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Abstract 

Background: Intestinal disorders, including infectious diseases (ID), inflammatory 

bowel disease (IBD) and irritable bowel syndrome (IBS), are common in the 

European population and on a global scale and are typically associated with 

inflammation and/or dysregulated intestinal fluid movement, leading to the clinical 

endpoint of diarrhoea. Although the health and economic burden of diarrhoeal 

disease is tremendous, there is still a lack of safe and effective drugs for their 

treatment. Insults to the intestinal epithelium are critical in the pathogenesis of many 

of the above-mentioned intestinal disorders as these cells govern the transport and 

barrier functions of the intestine and also participate in initiation of inflammatory 

responses. As such, these cells represent excellent targets for the development of 

new drugs to treat intestinal diseases. Ursodeoxycholic acid (UDCA), the therapeutic 

component of bear bile, used in traditional Chinese medicine, also has a large 

evidence base and is commonly used in conventional medical practice to treat 

cholestatic disorders and hepatic inflammation. Other bile acids (BAs) are also 

known to exert regulatory effects on colonic epithelial transport, cell growth and 

immunity. Little however is known, to date, about the effects of UDCA and its 

metabolites on colonic epithelial transport function and immunity.  

 

Methods: T84 cells, a colonic epithelial cell line used as a reductionist model of 

chloride (Cl-) secretion, were cultured until they reached confluency and a trans-

epithelial resistance of >1000 ohms.cm-2 was achieved. These polarised monolayers 

of T84 cells, resected colonic mucosa from C57 black mice, Sprague-Dawley rats and 

surgically resected sections or endoscopic biopsy specimens of human colon were 

mounted in Ussing chambers and changes in short circuit  (Isc) measured. This 

technique is reflective of changes in Cl- secretion. Confocal imaging was used to 

visualise localisation of transport proteins. Western blotting and surface biotinylation 

were used to determine protein expression and abundance. Intracellular calcium 

(Ca2+) was measured using Fura/ 2AM fluorescence and MetaFluor imaging. ELISA 

measurements were used to assess cytokine levels.  

 

Results: The acute effects of UDCA on Cl- secretion in colonic epithelial cell model, 

in treated mice and on ex vivo rat and human colonic tissues were examined.  
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UDCA, unlike other dihydroxy BAs, did not alter basal Cl- secretion in the T84 colonic 

epithelial cell line. UDCA in fact exerted potent inhibitory actions in T84 cell 

monolayers, significantly attenuating responses to both Ca2+ and cyclic-AMP (cAMP) 

-dependent secretory agonists (Carbachol (CCh) and Forskolin (FSK) respectively, p 

< 0.001, p < 0.001, n = 18 [UDCA]: 500 M, bilateral addition).  

UDCA inhibited Cl- secretion across colonic epithelial cells through attenuating 

activity of basolateral Ca2+-dependent potassium (K+) channels and the sodium/ 

potassium ATP-ase pump (Na+/ K+ ATPase; p < 0.001, n = 7, p < 0.001, n = 7, 

respectively). UDCA inhibited channel/ pump activity without altering surface 

expression or localisation of these proteins. UDCA also stimulated an acute rise in 

intracellular Ca2+. This was due to influx of extracellular Ca2+ through membrane 

store operated Ca2+ channels (SOCCs) and L-type Ca2+ channels. In turn, this Ca2+ 

influx attenuated subsequent CCh-induced release of Ca2+ from intracellular stores, 

with a consequent inhibition of CCh-induced Cl- secretion. This anti-secretory 

feedback mechanism involved activation of extracellular regulated kinase/ mitogen 

activated protein kinase (ERK-MAP kinase) and appeared independent of protein 

kinase C (PKC). This pathway appeared to be a key mechanism by which UDCA 

inhibited Ca2+-dependent secretion. UDCA also attenuated cAMP-induced Cl- 

secretory responses, without altering intracellular levels of this 2nd messenger.  

Paradoxical to these anti-secretory actions in vitro, secretagogue-induced Cl- 

secretion was enhanced in the stripped colons of mice treated with UDCA in vivo. 

This appeared due to its rapid metabolism by colonic bacteria to lithocholic acid 

(LCA), a pro-secretory BA. Increased LCA levels were noted in the caecal contents 

of mice treated with UDCA, when compared to control, supporting this hypothesis.  

6-methylursodeoxycholic acid (6- MUDCA), a 6-methylated derivative of UDCA, a 

metabolically stable analogue that is completely resistant to bacterial 

dehydroxylation, retained the anti-secretory effects of UDCA noted in vitro, inhibiting 

Cl- secretion across voltage-clamped colonic tissues and T84 cell monolayers. Caecal 

LCA levels in 6-MUDCA treated mice were similar to controls and significantly less 

than UDCA-treated animals. 

UDCA also exerted specific and unique actions on transport function in intact human 

tissue, stimulating an initial rise in basal Cl- secretion involving activation of 

muscarinic receptors.  
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Finally, UDCA was also noted to exert both anti-inflammatory and cytoprotective 

effects on T84 cells and human colonic epithelium. UDCA reduced toll like receptor 

(TLR)-stimulated cytokine release and was also found to maintain epithelial barrier 

integrity as demonstrated by trans-epithelial resistance measurement and through 

inhibition of apoptosis.   

 

Conclusion: UDCA has predominantly anti-secretory and anti-inflammatory effects 

in the colonic epithelium. Through direct delivery, modification of its structure or 

targeting of the molecular targets identified in these studies, these beneficial effects 

could be utilised to treat inflammatory and secretory colonic diseases.  
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1.1 Structure, anatomy and functions of the colon 

The digestive tract, also called the alimentary canal or gastrointestinal (GI) tract, 

consists of a long continuous tube that extends from the mouth to the anus. It 

includes the mouth, pharynx, oesophagus, stomach, small intestine, and large 

intestine. The large intestine extends for approximately 1200 cm and consists 

anatomically of the caecum and appendix, ascending, transverse, descending and 

sigmoid colon, the rectum and anus. The primary function of the digestive system is 

to prepare nutrients for absorption and utilization by cells of the body. More broadly, 

the functions of the GI tract can be divided into 4 basic processes: digestion, motility, 

transport, and barrier function (Hall, 2006).  Studies in this thesis focus on the colon, 

which forms the main part of the large intestine ( 

Figure 1.1).  

 

 

 

 

Figure 1.1: The human colon. The colon is comprised of 4 anatomically distinct sections. The 

terminal ileum enters the caecum which is the most proximal section of the large bowel. The 
ascending colon extends up the right hand side of the abdomen to become the transverse colon 
which extends across the midline to become the descending colon after the splenic flexure. The 
descending colon then loops around the pelvis to form the so-called sigmoid colon, which distally 
becomes the rectum and anus (Feagan, 2007,Eutamene, 2003,Willis, 1996). 

 

1.1.1 Functional Anatomy of the Colon 

Although the colon is divided anatomically into 4 regions, functionally it is more easily 

classified into the proximal and the distal colon, which operate distinctly for the 

purposes of fluid transport regulation. The primary function of the proximal colon 

Ascending 

colon 
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(ascending, transverse and descending colon) is fluid absorption, while that of the 

distal colon (sigmoid colon and rectum) is storage of faeces (Feagan, 2007). 

 

1.1.2 The colonic wall  

The colonic wall, like the rest of the GI tract is composed of 4 types of tissue; 

epithelium, smooth muscle, neural and connective tissue, organised into concentric 

layers, which are in turn termed the mucosa, submucosa, muscle layer (intramural 

muscularis) and serosa (Figure 1.2). 

 

 

 

 

 

 

 

 

 

Figure 1.2: The colonic wall. The colonic wall, like the rest of the GI tract consists of the 

mucosa, submucosa, intramural muscularis (consisting of both circular and longitudinal muscle 
layers) and lies adjacent to the peritoneum.  

 

The mucosa is the principal interface of the colon with the external environment. It 

consists of the epithelium, lamina propria, and the muscularis mucosa. Epithelial 

cells differ throughout the GI tract, depending on function. For example in the mouth, 

anus and proximal oesophagus, there is a squamous epithelium which has 

protective functions. In the stomach and small intestine columnar epithelia 

predominate which secrete mucins and enzymes to protect the mucosa and aid 

digestion. In the colon, columnar epithelia predominate which are primarily involved 

in barrier function and fluid and electrolyte transport. The cells of the colonic 

epithelium may be divided into columnar epithelial cells, goblet cells, which produce 

mucins, and enterochromaffin or endocrine cells. Columnar and goblet cells 

comprise approximately 95% of the total surface area of the colon, while 

enterochromaffin cells comprise the remaining 5%. Underlying the epithelial layer is 

the lamina propria. This layer consists of connective tissue, which contains the blood 
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and lymphatic vessels that transport substances, such as nutrients, oxygen, and 

hormones, to and from the colon. It also contains nerves and immune cells which are 

important in regulating epithelial function.  

  

Underlying the lamina propria is the muscularis mucosa, which supports the mucosa 

and forms a barrier between it and the submucosa. The intramural muscularis 

consists of circular and longitudinal smooth muscle and is responsible for peristalsis. 

The intramural plexus is divided into the myenteric and sub-mucosal plexuses and it 

is these nerve networks that control contractions of the intestinal wall, and which co-

ordinate motility with intestinal transport. The connective tissue serosa surrounds the 

entire intestinal tract and is apposed to the peritoneum (Reed, 2009). 

 

1.1.3 The colonic crypt.  

Colonic enterocytes can be broadly divided into crypt and surface cells. Crypt cells 

are not well differentiated and have the highest proliferative capacity. Production and 

delivery of new epithelial cells from stem cells is one of the main functions of the 

crypts (Bjerknes, 2005). In contrast, surface cells are much more differentiated 

(Figure 1.3). Cells migrating from the crypt to the villi undergo apoptosis at the tip of 

the villi in a process called cell shedding. In humans, cells are shed by a mechanism 

involving loss of contact with the extracellular matrix and survival signals 

fromintegrins, resulting in the onset of apoptosis (Bullen, 2006).  

 

1.1.4 Cell types within colonic crypts 

Stem cells: The human GI tract undergoes continuous self-renewal throughout life 

(Stappenbeck, 1998). Stem cells, specialized epithelial cells characterized by the 

ability for self-maintenance, provide the basis for ongoing cell replacement. These 

cells divide asymmetrically, producing one stem cell, which remains multi-potent and 

undifferentiated, and one daughter cell, which is committed to differentiation (Bach, 

2000). Committed daughter cells undergo several additional rounds of cell division 

while migrating from the proliferative to the differentiated compartment. Upon 

differentiation, cells lose the ability to divide and eventually die. The mature 

gastrointestinal system therefore comprises, at all times, both undifferentiated, 

pluripotent stem cells, and differentiated, functional, epithelial cells. 
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In the colon, stem cells are located at the base of the crypts, with proliferation 

occurring in the lower third of these epithelial folds. Epithelial cells migrate in ordered 

cohorts towards the luminal surface, differentiating to form one of 3 cell types: 

colonocytes, goblet cells, and enteroendocrine cells. At the villus tip, cells enter a 

death program characterized by senescence and/or apoptosis, and are sloughed into 

the lumen (Merritt., 1997). Figure 1.3 illustrates the anatomy of the colonic 

epithelium.  

 

Colonocytes and Goblet cells: More than 80% of all epithelial tissue in the colon is 

comprised of colonocytes (Chang,1971). A primary function of the simple columnar 

colonic epithelium is to transport fluid and electrolytes to and from the body. The 

epithelium has the capacity for both absorption and secretion and dysregulation of 

these processes may result in diarrhoeal disease. Epithelial cells also form a 

protective barrier that is important in innate immunity. Goblet cells create mucus, 

trefoil proteins, and other factors that help protect the intestinal mucosa from injury 

and facilitate tissue repair (Deplancke, 2001). In the adult mouse descending colon, 

cells of this lineage form about 16 % of the total crypt cell population (Karam, 1999). 

Specific markers, such as Tff3 and Muc2, for intestinal goblet cells, have been 

identified and targeted ablation of these have yielded new insights into goblet cell 

function (Itoh, 1999, van Klinke, 1999). For example, mice deficient in Muc2, the 

most abundant murine intestinal mucin, display aberrant intestinal crypt morphology, 

with altered cell maturation and migration (Velcich, 2002). 

 

Endocrine cells: Endocrine cells are found scattered as individual cells within the 

gut epithelium from the stomach to the colon and represent the largest population of 

hormone-producing cells in the body (Rehfeld, 1998). Unlike many hormone-

producing cells in different glands that differentiate early in life and turnover slowly, 

enteroendocrine cells actively self-renew and differentiate throughout life, from a 

large reservoir of stem cells. As mature enteroendocrine cells migrate to the tips of 

the villi, they presumably undergo apoptosis and are extruded into the lumen (Simon, 

1995). In the colon, peptide YY, glucagon-like peptide (GLP)-1, cholecystokinin, and 

neurotensin are co-expressed in some enteroendocrine cells. Likewise, serotonin-

expressing cells often co-express substance P but never the 4 hormones listed 
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above, leading to the hypothesis that there are 2 major branches for enteroendocrine 

cell differentiation in the colon (Roth, 1992).  

 

In summary, crypt stem cells give rise to all 4 cell types of the colonic epithelium. 

Math1 expression restricts cells to the secretory lineage (Yang, 2001), neurogenin 3 

restricts cells to the endocrine lineage (Jenny, 2002), whereas the transcription of 

specific hormones is regulated by several late-acting transcription factors, such as 

Pax4 (Larsson, 1998), Pax6 (Trinh, 2003), and BETA2 (Mutoh, 1997).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: The anatomy of the colonic epithelium. The colonic epithelium creates 

invaginations into the submucosa. These are described as crypts while the surface cells constitute the 
surface epithelium. At the base of the crypts, undifferentiated stem cells are present which proliferate 
and migrate along the crypt to the surface epithelium, thereby creating a constant source of 
replacement for surface cells (Figure from Reya, 2005). 

 

1.1.5 Colonic crypts and fluid transport. 

The traditional paradigm of colonic fluid and electrolyte transport suggests that there 

is spatial separation of absorptive and secretory processes to surface and crypt 

cells, respectively. However, more recent studies of isolated micro-perfused colonic 
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crypts revealed constitutive Na+-dependent fluid absorption, with secretion being 

regulated by neuro-humoral agonists (Robert, 2001). Epithelial cells differentiate 

from a secretory to an absorptive phenotype as they migrate along the crypt. Other 

studies also support the notion that crypt function is more dynamic than previously 

suggested. For example, the cholinergic agonist, carbachol (CCh), rapidly (within 10 

min) reduced cell volume along the entire crypt/villus axis and promoted Na+/H+ 

exchanger 3 (NHE3) internalization into early endosomes. In contrast, CCh induced 

membrane recruitment of NKCC1 and cystic fibrosis transmembrane regulator 

(CFTR) in all crypt and villus enterocytes, NKCC1 in all goblet cells, and NBCE1 in 

all villus enterocytes. These observations support regulated vesicle trafficking in 

regulation of Cl- secretion by goblet cells and Cl- and HCO3
- secretion by villus 

enterocytes during the transient phase of cholinergic stimulation. In essence, these 

findings suggest that  there is a degree of functional plasticity and synchronization of 

ion transport function along the crypt-villus axis, allowing the epithelium to express 

either a predominantly secretory or absorptive function in a given situation, and this 

is likely to be relevant in intestinal disease (Jakab, 2011).  

 

1.2 Fluid transport and the colonic epithelium  

The main functions of the intestinal epithelium are essentially 3-fold: it absorbs 

nutrients from digested food, it acts as a protective barrier preventing entry of 

noxious substances from the lumen into the body, and it performs a key role in the 

regulation of fluid and ion transport. In the healthy intestine, fluid absorption normally 

predominates, which allows conservation of the large volumes of fluid that enter the 

intestine each day. This fluid absorption is driven predominantly by active transport 

of sodium. However, the colon is also capable of secreting water, with the principal 

driving force being secretion of Cl- ions. This process is essential for appropriate 

hydration of the mucosal surface and for flushing noxious substances away from the 

mucosa. This finely-tuned balance between absorptive and secretory processes can 

be disrupted in disease states, such as infectious diseases, inflammatory bowel 

disease, coeliac disease, or other malabsorptive diarrhoeas, causing overexpression 

of secretion or under expression of absorption, leading to the clinical manifestation of 

diarrhoea. While some diarrhoeal diseases are characterised as being malabsorptive 



27 

 

and others as being secretory, in truth it is likely that most diarrhoeal diseases 

involve dysregulation of both processes. 

 

1.2.1 Water transport  

The colonic epithelium is considered to be a tight epithelium with a high electrical 

resistance and low paracellular water permeability (Ma, 1999). Water transport is 

driven by the establishment of osmotic gradients and is paracellular, through tight 

junctions, or through a family of specialised water channels called aquaporins. 

Although they are expressed in the epithelium, it is still unclear how much water 

transport occurs through these channels in the colon (Takata, 2004). Water transport 

in the small intestine can also occur trans-cellularly through sodium-dependent 

glucose co-transporters (SGLTs), with up to 5 L of water being absorbed in this 

manner each day (Keely, 2009).   

 

1.2.2 Colonic fluid absorption  

Under physiological conditions, the caecum and proximal colon absorb around 1.5 L 

of electrolyte-rich fluid per day, which accounts for roughly 90% of the salt and water 

entering the proximal colon (Debongnie, 1978). The result is a daily faecal electrolyte 

excretion of less than 5 mM Na+, 2 mM Cl-, 9 mM K+ (Warth, 2000), and 

approximately 5 mEq (milli- equivalents) HCO3
- (Caprilli, 1986). This is accomplished 

by several different processes, including electrogenic and electroneutral absorption 

of Na+
 and Cl-, active absorption of K+ via luminal K+ pumps, and absorption of short-

chain fatty acids (SCFAs) produced by the luminal bacterial flora (Ikuma, 1998, 

Vidyasagar, 2005, Musch., 2009). 

