in 100 % methanol, permeabilised with Triton X-100, and stained with specific 

fluorophore-labelled antibodies as outlined in Section 2-23. Pseudo-colours were 

assigned to the various proteins where FIH-1 is represented in magenta. This image is 

representative of 3 similar experiments.
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Since FIH-1 appears to traffic to the membrane following hydroxylase inhibition, 

co-localisation of FIH-1 with the Na+/K+-ATPase subunits was next investigated 

in TS4 cells and in human crypts by confocal microscopy. As shown in Figure 5 -  

20 A there was a striking co-localisation of FIH-1 with the Na+/K+-ATPase oti 

subunit, displaying a more distinct membrane expression following hydroxylase 

inhibition. FIH-1 expression in human crypts appeared to be equally 

cytoplasmic and membranous (Figure 5 -2 0  B).

a 2 FIH-1 Merge

Control 

DMOG

o N u cleu s a .  FIH -1  m erge

zoom

Figure 5 -2 0  FIH-1 co-loca lises w ith  th e  Na+/K +-ATPase a t s u b u n it in  T34 cells and hum an  cryp ts .

T84 cells were cultured as monolayers on permeable supports until /?te stabilised at plateau 
levels. Cells were treated,bilaterally with DMOG (1 mM) in serum-free medium for 24 hours. 
Resected human colonic tissue was obtained from the Gastroenterology Department of 
Beaumont Hospital. Crypts were isolated (Section 2-21) and were then attached to chamber 
slides using Cell-Tak™ (Section 2-22). Cells and crypts were washed in PBS, fixed in 100 % 

methanol, permeabilised with Triton X-100, and stained with specific fluorophore-labelled 
antibodies, as outlined in Section 2-23. Pseudo-colours were assigned to the various proteins 
where Na+/K -ATPase ai is represented in green. In both panels FIH-1 is in magenta and the 
merge is in white (5 jam scale bar in panels A and B zoom, and 20 jam in upper panel B). This 
image is representative of 3 similar experiments

221



To more directly demonstrate that that FIH-1 interacts with Na+/K+-ATPase 

pumps, co-immunoprecipitation experiments were carried o u t Using this 

approach whereby Na+/K+-ATPase a i  was immunoprecipitated, we found that 

there was increased levels of FIH-1 bound to Na+/K+-ATPase a i  in DMOG- 

treated cells (Figure 5-21). However, this experiment is somewhat limited by 

the omission of the IgG negative controls required to prove specificity of the 

protocol.

Na+/K +-ATPase ctj 112 kDa 

FIH-1 40 kDa

Control DMOG

Figure 5-21 Hydroxylase inhibition increases FIH-1 binding to Na+/K+-ATPase a x 

subunits in J M cells. T^ cells were cultured as monolayers on permeable supports until 

flte stabilised at plateau levels. Cells were treated bilaterally with DMOG (1 mM) in 

serum-free medium for 24 hours and Na+/K+-ATPase a i subunits were 

immunoprecipitated (IP). Immunoprecipitates were washed thrice, and bound proteins 

were eluted using a low pH elution buffer. Proteins were resolved by SDS-PAGE and 

FIH-1 and Na+/K+-ATPase protein levels were measured by western blotting (IB) (n = 

3; paired t-test; p = 0.075).
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Finally, to explore whether FIH-1 interacts with MONaKA, preliminary co- 

immunoprecipitation experiments were carried out. Using this approach 

whereby MONaKA was immunoprecipitated, we found that there were 

increased levels of FIH-1 bound to MONaKA in DMOG-treated cells (Figure 5 -  

22). However, this experiment is somewhat limited by the omission of the IgG 

negative controls required to prove specificity of the protocol.

Control DMOG

Figure 5-22 Hydroxylase inhibition increases FIH-1 binding to  MONaKA in cells.

Tg4 cells were cultured as monolayers on permeable supports until Rte stabilised at 

plateau levels. Cells were treated bilaterally with DMOG (1 mM) in serum-free medium 

for 24 hours and MONaKA was immunoprecipitated. Immunoprecipitates were 

washed thrice, and bound proteins were eluted using a low pH elution buffer. Proteins 

were resolved by SDS-PAGE and FIH-1 protein expression was measured by western 

blotting (IB) (n = 3).
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5 - 4  D i s c u s s i o n

Since our data from previous chapters suggested that hydroxylase inhibition 

does not alter membrane expression of the Na+/K+-ATPase or cellular ATP levels, 

in the current chapter we set out to investigate alternative mechanisms that do 

not involve altered pump expression or trafficking. Initially, we investigated the 

possibility that the effects of hydroxylase inhibition on Na+/K+-ATPase activity 

could be mediated by an epithelial-derived soluble factor, such as ET-1, acting in 

an autocrine fashion. Previous work has shown that ETs have the capacity to 

acutely regulate Na+/K+-ATPase function, via activation of ETB receptor, and 

subsequent increases in intracellular Ca2+ (Prasanna et al., 2001; Liu et al., 

2009). There are various other endogenous molecules that are known to 

attenuate pump activity, such as cardiatonic steroids, and the hypoxia- 

stimulated hypothalamic inhibitory factor (Schoner and Scheiner-Bobis, 2005; 

De Angelis and Haupert, 1998), although whether these molecules can be 

synthesised by the intestinal epithelium is not known. If a secreted molecule, 

such as ET-1, was responsible for attenuating pump activity, then one would 

expect that conditioned medium from DMOG-treated cells should mimic the 

antisecretory effects of the drug. However, we did not find this to be the case, 

implying that secreted endothelins, or indeed other acutely acting soluble 

mediators, are not involved in mediating the effects of hydroxylase inhibition. 

In future studies the inclusion of a positive control for these experiments, such 

as stimulation of cells with ET-1 itself, and inclusion of protease inhibitors in the 

conditioned culture medium would bolster these results.