 

Electroneutral Absorption of NaCl: The majority of NaCl absorption occurs between 

meals and is driven electroneutrally by the combined activities of Na+/H+ and Cl-

/HCO3
- exchange. Five isoforms of the Na+/H+ exchangers (NHE) have been 

identified to date (Donowitz, 1996). In the colon, electroneutral absorption of NaCl 

occurs through NHE 1, 2 and 3 (Zachos, 2005), though it is widely accepted that 

NaCl absorption occurs predominantly through coupling of NHE3 and the Cl-/HCO3
- 

exchanger SLC26A3 (alias downregulated in adenoma, or DRA) (Binder, 1987).  
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Electrogenic Na+ absorption: This occurs through the epithelial sodium channel, 

ENaC. This amiloride-sensitive channel has 3 subunits;  and , the expression of 

which can be regulated through ubiquitination and degradation mediated by E3 

ubiquitin protein ligases, such as Nedd 4-2 (Zhou , 2005). In the colonic environment 

there are multiple factors which may acutely regulate Na+ absorption through ENaC. 

These include G protein-coupled receptors (GPCRs), tyrosine kinase receptors, 

second messengers and protein kinases. In addition to this, a relationship exists 

between regulation of Na+ absorption and Cl- secretion. For example, activation of 

Cl- secretion by cyclic AMP (cAMP) can result in inhibition of amiloride-sensitive Na+ 

currents (Ecke, 1996), while CFTR activation has also been shown to inhibit ENaC 

currents (Ji, 2000). 

 

Sodium-coupled glucose transporters and Na+ absorption: Secondary active glucose 

transport occurs through at least 4 members of the SLC-5 gene family. These 

include SGLT-1 and SGLT-2, which play important roles in intestinal absorption and 

renal reabsorption of glucose. Genetic disorders of SGLTs include glucose-galactose 

malabsorption and familial renal glycosuria. SGLT-1 plays a central role in oral 

rehydration therapy, which is commonly used to treat secretory diarrhoea in 

conditions such as cholera infection. Interestingly, SGLTs are not only present in the 

small intestine and kidneys but also in other areas of the body, such as the 

hippocampus in the central nervous system. Na+ and sugar co-transport by SGLT-1 

is referred to as secondary active transport because the driving force for the process, 

i.e., Na+ gradients, are maintained by active transport through the Na+/K+ -ATPase 

pump. Quite simply, the direction and rate of glucose transport by SGLT-1 are 

functions of the direction and magnitude of Na+ gradients established across the 

plasma membrane by Na+/K+-ATPase pumps (Takata, 1996). 

 

Active K+ absorption: Active K+ absorption occurs in the colon through the activity of 

the apical H+/K+ -ATPase pump (Sorenson 2010). This is in contrast to the passive 

absorption of K+ which occurs in the small intestine (Keely, 2009). 

 

SCFA absorption: Absorption of SCFAs, which are produced by bacterial 

fermentation of carbohydrates, provides energy to the colonic epithelium and 
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regulates Na+ absorption. SCFAs are absorbed by colonic epithelial cells and 

stimulate Na+- dependent fluid absorption via a cyclic AMP-independent process 

which involves Na+- H+ , Cl- and HCO3
- exchange (Keely, 2009, Binder, 2010).  

 

1.2.3 Colonic Fluid secretion 

In addition to absorption, the colonic epithelium also secretes fluid and electrolytes. 

As previously mentioned, secretion and absorption are not strictly 

compartmentalized, but secretion is believed to take place primarily in the crypts 

(Welsh, 1982). Electrolyte secretion is the driving force behind fluid secretion in the 

colon and the primary ions involved are Cl-, HCO3
- and K+ (Kunzelmann, 2002, Field, 

2003). Many of the mechanisms involved in electrolyte secretion have been well-

characterized (Rajendran, 1998, Barrett, 2000, Sorensen, 2010). 

 

Bicarbonate secretion: HCO3
- is secreted into the intestinal lumen in order to 

neutralise HCl from the stomach and the organic acids produced by bacterial 

fermentation in the large intestine (Binder, 2005). Several mechanisms for HCO3
- 

secretion are present in the colon, including a Cl--dependent mechanism linked to 

apical Cl-/HCO3
- exchange, a cAMP-dependent CFTR-mediated pathway, and also 

an apical membrane SCFA/HCO3- exchange mechanism (Vidyasagar, 2004). 

 

K+ secretion: It is generally assumed that a mechanism for K+ exit is essential to 

maintain cells in the hyperpolarized state, thus promoting Cl- secretion. Recent 

studies have shown that an isoform of the Ca2+-activated K+ channel, KCNN4, is 

involved in K+ secretion in the colon (Barmeyer, 2010). Thus, agonists which 

promote Ca2+-activated Cl- secretion can also increase K+ secretion in the colon 

(Sorensen, 2010). cAMP induces both active Cl- and active K+ secretion in 

mammalian colon (Bachmann, 2011).  

 

Cl- secretion: Cl- secretion is the primary driving force for fluid secretion in the colon 

and the mechanism underlying this process has been well-elucidated. The energy for 

Cl- secretion is derived from the activity of the Na+/K+-ATPase pump on the 

basolateral membrane. This transporter pumps out 3Na+ in exchange for 2K+ thereby 

maintaining intracellular Na+ at a low level and thus creating a favourable gradient for 

Na+ entry. This occurs via NKCC1 co-transporters, which also bring in 2 Cl- along 
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with 1 K+. Both Na+ and K+ are recycled via Na+/K+-ATPase pumps and K+ channels, 

respectively. Thus, the net activity of these basolateral transporters is to accumulate 

Cl- intracellularly above its electrochemical equilibrium creating a gradient for its exit 

across regulated channels in the membrane. The CFTR Cl- channel is the most 

abundant Cl- channel in intestinal epithelia but other types of Cl- channel are also 

known to exist (e.g. the Ca2+-activated Cl- channel, TMEM16A). Cl- secretion into the 

lumen creates an electrical gradient for cations, particularly Na+, to follow by a 

paracellular route through the tight junctions that hold the cells together at the apical 

membrane. This net movement of salt into the lumen creates the osmotic driving 

force for fluid secretion to occur (Figure 1.4). 

 

Figure 1.4: Cl- secretion in the colon. The energy for Cl
-
 secretion is derived from Na

+
/K

+
 

ATPase pump activity, which pumps Na
+
 from the cell in exchange for K

+
. This driving force allows Cl

-
 

to enter the cell through the Na
+
/K

+
/Cl

-
 co-transporter (NKCC1), which is secreted, apically through Cl

-
 

channels, most notably CFTR. K
+
 is recycled through channels in the basolateral membrane. 
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1.2.4 Transport proteins of the Cl- channel secretory pathway  

i) Na+/K+-ATPase pumps: Na+/K+-ATPase pumps generate the electrochemical 

gradient for Na+ and K+ movement across the basolateral plasma membrane. The 

energy for this process is derived from the hydrolysis of ATP to ADP (Barrett, 2000, 

Kato, 2011). The Na+/K+-ATPase pump, which consists of 2 subunits, the catalytic  

subunit and the regulatory  subunit, pumps 3 Na+ from the cell in exchange for 2 K+ 

ions with each cycle of ATP cleavage. These subunits can exist in various isoforms 

and in colonic epithelia, the 1 and 1 isoforms are preferentially expressed 

(Shanbaky,1995). Several studies have suggested that Na+/K+-ATPase pump activity 

can be regulated through altered trafficking of the  subunit to the cell membrane 

(Chow, 1995, Bystriansky, 2007). Mitochondrial ATP production is central to pump 

activity and reduced ATP production or availability can alter pump activity, which 

may account for the reduced pump activity that occurs in conditions of hypoxia 

(Papandreou, 2006). 

 

Recently, a number of membrane associated regulatory proteins for the Na+/K+-

ATPase have been identified. These include the FXYD family of which there are 7 

members, several of which are expressed in the colon (Saito, 2010).These proteins 

can alter pump activity without altering surface expression (Garty, 2006). Intracellular 

regulators, such as translationally controlled tumour protein (tctp) and sorting nexin 6 

(SN6), are also emerging as important regulators of the pump (Yoon, 2006). Another 

novel modulator of the Na+/ K+-ATPase is MONaKA, which has been shown to inhibit 

pump activity in brain and cultured astrocytes, and which studies from our group 

have shown to be also expressed in colonic epithelia (Ward 2011; Mao, 2005). 

 

ii) Basolateral K+ channels: These channels mediate K+ efflux across the basolateral 

membrane and, by hyperpolarising the cell, create a driving force for Cl- secretion to 

occur. Regulation of K+ channels can involve many factors, including 

phosphorylation (Ewald, 1985), changes in cytosolic Ca2+ concentrations (Gamper, 

2005), and ubiquitination (Rajan, 2005). There are 2 main types of basolateral K+ 

channel involved in colonic Cl- secretion, the cAMP-dependent channel, KCNQ1, 

and the Ca2+-activated channel, KCNN4 (Matos, 2007). Basolateral K+ channels 

have also been reported to be coupled to apical H+/K+ activity in rat distal colon via 
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intracellular pH (Ikuma, 1998), which would result in trans-epithelial K+ movement. 

Na+ absorption is also dependent on K+ channel function, as Na+/K+-ATPase activity 

in pumping Na+ across the basolateral cell membrane requires K+ recirculation 

(Turnheim, 2002).  

 

Ca2+-dependent K+ channels have been identified in single-channel recordings from 

the human intestinal epithelial cell line, T84, and are inwardly rectifying, with a K+ 

conductance of 14–32 pS (Devor, 1997, Devor, 1996). The pharmacological and 

biophysical properties of the epithelial Ca2+-dependent K+ current are almost identical 

to those of the intermediate conductance Ca2+-activated K+ channel gene, IK1 

(Kondoh, 1997). The molecular identity of cAMP-dependent K+ conductances 

became clearer when it was observed that in colonic epithelial cells it could be 

inhibited by blockers of KCNQ K+ channels, such as chromanol 293B (Warth, 1996). 

However, the properties of heterologously expressed KCNQ channels are distinct 

from those of cAMP-sensitive epithelial K+ currents. For example, KCNQ1 currents 

are relatively slowly activating and voltage-dependent, whereas native epithelial 

currents are instantaneous and have a linear I-V relationship (Buschmann , 2000). 

These apparent discrepancies may have been resolved, however, with the discovery 

that KCNQ1 co-assembles with an accessory subunit, KCNE3, in colonic epithelial 

cells. The properties of K+ currents formed by co-assembly of KCNQ1/KCNE3 

closely resemble those of native epithelial cAMP-sensitive K+ currents (Buschmann , 

2000). 

 

Ca2+-activated K+ channels: The KCNN4 protein is part of a potentially 

heterotetrameric voltage-independent potassium channel that is activated by 

intracellular Ca2+. Activation of KCNN4 causes membrane hyperpolarization, which 

promotes Cl- secretion. Observations by Kumar et al, indicate that mucosal KCNN4 

channels are capable of driving agonist-induced anion secretion mediated via CFTR 

and CaCCs (Kumar, 2010). 

 

KCNQ1: KCNQ channels conduct the cAMP-regulated K+ current present in colonic 

crypt cells. In the colon, KCNQ1 is thought to assemble with a member of the KCNE 

family, KCNE3, which shows overlapping mRNA distribution in intestinal tissue. On 

expression with KCNE3, an instantaneously activating current is seen with a linear 
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current – voltage relationship. As mentioned above, the KCNQ1 + KCNE1 current is 

inhibited by chromanol 293B and enhanced by cAMP (Buschmann, 2000). The 

channel-blocking activity of TEA has also been studied (Buschmann, 2000), showing 

that the sensitivity of the homo-multimeric channels is: KCNQ2 > KCNQ4 > KCNQ1 

> KCNQ5 > KCNQ3.  

 

 iii) NKCC1: NKCC1 is a co-transporter that is expressed on the basolateral 

membrane of epithelial cells all along the GI tract. It was first identified as a 175-kDa 

protein in the intestine of the winter flounder (Musch, 1982) and constitutes the main 

basolateral Cl- uptake pathway into enterocytes. Transport through NKCC1 is 

electroneutral as it co-transports 2 Cl- with 1 Na+ and 1 K+ (Barrett, 2000). NKCC1-

deficient mice exhibit significantly reduced agonist-stimulated Isc in colon (Flagella , 

1999, Bachmann , 2003). NKCC1 is phosphorylated by protein kinase A (PKA), 

making it sensitive to intracellular cAMP levels (Kurihara, 2002). Consistent with the 

concept of the crypt as the primary site of secretion, NKCC1 is most predominantly 

expressed at the crypt base (Reynolds, 2007). There is substantial evidence that 

NKCC does not merely passively respond to secretion-related events, but that it is 

actively regulated by a number of pathways. In mice lacking the main apical Cl- exit 

pathway CFTR, NKCC activity is enhanced by increases in intracellular cAMP and 

this occurs without changes in its expression level. Phosphorylation and intracellular 

Ca2+ levels have been shown to regulate colonic NKCC (Del Castillo, 1995). 

Furthermore, protein kinase C (PKC) activation inhibits NKCC in T84 cells (Matthews, 

1993), and opposes the action of cAMP on the co-transporter (Matthews, 1995). 

 

(iv) CFTR:  

CFTR is a glycoprotein expressed at the apical membrane of colonic epithelial cells. 

It provides the main pathway for Cl- exit into the lumen. This channel has been noted 

to be defective in cystic fibrosis (CF), resulting in a significant reduction in Cl- 

secretion across airway and intestinal epithelia of CF patients (Lamprecht, 2005). 

The importance of CFTR to normal colonic function has been demonstrated by 

studies using biopsies from both normal and CF patient rectum. These studies have 

noted that both cAMP and Ca2+-dependent Cl- secretion are markedly absent in CF 

tissue. In turn, this leads to the clinical manifestation of meconium ileus or intestinal 

obstructive syndrome, where hard faeces become impacted in the dehydrated 
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intestinal lumen. Opening of CFTR is primarily regulated by cAMP-dependent PKA, 

but protein kinase G and protein kinase C (PKC) are also involved. CFTR, like the 

other transporters already discussed is also regulated by rapid trafficking from sub-

apical membrane vesicles to the cell surface (Kunzelmann, 2002).  

  

(v) Ca2+ activated Cl- channels:   

Strong evidence suggests that there is a Ca2+-dependent channel involved in Cl- 

secretion in respiratory epithelia, and more recently Ca2+-activated channels have 

been implicated in Cl- secretion in the intestine. However, controversy still exists as 

to the contribution of these channels to Cl− secretion in the intestine and to their 

relevance for colonic epithelial transport. While cAMP-dependent Cl− secretion by 

CFTR has been well examined, detailed analysis of epithelial Ca2+-dependent Cl− 

secretion has been hampered by a lack of a molecular counterpart, which has 

remained elusive. However, one candidate is TMEM16A, as it has been shown that 

TMEM16A knockout mice lack Ca2+-activated Cl- secretion in the colon  

(Ousingsawat, 2009). Molecular identification of TMEM16A has provided a 

fundamental step in understanding Ca2+-dependent Cl- secretion in epithelia, but its 

physiological role in native epithelial tissues remains largely obscure. Data from our 

group has implicated EGF in regulation of Ca2+-dependent Cl- conductances and 

TMEM16A expression in intestinal epithelia by a mechanism involving sequential 

activation of PI3K and PKCä (Mroz, 2012). 

 

1.2.5 Intracellular Regulation of Cl- secretion  

The activity of the proteins constituting the Cl- secretory pathway is regulated by an 

array of extracellular factors that typically act by binding to cell surface receptors, the 

most important of which with respect to regulation of Cl- secretion are the G protein-

coupled receptors (GPCRs). The GqPCRs and GsPCRs sub-types of GPCR are 

particularly relevant to regulation of Cl- secretion in the colon since they elevate 

levels of intracellular Ca2+ and cAMP, the more prominent of the pro-secretory 2nd 

messengers. Figure 1.5 and Figure 1.6 depict the intracellular mechanisms 

underlying Ca2+ and cAMP-dependent Cl- secretion in colonic epithelial cells. 

However, it is also clear that crosstalk exists between the 2 pathways. In fact 

synergism exists between cAMP- and Ca2+-dependent mechanisms of Cl- secretion. 

In Ca2+-activated Cl- secretion, stimulation of GqPCRs (with CCh or other Ca2+-
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dependent agonists) causes activation of phospholipase C (PLC) through coupling of 

GqPCRs with G protein (Gq/ 11) subunits (See Figure 1.5). PLC activation then 

leads to degradation of PIP2 into DAG and IP3. These events lead to the activation of 

PKC and increased levels of Ca2+ by release from intracellular stores. This release of 

Ca2+ then may stimulate both apical Ca2+-dependent Cl- channels and basolateral 

Ca2+-activated K+ channels (KCNN4). IP3 production also causes generation of IP4 

which downregulates Cl- secretion possibly through inhibiting CaCCs, thereby 

providing an intrinsic shut off mechanism for the process (Dutta, 2008). Activation of 

PKC, downstream of DAG production and elevations in intracellular Ca2+, can have 

both positive and negative actions on Cl- secretion (Hirota, 2006). 