We also investigated the possibility that increased sequestration of the Na+/K+- 

ATPase into lipid rafts could mediate the effects of hydroxylase inhibition. 

Previous studies have shown that regulation of the pump in this manner 

attenuates its transporting function and promotes its role as a signalling protein 

through increased coupling to Src family kinases (Liang et al., 2007). Thus, we 

investigated if chemical disruption of lipid rafts or inhibition of Src kinases could
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reverse the antisecretory effects of DMOG-treatment. However, when MPCD 

was employed to disrupt lipid rafts in the basolateral plasma membrane, 

antisecretory actions of DMOG were unaltered. This suggests that 

sequestration into lipid rafts is not a factor underlying inhibition of Na+/K+- 

ATPase activity by hydroxylase inhibitors. However, this cannot be fully ruled 

out because, although the activity of the Na+/K+-ATPase was increased in MPCD- 

alone treated cells in what was the positive control for this experiment, it was 

approaching but did not quite reach statistical significance. Similarly, we know 

that activation of Src kinases contribute to the attenuation of Cl" secretion, 

however, pharmacological inhibition of Src kinases with PP2 did not reverse the 

antisecretory effect of hydroxylase inhibition on Ca2+-dependent secretory 

responses (Keely et al., 2000). Interestingly however, upon Src inhibition with 

PP2, there was a partial reversal of the effect of DMOG on cAMP-dependent 

responses. These data may reflect a differential role for Src family kinases in 

mediating effects of hydroxylase inhibition on Ca2+ and cAMP-dependent 

secretory pathways. However, these data should be viewed cautiously since Src 

inhibition alone was noted to have profound effects on both Ca2+- and cAMP- 

induced responses (Bertelsen et al., 2002). A potential role for Src family 

kinases in mediating responses to hydroxylase inhibition could be further 

studied by investigating their phosphorylation and activation in response to 

DMOG treatment of colonic epithelial cells and by further investigating the 

effects of PP2 on DMOG-induced changes in transport protein function.

Several other signalling pathways were also investigated based on evidence 

indicating their potential for mediating the antisecretory effect of hydroxylase 

inhibition. PKC inhibition was found to be without effect on the antisecretory 

effects of DMOG. The PKC inhibitor, GF, has been reported to be a specific 

inhibitor of PKC that inhibits both classical and novel PKC isoforms (Toullec et 

al., 1991; Roberts et al., 2005). However, as with all chemical inhibitor data, 

one must be cautious in drawing conclusions, since other research has 

highlighted potential non-specific actions of the inhibitor (Alessi, 1997). PKA
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inhibition was also without effect on the anti-secretory actions of DMOG. 

However, although H89 is widely used as an inhibitor of PKA, it also inhibits 

other pathways and therefore should not be used as the single source of 

evidence of PKA involvement (Murray, 2008; Lochner and Moolman, 2006). 

Finally, and as previously mentioned in Chapter 3, acriflavine was employed as a 

HIF inhibitor and was also found to be without effect on the antisecretory 

actions of DMOG. However, this result must also be treated with caution, since 

acriflavine was also without effect on DMOG-induced induction of the HIF-1- 

target, PHD2 (data not shown). This suggests that either HIF-1 was still 

transcriptionally active in the presence of acriflavine, or that.PHD2 is under 

control of other transcription factors. Thus, our experiments using 

pharmacological inhibitors suggest that neither PKC, PKA, nor HIF are involved 

in mediating the antisecretory effects of hydroxylase inhibitors. However, these 

data should not be considered as conclusive since some of the inhibitors 

affected Cl" secretion themselves, and further studies are required to 

definitively exclude these signalling pathways from mediating antisecretory 

actions of hydroxylase inhibition.

Further experiments were carried out to determine whether the inhibitory 

effect of hydroxylase inhibitors on Na+/K+-ATPase activity could be 

translationally or transcriptionally-mediated. However, we found that neither 

AD nor CHX, which are well-described inhibitors of transcription and translation 

respectively, attenuated the antisecretory effects of DMOG. This suggests that 

the effects of hydroxylase inhibition are likely to be post-translationally- 

mediated. Interestingly, previous reports on the regulation of transport protein 

function by HIF-1 show these actions to be transcriptionally-mediated (Ibla et 

a!., 2006; Zheng et a/., 2009). Therefore, the current data support the idea that 

HIF is not involved in mediating the antisecretory effects of hydroxylase 

inhibition. Furthermore, these findings suggest that post-translational 

modifications, such as altered interactions with regulatory proteins, or 

phosphorylation of the pump itself, may be involved.
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To.test the hypothesis that altered interactions with regulatory proteins might 

be involved, we first carried out some preliminary investigations to determine 

the expression of Na+/K+-ATPase-modifying proteins in colonic epithelial cells. It 

was found that neither FXYD3 nor PKC £, expression was altered at either mRIMA 

or protein levels, respectively. Of course, these proteins could be investigated 

in more depth by, for example, analysing their association with the Na+/K+- 

ATPase by co-immunoprecipitations or employing siRNA to inhibit their 

expression. Interestingly, although the mRNA expression of Na+/K+-ATPase fa 

subunit remained unaltered, Na+/K+-ATPase Pi protein expression was 

significantly increased after 24 hours treatment with DMOG. Initially this result 

was perplexing, since the dogma has been that one Na+/K+-ATPase a  subunit 

binds to one Na+/K+-ATPase p subunit, and in our previous studies we showed 

a i  subunit expression to be unchanged by hydroxylase treatment. However, 

more recent studies investigating the ratio of Na+/K+-ATPase a  : p subunits have 

shown that the a  subunit can bind more than one p subunit, thereby offering an 

explanation for the observed increase in Pi, but not a i  subunits (Clifford and 

Kaplan, 2008). Confocal analysis revealed that the Na+/K+-ATPase Pi subunit 

appears to be specifically expressed within one z-plane in the basolateral 

membrane of T ^  cells and that it co-localises with the Na+/K+-ATPase a i  

subunit. Immunohistochemical analysis showed a higher expression of Na+/K+- 

ATPase P i in the cytoplasm after treatment with DMOG, but it could not be 

conclusively determined as to whether there was a higher proportion of the pi 

subunit in the membrane. Analysis of the expression of the Na+/K+-ATPase P i 

subunit at the protein level yielded interesting results, with only the lower 

molecular weight (35 kDa) band showing increased expression in response to 

hydroxylase inhibition. However, increased expression of this unglycosylated 

form of the protein does not appear to affect activity of the pump, as 

demonstrated in previous studies using site-directed mutagenesis (Beggah et 

al., 1997). Nor does glycosylation affect heterodimer formation or intracellular 

trafficking of the Na+/K+-ATPase (Tamkun and Fambrough, 1986). The



unglycosylated P i subunit is also associated with impairments in cell-cell 

junctions, decreased cell-cell contact, and increased migration, thereby causing 

an increase in paracellular permeability (Vagin et a!., 2007). However, our data 

do not support such a role for the Pi subunit in colonic epithelial cells, since 

hydroxylase inhibition promoted, rather than attenuated, transepithelial 

resistance. Further studies are required to elucidate the precise role that the 

unglycosylated P i subunit plays in the antisecretory effects of hydroxylase 

inhibition, but one possibility could be that it interacts with another regulatory 

protein to alter Na+/K+-ATPase pump function.

A search of the literature for proteins that interact with the Na+/K+-ATPase P i 

subunit to negatively regulate pump activity yielded MONaKA as a potential 

candidate. MONaKA was originally discovered as a regulator of the Na+/K+- 

ATPase in astrocytes and has been shown to be expressed in other tissues. 

MONaKA contains a kinase domain, however it is thought to be inactive, thus it 

is currently unknown how MONaKA might regulate Na+/K+-ATPase activity. 

Studies by other groups present conflicting data regarding the expression 

profile of this protein. One study investigates expression of several splice forms 

and notes their absence from the heart (Zou et al., 2005). However, a more 

recent study that investigated expression of one fragment of human MONaKA 

cDNA demonstrated its absence in the colon and presence in the heart 

(Takeuchi et al., 2010). This is in contrast to data accessed on the Human 

Protein Atlas (www.humanproteinatlas.org) which shows that it is expressed in 

all Gl tissues examined. The current studies revealed MONaKA to be expressed 

in colonic epithelial cells from a number of species, including humans. 

Furthermore, following hydroxylase inhibition its expression is increased almost 

200 % of that in control cells. This effect appears to be independent of de novo 

protein synthesis as demonstrated by our findings with the inhibitor of 

translation, CHX. Interestingly, in contrast to its effects on protein expression, it 

was found that mRNA expression of MONaKA was significantly reduced after 24 

hours treatment with DMOG. The mechanisms underlying these contrasting
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actions at the mRNA and protein levels are as yet unknown, but it is possible 

that this represents a negative feedback loop. Indeed, future experiments 

involving a micro RNA screen of hydroxylase inhibitor-treated colonic epithelial 

cells could yield some interesting results and new lines of inquiry.

We also found that trafficking of MONaKA to the plasma membrane was 

increased in DMOG-treated cells. Confocal imaging revealed that MONaKA co

localised with Na+/K+-ATPase oti and P i subunits in human crypts. However, co

localisation in T 84 cells was restricted to that of the P subunit. Co- 

immunoprecipitation experiments found MONaKA to associate with the Na+/K+- 

ATPase a i  subunit, although these results require confirmation with an IgG 

negative control. In further experiments it was found that 24 hours following 

removal of hydroxylase inhibitors, MONaKA expression remained elevated, 

indicating that it is a very stable protein in vitro. It is possible that such stability 

is promoted by its interaction with the Na+/K+-ATPase or by some other post 

translational modifications. .

Taken together the data presented here, along with what is already known 

regarding its inhibitory role in regulation of Na+/K+-ATPase pump activity, 

suggest that MONaKA plays an important role in mediating the antlsecretory 

effects of hydroxylase inhibition in colonic epithelial cells. Furthermore, since 

we found that the pattern of expression of MONaKA in colonic crypts appears to 

be conserved across several species, our data underscore the likely importance 

of this protein in regulating intestinal secretory function. These data suggest 

that MONaKA might represent a target for the development of new anti- 

diarrhoeal therapies. However, the ubiquitous expression of the Na+/K+-ATPase 

and wide expression of MONaKA, would necessitate local intestinal targeting of 

a drug that targets MONaKA for the treatment of diarrhoea.

Our studies show that hydroxylase inhibition not only leads to increased 

association with MONaKA but also of the Na+/K+-ATPase p i  subunit with FIH-1.



Interestingly, as shown in Chapter 3, the asparaginyl hydroxylase is not 

regulated by hydroxylase inhibition at the mRNA or protein levels. However, 

analysis of its localisation within the cell before and after hydroxylase inhibition 

revealed that its expression at the membrane was increased upon treatment 

with DMOG and that it co-localised with the Na+/K+-ATPase oti subunit. How 

such interactions might regulate pump activity are as yet unknown, but one 

could speculate that similar to MONaKA, FIH-1 is a negative regulator of the 

pump and that, upon DMOG-treatment, it is released from other binding 

partners, e.g., H IF -la , leaving it free to interact with the Na+/K+-ATPase (Mahon 

et ol., 2001). It has been shown that hydroxylation stabilises protein-protein 

interactions, therefore another possibility could be that via its ankyrin binding 

domain, the pump stably binds to a hydroxylated ankyrin partner, and that such 

an interaction facilitates its activity (Yang et ai, 2011). Such a mechanism has 

been previously shown to exist in the case of acetylated tubulin regulation of 

Na+/K+-ATPase activity (Casale et al.t 2003).