Activation of GsPCRs, with associated increases in intracellular cAMP levels, 

increase Cl- secretion through activation of CFTR, KCNQ1 and NKCC1 (Hirota, 

2006). Activation of adenylate cyclase (AC) increases intracellular cAMP levels 

leading to parallel activation of PKA and EPac1 (See Figure 1.6). EPac is an 

acronym for the exchange proteins activated directly by cyclic AMP, a family of 

cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs) that mediate 

PKA-independent signal transduction properties of cAMP (Holz, 2006). PKA 

increases Cl- secretion through activation of CFTR. EPac 1 however, activates Rap2, 

and subsequently PLC, to cause release of DAG and IP3 through degradation of 

PIP2. In turn, this causes release of Ca2+ from intracellular stores and PKC-

dependent activation of Cl- channels. The overall result is Cl- secretory responses 

that are enhanced over those mediated by CFTR alone (Hoque, 2010). 
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Figure 1.5: Signalling pathways involved in Ca2+-dependent colonic epithelial 
Cl- secretion. Stimulation of GqPCRs (e.g. with the muscarinic agonist, CCh) causes activation of 

phospholipase C (PLC) through coupling of GqPCRs with G protein (Gq/11) subunits. PLC activation 
leads to degradation of PIP2 into DAG and IP3. These events lead to the activation of PKC and 
increased levels of Ca

2+
 by release from intracellular stores. IP3 production also causes generation of 

IP4 which downregulates Cl
-
 secretion, possibly through inhibiting CaCCs, while PKC can have both 

positive and negative actions on Cl
-
 secretion (Hirota, 2006). 
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Figure 1.6: Signalling pathways involved in cAMP-dependent colonic epithelial 
Cl- secretion Increases in intracellular cAMP levels stimulate Cl

-
 secretion through activation of 

CFTR, KCNQ1 and NKCC1. Activation of adenylate cyclase, increases intracellular cAMP levels 
leading to parallel activation of PKA and EPac1 (Holz et al., 2006). PKA increases Cl

-
 secretion 

through activation of CFTR. EPac 1 activates Rap2, and PLC, to cause release of DAG and IP3 
through degradation of PIP2. In turn, this causes release of Ca

2+
 from intracellular stores and PKC-

dependent activation of Ca
2+

 dependent Cl
-
 channels. The overall result is Cl

- 
secretory responses 

that are enhanced over those mediated by CFTR alone (Hoque, 2010). 

 

1.2.6 Extracellular regulation of Cl- secretion 

Typically, Cl- secretion across intestinal epithelial cells is regulated by an array of 

endogenous factors that can act by paracrine, autocrine, and endocrine means 

(Figure 1.7). A partial list of such factors is shown in Table 1.1. It should also be kept 

in mind that exogenous factors found within the colonic lumen can also have 

important roles to play in regulating colonic transport function. 
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Table 1.1 Extracellular regulators of Cl- secretion 

Extracellular factor Second messenger Effect on secretion 

Eicosanoids  

(e.g.  prostaglandins) 

cAMP and Ca2+ + (Collins, 2009) 

Histamine Ca2+ +  (Schultheiss , 2006) 

Acetylcholine Ca2+ via muscarinic 

receptors 

+    (Yajima, 2011) 

Substance P Ca2+ + (Wapnir, 2002) 

Neuropeptide Y cAMP and Ca2+ - (Strabel, 1995, Cox, 

1988) 

Serotonin cAMP + (Stoner, 2001) 

Guanylin cGMP +(Morel, 2003) 

NO cGMP +(Hennig, 2008) 

VIP cAMP +(Barrett, 1990) 

STa cGMP +(Guarino, 1987) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 

 

 

 

 

 

Figure 1.7: Regulation of colonic epithelial Cl- secretion. Typically, Cl
- 

secretion is 

promoted across intestinal epithelial cells by hormones and neuro-immune mediators released from 
nerves and immune cells in the underlying lamina propria. This diverse group of agonists typically act 
by binding to and activating GPCRs on the surface of the cell. Activation of GqPCRs leads to elevation 
of intracellular Ca

2+
, while activation of GsPCRs results in accumulation of intracellular cAMP. In turn, 

the accumulation of intracellular second messengers activates the ion transport machinery of the 
epithelial cell to induce Cl

-
 secretion. 

 

i) Hormonal factors 

Hormones, in contrast to local paracrine factors, are released at some distance from 

their target cells. There are a number of gut hormones that can regulate fluid 

secretion, such as gastrin, cholecystokinin, and secretin, all of which are released in 

response to food ingestion (Farack, 1987, Gaginella, 1978). Aldosterone, a 

mineralocorticoid, also plays an important role in promoting colonic absorptive 

function through inducing ENaC expression (Eutamene, 2003, Moreto, 2005). 

Interestingly, in addition to their long-term genomically-mediated effects, hormones 

can also have rapid actions on epithelial secretory responses (McNamara, 2000). 

For example, aldosterone can acutely inhibit KCNN4, thus rapidly down regulating 

Ca2+- dependent secretory responses. Estradiol has also been shown to acutely 

inhibit colonic Cl- secretion through inhibition of KCNQ1 channels (O'Mahony, 2007). 
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ii)  Immune factors 

Cells of the innate immune system are located adjacent to the epithelium in the 

lamina propria, and many mediators, such as histamine and eicosanoids, released 

from these cells have important roles in regulation of Cl- secretion (Keely, 2009). 

This makes sense given that increased fluid secretion provides a medium by which 

to wash away noxious substances and pathogens before they can infect the 

epithelium. These responses mainly involve activated mast cells and neutrophils and 

the consequent release of histamine, prostaglandins, leukotrienes, reactive oxygen 

species, and adenosine (Barrett, 2000), all of which can promote secretory 

responses. However, it is important to note that activated immune cells, particularly 

lymphocytes, can also release cytokines that inhibit epithelial transport processes. 

For example, IFN inhibits epithelial secretion through down regulation of Na+/K+-

ATPase pumps and NKCC1 (Bertelsen, 2004b).  

 

iii) Neuronal factors 

The myenteric and intramural (sub-mucosal) plexuses which comprise the enteric 

nervous system (ENS) form a complex network innervating  the entire GI tract and 

connecting  to the central nervous system forming the Brain-Gut axis (Drossman, 

2005). Signals from the enteric nervous system control intestinal blood flow, motility 

and also transport processes (Hubel, 1985). Motor neurons in the ENS fall into 2 

broad categories: excitatory or inhibitory. They receive input from other ENS neurons 

(intrinsic nerves), as well as from sympathetic postganglionic nerves. Local paracrine 

messengers from non-neural cells such as enterochromaffin cells, mast cells, and 

other inflammatory cells can have a profound influence on the excitability of these 

secreto-motor neurons.  Excitatory motor neurons promote contraction of the 

gastrointestinal tract smooth muscle and secretion of mucus as well as promoting 

fluid secretion within the lumen.  The primary excitatory neurotransmitters involved in 

Cl- secretion include acetylcholine (ACh), substance P and serotonin. Inhibitory 

motor neurons release neurotransmitters that suppress contractile activity and 

secretion. These include vasoactive intestinal polypeptide, nitric oxide, and 

Adenosine-5’-triphosphate.  Acetylcholine (ACh) acts via increases in intracellular 

Ca2+, and  vasoactive intestinal polypeptide (VIP) increases intracellular cAMP 

(Kunzelmann, 2002). Clinical examples of elevated secreto-motor neuron activity 
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include inflammatory bowel disease, in which inflammatory mediators excite the 

secreto-motor neurons to release neurotransmitters and increase secretion, 

manifesting as diarrhea. Neuropathic conditions that diminish the functional or 

structural integrity of the ENS may be associated with diminished secreto-motor 

neuron activity and may manifest as constipation. Neurotensin is another 

neurotransmitter which is important in colonic secretion and it mediates its functions 

by binding to two G-protein-coupled receptors, neurotensin receptor-1 (NTR1) and 

neurotensin receptor-2 (NTR2); NTR1 facilitates most of the intestinal responses of 

neurotensin, Neurotensin has been shown to stimulate Cl- secretion in the colon 

previously. Peptide YY (PYY), somatostatin, vasoactive intestinal polypeptide (VIP), 

neuropeptide Y (NPY), and galanin have all been implicated in autonomic dysmotility 

in the gut and neuropeptide Y in particular has been shown to inhibit Cl- secretion  

(Hubel, 1985, Riegler, 1999, Hyland, 2005, Cox, 1988). 

 

iv) Luminal Factors  

There is an array of luminal factors that can influence epithelial fluid and electrolyte 

transport in the intestine. For example, food boluses themselves are responsible for 

initiating neuronal reflexes which promote fluid secretion. This is necessary in order 

to lubricate the passage of the bolus so that it does not cause damage to the 

epithelium (Hansson, 2012). Other important luminal factors include BAs, which 

when present at high concentrations can acutely promote secretion, and SCFAs, 

which are produced by bacteria from dietary fibre and some of which (phorbol esters) 

have been shown to be anti-secretory through an inhibition of NKCC and basolateral 

K+ conductance, resulting in a down regulation of cAMP induced Cl- secretion  

(Matthews, 1998). On the other hand, bacterial enterotoxins, such as E.coli heat 

stable enterotoxin (STa) and cholera toxin, can induce Cl- secretion through elevation 

of intracellular cyclic nucleotides, while helminths have been shown to limit Ca2+-

induced secretory responses (Hirota, 2006). 
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1.3 Epithelial cells and their role in barrier function and 

innate immunity 

In addition to their role in regulating fluid and electrolyte transport, epithelial cells 

also contribute to intestinal barrier function and play important roles in regulating 

innate immune responses. Disruptions in epithelial barrier function are well-known to 

be involved in the pathogenesis of intestinal inflammation, and it is therefore 

important to develop our understanding of the mechanisms involved, so that new 

targets for therapeutic intervention can be identified. There are many factors that 

contribute to epithelial barrier function and innate immunity, as outlined in the 

following sections.  

 

1.3.1 Epithelial Barrier Function   

Epithelial barrier function is a key component in the arsenal of defense mechanisms 

required to prevent infection and inflammation. The intestinal barrier consists of the 

mucous layer, antimicrobial peptides, secretory IgA, and the epithelial junctional 

adhesion complex (McGuckin, 2009). Consumption of non-pathogenic bacterial 

species can contribute to barrier function by decreasing paracellular permeability, 

providing innate defense against pathogens and enhancing the physical impediment 

of the mucous layer. In turn, this can help to protect against infections, prevent 

chronic inflammation, and maintain mucosal integrity. 

 

Colonic epithelial cells themselves constitute a resistant barrier with their plasma 

membranes being anchored to their neighbouring cells through structures known as 

tight junctions. Tight junctions also act as a fence to prevent mixing of membrane 

domain-specific proteins and lipids (Yeaman, 1999) Tight junctions display ionic 

selectivity and vary in tightness depending on intestinal region. The permeability of 

tight junctions is determined by factors such as the number of tight junction strands 

or changes in the relative expression of different claudins (Furuse, 2001). Many 

extracellular factors can alter the permeability of tight junctions, such as bacterial 

toxins, bile acids, and cytokines (Kreisberg , 2011).   

 

The mucous layer provides one of the first lines of defence for the epithelium, 

providing protection by shielding the epithelium from potentially harmful pathogens 
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and molecules, while acting as a lubricant for intestinal motility (Ohland, 2010). 

Goblet cells express rod-shaped mucins, which are abundantly glycosylated and 

either localized to the cell membrane or secreted into the lumen to form the mucous 

layer (McCool, 1994). MUC-2, as previously mentioned, is the predominant 

glycoprotein found in small and large bowel mucus. Mucus thickness can vary from 

50 to 800 μM, but the 30 μM -thick area closest to the epithelium is essentially sterile 

in healthy individuals (Swidsinski , 2007). Mucus is the first barrier that intestinal 

bacteria encounter and pathogens must penetrate it to reach the epithelium during 

infection. Microorganisms have developed diverse methods to degrade mucus, such 

as reduction of mucin disulfide bonds (Helicobacter pylori), protease activity 

(Pseudomonas aeruginosa, Candida albicans, and Entamoeba histolytica), and 

glycosidase activity (mixed oral and intestinal microbial communities), in order to 

promote invasion and/or uptake of mucus-derived nutrients (Windle, 2000). 

Interestingly, the colonic mucous layer has been shown to be thinner in areas of 

inflammation, allowing increased bacterial adherence and infiltration (Swidsinski, 

2007). UC patients also exhibit reduced mucus thickness, particularly in areas of 

active inflammation, which is likely a consequence of the disease (Swidsinski, 2007). 

 

Another important component of innate intestinal barrier function is the antimicrobial 

peptides, of which there are 2 main families; defensins and cathelicidins. The latter 

family consists of cationic, α-helical antimicrobial peptides constitutively expressed 

by gastrointestinal epithelial cells, which are involved in host defense against 

pathogens (Kelsall, 2008). The only microbial or inflammatory stimulus that appears 

to induce cathelicidin expression is butyrate, which is produced by the enteric micro-

flora (Schauber , 2003). Defensins are classified into α-defensins, expressed 

primarily by small bowel Paneth cells (HD-5 and -6), and β-defensins expressed by 

epithelial cells throughout the intestine (Wehkamp, 2004). These small (3–5 kDa), 

cationic peptides display antimicrobial activity against a wide variety of bacteria, 

fungi, and some viruses, and are constitutively expressed to prevent pathogens from 

reaching the epithelium. Lowered defensin production has been associated with the 

development of IBD and with increased susceptibility to bacterial infections 

(Wehkamp, 2004). 
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Another type of secreted protein that makes an important contribution to intestinal 

barrier function is secretory IgA. Approximately 80 % of all plasma cells in the body 

are found in the intestinal mucosa, and more IgA is produced here than any other 

immunoglobulin isotype (40–60 mg/ kg/ day in humans). Peyer's patches are the 

main site for generation of IgA+ B cells. IgM+ B cells are recruited into Peyer's 

patches, where they are activated and proliferate through interactions with local T 

cells and/or dendritic cells. Although both IgG and IgA are found in intestinal mucosal 

secretions, IgA is the more abundant isotype in healthy individuals and is historically 

considered to be the primary element of the mucosal immune response to microbial 

antigens (Holmgren, 2005).  

 

In the luminal mucous layer, secretory IgA protects the intestinal epithelium against 

colonization and/or invasion by binding to antigens on pathogens or commensals. 

This surrounds the microorganism with a hydrophilic shell that is repelled by the 

epithelial glycocalyx, thus providing immune exclusion of bacteria (Macpherson, 

2008). The antigen-complexed IgA can also bind the receptor FcαRI (CD89) 

constitutively expressed on immune cells, such as neutrophils, interstitial dendritic 

cells, monocytes, and some macrophages (Zhu, 2001). Immune exclusion not only 

protects the epithelium from invading pathogens, it is also important in maintaining 

gut homeostasis by preventing overgrowth of the enteric micro-flora (Suzuki, 2007). 

Furthermore, IgA can protect against intracellular pathogens by binding and 

neutralizing viral or bacterial components during transcytosis across the epithelium. 

The immune complexes are then secreted apically and invasion is inhibited 

(Fernandez, 2003).  

 

1.3.2. Innate Immunity 

The innate immune system provides immediate, but non-specific, protection against 

pathogens. It has no immunological memory. Phagocytosis is an important feature of 

cellular innate immunity, which is performed by macrophages, neutrophils, and 

dendritic cells that engulf pathogens or particles. The innate immune system 

responds to common structures shared by a vast majority of pathogens. These 

highly conserved soluble and membrane bound proteins are collectively called 

Pattern-Recognition Receptors (PRRs), and it is the PAMP/PRR interaction that 

triggers the innate immune system and are recognized by the toll-like receptors, or 
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TLRs (Marshak-Rothstein, 2006). In addition to the cellular TLRs, an important part 

of the innate immune system is the humoral complement system that opsonizes and 

kills pathogens through the PAMP recognition mechanism.  

 

1.3.3 Epithelial Toll-like receptors and intestinal innate immunity  

When it is under threat and barrier function is compromised, the intestinal epithelium 

secretes cytokines to activate innate immune responses, mainly to attract 

neutrophils. Regulation of cytokine secretion is largely under the control of Toll-like 

receptors (TLRs). TLRs, as previously mentioned, are a type of pattern recognition 

receptor (PRRs) and recognize motifs that are shared by pathogens, but which are 

distinguishable from host molecules. Altogether, 13 TLRs (TLR-1 to TLR-13) have 

been identified in humans and mice (Beutler, 2004). In humans, TLR-1, -2, -4, -5, 

and -6 are cell membrane associated and respond primarily to bacterial surface-

associated PAMPs. The second group, TLR-3, -7, -8, and -9 are expressed on the 

surface of endosomes, where they respond primarily to nucleic acid based PAMPs 

from viruses and bacteria. Upon ligand binding, TLRs activate 2 major signalling 

pathways: the NFB and the MAPK (p38 and JNK) pathways (Marshak-Rothstein, 

2006) as demonstrated in Figure 1.8. Primary human intestinal epithelial cells 

express constitutive TLR-3 and -5 and low levels of TLR-2 and -4. TLR expression 

on intestinal epithelial cells is generally low with many of the receptors expressed 

basolaterally preventing interaction with PAMPs in the lumen. Nevertheless, 

epithelial cells are responsive to certain TLR ligands and low level recognition of 

commensal bacteria by TLRs enhances protection from intestinal epithelial injury 

through induction of tissue protective factors. Expression of TLR-4 is increased in 

UC while NOD-2 mutations are common in CD (Lavelle, 2010).   
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Figure 1.8: Major pathways activated by Toll-like receptors. There are  a number of 

major signalling pathways involved in mediating responses to TLR activation; these include the NFB 
and the MAP-3 kinase/JNK pathway (Alvarez, 2005).  