5-5 Summary

In summary, although there is still much work to be done, with the inclusion of 

more rigorous controls, the identification of MONaKA as a potential mediator of 

the antisecretory effects of hydroxylase inhibition in these studies is novel and 

intriguing. These data support existing evidence that the pump exists in a 

multimeric complex with several regulatory proteins, and suggest that both 

MONaKA and FIH are likely to have important roles to play in regulating pump 

activity in conditions of hypoxia (Figure 5-23). MONaKA is well known as a 

regulator of Na+/K+-ATPase pump function and our data suggest that it could act 

as a molecular switch that co-ordinates Na+/K+-ATPase pump activity with 

oxygen availability in epithelial cells. As such, MONaKA, and its associated 

regulatory proteins, represent good targets for the development of new anti- 

diarrhoeal drugs.
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Figure 5-23 Hydroxylase inhibition stimulates the formation of a multimene 

inhibitory complex at the Na+/K+-ATPase pump. Hydroxylase inhibition attenuates Cl' 

secretion by reducing of the activity of the Na+/K+-ATPase. We propose that this occurs 

through the stabilisation of MONaKA protein, independent of transcription or 

translation. MONaKA then binds to the Na+/K+-ATPase at the plasma membrane where 

it forms a complex with FIH-1 and inhibits the activity of the Na+/K+-ATPase, thereby 

inhibiting epithelial secretory responses.
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HIF hydroxylases, which include FIH-1 and PHDs, are cellular oxygen sensors 

that serve as gatekeepers of the hypoxic response. They utilise 0 2 as a co

substrate and couple the hydroxylation of H IF -la  to the oxidative 

decarboxylation of a-ketoglutarate and C 0 2. They specifically hydroxylate 

target amino acids on H IF -la  and HIF-2a, IKK, and other proteins that contain 

consensus hydroxylation motifs. HIF hydroxylase regulation of cellular function 

is a rapidly expanding area of research as indicated by the number of 

publications on the topic in the recent past (Figure 1-4). One of the most 

prominent areas of HIF hydroxylase research is in the Gl tract where research is 

particularly focussed on the role of HIF hydroxylases in the pathogenesis of 

inflammation (Robinson et al., 2008; Cummins ef al., 2008; Tambuwala et al., 

2010; Hindryckx et al., 2010; Hart et a lt 2011), and cancer (Xue et al., 2010).

Cl’ secretion, an important physiological process in the intestine, is a highly 

energy-demanding process and depends on 0 2 for the generation of cellular 

energy in the form of ATP (Mandel and Balaban, 1981; Durand et al., 1988; 

Carra et al., 2011). ATP is utilised by Na+/K+-ATPase pumps to create the 

electrochemical driving force for Cl' secretion to occur. Previous studies have 

shown that hydroxylase inhibition ameliorates experimental colitis and prevents 

diarrhoea, thus this thesis was based on the overarching hypothesis that 

epithelial fluid and electrolyte transport may also be regulated by hydroxylase 

activity (Cummins et al., 2008; Robinson et al., 2008). The findings presented 

support this hypothesis by showing that hydroxylase inhibition significantly 

attenuates epithelial secretion both in vitro and in vivo. These findings make a 

significant contribution to our knowledge of the role of hydroxylases in 

intestinal physiology and suggest that these enzymes, and their associated 

signalling mechanisms, represent good targets for the development of new 

drugs to treat intestinal transport disorders. A schematic representation of our 

current understanding of how hydroxylase inhibition may downregulate 

epithelial secretion is shown in Figure 6-1.
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Figure 6-1 Hydroxylase inhibition attenuates colonic epithelial secretory function.

Hydroxylase inhibition causes robust stabilisation of HIF-la in colonic epithelia and also 

exerts profound antisecretory effects. Despite down-regulation of CFTR and NKCC1 

expression, the activities of these transporters were unaltered by hydroxylase 

inhibition. Neither Ca2+ nor cAMP levels in the cells were altered by hydroxylase 

inhibition. However, hydroxylase inhibition reduced the activity of basolateral Na+/K+- 

ATPase pumps. Hydroxylase inhibition did not alter the expression of the catalytic 

Na+/K+-ATPase oti subunit, but caused an increase in the expression of the Na+/K+- 

ATPase subunit and MONaKA. We show that the anti-secretory phenomenon occurs 

independently of transcription or translation, and we propose that MONaKA 

stabilisation may occur by inhibition of its proteasomal degradation. MONaKA and the 

Na+/K+-ATPase a x subunit associate at the plasma membrane where they form a 

complex with FIH-1. This complex behaves as a molecular switch, that inhibits the 

activity of the Na+/K+-ATPase, thereby attenuating luminal Cl' secretion.

Our investigations into regulation of ion transport by hydroxylase inhibition

were initially focussed on the transport process of Cl' secretion. In vitro studies

revealed that hydroxylase inhibition by DMOG was potently anti-secretory, an
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effect which was coincident with intracellular accumulation of H IF -la  and HIF- 

2a. Another inhibitor of HIF hydroxylases, FG-4497, which exerts its actions by 

directly blocking their active site, re-capitulated our findings with DMOG, re

affirming the role of HIF hydroxylases in mediating this antisecretory action. 