 

Stimulation of TLRs by their pathogen-derived activators (Table 1.2) initiates 

signalling cascades that involve a number of proteins, such as MyD88, TRIF, and 

IRAK (Kanzler, 2007). These signalling cascades lead to the activation of 

transcription factors, such as AP-1, NF-κB, and IRFs, thereby inducing the secretion 

of pro-inflammatory and effector cytokines that direct the adaptive immune response. 

TLRs also have an important role in adaptive immunity by activating antigen 

presenting cells (APCs). The cytokine signalling cascade stimulated by TLR 

activation begins a complex series of interactions. Among the more important of 

these is T-cell differentiation and regulation. TLRs on dendritic cells in particular, are 

essential in the T-helper-1 (Th1) versus Th2 pathways. An important early 

component of the Th1 response is activation of cytotoxic T cells. Dysregulation of 

these signalling pathways has severe consequences, and can underlie many 

autoimmune diseases and conditions of chronic pathological inflammation, such as 

IBD (Cario, 2010). 
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Table 1.2 TLRs and their Pathogen-Derived Activators 

 (Adapted from (Lee et al., 1993)) 

PAMP PRR Pathogen 

Pam3CSK4, Zymosan TLR-1, -2, -6 Gram Positive Bacteria 

LPS  TLR-4 Gram negative Bacteria 

Flagellin TLR-5 Bacteria 

dsDNA TLR-3 Virus 

ssRNA TLR-7, -8 Virus 

CpG DNA TLR-9 Bacteria 

 

1.3.4 LPS stimulation of TLR-4 

The signal transduction pathway for TLR-4 activation by LPS (lipopolysaccharide) 

serves as a representative example of the surface bound TLRs. LPS binds to the 

CD-14 (Cluster of Differentiation-14) receptor, which then transfers it to TLR-4. TLR-

4 homodimerizes and forms a complex with the protein, MD-2. Cells require both 

MD-2 and TLR-4 in order to recognize LPS. TLR4 activation engages a set of 

MyD88 (Myeloid Differentiation Primary-Response Protein-88) adaptor family 

members, including TIRAP, TRIF, TRAM (TIR domains containing adapter proteins). 

This pattern of activation is general for cell surface TLRs, but the subsequent 

intracellular signal cascades are unique for each TLR, resulting in responses that are 

appropriate to each threat (Sakaguchi, 2008).  

 

1.3.5 Peptidoglycan stimulation of TLR-2 

TLR-2 is activated by bacterial LAM (lipoarabinomannan), BLP (bacterial lipoprotein), 

and PGN (peptidoglycans). LAM and PGN activate TLR-2 through the CD-14 

receptor, similar to the process followed by TLR-4 and with similar downstream 

effects. BLP can induce both apoptosis and NF-B activation through activation of 

TLR-2. TLR-2 is also responsible for recognition of the yeast cell-wall particle, 

zymosan, which also acts through the CD-14 receptor to influence TLR-2. 

Phagocytosed TLR-2 vesicles can induce production of the pro-inflammatory 

cytokine, tumour necrosis factor- (TNF-, through stimulation of the NF-B 

pathway (Dziarski, 2005).  
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1.3.6 Endosomal TLRs 

Viral nucleic acids contain PAMPs that are recognized by intracellular TLRs, which 

are located on endosomal membranes. The TLRs found on endosomes are TLR-3, 

TLR-7, TLR-8, and TLR-9. TLR-3 activates immune cells in response to double-

stranded viral RNA. Stimulation of TLR-3 triggers TRIF activation which, in turn, 

activates the IRF3 transcription factor through TBK1, ultimately leading to production 

of IFN-. TRIF also activates RIP-1 (Receptor-Interacting Protein-1) and TRAF6, 

which may activate the NF-B pathway. Small anti-viral compounds activate immune 

cells via the TLR-7/MyD88-dependent signalling pathway. TLR-7 binds MyD88 and 

activates IRAF and TRAF6. TRAF6 then activates TANK (also known as I-TRAF). 

TANK interacts with TBK1 and IKK- to activate IRF3. TLR-7 or TLR-8 may also 

activate IRF7 through interaction of MyD88, BTK and TRAF6, thus inducing anti-viral 

responses by producing interferon-IFN-) (Horton , 2010).  

 

1.3.7 NOD-like receptors 

NOD-like receptors (NLRs, also known as CATERPILLERs) constitute a recently 

identified family of intracellular pattern recognition receptors (PRRs)(Robertson and 

Girardin, 2012). NLRs are characterized by a tripartite-domain organization with a 

conserved nucleotide binding oligomerization domain (NOD) and leucine-rich 

repeats (LRRs). The general domain structure consists of C-terminal LRRs involved 

in microbial sensing, a centrally located NOD domain, and an N-terminal effector 

region, comprised of protein-protein interaction domains, such as the CARD, pyrin, 

or BIR domains. NLRs have been grouped into several subfamilies on the basis of 

their effector domains: NODs, NALPs, CIITA, IPAF, and NAIPs. NODs and IPAF 

contain CARD effector domains, whereas NALPs and NAIPs contain pyrin (PYD) 

effector domains and 3 BIR domains, respectively. NOD-like receptor mutations, and 

in particular NOD-2 mutations, have been associated with the pathogenesis of 

Crohn’s disease (Cario, 2010). 

 

Regardless of the initiating stimulus and mechanisms involved, one of the primary 

outcomes of epithelial TLR activation is cytokine release. Cytokine release in the 

colon plays a key role in the induction and maintenance of gut inflammation (Fantini, 

2008) and has also been shown to be involved in the development and growth of 
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colitis-associated colorectal cancers. Thus, given their central roles in the 

pathogenesis of inflammatory responses, down-regulation of TLR-induced signalling 

mechanisms in the colon represents a logical approach for the development of new 

treatments for IBD (Cario, 2010). However, before this goal can be achieved, a 

greater understanding of how endogenous and exogenous factors regulate epithelial 

TLR signalling and cytokine release is required. 

 

1.4 Bile Acids 

As outlined in previous sections of this Introduction, there are many endogenous and 

exogenous factors that interact with epithelial cells to regulate their transport and 

barrier function. However, one family of molecules that plays a central role in these 

processes are bile acids. Bile acids (BAs) are a family of steroidal molecules derived 

from cholesterol and which are biosynthesised in the pericentral hepatocytes of the 

liver. In recent years, there has been a renaissance in BA research with emergence 

of data describing their wide ranging biological effects, extending well beyond their 

traditional roles in facilitating fat digestion and absorption.  

 

1.4.1 The Enterohepatic Circulation of Bile Acids  

The primary BAs chenodeoxycholic acid (CDCA) and cholic acid (CA) are 

synthesised in the liver from cholesterol in a complex series of enzyme-catalysed 

reactions (Hylemon, 2009). In short, these include (i) 7-hydroxylation (via CYP7A1), 

(ii) oxidation/isomerisation to 3-oxo forms, (iii) 12-hydroxylation (via CYP8B1), (iv) 

side chain oxidation to C27 acid, (v) saturation to form A/B cis-fused rings, (vi) 

reduction of 3-oxo to 7 OH, and (vii) oxidative cleavage of the side chain to the C24 

acid. After conjugation to glycine or taurine, Bas are actively transported across the 

canalicular membrane from the hepatocyte by the bile salt export pump (BSEP, 

ABCB11), along with phospholipids and cholesterol. The ratio of conjugated BAs, 

cholesterol and phospholipids in bile is tightly regulated to ensure that cholesterol is 

solubilised into mixed micelles of conjugated BAs, cholesterol and phospholipids 

(Vlahcevic, 2003). Excess biliary cholesterol secretion relative to conjugated BAs 

can result in cholesterol saturated bile and an increased propensity to cholesterol 

gallstone formation. BAs are stored in the gallbladder and are released into the 

duodenum in response to alimentary hormones.  
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In the small bowel, conjugated BAs activate specific pancreatic lipases aiding 

solubilisation of dietary lipids, sterols and fat-soluble vitamins and form mixed 

micelles that enable nutrient uptake into enterocytes. In the terminal ileum, 

conjugated BAs are actively transported into ileocytes by the apical bile salt 

transporter (ASBT), also known as the ileal bile acid transporter (IBAT). Inside the 

ileocyte, BAs are bound by the intestinal bile acid-binding protein (I-BABP) and can 

activate the nuclear bile acid receptor, farnesoid X receptor (FXR), to induce the 

synthesis of fibroblast growth factor 19 (FGF19, also known as FGF15 in mice). BAs 

exit the basolateral side of ileal enterocytes via the heterodimeric organic solute 

transporter (OST /) (Hofmann, 2008, Dawson, 2010), and are transported back to 

the liver, along with FGF19, via the portal circulation. At the liver, conjugated BAs are 

actively taken into hepatocytes, primarily by the Na+/taurocholate co-transporting 

polypeptide (NTCP). FGF19 binds to FGF receptor 4, which in turn down-regulates 

the gene encoding cholesterol 7 hydroxylase (CYPA71), thereby negatively 

regulating BA synthesis. 

 

Although the enterohepatic circulation is extremely efficient (See Figure 1.9), with 

each cycle a small proportion (approximately 5 %) of circulating BAs enter into the 

colon. Once here, they are metabolized by resident bacteria, which are capable of 

enzymatically deconjugating glycine and taurine, C7-dehydroxylation, and 

epimerization or oxidation of key hydroxyl groups on the BA molecule, to produce 

secondary BAs. Deoxycholic acid (DCA) is the primary metabolite of CA and is 

normally the predominant colonic BA, while ursodeoxycholic acid (UDCA) and 

lithocholic acid (LCA) are produced by metabolism of CDCA. The concentrations of 

each of these BAs within the colon have been previously measured, as outlined 

below in Table 1.3 (de Kok, 1999). 
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Figure 1.9: The enterohepatic circulation. BAs undergo a process of enterohepatic 

circulation in which they are released into the small intestine from the gallbladder and are then 
reabsorbed from the distal intestine and returned to the liver. They can then be recycled and secreted 
again into the bile. For a description of the molecular mechanisms involved, please see the text. 
(Source of figure: Hylemon, 2009).  
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Table 1.3 Bile Acid Concentrations in Faecal Water from Healthy Human 
Controls (de Kok, 1999) 

 

Colonic Bile Acid Median Concentration (M)1 

Lithocholic Acid (LCA) 13 (4 - 43) 

Deoxycholic Acid (DCA) 104 (46 - 210) 

Cholic Acid (CA) 11 (0 - 58) 

Chenodeoxycholic Acid (CDCA) 4 (0 -17) 

Ursodeoxycholic Acid (UDCA) 13 (0 - 39) 

Total Bile Acids 184 (88 - 393) 

Primary Bile Acids2 149 (69  - 384) 

Secondary Bile Acids3 17 (0 - 82) 

1 Median values with 10th and 90th percentiles in parentheses. 

² Secondary bile acids = LCA + DCA + UDCA. 

 ³ Primary bile acids = CA + CDCA 

 

1.4.2 Bile acids as signalling molecules  

In the past, BAs were considered solely as detergent molecules, important in 

solubilisation of cholesterol in the gall bladder and for facilitating absorption of 

cholesterol, fat-soluble vitamins, and lipids from the intestine. However, during the 

past 2 decades, it has become increasingly apparent that BAs are also important 

regulatory molecules. BAs have been discovered to activate specific nuclear 

receptors, including the farnesoid X, pregnane X, and vitamin D receptors (Cui, 

2012, Fujino, 2004, He, 2011, Han, 2010, Wang, 1999). A dedicated GPCR for BAs, 

known as TGR-5, has also been identified in the liver and intestine (Hofmann, 2008, 

Poole, 2010, Cipriani, 2011). BAs can also promiscuously interact with other GPCRs, 

with some of their actions involving activation of the muscarinic M3 receptor 

(Raufman, 2003). Interestingly, BAs have also been shown to transactivate receptor 

tyrosine kinases, such as the epidermal growth factor receptor (EGFr) (Feldman, 

2009). Furthermore, due to their detergent properties, BAs can also induce 

membrane perturbations which, in turn, initiate intracellular signalling cascades 

(Freel, 1983). The signalling pathways activated by BAs are varied, including Ca2+, 

cAMP, PKCs, and MAPKs. BAs activate these signalling pathways within seconds to 

minutes and this action provides mechanisms by which BAs may rapidly alter cellular 
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function. However, each of these pathways can also activate transcription factors 

and thereby regulate nuclear gene transcription to alter cell function on a more long-

term basis. Indeed, activation of cell signalling pathways by BAs can alter the 

expression of numerous genes that encode proteins involved in the regulation of bile 

acid, glucose, fatty acid, and lipoprotein synthesis, metabolism, and transport. BAs 

also appear to function as nutrient signalling molecules, primarily during the feed/fast 

cycle. Indeed, BAs have been shown to be involved in regulating multiple 

physiological processes, a number of which are outlined in Table 1.4. 

Table 1.4: Physiological Effects of Bile Acids 

Process Site Mechanism 

Cholesterol elimination 
Liver, biliary tree, 

intestine 

Conversion to BAs. 

Increased biliary cholesterol 

secretion. 

Solubilisation in mixed micelles. 

Faecal excretion. 

Stimulation of bile flow Liver , biliary tree 

Secretion of osmotically active 

substances. 

Potentiation of HCO3 secretion. 

Detachment of phosphatidyl 

choline from canaliculi. 

Stimulation/inhibition of 

fluid and electrolyte 

secretion 

Intestine 

 

Effects on both cAMP and Ca2+ 

activated secretion. 

Stimulation of intestinal 

motility 
Large Intestine Activation of neural reflexes. 

Enhanced lipid 

absorption 
Small Intestine Mixed micelle formation. 

Cleaning absorptive 

surfaces 
Small intestine Surface activity of BA anions. 

 
 
Bile Acid Transport:  

For enterohepatic circulation of BAs, both the ileal cells and hepatocytes are 

involved and four transporters are required –two apical and two basolateral. The ileal 
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bile acid transporter, also known as the apical bile salt transporter (ASBT) mediates 

sodium dependent co-transport of conjugated BAs. Basolateral transport out of the 

ileal cell into the portal circulation is mediated by OST/. Passive uptake of 

conjugated BAs may also occur in the small intestine (Amelsberg, 1993). BAs are 

then transported to the liver. Hepatocyte uptake is mediated by Na+-taurocholate co-

transporting polypeptide (NTCP), a basolateral sodium-dependent co-transporter. 

Uptake may also be mediated by one or more of the multiple sodium-independent 

anion transporters belonging to the organic anion transporter (OATP) family. 

Conjugated BAs are transported from the hepatocyte back into blood by MRP4, a co-

transporter of BAs and glutathione. Extrusion of BAs into the canaliculus is mediated 

by the ATP-energized pump, BSEP (Amelsberg, 1993). 

 

Bile Acid Receptors: 

FXR: A growing body of evidence suggests that the nuclear receptor for BAs, the 

farnesoid X receptor (FXR), is a critical mediator of epithelial responses to BAs. This 

has led to a great deal of interest in therapeutically targeting the FXR, and indeed, 

synthetic agonists of the receptor have been shown to exert protective effects in an 

animal model of colitis (Gadaleta, 2011). Mroz et al has recently published work 

noting that FXR agonists are anti-secretory. These effects appear to be due to 

inhibition of multiple components of the epithelial Cl- secretory pathway, with both 

basolateral Na+/K+ ATPase activity, and apical CFTR Cl- channel currents being 

attenuated upon treatment (Mroz, 2014).  

 

TGR5: TGR5 is a membrane associated BA receptor. TGR5 is expressed on enteric 

nerves and enterochromaffin cells (ECs), where its activation regulates small 

intestinal and colonic motility. TGR5 is also expressed on colonic epithelial cells and 

its activation decreases basal secretory tone and inhibits cholinergic-induced 

secretory responses (Ward, 2013). FXR and TGR5 have distinct ligand binding 

characteristics (Pellicciarri, 2007) with FXR agonists, such as OCA, being poor 

agonists of TGR5. Again in recently published data  the Keely group has also shown 

that TGR5 activation with INT-777, a poor agonist of FXR, exerts actions on colonic 

Cl− secretion that are distinct to those described for FXR agonists (Ward, 2013). 
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1.4.3 Bile Acids and Colonic Epithelial Physiology 

i)  Bile Acid Effects on Epithelial Transport: 

 BAs have long been recognised as important regulators of epithelial fluid and 

electrolyte transport in the colon. In conditions of bile acid malabsorption, increased 

levels of BAs, in particular DCA and CDCA, are present in the colon, where they are 

well-known to promote fluid and electrolyte secretion, thereby causing diarrhoea 

associated with such conditions (Mekjian, 1971). These pro-secretory effects of BAs 

have been extensively investigated in a variety of species and cell culture models 

and it is clear that strict structure-activity relationships exist for their actions, with only 

dihydroxy BAs being effective (Keely, 2007, Chadwick, 1979, Dharmsathaphorn, 

1989b, Devor, 1993). Furthermore, in addition to their well-established roles in 

promoting colonic epithelial secretory function, dihydroxy BAs have also been shown 

to inhibit absorption, an effect that also contributes to the onset of diarrhoea (Black, 

1988). It is thought that these pro-secretory and anti-absorptive actions of high 

concentrations of colonic BAs serve to dilute the luminal contents and therefore 

prevent BAs from achieving levels that can cause damage to the epithelium, thereby 

compromising barrier function. 