Intracellular second messengers which activate the Cl' secretory pathway were 

not affected by hydroxylase inhibition which suggested that the antisecretory 

effect may be mediated by alterations in the transport proteins that constitute 

the Cl' secretory pathway. However, to first give our in vitro findings some 

physiological relevance we carried out experiments to translate them into a 

mouse model. Similar to its effects in cultured epithelia, treatment of mice with 

DMOG significantly blunted agonist-stimulated colonic /sc responses to CCh and 

FSK, which are known to be predominantly due to Cl' secretion (Cuthbert et ai,

1994). Since previous studies have demonstrated that Cl' secretion is the 

primary driving force underlying diarrhoea in anaphylactic models, we 

investigated the effect of hydroxylase inhibition in a mouse model of allergic 

diarrhoea (Perdue et a l 1991; Brandt et al., 2003). Diarrhoea in OVA-sensitised 

mice treated with DMOG was dramatically delayed and less severe compared to 

controls. These data clearly point to a potential role for drugs which target 

hydroxylase-dependent signalling mechanisms for treatment of diarrhoeal 

diseases.

While hydroxylase inhibition clearly exerts antisecretory actions in the colon, it 

is important to bear in mind that the intestine is primarily an absorptive organ. 

Approximately 9 litres of fluid enter the proximal small intestine each day and 

normally only approximately 200 ml are lost in the stool. With this in mind, 

when considering the development of new drugs for diarrhoea, their effects on 

absorptive processes must also be considered. SGLT- 1  is one of the main 

pathways for intestinal fluid absorption and is also the primary transporter 

involved in oral rehydration therapy. Interestingly, we found that absorption 

through small intestinal SGLT1 was not affected by hydroxylase inhibition. Since 

most fluid absorption occurs in the small intestine, this is a very important
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finding for consideration when using hydroxylase inhibitors for treatment of 

secretory diarrhoeas. In contrast with this, we found that the activity of 

another important intestinal epithelial Na+ transporter, ENaC, was significantly 

reduced following treatment with DMOG. This could be a particularly important 

consideration for people with pseudohypoaldosteronism (PHA), where there is 

already urinary loss of Na+ from the body (Kuhnle, 1997; Hummler and 

Horisberger, 1999). It has however, been suggested that under normal 

conditions there is a certain degree of redundancy in colonic ENaC function with 

regard to whole-body fluid and electrolyte homeostasis and therefore, specific 

targeting of hydroxylase inhibitors to the colon may be sufficient to overcome 

potential complications arising from renal effects of these drugs (Hummler and 

Horisberger, 1999).

NHEs are also important transport proteins that mediate absorption in the 

intestine and should also be considered when developing any new therapeutics 

that target epithelial transport function. Interestingly, it has been reported that 

chronic hypoxia elevated pHj by activating Na+/H+ exchange in pulmonary 

arterial smooth muscle cells, an effect which was inhibited by exposure to EIPA 

(Rios et ai, 2005). Using fluorescent imaging techniques we were able to 

determine that the activity of NHEs was blunted by DMOG-treatment in T ^  

cells. However, the studies described here cannot discriminate which NHE 

isoform might be involved, therefore, it is difficult to draw detailed conclusions. 

This is further compounded by the fact that there is a lack of selective inhibitors 

available for the various NHE isoforms, and because NHE3 is not expressed in 

our Tjj4 cell model of the colonic epithelium (Beltran et al., 2008). NHE3 is 

expressed apically throughout the intestine and plays a major role in Na+ 

absorption (Ikuma et al., 1999; Zachos et al., 2005; Schultheis et al., 1998). 

Studies have shown that at high concentrations (>25 |iM), EIPA inhibits NHE1 

and 2, but also inhibits the EIPA-resistant NHE4 isoform (Beltran et al., 2008). 

Since lower concentrations of EIPA (which inhibit NHE1 and 2, but not NHE4) did 

not affect Cl' secretion, the reversal of the inhibitory effect of DMOG by
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concentrations of EIPA > 25 fiM suggest it is ah NHE4-mediated effect. NHE4 is 

expressed basolaterally in epithelia of several tissues and has been shown to be 

important in the regulation of intracellular pH (Pizzonia et al., 1998; Beltran et 

al., 2008). Given their important role in mediating fluid and electrolyte 

absorption in the intestine, the role of hydroxylase inhibitors in regulation of 

NHE function is a subject that requires further investigation. Future studies 

could investigate the expression of the various NHE isoforms in DMOG-treated 

cells, employ 22Na isotopic flux assays for measurements of their activity, and 

siRNA approaches along with the use of more specific pharmacological 

inhibitors to elucidate the roles of individual isoforms.

Another intriguing aspect of NHE function that was not investigated in this study 

relates to its role in regulating inflammation. NHE inhibition has previously 

been shown to attenuate enterocyte inflammatory responses and to ameliorate 

the course of IBD in DSS-treated mice. This could have some bearing on 

previous findings by Cummins et al in the DSS model of colitis, where DMOG 

was shown to ameliorate colitis, attenuate apoptosis, and abrogate interleukin 

production (Cummins et ai, 2008). Previous studies have shown that NHE 

inhibition attenuates IL-8  production in endothelial and epithelial cells, while it 

inhibits apoptosis in colonic epithelial cells and other models (Nemeth et al., 

2002a; Nemeth et al., 2002b; Rebillard et al., 2007; Chakrabarti et al., 1997). 

NHE-1 is expressed on the basolateral membrane of colonic epithelial cells and 

is thought to function in a house-keeping role by maintaining pHj (Ikuma et al., 

1999). NHE1  and NHE3 are known to be induced in models.of colitis, including 

TNBS-induced colitis (Khan et al., 1998; Khan and Ali, 1999). Further studies 

have shown that inhibition of NHE1 ameliorates experimental colitis and 

reverses the colitis-induced reduction in contractility of colonic smooth muscle 

(Khan et al., 2005). Interestingly, Robinson et al have shown that hydroxylase 

inhibition by FG-4497 in a TNBS-induced mouse model of colitis, enhanced 

fibroblast contraction in collagen gels (Robinson et al., 2008). With this in mind, 

one could speculate that hydroxylase inhibition of NHE activity could be a
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unifying mechanism that enhances contractility, attenuates interleukin 

production, and prevents apoptosis in colitis. Thus, further investigations of 

hydroxylase regulation of NHEs could yield some important results as to their 

roles in regulating both ion transport and inflammation.