 

ii) Bile Acid Effects on Intestinal Barrier Function: 

 In addition to regulating epithelial fluid and electrolyte transport, there is significant 

evidence that BAs also have important roles to play in regulating epithelial barrier 

function and in regulation of innate immune responses. BAs regulate epithelial 

barrier function through multiple actions, including their complex roles in regulating 

the balance between cell growth and death (Amaral, 2009, Yamaguchi, 2004), 

regulation of TJ permeability (Chen , 2012), cell migration and restitution (Milovic, 

2001, Henrikson, 1989), and mucus secretion (Barcelo, 2001) . Furthermore, it 

appears that colonic BAs can regulate the synthesis and secretion of pro-

inflammatory cytokines from epithelial cells and therefore have roles to play in the 

initiation of innate immune responses (Hofmann, 2008, Muhlbauer, 2004). The roles 

of BAs in regulating epithelial transport and barrier function and cytokine secretion 

are considered in more detail in subsequent chapters of this thesis. 
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1.4.4 UDCA: The Therapeutic Bile Acid 

UDCA has properties distinct from those of other BAs. While the majority of 

secondary BAs are recognised as being toxic and carcinogenic, UDCA has been 

shown to have numerous beneficial effects, in particular in treatment of liver disease. 

UDCA has in fact been used since ancient times in Chinese medicine for treatment 

of liver maladies. Following oral administration, UDCA absorption in the gut varies 

from 30–60% (Lazaridis, 2001). UDCA at 8–10 mg/ kg per day causes an 

enrichment of approximately 40% in biliary BAs (Hofmann, 1994), and in humans, its 

plasma half-life is 3.5–5.8 days (Ward, 1984). UDCA is currently licensed for use in 

cholestatic liver disease and gallstone dissolution, and it has undergone clinical trials 

for many other forms of cholestasis (e.g. (total parenteral nutrition (TPN)-induced 

and pregnancy-induced cholestasis (Lazaridis, 2001)). 

 

UDCA has also been widely investigated as a potential chemo-preventive agent in 

colorectal cancer. It has been noted to reduce colon carcinogenesis in mouse 

models, reducing tumour incidence by up to 50% (Earnest, 1994). UDCA has also 

been shown to decrease the incidence of colorectal cancer in patients with UC and 

PSC (Pardi, 2003, Tung, 2001). Despite its extensive clinical usage, the exact 

mechanisms by which UDCA, or its metabolites, act on the colonic epithelium are not 

well known. There are, however, many proposed mechanisms of action through 

which UDCA is thought to elicit its pharmacological actions in other systems. These 

include expansion of the hydrophilic BA pool leading to displacement of the more 

cytotoxic hydrophobic BAs, with this displacement being thought to occur at the level 

of the ileum or at the hepatocyte membrane (Stiehl, 1999). It is unlikely that this is 

the only mechanism by which UDCA is protective, since it is also known to increase 

secretion of BAs, promote canalicular transport in the liver, thereby improving bile 

flow in cholestatic conditions. UDCA has also been shown to have immunomodulator 

properties and effects on apoptosis, which are also likely to explain some of its 

therapeutic benefits. Such actions of UDCA are discussed in more detail in Chapter 

6. 
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1.5 Relevance to Disease  

It is clear from the discussion above that regulation of epithelial transport and barrier 

function is highly complex, involving many diverse factors that act through a myriad 

of extracellular and intracellular mechanisms. It is also clear that disruptions to the 

ability of epithelial cells to appropriately transport fluid and electrolytes or to prevent 

entry of pathogens can have serious consequences for health. 

 

1.5.1 Global Impact of Diarrhoeal Disease  

It has been well-documented that intestinal disorders associated with diarrhoea are 

responsible for approximately 1 million child deaths in the under-5 age group globally 

on an annual basis (See Figure 1.10). Only 44% of children in low income countries 

receive recommended treatments, with there being little change in these trends since 

2000 (UNICEF/WHO, 2009, Wardlaw, 2010, Rudan, 2010). Diarrhoeal diseases are 

also manifest in the developed world and are a principal feature of many intestinal 

disorders, including inflammatory bowel disease, infectious diseases, malabsorptive 

conditions, metabolic disorders, and irritable bowel syndrome. In the elderly, 7–14% 

of the population complains of “chronic diarrhoea” (Talley, 1992).  Using a definition 

based on excessive stool frequency without abdominal pain, estimates in the 

Western population are in the order of 4–5% of the general population (Chang, 

2009). The American Gastroenterology Association (AGA) estimated in 2002 that the 

direct cost of chronic diarrhoeal diseases was in the region of $16 billion, annually 

(Sandler, 2002).  

 

Despite this tremendous burden of disease on both a national and international level, 

there still remains an incomplete understanding of the molecular mechanisms that 

are involved in the pathogenesis of diarrhoeal diseases, with a resulting lack of 

molecular-targeted therapies. For example, in the U.S. market at present, there are 

no drugs or therapeutics available for diarrhoea which specifically target epithelial 

fluid and electrolyte transport processes. Thus, there exists substantial gaps in our 

understanding and therapeutic capability for many diarrhoeal disorders. 

 

 



58 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 1.10: Diarrhoea is a significant cause of child mortality. Diarrhoea remains 

one of the leading causes of child death in the developing world accounting for 14% of deaths in 
children under the age of 5 globally (Rudan, 2010). 

 

1.5.2 Definition of Diarrhoea 

Diarrhoea may be defined in terms of stool frequency, consistency, volume or 

weight, with patient conceptions of diarrhoea being often focussed on consistency 

(Wenzl, 1995). Faecal consistency is determined by the water-holding capacity of 

stool and perhaps best defines the concept of diarrhoea. However, quantification of 

consistency in clinical practice is difficult, so other criteria, e.g. frequency of 

defecation or stool weight, may be used. Stool weight of > 200 g/ day is often 

considered to be the upper limit of normal (Fine, 1999). However, this can be 

misleading, since stool weights vary greatly, and in non-Western diets “normal” often 

exceed this volume. Conversely, distal colonic pathology may not increase stool 

weight beyond 200 g/ day. When defining duration of diarrhoea, there is no firm 

consensus in the literature. An arbitrary time point of 4 weeks is often referred to 

when defining chronicity (Fine, 1999). Thus, to be pragmatic, chronic diarrhoea may 

be defined as abnormal passage of loose/liquid stools, > 3 times/ day, for a period of 

> 4 weeks, ± daily stool weight of > 200 g/ day. However, there is a potential for 

confusion since there may be a discrepancy between medical and “lay” concepts of 

diarrhoea, and this should be clarified at initial appraisal (Madoff, 1992). Faecal 

incontinence may be misinterpreted as diarrhoea and functional symptoms can 

sometimes be difficult to distinguish from organic pathology by history alone, 
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although features such as nocturnal motions and the presence of incontinence can 

be helpful in differentiating pathologies (Fine, 1999). 

 

Many gastrointestinal diseases can result in disruption to the regulation of intestinal 

fluid and electrolyte transport, leading to diarrhoea. These include inflammatory, 

infectious, neoplastic, vascular, and endocrine disruptions. Despite the wide base of 

evidence for a final common pathway of altered epithelial secretion in many 

diarrhoeal diseases (Surawicz, 2010), there are few, if any, therapies which target 

the molecular machinery involved in epithelial secretion. This therapeutic gap is the 

focus of research in our laboratory, and in order to set the clinical relevance of our 

research, a number of the most common and relevant diarrhoeal disease states are 

outlined below. 

 

1.5.3 Irritable Bowel Syndrome (IBS)  

IBS is a common functional gastrointestinal disorder that may be triggered by enteric 

pathogens and has also been linked to alterations in the microbiota and the host 

immune response. It is commonly divided into diarrhoea-predominant, constipation-

predominant, and mixed subtypes. It remains largely a clinical diagnosis based on a 

number of outlined criteria (Manning and ROME I, II and III criteria) (Drossman, 

2010), and the exclusion of other pathologies. The prevalence of IBS worldwide has 

been estimated to be in the region of 11% (Lovell, 2012). There is an integrated 

conceptual framework involved in understanding the pathophysiology of IBS which 

involves a combination of visceral hypersensitivity, abnormal motility and secretion, 

and dysfunctional communication within the brain-gut axis (Jeffery, 2012). 

Satisfactory treatments for refractory diarrhoea-predominant IBS are in short supply 

and its treatment remains problematic. 

 

The gut microbiome is thought by many investigators to play a significant role in the 

pathogenesis of IBS (Salonen, 2010). A complex ecosystem exists within the gut 

lumen which is vital in the maintenance of the dynamic nature of intestinal barrier 

function and antigen recognition. These organisms are capable of influencing gut 

signalling, affecting gas production, fluid secretion, and enteric nerve and immune 

cell function. Thus, alterations in the microbiome may influence gut homeostasis to 

produce intestinal symptoms (Talley, 2011). The well-described entity of post-
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infectious IBS supports this hypothesis. Approximately 25% of patients with IBS have 

an onset of symptoms post enteric infection. It has been shown in one study that 

enteric infection carries a 7-fold increase in the risk of developing functional bowel 

problems in at-risk populations (Ghoshal, 2011). Those who are particularly 

susceptible are female, smokers, patients suffering from psychological stress at the 

time of infection, and other pathogenic factors (Marshall, 2009). There is a 

recognised subgroup of IBS where an altered gut microbiome has been recognised, 

although this is not always the case. In this subgroup, alterations in the luminal gut 

flora may alter BA levels present and consequently alter their effects on luminal fluid 

secretion. In turn, alterations in BA levels can also affect bacterial survival and Islam 

et al have demonstrated that BAs are important regulators of caecal microbiota 

composition in rats (Islam, 2011).  

 

1.5.4 Infectious Diseases 

Many diarrhoeal conditions are caused by release of enterotoxins from 

microorganisms. Common causes of infectious diarrhoea in the Western world 

include Salmonella, Campylobacter, Shigella, Clostridium difficile, Yersinia and 

Escherichia coli. Other causes include Vibrio cholera, amoebiasis, tuberculosis, 

cytomegalovirus, schistosomiasis, and Herpes simplex (especially in the 

immunosuppressed) (Csutora , 2006). In some cases, the mechanisms underlying 

diarrhoea have been well elucidated. For example, cholera toxin (CT) binds to 

receptors on the apical surface of epithelial cells, resulting in sustained increases in 

intracellular cAMP which, in turn, inhibits absorption and stimulates profuse chloride 

and fluid secretion. There is evidence that CT activates a secreto-motor neural 

reflex, demonstrated by the fact that CT induced diarrhoea is reduced by drugs such 

as tetrodotoxin and hexamethonium. The reflex requires presence of the myenteric 

plexus and utilises secreto-motor neurones containing VIP and AC (Jodal, 1993). In 

the case of heat stable enterotoxin (STa), large increases in intracellular cGMP occur 

through binding of the toxin to a surface receptor with intrinsic guanylyl cyclise 

activity. Toxin release is not the only mechanism by which bacterial infection can 

cause diarrhoea, and non-toxigenic bacteria, such as Salmonella, can also evoke 

diarrhoea. Proposed mechanisms involved include stimulation of gene expression, 

leading to heightened secretory responses to endogenous agonists, and reductions 

in barrier integrity. There is also data to suggest a role for Cl--driven fluid secretion in 
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causing the adherent mucous-gel layer to be shed, possibly as a rate-limiting innate 

defence mechanism (Keely, 2011).  

 

1.5.5 Inflammatory Bowel Disease 

 IBD includes 2 idiopathic relapsing and remitting inflammatory disorders of the 

gastrointestinal tract; ulcerative colitis (UC) and Crohn’s disease (CD). UC affects 

only the colon and rectum, while Crohn’s disease may involve any part of the GI tract 

from mouth to anus (Csutora, 2006). Diarrhoea is a common feature amongst 

patients with IBD. 

 

Over recent decades, the incidence of IBD, particularly Crohn’s has been steadily 

increasing and now affects 2 in every 1000 people in Europe and the USA 

(Shivananda, 1996, Hou, 2009, Tamboli, 2008). Onset is more common in early 

adulthood and the chronic waxing and waning nature of both diseases means that 

they together represent a substantial burden of illness, not only within the hospital 

service but also in the community. Multidisciplinary care is essential for these 

patients given the wide ranging consequences of the disease.  

 

While the precise initiating factor in IBD is unknown, it is known that altered immune 

regulation leads to a prolonged mucosal inflammation which is amplified and 

perpetuated by recruitment of leucocytes from the intestinal blood supply. Up- 

regulation of nuclear transcription factors, such as NFB, is likely to underlie the 

subsequent release of cytokines, eicosanoids, and other local mediators of 

inflammation (including reactive oxygen species, platelet activating factors, nitric 

oxide, proteases, and growth factors).  

 

In UC, cytokine release from non T-helper lymphocytes generates a largely humoral 

response, while in CD; cell-mediated responses are induced by T-helper 1 cells. 

Defective intestinal mucous and abnormal intestinal epithelial permeability are also 

likely to play a role by increasing the access of luminal dietary antigens and bacterial 

products to the mucosa. Multi Drug Resistant (MDR) protein a has also been 

implicated in altering barrier function in mouse studies of colitis (Panwala, 1998), 

where it may be responsible for the efflux of toxic substances and regulating the 
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expression/ function of transport proteins, such as CFTR (Valverde, 1995). 

Disruption of electrolyte absorption (electrogenic Na+ absorption, electroneutral 

NaCl, and Na+/ nutrient co-transport) (Sundaram, 1998) also occurs in IBD (McCole, 

2005). Thus, while reduced absorptive function may be the predominant contributor 

to diarrhoea associated with IBD, the loss of secretory function may have 

implications for barrier function and/or maintenance of crypt sterility (Diaz-Granados, 

2000). 

 

Ulcerative colitis: UC usually begins in the rectum and can either remain restricted to 

this area, or it can spread proximally. In severe pancolitis, the distal ileum is also 

occasionally involved (known as backwash ileitis). In the colon of UC patients there 

is extensive inflammation with hyperaemia, granularity, surface pus and blood, and 

even extensive ulceration. Microscopically there can be chronic and acute 

inflammatory infiltrates, occurrence of crypt abscesses and cryptitis, with the 

consequent distortion of crypt architecture. The mucosa may be oedematous. In 

long-standing colitis, dysplastic changes may occur in cells, where nuclei become 

crowded and enlarged, losing their polarity with an increased risk of development of 

carcinoma. The onset of disease may be gradual with a chronic relapsing, remitting 

course, and features depend on the site and severity of disease.  

 

Acute severe colitis is most common in patients with pancolitis or subtotal disease. 

This causes profuse diarrhoea (more than 6 bowel motions/day with associated 

blood, mucus, peridefecatory pain, fever, malaise, and weight loss). Patients are 

often thin, anaemic, fluid depleted, febrile and tachycardic. Complications include 

toxic megacolon and/or perforation. Moderate disease is commonly left sided and 

symptoms include rectal bleeding, diarrhoea, malaise, and abdominal pain. Proctitis, 

where inflammation is limited to the rectum, causes rectal bleeding, mucus 

discharge, tenesmus, and pruritus ani, although the patients’ general health is 

usually well-preserved. 

 

Crohn’s Disease: This disease entity may affect any part of the gut. Typically, there 

are “skip” lesions with discontinuous segments of gut being inflamed. Typical 

changes include lymphoid follicular enlargement, aphthoid ulceration, with 

progression to deep fissuring ulcers that give a cobblestone appearance to the 
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mucosa, fibrosis, structuring, and fistulation. Inflammation and fibrosis predispose to 

the formation of strictures, or narrowing of the mucosa. This may cause the patient to 

present with obstructing symptoms and can cause microperforation of the gut wall, 

leading to abscess formation. CD is by nature, a more heterogenous condition than 

UC and manifestations depend on site and severity of disease.  

 

In ileal and ileocaecal CD pain is the predominant feature. Diarrhoea also commonly 

occurs and possible mechanisms involved include mucosal inflammation, bacterial 

overgrowth, and bile acid malabsorption (BAM). There are a number of reasons why 

patients may experience BAM in IBD. Since the terminal ileum is the main site for BA 

reabsorption from the intestine, patients who have undergone terminal ileal resection 

or who have severe inflammation in this area lose their capacity for absorbing BAs. 

This leads to increased passage of BAs into the colon, where they induce secretion 

of water and electrolytes, thereby causing diarrhoea. As intestinal adaptation occurs 

postoperatively, cholegenic diarrhoea often improves. However, in the interim, 

symptomatic treatment with antidiarrhoeal agents, such as codeine and loperamide, 

or with bile salt-binding resins, such as cholestyramine, may help.  

 

Prognosis: Intestinal complications of IBD include malnutrition, commonly in CD 

(Han, 1999), and intestinal cancer with a cumulative risk of 20% for colorectal cancer 

over 30 years (Bernstein, 2001). Mortality in UC resembles that of the general 

population while in CD it is increased 2-fold. Causes of death in patients with severe 

IBD include sepsis, pulmonary embolism, surgery, and immunosuppressive therapy. 

The prevalence, chronicity, and early onset of IBD mean that it represents a 

substantial burden to healthcare resources along with its impact on patient quality of 

life 

 

1.5.6 Current Therapeutic Options for Diarrhoeal Diseases and IBD  

Given the many different diseases associated with diarrhoea, accurate clinical 

judgement is required when considering therapeutic options. As a general rule, some 

degree of diagnostic testing is indicated in patients with chronic diarrhoea, and 

treatment should be tailored according to the underlying cause. However, empiric 

therapy may be warranted in certain situations, such as when a diagnosis is strongly 

suspected, or when co-morbidities limit diagnostic evaluation. Symptomatic therapy 
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is indicated when the diagnosis has been made but definitive treatment is 

unavailable, when diagnosis is elusive, and as a temporary measure during 

evaluation. A variety of medications can help relieve symptoms, including 

loperamide, anticholinergic agents, anti-inflammatory agents, and intraluminal 

adsorbents (such as clays, activated charcoal, bismuth, fibre, and bile acid-binding 

resins) (Fine, 1999). 

 

Other anti-diarrhoeals: Loperamide is a cheap and widely available over the counter 

anti- diarrhoeal and is effective for short term treatment of many diarrhoeal 

conditions, including travellers’ diarrhoea (Butler, 2008), but is also somewhat 

effective for diarrhoea-predominant IBS (Talley, 2003). It is an opioid-receptor 

agonist and like morphine, decreases the tone of the longitudinal smooth muscles 

but increases the tone of circular smooth muscles of the intestinal wall. This slows 

transit through the intestine, allowing more water to be absorbed. Loperamide also 

decreases colonic mass movements and suppresses the gastro colic reflex 

(Awouters, 1993). The use of loperamide in children under 3 years is not 

recommended (Li, 2007) . Loperamide use should be avoided in both adults and 

children in the presence of high fever or if the stool is bloody (dysentery) (Butler, 

2008). Treatment is not recommended for patients that could suffer detrimental 

effects from rebound constipation. If there is a suspicion of diarrhoea associated with 

organisms that can penetrate the intestinal walls, such as E. coli O157:H7 or 

Salmonella, practice guidelines would advise against the use of anti-motility agents 

(Thielman, 2004). Loperamide treatment is also not used in symptomatic C. difficile 

infections, as it increases the risk of toxin retention and may precipitate toxic 

megacolon (Kato, 2008).Other over the counter anti-diarrhoeals include bismuth 

subsalicylate (Pepto Bismol) which can retard the expulsion of fluids into the 

digestive system by irritated tissues, by "coating" them. There is also some evidence 

that salicylic acid from hydrolysis of the drug is antimicrobial for E. coli (Sox, 1989), 

however there have been no large scale randomised studies and it should be only 

used with caution and under medical supervision for any chronic diarrhoeal state. 

 

The pharmacological strategies currently available for the treatment of IBD include 

corticosteroids, aminosalicylates, and antibiotics. For more definitive management of 

http://en.wikipedia.org/wiki/Salicylic_acid
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severe disease, immunomodulatory agents, such as thiopurines, and more recently 

biologics, such as anti-TNF antibodies, can be used.  

 

Corticosteroids: These drugs are indicated in patients with active IBD but should not 

be used in the longer term. These drugs have their actions by activating intracellular 

glucocorticoid receptors. The main drawback of steroid therapy lies in the multitude 

of side effects, particularly associated with prolonged use (Faubion, 2001). 

  

Aminosalicylates: These agents are indicated for use in mild–moderately active UC 

and in preventing relapse in patients with inactive UC. These drugs reduce leucocyte 

migration, activation of NFB, IL-1 synthesis, and degradation of prostaglandins. 

They also act as TNF antagonists and as antioxidants. In relation to the epithelium, 

they reduce apoptosis, induce heat shock proteins, and reduce major 

histocompatibility complex (MHC) class II expression. Though considered the 

“safest” of drugs used in colitis, these agents still carry a range of systemic side 

effects.  

 

Metronidazole: Metronidazole is indicated in perianal and ileocolonic Crohn’s 

disease and in preventing recurrence after ileal resection. Treatment is generally 

prolonged and is associated with unpleasant taste, peripheral neuropathy, inability to 

drink alcohol, and limited efficacy.  

 

Immunomodulatory agents: Thiopurines, such as azathioprine, are pro-drugs which 

undergo conversion to 6-MP (6 mercaptopurine). While the mechanism of action has 

not been fully elucidated, they are thought to inhibit immune activation through 

inhibition of T cell DNA synthesis. These drugs are indicated in steroid-refractory or 

dependent IBD. Their most serious side effects are related to effects on immune and 

blood cells (agranulocytosis). Opportunistic infection, cholestatic hepatitis, 

pancreatitis, skin malignancy, and lymphoma are also problematic and these drugs 

require regular monitoring by blood testing for the duration of their use (Pearson, 

1995). Cyclosporine and methotrexate have also been used in treatment of IBD with 

variable responses and with multiple side effects (Feagan, 1995).  
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Anti-TNF- therapy: Biologics, in the form of infliximab and adalimumab, have 

revolutionised the management of IBD and represent an enormous advance in 

treatment of patients with severe or refractory disease. However, there are still some 

concerns as to long-term efficacy and safety. Therapeutic effects of infliximab can be 

impressive, with mucosal healing occurring in up to 70% of patients (Colombel, 

2011). Furthermore, co-prescription with 6-MP/azathioprine has been shown to 

improve efficacy (D'Haens, 2010). However, serious infections can be associated 

with treatment and include TB, Salmonella, cellulitis, and pneumonia. Infliximab use 

can also cause infusion reactions or be associated with delayed hypersensitivity. 

There are also associations between drug use and malignancies and in young 

patients it has been particularly associated with the occurrence of T cell lymphomas, 

which are notoriously difficult to treat and almost universally fatal (Hanauer, 2002). 

 

Surgery: Finally, surgery can offer a cure for UC but there is always a risk of 

recurrence of CD after resection. In addition, surgery often entails long-term 

nutritional complications and can be associated with permanent disfigurement, as is 

the case with colostomy or ileostomy.  

 

In conclusion, while they have their place in the treatment of disease, all of the 

treatments currently available for IBD and diarrhoeal diseases in general, have 

drawbacks, whether it is lack of efficacy, significant systemic side-effects, or 

expense. Thus, there remains a true clinical need for novel treatments. 
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1.6 Aims of Thesis 

Despite their prevalence and the huge burden that they pose to healthcare systems, 

effective and safe therapeutic options for diarrhoeal diseases are still lacking. Recent 

years have seen the emergence of bile acids as an important family of “enterocrine” 

hormones that regulate diverse aspects of intestinal epithelial function. This has 

sparked a great deal of interest in targeting BAs for therapeutic purposes. UDCA is a 

well-studied therapeutic agent, primarily used to treat cholestatic liver diseases. Less 

is known about the actions of UDCA In the colon, and while the pro-secretory, pro-

inflammatory and largely detrimental effects of several colonic bile acids have been 

well-documented in certain disease states, the role of UDCA has not been well-

defined. With this in mind, the overall goal of this thesis was to investigate the effects 

of UDCA on key aspects of colonic epithelial physiology, and to examine the 

possibility that UDCA could be targeted for treatment of diarrhoeal or inflammatory 

intestinal diseases.  

 

In particular, the aims of this thesis were to investigate:   

i) the role of UDCA in regulating colonic epithelial secretory function  

ii) signalling pathways and molecular targets involved in mediating the effects 

of UDCA  

iii) The role of UDCA in regulating epithelial barrier function and TLR-driven 

cytokine secretion 

iv) The potential for targeting UDCA in treatment of diarrhoeal diseases  
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Chapter 2: 

Materials and Methods 
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2.1 Materials: 

Table 2.1 delineates all of the BAs and BA derivatives used for experiments included 

in the thesis with concentration ranges used, empiric formulae and source. Table 2.2 

provides a comprehensive list of all reagents used in Ussing chamber experiments, 

concentrations used and source. The specific uses of reagents are described in 

more detail in the relevant sections of the methods chapter. Table 2.3 outlines a 

number of the pharmacological inhibitors used for kinase inhibition with references 

for concentrations used.  

              Table 2.1: Bile Acids and bile acid derivatives used 

 

 

 

 

 

Bile Acid (derivative) 
Concentrati

on 

Empiric  

formula 
Source 

Ursodeoxycholic Acid  

(UDCA) 
50–1000 M C24H39O4 · Na Calbiochem 

Lithocholic Acid 

(LCA) 
50–1000 M 

o  
C24H40O3. Na 

 
Calbiochem 

Chenodeoxycholic 

Acid (CDCA) 
50–1000 M 

C29H46O6 

 
Sigma Aldrich 

Deoxycholic Acid 

(DCA), Cholic Acid 

(CA) 

50–1000 M 

C24H40O4 

o  
C24H40O5 

 

Sigma Aldrich 

Tauroursodeoxycholic 

Acid (TUDCA) 
50–1000 M 

C26H44NO6S · 

Na 
Calbiochem 

FM191 

(fluorescent ) 
50–500 M C30H42N4O6 Gift, Dr J Gilmer, TCD 

6-methyl 

Ursodeoxycholic Acid 

(6a- MUDCA) 

50–1000 M C25H42O4 
Gift, Prof A. Roda, 

University of Bologna 
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Table 2.2: Drugs and Reagents. 

 

 

 

 

 

 

 

 

 

Reagent Abbreviation Concentration Source 

Carbachol CCh 100 M Sigma Aldrich 

Forskolin FSK 10 M Sigma Aldrich 

Amphotericin B Amp B 50 M Sigma Aldrich 

Nystatin Nys 100 g/ml Sigma Aldrich 

Heat stable 

enterotoxin 
STa 100 nM Sigma Aldrich 

Cholera toxin CTX 100 nM Sigma Aldrich 

Bumetanide Bum 100 M Sigma Aldrich 

Amiloride Am 10 M Sigma Aldrich 

Ouabain O 100 M Sigma Aldrich 

Tetra ethyl 

ammonium 

chloride 

TPeA 100 M Sigma Aldrich 

Chromanol 293B C293B 100 M Sigma Aldrich 

Tetrodotoxin TTX 100 nM Sigma Aldrich 

Mannitol Man 25 mM Sigma Aldrich 

Sodium 4- phenyl 

butyrate 
4PBA 5 mM Sigma Aldrich 

Phlorizdin Phl 1 mM Sigma Aldrich 
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Table 2.3: Pharmacological inhibitors used 

Drug Kinase inhibited Concentration used (M) 

 

Bisindolylmaleimide PKC 5 

(McKay,2007) 

H-89 PKA 5  

(Hoque, 2010) 

 

PD98059 ERK1/2 MAPK 5  

(Mroz, 2012) 

SB203580 p38 MAPK 10 

(Keely, 2003) 

 

                                                           

2.2 Human tissues: 

Resected colonic tissue was obtained from adult patients undergoing colorectal 

surgery and biopsies were from adult patients undergoing colonoscopy in Beaumont 

Hospital between July 2008 and March 2011. Adult patients undergoing colorectal 

surgery primarily for colorectal cancer were included. Patients that had received 

neoadjuvant chemo/radiotherapy, with a background of IBD, or with active 

inflammation due to diverticulitis or perforation or with concomitant enteric infection 

such as Clostridium difficile at time of resection were excluded for the purposes of 

this study. Participants agreed to participate by written informed consent explained 

by the colorectal cancer research nurse or one of the primary clinical investigators 

(Dr Orlaith Kelly or Professor Frank Murray). This study was approved by Beaumont 

Hospital Medical Ethics Committee. All surgical specimens were collected on ice 

from the Pathology Department. Normal colonic mucosa was identified 

macroscopically and microscopically by individual pathologists. All specimens were 

taken at least 3 cm clear of tumour margins and at least 3 cm clear of resection 

margins to avoid injured or cancerous tissue.  

 

Biopsies were also prospectively taken from adult patients who had been treated 

with oral UDCA for any indication (usual dose 750 mg/ day or 10 kg) who were 
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undergoing a colonoscopy for any indication. Patients with active inflammation were 

excluded. Patients with quiescent IBD were included. A healthy control group, i.e. 

consented asymptomatic patients undergoing colonoscopy for family screening, 

identified as having a normal appearance at colonoscopy, were also included. These 

were age and gender matched for the UDCA patients. A total of 6 biopsies per 

patient were obtained with a large diameter (6 mm) biopsy forceps. Each sample of 

tissue was transported bathed in ice-cold Ringer’s solution to the Molecular Medicine 

Department. The tissue was then prepared for 1) electrophysiological measurements 

or 2) crypt isolation for Ca2+ imaging and immunofluorescence studies. Patient 

demographics, including age, gender, indication for resection/endoscopy, area of 

colon from which sample was taken, relevant findings at time of operation or 

endoscopy, medications and relevant co-morbidities, were recorded. All patient data 

were de-identified and patient identifier details were stored separately in a password- 

protected encrypted database accessible only by the clinical study lead in order to 

retain patient confidentiality.   

 

2.3 Animals: 

Male C57BL6 mice aged 6–12 weeks were used. The animals were maintained in an 

environmentally-controlled facility on a 12 h light/dark cycle and were given ad 

libitum access to food and water. All experiments were approved by the Royal 

College of Surgeons in Ireland Ethics Committee. UDCA (10 – 100 mg/ kg) or 6-

MUDCA (10 – 100 mg/ kg), prepared in endotoxin-free phosphate-buffered saline 

(PBS 0.1 mL), were injected intra-peritoneally and mice were sacrificed 4 h later by 

cervical dislocation. 

 

2.4 Cell Culture:  

T84 cells, a human colonic epithelial cell line derived from colon carcinoma, were 

cultured in DMEM/Hams F12 media (1:1) (Sigma-Aldrich, Gillingham, UK) 

supplemented with 5% (v/v) new-born calf serum (HyClone, Logan Utah, USA) in an 

atmosphere of 5% (v/v) CO2 at 37 0C, with medium changes every 3–4 days. Cells 

were split when they reached approximately 90% confluency using trypsin. For 

electrophysiological studies, 5 x 105 cells were seeded onto 12 mm Millicell HA 

Transwell inserts (Millipore, Bedford MA). For cyclic AMP assays, Western blotting 
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and surface biotinylation experiments, 1 x 106 cells were seeded onto 30 mm Millicell 

HA Transwells. Cells seeded onto Millicell filters were cultured for 10–15 days prior 

to use until a trans-epithelial resistance of >1000 ohms.cm-2 was achieved. Under 

these conditions, T84 cells develop the polarized phenotype of native colonic 

epithelial cells and they are widely accepted as being the best available reductionist 

model for studies of colonic epithelial Cl- secretion (Barrett, 2000).  For Ca2+ imaging 

experiments, cells were seeded on glass-bottomed dishes and were grown to 

approximately 90 % confluency prior to experimentation. For all experiments carried 

out on 96-well plates, including ELISAs, cell proliferation, or apoptosis assays, cells 

were seeded at a density of 1 x 105 cells per well. 

2.4.1 UDCA treatment: 

T84 cells were washed in serum-free medium prior to any treatment and allowed to 

equilibrate for 1 h. Following the equilibration period, cells were treated with UDCA at 

various concentrations for a period of 15 min, unless otherwise noted in the figure 

legend. 

 

2.5. Electrophysiological Measurements 

Epithelial preparations were placed in Ussing chambers and bathed in physiological 

solution at 37 0C and an external current, known as the short-circuit current (Isc), was 

applied. The spontaneous electric potential difference (PD) was clamped to 0 mV. 

The electrical parameters measured in these experiments included trans-epithelial 

resistance (TER) across the epithelial layer, the trans-epithelial PD, and Isc, both 

under basal conditions and in response to agonist stimulation (see Figure 2.1). The 

Isc required to maintain the trans-epithelial PD at 0 mV is an indirect measure of 

vectorial electrogenic ion movement across cell monolayers or tissue preparations 

(see Figure 2.1 for a diagrammatic representation of the Ussing chamber). After 

culture for 10–15 days on filter supports, T84 cell monolayers were washed in serum-

free medium and allowed to equilibrate for 1 h. The formation of a confluent layer 

was ascertained by trans-epithelial resistance measurements, which in all 

experiments exceeded 1000 .cm2. Cells were then mounted in Ussing chambers 

for measurements of Isc. Conductance measurements were also recorded at 

intervals throughout the experiments in order to determine any changes in TER 

which could indicate loss of cell/ tissue viability. 
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Figure 2.1: Ussing chamber. The epithelial preparation (i.e. epithelial monolayers, human, or 

mouse tissue) was bathed in Ringer’s solution and voltage clamped to 0 mV potential difference by 
the application of a short circuit current (Isc). TER, changes in Isc, and PD were measured in response 
to various treatments.  

 

2.5.1. Prototypical agonists of Cl- secretion.  

Carbachol (CCh) is a cholinergic agonist that binds and co-activates nicotinic and 

muscarinic receptors. It is a non-selective agonist that, in contrast to acetylcholine, is 

resistant to the action of cholinesterases. Serosal application of CCh to intestinal 

epithelial monolayers mounted in Ussing chambers causes an immediate increase in 

short circuit current (Isc) that  typically peaks within 5 min and declines rapidly 

thereafter, although a small increase in Isc may persist for approximately 30 min 

(Pandol, 1986). Secretory responses to CCh across intestinal epithelial cells are 

mediated through the Gq protein-coupled M3 receptor, and subsequent mobilisation 

of Ca2+ from IP3-sensitive pools. Thus, CCh is routinely employed as a prototypical 

agonist of the Ca2+-activated secretory pathway in intestinal epithelia (Vaandrager, 

1991). 

 

Forskolin (FSK) is a labdane diterpene that is produced by the Indian Coleus plant 

(Coleus forskohlii). FSK is commonly used in experimental settings to raise levels of 

http://en.wikipedia.org/wiki/Drug
http://en.wikipedia.org/wiki/Acetylcholine_receptor
http://en.wikipedia.org/wiki/Labdane
http://en.wikipedia.org/wiki/Diterpene
http://en.wikipedia.org/wiki/Indian_Coleus
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intracellular cyclic AMP (cAMP) through activation of adenylyl cyclase. cAMP is an 

intracellular signalling molecule, important in transducing many cellular responses to 

hormones and other extracellular signals. Thus, FSK is commonly used as a 

prototypical agonist for cAMP-induced secretion in intestinal epithelia. Isc responses 

to agonists such as FSK, are more slow in onset and sustained than those 

stimulated by Ca2+-dependent agonists (Cuthbert, 1987).  