In order to determine the mechanisms underlying the antisecretory effect of 

hydroxylase inhibition in intestinal epithelial cells, the activities of various 

components of the Cl" secretory pathway were examined. No changes in apical 

CFTR currents following hydroxylase inhibition were observed. This was initially 

surprising, given that in agreement with previous studies, expression of CFTR 

was reduced in DMOG-treated cells (Zheng et a i , 2009). However, previous 

studies have shown that only small amounts of CFTR are required in the apical 

membrane for functionality which, in conjunction with studies of ion transport 

in the intestine of CF-mice, underscores the critical role that the channel plays 

in the lubrication of the intestinal lumen (De Jonge, 2006; Cuthbert et ai, 1994). 

In the current studies, an investigation of the effects of hydroxylase inhibition 

on expression of the Ca2+-dependent Cl' conductance, TMEM16A, indicated that 

there was a tendency towards an increase in expression of the protein at the 

mRNA level. Although this effect did not reach statistical significance in these 

studies, such a response in vivo could have important physiological significance 

where induction of Cl' channels, such as TMEM16A, could be a mechanism to 

compensate for the repression of CFTR by HIF-1.

H IF -la  is a primary target of the HIF-hydroxylases and HIF-1 has previously been 

shown to be an important regulator of transport proteins that comprise the Cl" 

secretory pathway (Ibla et ai, 2006; Zheng et ai, 2009). Since DMOG-induced 

stabilisation of HIF-1 was coincidental to the antisecretory actions of 

hydroxylase inhibition in the current studies, we carried out experiments to 

ascertain whether HIF-1 was involved in mediating this effect. Interestingly, we 

found that neither a HIF inhibitor (acriflavine) nor inhibition of transcription, or 

translation, reversed the antisecretory effects of hydroxylase inhibition. These
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data suggest, therefore, that the antisecretory effects of hydroxylase inhibition 

occur by a HIF-independent mechanism. Furthermore, findings indicate that 

while CoCI2 potently stabilised HIF, in contrast to DMOG it attenuated Cl' 

secretion by inhibiting CFTR activity, without altering Na+/K+-ATPase activity. 

DMOG and CoCI2 behave quite differently in terms of inhibition of HIF 

hydroxylases. C0CI2 does not inhibit asparaginyl hydroxylation, whereas DMOG 

potently inhibits asparaginyl hydroxylation (Tian et al., 2011b). This suggests 

that the antisecretory effects of DMOG may occur by a mechanism that involves 

inhibition of asparaginyl hydroxylation, but that is independent of HIF.

Since our data suggest that the antisecretory effect of hydroxylase inhibition is 

asparaginyl-hydroxylase-mediated, we explored the possibility that the 

asparaginyl hydroxylase, FIH-1, might be involved. Interestingly, FIH-1 

translocated to the basolateral membrane where it bound to the Na+/K+-ATPase 

ai subunit following DMOG-treatment. This suggests that FIH-1 in conjunction 

with MONaKA and Na+/K+-ATPase binds the pump to form a negative 

regulatory complex. The role that FIH-1 plays in this complex is unknown but 

one could speculate that FIH-1 is a negative regulator of the pump and that, 

DMOG-treatment results in a dissociation from HIF-la, leaving it free to interact 

with the Na+/K+-ATPase. It has been shown that hydroxylation stabilises 

protein-protein interactions, therefore another possibility could be that via its 

ankyrin binding domain, the pump stably binds to a hydroxylated ankyrin 

partner, and that such an interaction facilitates its activity (Yang et al., 2011). 

Such a mechanism has been shown to exist as evidenced by regulation of the 

Na+/K+-ATPase pump by acetylated tubulin (Casale et al., 2003).

While each of the transport proteins that comprise the Cl' secretory pathway 

are interlinked and are dependent on each other for function, the activity of 

Na+/K+-ATPase pumps is the energy-dependent step of the process. 

Interestingly, although we found that hydroxylase inhibition dramatically 

attenuated activity of the pump, expression of the catalytic ai subunit remained
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unaltered, as did levels of cellular ATP. This is in contrast to other research 

showing hypoxia attenuated pump expression as well as activity (Planes et al., 

1996; Mairbaurl et al., 2002; Carpenter et al., 2003; Dada et al., 2003; Gusarova 

et al., 2011). The mechanisms involved are complex and involve mitochondrial 

ROS, which is produced during hypoxia, but not by treatment with DMOG 

(Gusarova et al., 2011; Emerling et al., 2007). Therefore, we would not expect 

DMOG and hypoxia to have the same effects on the pump. We therefore 

investigated alternative mechanisms, and molecular regulation of the pump by 

proteins such as PKA, PKC, FXYD family members, Na+/K+-ATPase Pi, and 

MONaKA, amongst others. After an initial screen of these signalling pathways, 

an exploration of the expression of regulatory proteins was carried out, and the 

Na+/K+-ATPase Pi subunit provided a target for further study. Hydroxylase 

inhibition caused an increase in Na+/K+-ATPase pa protein expression. 

Incidentally, increases in Na+/K+-ATPase subunit expression have been 

previously shown to enhance /?te. This is due to the n-glycan branching of the 

Na+/K+-ATPase Pi subunit binding to other subunits on neighbouring cells, 

thereby increasing Rte (Vagin et al., 2008). This might, at least in part, explain 

the increase in Rte we observed in response to hydroxylase inhibition in these 

studies. However, since the Na+/K+-ATPase pi subunit is known to facilitate 

pump activity, it seemed unlikely that increases in its expression would inhibit 

the pump after treatment with DMOG (Shoshani et al., 2005; Padilla-Benavides 

et al., 2010). Therefore, Na+/K+-ATPase pr interacting proteins that are known 

to inhibit pump activity were explored (Mao et al., 2005; Gorokhova et al.,

2007). Investigation of one of these proteins, MONaKA, revealed it to be 

significantly upregulated by hydroxylase inhibition.