 

Cholera toxin (CT): CT activates the adenylate cyclase enzyme. The effect is 

dependent on a specific receptor, monosialosyl ganglioside (GM1 ganglioside) 

present on the surface of intestinal mucosal cells. The bacterium produces an 

invasin, neuraminidase, during the colonization stage which degrades gangliosides 

to the monosialosyl form, which is the specific receptor for the toxin. The net effect of 

the toxin is to cause cAMP to be produced at an abnormally high rate which 

stimulates mucosal cells to pump large amounts of Cl- into the intestinal contents. 

H2O, Na+ and other electrolytes follow due to the osmotic and electrical gradients 

caused by the loss of Cl-. The lost H2O and electrolytes in mucosal cells are replaced 

from the blood. Thus, the toxin-damaged cells become pumps for water and 

electrolytes causing the diarrhoea, loss of electrolytes, and dehydration that are 

characteristic of cholera (Spangler, 1992). 

The toxin has been characterized and contains 5 binding (B) subunits of 11,500 

Daltons, an active (A1) subunit of 23,500 Daltons, and a bridging piece (A2) of 5,500 

Daltons that links A1 to the 5B subunits. Once it has entered the cell, the A1 subunit 

enzymatically transfers ADP ribose from NAD to a protein (called Gs or Ns), that 

regulates the adenylate cyclase system which is located on the inside of the plasma 

membrane of mammalian cells (Bharati, 2011). 

Secretory responses of T84 cell monolayers to acetylcholine have previously been 

shown to be greatly potentiated in the presence of CT. CT (0.0001–0.1 μg/ mL (w/v)) 

applied to the apical domain of T84 cell monolayers produces a concentration 

dependent increase in Isc (Banks, 2004). In our experiments, an optimal 

concentration of 0.01 μg/ mL (w/v) apically applied was used after a series of 

concentration experiments.  

http://en.wikipedia.org/wiki/Cyclic_AMP
http://en.wikipedia.org/wiki/Adenylyl_cyclase
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Heat stable E. coli enterotoxin (STa): Two families of heat-stable enterotoxins have 

been identified: STa and STb, which differ by their physicochemical and biologic 

characteristics (Burgess, 1978). Although STa and STb were both discovered in 

intestinal bacterial strains isolated from humans, STb is produced by bacterial strains 

that preferentially inhabit pigs (Lortie, 1991). Further, STa induces diarrhoea through 

a cyclic nucleotide-dependent mechanism.  

STa is produced by a variety of enteric pathogenic organisms, including 

diarrhoeagenic Escherichia coli (E. coli), Vibrio cholerae, Vibrio 

mimicus, Yersinia enterocolitica, Citrobacter freundii, and Klebsiella 

pneumonia. ST’s are translated as precursor peptides which are processed to 

active peptides (Lin, 2010). Isoforms of ST share a conserved C-terminal region of 

13 amino acids containing three disulfide bonds responsible for heat stability and 

biological activity. Investigation of the pathogenesis underlying diarrhoea produced 

by ST ultimately revealed two intestinal paracrine hormones, guanylin and 

uroguanylin, and the receptor for these homologous peptides, guanylyl cyclase C 

(GC-C), encoded by the gene GUCY2C (Lucas, 2000). 

STa has been shown to cause Cl- secretion across T84 cell monolayers in a dose-

dependent manner when applied to the apical membrane and not when applied to 

the basolateral surface. This is a cGMP mediated response (Huott, 1988). In these 

experiments, an optimal concentration of 100 nM was used as determined by a 

series of optimisation experiments. This is similar to concentrations previously use in 

Ussing experiments (Trucksis, 2000; Vaandrager 1992). 

2.5.2 Experimental Approach.  

Confluent T84 cell monolayers were mounted in Ussing chambers (aperture = 0.6 

cm2), voltage-clamped to zero potential difference, and monitored for changes in 

short-circuit current (Isc) using a VCC MC8 voltage clamp (Physiological Instruments, 

San Diego, CA). Under such conditions, secretagogue-induced changes in Isc across 

T84 monolayers are wholly reflective of changes in electrogenic Cl- secretion 

(Cartwright, 1985). Isc measurements were carried out in Ringer’s solution gassed 

with CO2 (pH 7.4), containing (in mM): 140 Na+ , 5.2 K+, 1.2 Ca2+, 0.8 Mg2+, 119.8 Cl-

, 25 HCO3-, 2.4 H2PO4
2-, and 10 Glucose. Results were normalised and expressed 
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as Isc (A/ cm2), or as percentage of control responses (% CR). For preparations of 

muscle-stripped human or mouse colonic mucosa, Ussing chambers with a window 

area of either 0.3 cm2, or in the case of human tissue, 0.5 cm2 were used. 

 

2.5.3 Measurements apical Cl- currents, basolateral K+ currents, and Na+/K+ 

ATPase activity.  

 Apical Cl- currents were measured as described by Rochwerger et al. (Rochwerger, 

1994). T84 cell monolayers were mounted in Ussing chambers, and an apical to 

basolateral Cl- gradient (119.8 – 4.8 mM) was established by replacing NaCl in the 

apical solution with equimolar Na-gluconate. Monolayers were basolaterally 

permeabilized by addition of nystatin (100 g/ mL), and after a 35 min re-

equilibration period, cells were stimulated with forskolin (FSK; 10 M). Under these 

conditions, changes in Isc reflect apical Cl- currents (ICl). 

 

Basolateral K+ conductance was analyzed as described by Kirk and Dawson (Kirk, 

1983). T84 cell monolayers were apically permeabilized with amphotericin B (50 M). 

A K+ gradient (123.2 – 5.2 mM) was created across the basolateral membrane by 

addition of a high - K+ (123.2 mM) Ringer’s solution, in which NaCl is substituted with 

K+ - gluconate, to the apical reservoir. Ouabain (100 M) was added basolaterally to 

inhibit Na+/K+-ATPase pump activity. Under these conditions, changes in Isc are 

reflective of changes in basolateral K+ conductance (IK). 

 

Na+/K+-ATPase activity was measured as described by Lam et al (Lam, 2003). T84 

monolayers were bathed bilaterally in low Na+ (25 mM) Ringer’s solution, where NaCl 

was substituted with equimolar N-methyl-D-glucamine (NMDG)-Cl. Apical 

membranes were permeabilised with amphotericin (50 M). Under these conditions 

(i.e., in the absence of ionic gradients across the permeabilised monolayer), changes 

in Isc are reflective of electrogenic transport through the Na+/K+-ATPase pump. 

Experiments were also performed in the presence of basolateral K+ current 

inhibitors, TPEA, chromolyn 2B39, and barium to verify that observed currents were 

due to Na+/K+-ATPase activity alone. These inhibitors were, however, not routinely 

used in these experiments. 
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2.5.4. Animal and Human Tissue Experiments  

 For analysis of their effects on Cl- secretion in mice, UDCA (10–100 mg/ kg) or - 

MUDCA (10–100 mg/ kg) were administered by intraperitoneal (IP) injection, with 

control mice receiving PBS. Mice were then sacrificed by cervical dislocation at 4 h 

post-treatment, the colons were harvested, and sheets of isolated colonic mucosa 

were obtained by blunt micro dissection of the overlying muscle layers. These 

tissues were then divided, mounted in Ussing chambers (aperture 0.3 cm2), bathed 

in Ringer’s solution, and basal and agonist-stimulated Isc responses were recorded.  

For human tissue studies, sections of normal human colonic tissue were collected 

from surgical resection specimens and transported to the laboratory on ice. Tissues 

were stripped of their underlying smooth muscle and mounted in Ussing chambers 

(aperture 0.5 cm2), as described above. 

 

2.5.5. Measurements of Na+ absorption through ENaC and SGLT-1.  

In order investigate colonic Na+ absorption through ENaC; the T84 cell line was used. 

However, since these cells do not normally express ENaC, a method described 

previously, in which expression of ENaC was induced in T84 cells by pre-treatment 

with 4 phenyl-butyrate (5 mM, bilateral, 24 h) prior to experimentation, was 

employed. Using this approach, an amiloride-sensitive current in T84 cells could be 

reliably produced.   

 

To measure SGLT-1 activity, whole thickness sections of proximal jejunum from 

mice were used. After mounting in Ussing chambers, the tissues were bathed 

apically in glucose-free Ringers solution and basolaterally in normal Ringers’ solution 

to create a glucose gradient. To balance osmolarity, 25 mM mannitol was included in 

the basolateral solution. To stimulate SGLT-1 activity, 25 mM glucose was added 

apically and changes in Isc were measured. 1mM phlorizin was then added to confirm 

that increases in Isc were due to SGLT-1 activity (Grubb, 1995). 

 

2.6. Bile Acid Measurements 

Caecal contents were collected from treated and control animals and stored in 

isopropanol at -20 0C. Caecal bile acid levels were measured by HPLC mass 
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spectrometry at the University of Bologna as previously described, and results were 

expressed as % nM (w/v) of the total bile acid pool (Janzen, 2010, Tadano, 2006). 

 

2.7 Crypt Isolation 

A standard Ca2+ chelation approach for colonic crypt isolation was employed 

(Schwartz, 1991). Resected normal human colonic tissue was washed with Krebs 

solution (see Table 2.4)  and, using a blunt scalpel, was divided into suitably sized 

sections (approximately 0.5 cm x 1 cm) and placed in 10 mL of crypt isolation buffer, 

containing: NaCl, 96 mM: KCl, 1.5 mM: EDTA, 27 mM: sorbitol, 55 mM: HEPES (free 

acid), 10 mM; Tris base, 10 mM; sucrose, 44 mM; and DTT, 1 mM for 30 min at RT 

(see  

Table 2.5). After vigorous vortexing for 1 min to dislodge intact crypts, the remaining 

tissue was discarded. The isolated crypts were then centrifuged (600 G, 8 min). 

Crypts were washed twice in 10 mL of Krebs solution, containing: NaCl 140 mM, KCl 

5 mM, MgCl2 hexahydrate 1 mM, CaCl2.2H2O 2 mM, HEPES (free acid) 10 mM, Tris 

base 10 mM, Glucose 10 mM. Finally, crypts were suspended in an appropriate 

volume of Krebs solution and treated as required. At the final re-suspension stage, a 

50 L aliquot of solution was also inspected on a glass slide to ensure the presence 

of intact crypts. For protein extraction, crypts were spun at 1,200 G, immediately 

placed on ice, and then snap frozen. For mRNA extraction, crypts were suspended 

in RNAlater (Sigma Aldrich, UK) overnight and then frozen. For Ca2+ imaging and 

confocal imaging, crypts were suspended in physiological perfusion solution and 

used immediately. 
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Table 2.4. Krebs Solution 

Reagent Concentration (mM) 

NaCl 140 

KCl 5 

MgCl2 Hexahydrate 1 

CaCl2.2H2O 2 

HEPES (free acid) 10 

Tris base 10 

Glucose 10 

 pH adjusted to 7.4 with HCl. Osmolarity was measured to be 290 ± 5 mOsm 

 

 

Table 2.5 Crypt Isolation Buffer 

Reagents Concentration (mM) 

NaCl 96 

KCl 1.5 

EDTA 27 

Sorbitol 55 

Tris (base) 10 

Sucrose 44 

HEPES (free acid) 10 

DTT 1 

DTT was added fresh and pH adjusted to 7.with NaOH. Osmolarity was measured to 

be 380 ± 5 mOsm. 
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2.8. Confocal Imaging:  

In Table 2.6 the antibodies and dilutions used for confocal imaging are outlined. 

Table 2.6 Antibodies employed for Confocal Imaging 

Primary antibodies 

 

Type Company Dilution 

Na+/K+ ATPase  Monoclonal 

mouse 

antibody 

AbCam 1:400 

Na+/K+ ATPase  Monoclonal 

mouse 

antibody 

AbCam 1:400 

KCNN4 

 

Monoclonal 

rabbit antibody 

AbCam 1: 1500 

AlexaFluor 488-

conjugated 

Goat anti-

mouse 

Invitrogen 1:500 

AlexaFluor 488- 

conjugated 

Goat anti-rabbit Invitrogen 1:500 

Isotype control Mouse IgG1 Invitrogen 1:400 

 

 

Preparation of samples: 

Isolated crypts were re-suspended in Krebs solution (c.f Section  

2.7 Crypt Isolation) and a 270 L aliquot was pipetted into each well of a CellTak-

coated (BD Biosciences) chamber slide. To minimize crypt damage during treatment, 

aliquots were pipetted against the well wall. When removing liquid, the slide was 

tilted and liquid was aspirated from the corner of the well. Crypts were allowed to rest 

for 30 min prior to further treatment in order to allow adherence. 

 

T84 monolayers on inserts and isolated human colonic crypts were treated with 

UDCA (500 M, bilateral, 15 min) and were then washed 3 times with ice-cold PBS. 

Cells or crypts were fixed using 4% (w/v) paraformaldehyde (PFA; 150 L per well) 

for 20 min on ice, followed by washing 3 times with ice-cold PBS. This was followed 
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by permeabilisation (0.4% (v/v) Triton-X-100 , 15 min) and then blocking in 3% (w/v) 

BSA for 15 min. Cells were incubated with 100 L of primary antibody (mouse 

monoclonal anti-Na+/K+ ATPase α (1: 400), mouse monoclonal anti-Na+/K+ ATPase 

β (1: 400), or rabbit monoclonal anti-KCNN4 (1: 1500) (AbCam) for 2 h. Cells were 

then incubated with goat anti-mouse or goat anti-rabbit AlexaFluor 488-conjugated 

secondary antibody (1: 500 dilution) for 1 h in the dark (Invitrogen, Carlsbad, CA, 

USA). Rhodamine phalloidin was included (1: 2000 dilution) to stain for actin. Control 

samples were exposed to non-specific isotype control IgG1 (AlexaFluor 488- 

conjugated). Filters were cut and mounted on glass slides using Vectashield 

(Hardset) with DAPI. Slides were examined by confocal microscopy using a Zeiss 

LSM 710 microscope.  

 

2.9. Cell Surface Biotinylation 

The protocol used was based on one previously published study (Liu, 2002, Del 

Castillo, 2005). Following treatment with UDCA, 500 M for 15 min, monolayers of 

T84 cells were washed with ice-cold PBS. Freshly prepared biotinylation buffer (1 

mg/mL Sulfo-NHS-Biotin (Pierce Biotechnology, Rockford, IL, USA) in PBS) was 

added to the basolateral side. Cells were incubated at 4 0C for 15 min on a rotating 

platform after which the buffer was replaced. After a further 15 min, cells were 

washed twice in ice-cold PBS and incubated with a quenching agent (100 mM 

glycine in PBS). Cells were again washed twice in ice cold PBS and were 

subsequently lysed in standard RIPA buffer for 30 min on ice (2.11. Western 

Blotting). The lysate was centrifuged (10,000 G, 6 min) and the protein concentration 

of the supernatant was determined and normalised. The samples were then 

precipitated on a rotator overnight at 4 0C with 100 L of streptavidin–agarose beads 

(Pierce Biotechnology, Rockford, IL, USA). Samples were again centrifuged and 

washed twice in lysis buffer and then re-suspended in 2x Laemmli buffer (Sigma-

Aldrich, UK). Samples were heated to 55 0C and then subjected to SDS-PAGE 

analysis. Biotinylated proteins were detected by Western blotting.  

 

2.10. Protein Extraction   

After appropriate treatments, cells grown on filters were scraped on ice in 1 mL PBS 

and placed in 1.5 mL Eppendorf tubes. Samples were then centrifuged at 300 G for 

1 min. After removal of supernatant, 100–400 L of complete lysis buffer (depending 
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on the size of pellet) were added. Standard lysis buffer consists of: 10 mL NP-40 

lysis buffer stock solution, 1x complete mini EDTA-free protease inhibitor tablet, 1 

ng/ mL PMSF, and 1 M sodium vanadate. Samples were vortexed and incubated 

for 35 min on ice, sonicated (for 30 s), and then centrifuged at 12,000 G for 10 min at 

4 0C. The supernatants were removed and placed in fresh tubes and stored at – 80 

0C until further analysis. 

 

2.11. Western Blotting  

After UDCA treatment, T84 monolayers were washed with ice-cold PBS and lysed 

using lysis buffer containing 1% (v/v) Nonidet P-40, 150 mM NaCl, 50 mM Tris Base 

and supplemented with 1 x complete mini EDTA-free protease inhibitor cocktail 

(Roche Diagnostics, UK), 0.1 mg/ mL PMSF, and 100nM sodium orthovanadate 

Na3VO4), for 30 min. Lysates were scraped into Eppendorf tubes , sonicated (3 x 10 

s pulses), centrifuged (15,300 G; 10 min; 4 °C), and the pellets discarded. Samples 

were normalized for protein content and 2 x gel loading buffer (50 mM Tris HCl, 100 

mM DTT, 40% (v/v) glycerol, and 4% (v/v) SDS) was added to the supernatants. 