MONaKA exists as at least two splice variants, with the splicing conserved 

perfectly between mouse and human, suggesting that it serves an important 

function (Mao et al., 2005). Following DMOG-treatment, MONaKA translocated 

to the basolateral membrane where interestingly, its expression is also 

conserved across mouse, rat, and human colonic crypts, again accentuating its
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potential physiological importance in regulating basolateral transporters in 

intestinal epithelia. Although MONaKA protein expression was increased, 

mRNA expression was reduced by DMOG-treatment This could be as a result of 

a post-translational modification of MONaKA leading to its stabilisation, or due 

to a negative feedback loop to regulate MONaKA expression, perhaps mediated 

by an miRNA-mediated mechanism. The importance of miRNA in mediating 

responses to hypoxia has recently been highlighted by our collaborators who 

showed regulation of HIF-la by miRNA155 (Bruning et ai, 2011). Further 

studies to investigate the potential role for miRNAs in mediating hydroxylase 

actions on epithelial transport function are required.

In addition to MONaKA and the Na+/K+-ATPase (3i subunit, there are several 

other proteins known to be important in regulating Na+/K+-ATPase pump 

expression, including TCTP, Na+/K+-ATPase-interacting (NKAIN), and FXYD family 

members. Due to time constraints, these proteins were not investigated in the 

current studies but do warrant some discussion. TCTP was initially identified as 

a protein that binds to the third cytoplasmic domain of Na+/K+-ATPase ai, the 

expression of which was found to repress pump activity by a mechanism not yet 

fully understood (Jung et al., 2004). Further research by the same group 

showed that another cytosolic protein, SNX6, reversed this repression by 

binding to, and sequestering, TCTP. However, there is a paucity of information 

on the physiological roles of TCTP and SNX6 in the intestine, and future studies 

into the effects of hydroxylase inhibition on their expression and association 

with the Na+/K+-ATPase pump could yield some interesting findings. FXYD 

family members are membrane-associated proteins that are known to modify 

the transport properties of Na+/K+-ATPase pumps in a tissue-specific manner, 

without altering its expression (Garty and Karlish, 2006; Delprat et al., 2006; 

Geering, 2006). More recent research also suggests that they contribute to 

stabilisation of the pump at the membrane (Mishra et ai, 2011). Thus, this 

family of proteins could play an important role in mediating the effects of 1 

hydroxylases on pump activity in intestinal epithelial cells. Preliminary studies
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showed that treatment of cells with DMOG did not alter FXYD3 mRNÁ. We 

cannot however, rule out the possibility that FXYD3 expression might be 

regulated by post-translational mechanisms and this could be a topic for future 

studies. FXYD5 is also a candidate for future research as its over-expression has 

been shown to increase pump activity in Xenopus oocytes (Lubarski et al., 

2005). Finally, NKAINs are of great relevance to the current studies as they have 

been recently identified as Na+/K+-ATPase Pi interacting proteins that must also 

form complexes with MONaKA in order to be activated (Gorokhova et al., 2007).

Overall, the data presented in this thesis provide important new insights into 

how intestinal fluid and electrolyte transport may be regulated in health and 

disease. The discovery that hydroxylases play a key role in the regulation of 

intestinal secretion suggests that under conditions of intestinal stress, such as 

hypoxia associated with inflammation or fibrosis, downregulation of Na+/K+- 

ATPase activity may serve as a physiological switch that attenuates epithelial 

transport processes, thereby conserving cellular energy. Under such conditions, 

reductions in ATP consumption by the pump may allow for the redistribution of 

cellular energy from costly transport processes into tissue restitution and repair. 

Such actions may, at least in part, underlie the protective effects of hydroxylase 

inhibitors observed in mouse models of IBD (Robinson et al., 2008; Cummins et 

al., 2008). In fact, decreased Na+/K+-ATPase activity has been recorded in the 

intestines of patients with IBD (Ejderhamn et al., 1989). However, the current 

studies may have even more broad implications for our understanding of how 

intestinal physiology is regulated under normal conditions. Given the harsh 

environment in which the intestinal epithelium exists, between the richly 

perfused vasculature of the serosa and the anoxic lumen of the gut, 02 levels 

are constantly fluctuating. These fluctuations are amplified by the dynamic 

nature of the splanchnic circulation, with post-prandial increases and exercise- 

associated decreases in blood flow (Musch et al., 1987; Matheson et al., 2000). 

Thus, a molecular switch, such as that potentially mediated by MONaKA/FIH-l, 

to regulate ATP consumption by the Na+/K+-ATPase would be beneficial in that it
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could serve to co-ordinate epithelial transport with 02 availability. For example, 

between meals, intestinal blood flow and 02 availability are low and under 

these conditions, hydroxylases would be inactive. Under such conditions, we 

would expect Na+/K+-ATPase activity to be attenuated, thereby limiting energy 

expenditure on epithelial transport processes when they are not required. On 

the other hand, upon feeding, epithelial fluid and electrolyte secretion are 

required to provide a fluid environment for the mixing of food particles with 

digestive enzymes, and for lubrication of the food bolus as it moves through the 

lower intestine. Under these conditions, intestinal blood flow and 02 

availability increase, hydroxylases are activated, and pump activity increases, 

thereby allowing expenditure of cellular energy on transport processes. Our 

data suggest that MONaKA, the Na+/K+-ATPase px subunit, and FIH-1 potentially 

play key roles in these processes by forming multimeric complexes with the 

Na+/K+-ATPase ai subunit in a hydroxylase-sensitive manner. It would be 

interesting to test this hypothesis in future studies by examining association of 

MONaKA and FIH-1 with the pump under fasting and non-fasting conditions.

In conclusion, from a clinical perspective our data suggest that by virtue of their 

ability to act as a molecular switch to regulate epithelial secretion, hydroxylases 

represent good targets for development of new anti-diarrhoeal drugs. 

However, our studies also reveal that the anti-diarrhoeal effects of hydroxylase 

inhibitors are mediated by inhibition of Na+/K+-ATPase activity, by a mechanism 

that likely involves MONaKA. Since these proteins are expressed throughout 

the body, there is the possibility that side effects may occur upon anti- 

diarrhoeal treatment with hydroxylase inhibitors. While it is encouraging that in 

our own in vivo studies we did not observe significant toxicity to DMOG at 

concentrations that prevent diarrhoea, future studies should focus on the 

potential for using targeted drug formulations to enhance the delivery of 

hydroxylase inhibitors to the intestine. Such technologies have received much 

attention and are already in use to treat a variety of intestinal disorders (Yang et
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ai, 2002; Haddish-Berhane et ai, 2007; Pràkash and Malgorzata Urbanska,

2008).
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ADP adenosine di-phosphate
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acetoxymethyl 
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CaCC Ca2+ activated CL channel

cAMP cyclic adenosine monophosphate

CCD charge-coupled device
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CFTR cystic fibrosis transmembrane conductance regulator

cGMP cyclic guanosine monophosphate

CHX cycloheximide

CLT clotrimazole

DAPI 4',6-diamidino-2-phenylindole

DMOG dimethyloxallylglycine

DMSO dimethyl sulfoxide

DNA deoxyribonucleic acid

DRA down regulated in adenoma

DTT dithiothriol
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EGF epidermal growth factor

EIA enzyme linked immunosorbent assay

EIPA 5-(N-Ethyl-N-isopropyl)amiloride

ENaC epithelial sodium channel

ET endothelin

FAM 6-carboxyfluorescein

FIH-1 factor inhibiting hypoxia inducible factor 1

FSK forskolin

G conductance

g gravity

GF GF109203X

Gl gastrointestinal

GLUT glucose transporters

H+/K+-ATPase hydrogen potassium adenosine triphosphatase

H89 N-[2-[[3-(4-Bromophenyl)-2-propenyl]amino]ethyl]-5-

isoquinolinesulfonamide dihydrochloride 

HIF hypoxia inducible factor

IBD inflammatory bowel disease

IBS irritable bowel syndrome

IKK IkB kinase

IP intraperitoneal

/sc short circuit current

licBa inhibitor of k B

LDH lactate dehydrogenase

LSM laser scanning microscopes

MCE methyl cellulose ester

miRNA micro ribonucleic acid

MONaKA modulator of Na+/K+-ATPase

MSD meso scale discovery

MPCD methyl b cyclodextrin

ECL enterochromaffin like

277



MpCD methyl P cyclodextrln

Na+/K+-ATPase sodium potassium adenosine triphosphatase

NAD nicotinamide adenine dinucleotide

NFkB nuclear factor k B

NHE sodium hydrogen exchanger

NHS N-hydroxysuccinimide

NHERF sodium hydrogen exchanger regulatory factor

NKAIN sodium potassium adenosine triphosphatase interacting

NKCC1 . sodium potassium chloride co transporter

NP-40 nonidet P40

OVA ovalbumin

PAGE polyacrylamide gel electrophoresis

PBS phosphate buffered saline

PD potential difference

PepTl Peptide transporter 1

PET Polyethylene Terephthalate

PHD prolyl hydroxylase

PHI prolyl hydroxylase inhibitors

PPi P2O74'

PKA cAMP-dependent protein kinase

PKC protein kinase C

PMSF phenylmethanesulfonyl fluoride

PP2 3-(4-chlorophenyl) l-(l,l-dimethylethyl)-lH-pyrazolo[3,4-

d]pyrimidin-4-amine 

PSS physiological salt solution

PVDF polyvinylidene difluoride

pVHL von Hippel-Lindau tumour suppressor protein

RISC RNA induced silencing complex

RNA ribonucleic acid

/?te transepithelial resistance

RT-PCR reverse transcriptase polymerase chain reaction
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SDS sodium dodecyl sulphate

SGK1 serum and glucocorticoid-responsive kinase-1

SGLT1 sodium glucose co-transporter 1

siRNA short interfering ribonucleic acid

SNX sorting nexin

TBST tris buffered saline with tween (0.1 %)

TCTP translationally-controlled tumour protein

TMEM16A transmembrane protein 16A

UC ulcerative colitis

VIP vasoactive intestinal polypeptide

ZO-1 zonula occludens-1
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In the lab Chris Kindle one Christmas, I received a gift from an anonymous 

source, of a toy PacMan and Blinky. When wound up, they chased each other in 

circles, relentlessly, but never caught each other. The note attached to the gift 

made reference to the relationship between a student and their supervisor 

being somewhat like this. I think that I have been very fortunate to have 

Stephen as a supervisor. He has always encouraged our independence and 

ideas and has enthusiastically debated issues at length with us. Being a strong 

advocate of the promotion of our research at scientific meetings, Stephen has 

allowed me to become interested and aware of the "bigger picture"-which has 

been one of the most positive aspects of my Ph.D. But most of all it's his 

approachability and friendliness that has made the last 3 years a pleasure. 

Thanks a million, Stephen!

Our team became known as "Team Colon", glamour-less, but helpful for 

deterring people from long-term 'loans' of your possessions. The members of 

the team really made it a smooth transition back to academia and I'd especially 

like to give a buiochas mor do Magda, Orlaith, agus Niamh. I'd also like to thank 

everyone in MolMed, especially to Olive, who manages the lab so seamlessly, 

making it a pleasure to work there, whom I have never seen in a bad mood 

despite many Urgent requests, and who makes the best cakes!
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