After heating to 55°C for 30 min, samples were loaded on 8% gels and separated by 

SDS-PAGE (at 120 V for 1 h) and transferred to PVDF membranes permeabilised 

with 100% (v/v) methanol (transfer was run at 15 V for 60 min). Membranes were 

then washed with TBST followed by pre-blocking in 5% blocking buffer [w/v; Marvel 

in Tris buffered saline with 1% (v/v) Tween (TBST)] for 60 min; RT; after which they 

were probed overnight (16 h) at 4 °C with antibodies against the proteins of interest: 

Table 2.7 outlines the concentrations used for Western Blotting and biotinylation 

experiments. After washing (x 4) in TBST, membranes were probed with secondary 

antibodies conjugated to horseradish peroxidase (HRP) in 5% blocking buffer for 60 

min; RT. After further washing (x 4) in TBST, immunoreactive protein bands were 

visualised by employing enhanced chemoluminescence (Amersham Biosciences, 

Little Chalfont, U. K.) after exposure to Kodak X-Omat LS Film. Protein levels were 

quantified by densitometry. Densitometric data were normalized to levels of B-Actin 

in order to control for differences in protein loading between wells and normalized 

data were then expressed relative to protein expression in control cells, not treated 

with UDCA.  
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Table 2.7 Antibodies employed for Western Blotting 

Primary antibodies 

 

Type Company Dilution 

Na+/K+ ATPase  Monoclonal 

mouse 

antibody 

AbCam 1:1000 

1:500  

(biotinylation) 

Na+/K+ ATPase  Monoclonal 

mouse 

antibody 

AbCam 1:1000 

KCNN4 

 

Monoclonal 

rabbit antibody 

AbCam 1: 1500 

HRP- conjugated 

Secondary 

antibodies 

Goat anti-

mouse 

Invitrogen 1:500 

 Goat anti-rabbit Invitrogen  1:500  

 

2.12. cAMP measurements 

T84 cell monolayers were grown on 30 mm Millicell inserts as described above for 

14–21 days. After 24 h in serum-free medium, cells were then acutely treated with 

UDCA (500 M, bilateral, 15 min) at 37 0C in a 5 % CO2 atmosphere. Cells were 

then exposed to apical FSK (10 M) for 10 min and were then lysed on ice using 0.1 

M HCl (250 L for 10 min). Lysates were then centrifuged (600 G for 10 min at 4 0C) 

and cAMP levels in the supernatants were measured using a commercially available 

assay kit (Sigma-Aldrich, Gillingham, UK). Cyclic AMP levels were expressed as 

picomoles of cAMP/ mg protein.  

 

2.13. Intracellular Ca2+ Imaging 

Calcium fluorescence measurements in cultured colonic epithelial cells (T84) and 

isolated human crypts were performed using Fura 2/AM (Molecular Probes, Eugene, 

OR). The cells were grown on glass coverslips to 80 % confluency, washed in 

physiological salt solution (PSS; 140 mM NaCl, 5mM KCl, 1mM CaCl2, 10mM D-

Glucose and 10 mM HEPES TMA, pH 7.4), and then loaded with 5 L Fura2/AM 
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(Molecular Probes, Eugene, OR, USA), dissolved in 0.1% (v/v) pluronic acid F-127 

plus 0.1% (v/v) DMSO in PSS at RT for 45 min. For experiments in calcium-free 

solutions, 1 mM CaCl2 was substituted with 1 mM EGTA (Devor, 1990). In separate 

series of experiments, cells were pre-treated for 30 min with one of a variety of 

pharmacological inhibitors of different Ca2+ channels. The concentrations used were 

from previous work in the T84 cell model (see Table 2.8 Ca2+- channel blockers 

employed). Optimisation experiments were also undertaken to ensure reproducibility 

in the cell passages used (data not shown).  Coverslips were then washed in PSS 

and mounted on a Nikon microscope stage (Nikon, Tokyo, Japan). For control 

responses, cells were perfused with PSS for 5 min before adding carbachol (CCh 

100 M) to the perfusing solution (Reinlib , 1989). The ratio of Fura-2 fluorescence 

with excitation at 340 and 380nm (F340/380) was measured every 3 s and images were 

captured using an intensified CCD camera (ICCD 200) and a MetaFluor Imaging 

System (Molecular Devices Corporation, Sunnyvale, CA, USA). Changes in basal 

F340/380 and CCh-induced responses were also measured after treatment with UDCA 

(10 – 500 M). For experiments on human colonic crypts, freshly isolated crypts 

were used. In order to aid attachment, coverslips pre-coated with poly-D lysine were 

used. Loading with Fura-2/ AM and experimental treatments were then carried out, 

as described above. 

 

Table 2.8 Ca2+- channel blockers employed 

 

Pharmacological Inhibitor Concentration 

 

Channels inhibited 

 

SKF 96365 100 M 
Store operated  

(Hartford, 2007)  

Ruthenium Red 100 M 

TRP channels (N& P- 

type) 

Ca2+-ATPase (Irnaten, 

2008) 

Verapamil 100 M 
L-type channels (van der 

Meerwe, 2008) 
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2.14. Cell proliferation and cell viability measurements  

To perform cell viability measurements, cells were seeded at a density of 5 x 105 

cells/ ml and were allowed to attach overnight. Once attached, cells were washed 

and incubated in serum-free medium for 24 h. Cells were then trypsinised, re-

suspended in 2% (v/v) charcoal-stripped foetal bovine serum (FBS)-containing 

medium, and 100 L aliquots were seeded into the wells of a 96 well plate. Cells 

were then treated with 100L of twice the desired final concentration of BA in 

serum-free medium to give a final volume of 200 L per well. Cells were then left for 

the required time periods (12–96 h). Wells treated with serum-free or serum-

containing medium alone (i.e., without bile acid) were used as controls. A 

commercially available assay kit was used (Sigma Aldrich, UK) for 

spectrophotometric measurement of cell viability. The biochemical basis of this kit is 

the conversion of XTT to a water-soluble coloured formazan derivative by 

mitochondrial dehydrogenase in viable cells. Absorbance of converted dye was 

measured at a wavelength of 450 nm after 4 h incubation (Roehm, 1991) (Lee, 

2008). Data from bile acid-treated cells were compared to those from controls. 

 

2.15. In vitro apoptosis assay 

The Caco -2 colon carcinoma cell line was used for these experiments. 1  104 cells 

were seeded in 96-well plates. After 24 h incubation at 37°C, cells were then pre-

treated with UDCA 100 M for 24 h. This was followed by treatment with the 

apoptotic stimulants cycloheximide (5 g/ mL) and TRAIL (25 ng/ mL). Cells were 

incubated for a further 24 h at 37 °C. The cells were then harvested, re-suspended in 

ice cold PBS and incubated with YO-PRO-1, Hoechst 33342 and propridium iodide 

(Vybrant Apoptosis Assay Kit 7, Invitrogen) according to the manufacturer’s protocol. 

Flow cytometric analyses were carried out using the Cyan ADP analyser (Beckman 

Coulter) and Summit 4.3 Software. Cells were defined as living, early apoptotic, or 

late apoptotic/necrotic, according to their relative dye uptake (Tambuwala, 2010). 

 

2.16. Measurements of cytokine levels.  

T84 cells, grown to 80 % confluency on 96 well plates, were pre-treated with UDCA 

(250 μM, 30 min) before 12 h stimulation with the TLR-specific ligands, Pam3Cys (10 

μg /mL; TLR-2), polyinosinic: polycytidylic acid (Poly I:C 20 μg /mL ; TLR-3), 
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muramyl dipeptide (MDP 1 g/mL; NOD2), and lipopolysaccharide (LPS 100 ng /mL; 

TLR-4). The supernatants were collected and IL-8, IL-6, and RANTES levels were 

measured by ELISA, as outlined below. For cytokine measurements from human 

colonic tissue, muscle-stripped resected tissues were mounted in Ussing chambers, 

as described above. Tissues were pre-treated bilaterally with UDCA (250 M; 30 

min), stimulated with LPS (apical 100 nM), and IL-8 release into the basolateral 

bathing solution was measured after 6 h. Tissue viability was assessed by 

monitoring TER over time (Zheng , 2008). 

 

2.16.1. ELISA protocol for cytokine level measurement  

ELISA plates were pre-coated with capture antibody (50 L per well) by incubating at 

RT overnight. The capture antibody was then aspirated and the plate was washed (x 

3) with wash buffer (4L wash buffer: 4L distilled H2O, 400 mL 10X PBS, 2 mL 0.05% 

(v/v) PBS Tween) The plate was then blocked using reagent diluent (150 L/well) 

(Reagent Diluent composition: 1% (w/v) BSA in sterile PBS) for 1 h at RT followed by 

aspiration and washing (x 3). Serial dilutions of cytokine standards were prepared. 

Standards and samples were added to the plate (50 L) and incubated for 2 h at RT. 

This was followed by aspiration and washing (x 3). Streptavidin- HRP (50 L/ well) 

was then added and the foil-covered plate was incubated with shaking for 20 min at 

RT. Following further aspiration and washing (x 3), substrate solution was added (50 

L/ well) and the foil-covered plate was incubated with shaking for a further 20 min at 

RT. To stop the reaction, 50 L of stop solution (H2SO4) was added to each well and 

the plate was read immediately at 405 nm.  

 

2.17. Statistical Analysis:  

Data were graphically expressed as mean ± SEM for a series of n experiments. 

Student’s t-tests were used to compare paired data. One-way analysis of variance 

(ANOVA) with the Student Newman-Keul’s post–test was used when 3 or more 

groups of data were being compared. p values < 0.05 were deemed to be statistically 

significant. All concentration response data is expressed as log concentration and 

were normalised prior to statistical analysis. Non-linear regression was undertaken 

and EC50’s were calculated. Graph Pad Prism, SPSS and Sigma plot software were 

used. 
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3.1 Introduction 

3.1.1 Regulation of Intestinal Fluid Transport  

As discussed, the ability of the intestine to appropriately regulate fluid transport is 

vitally important. The balance between absorption and secretion is highly dynamic 

and is tightly regulated by a vast array of neurotransmitters, immunological 

mediators, and blood-borne factors, such as hormones. These mediators typically 

act on receptors expressed on, or within, the epithelial cells. Luminal factors, such as 

bile acids, bacterial toxins, and digestive by-products, such as butyrate and other 

metabolites, can also profoundly influence epithelial fluid transport in the colon 

(Keely, 2008). The molecular pathways that regulate epithelial absorptive and 

secretory processes are described in detail in Chapter 1.  

 

3.1.2 Intestinal Disorders of Fluid Transport  

Many intestinal disorders exist can disrupt the finely-tuned balance between 

absorption and secretion leading to the clinical manifestation of diarrhoea. Diarrhoeal 

disease is prevalent in the developed world and is a principal feature of many 

intestinal disorders, including inflammatory bowel disease, infectious diseases, and 

digestive disorders, such as coeliac disease and lactose intolerance, and irritable 

bowel syndrome. Diarrhoea can also be common side effect of many drug 

treatments, particularly chemotherapeutics. A number of different classifications of 

diarrhoeal disease exist based upon aetiology. These include malabsorptive 

conditions such as coeliac disease, secretory diarrhoea such as that which occurs in 

bile acid malabsorption, motility disorders, and infectious or inflammatory diarrhoea. 

In many conditions, including IBD, some of these aetiologies overlap. Despite major 

advances in the understanding and treatment of many intestinal diseases, diarrhoea 

remains a leading cause of global child deaths and a potentially important cause of 

lifelong morbidity. 

 

3.1.3 Bile Acids as regulators of Fluid transport in the Intestine  

BAs have long been recognised as important regulators of epithelial fluid and 

electrolyte transport. The primary BAs, cholic acid (CA) and chenodeoxycholic acid 

(CDCA) are synthesised in the liver. They are then stored in their conjugated forms 

in the gallbladder and are released in the duodenum upon ingestion of food. As they 
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pass through the small intestine, BAs perform their classical functions in facilitating 

digestion and absorption of lipids and are reabsorbed in the terminal ileum to be 

recycled back to the liver. Normally, this enterohepatic circulation of BAs is extremely 

efficient with < 5% of circulating BAs entering the colon after each cycle. Here, they 

are metabolised by the resident enteric bacteria through deconjugation, 

dehydroxylation and epimerisation to yield secondary BAs. CA is metabolised to 

DCA, which is the predominant human colonic BA, while CDCA is metabolised 

predominantly to ursodeoxycholic acid (UDCA), (Figure 3.1). UDCA is subsequently 

rapidly metabolized to LCA, and is therefore not present in large quantities in the 

human colon (Mekjian, 1971, Gordon, 1979).  

 

 

 

Figure 3.1:  Metabolism of bile acids in the colon. The primary BA, cholic acid (CA), is 

metabolised by the enteric flora to deoxycholic acid (DCA), the predominant faecal BA in humans. 
Chenodeoxycholic acid (CDCA) is epimerised to ursodeoxycholic acid (UDCA), which subsequently 
undergoes dehydroxylation to lithocholic acid (LCA). 

 

Studies from this laboratory have recently shown that, when present at physiological 

concentrations the most common colonic BA, DCA, exerts anti-secretory actions on 

the colonic epithelium, an effect that has been proposed to promote normal colonic 

absorptive function (Keating, 2009). However, in conditions of BA malabsorption, 

increased levels of BAs, in particular DCA and CDCA, are present in the colon, 

where they are well-known to promote fluid and electrolyte secretion (Mekjian, 1971). 

 

CA CDCA 

DCA 

UDCA 

LCA 
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The effects of these pro-secretory BAs have been extensively investigated in a 

variety of species and cell culture models. While there are considerable interspecies 

variations in the actions of BAs, it is clear that in humans, most BAs promote 

secretion only when they are present at pathophysiological concentrations. It is also 

apparent that strict structure-activity relationships also exist for the pro-secretory 

actions of BAs, with only dihydroxy BAs being effective. However, UDCA appears to 

be an exception to this rule (Keely, 2007). 

 

3.1.4 UDCA effects on Colonic Secretion  

UDCA is already a well-studied therapeutic agent in its own right. It is primarily used 

in cholestatic liver disease and has been shown to have choleretic and 

cytoprotective effects on hepatocytes (Lindor, 1994, Tsagarakis , 2010). In both liver 

and colonic cell lines, it has been shown to have anti-apoptotic actions (Serfaty, 

2010). However, new data emerging on potential detrimental effects of high-dose 

UDCA in patients with primary sclerosing cholangitis serves to further illustrate the 

need for a better understanding of the complex actions of this widely used compound 

(Lindor, 1994, Csutora, 2006, Sinakos, 2010).  

 

UDCA is formed naturally in human colon by bacterial-induced epimerisation of the 

7-OH group of CDCA. UDCA is subsequently rapidly metabolized to LCA, and is 

therefore not normally present in large quantities in the human colon. Previous 

studies from this laboratory have shown that, unlike other dihydroxy BAs, UDCA is 

devoid of pro-secretory activity when applied to isolated colonic epithelial cells in 

vitro (Keely, 2007). This supports previous observations that, unlike its parent 

compound CDCA, UDCA does not stimulate secretory responses across voltage-

clamped sections of guinea pig colon in Ussing chambers (Keely, 2007). However, to 

date a thorough study of the actions of UDCA, or its metabolite LCA, on colonic 

epithelial secretory function has not been carried out. 

 

 

 

 



92 

 

3.2 Aims: 

In these studies, we aimed to further investigate the role of UDCA in regulation of 

colonic epithelial fluid and electrolyte transport. In particular, we aimed to: 

 

i) Investigate effects of UDCA on the capacity of epithelial cells to evoke secretory 

responses. 

 

ii) Investigate the molecular mechanisms underlying UDCA effects on intestinal 

secretion. 

 

iii) Conduct translational studies to determine the potential for targeting UDCA for 

treatment of diarrhoea. 

 

 

3.3 Results  

3.3.1 UDCA is predominantly anti-secretory in vitro 

In contrast to its parent BA, CDCA, which has been shown previously to be pro-

secretory (Keely, 2007), addition of UDCA at concentrations up to 1 mM did not alter 

basal Isc across voltage clamped T84 cell monolayers (Figure 3.2). At a concentration 

of 500 M, UDCA induced a mean Isc response of 4.8 ± 0.5 A/cm2 (n = 6), 

compared to 40.2 ± 2.7 A/cm2 (n = 6) upon CDCA (500 M) treatment.  

 

However, we found that pre-treatment of the cell monolayers with UDCA (500 M) 

did cause a significant attenuation in subsequent responses to the prototypical 

agonists of Ca2+- and cAMP- induced Cl- secretion, carbachol (CCh; 100 M) and 

forskolin (FSK; 10M),  to 18.9 ± 3.8% and 40.2 ± 7.4% of controls, respectively (n = 

18, Figure 3.3). 
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Figure 3.3: UDCA attenuates agonist induced Cl- secretion across T84 cells 
monolayers. T84 cell monolayers grown on permeable supports were mounted in Ussing 

chambers for measurements of Cl
-
 secretion. After a 15 min equilibration period, cells were 

treated with UDCA (500 µM; bilaterally) for a further 15 min. Cells were then stimulated 

sequentially with CCh (100 µM) and FSK (10 µM) and Isc responses were recorded (n = 18).   
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Figure 3.2: UDCA does not alter basal Isc across T84 cells monolayers. 
Monolayers of T84 cells grown on permeable supports were mounted in Ussing chambers for 
measurements of Cl

-
 secretion. After a 15 min equilibration period, cells were treated with 

varying concentrations of UDCA (50 M–1 mM; n = 6) or CDCA (50 M–1 mM) and Isc was 
measured **p < 0.01; ***p < 0.001. 
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The effects of UDCA were concentration dependent, with anti-secretory actions 

being apparent at 50 M (Figure 3.4, Panel A) and with an IC50 of approximately 200 

µM Figure 3.4, Panel B). Furthermore, UDCA-induced inhibition of Cl- secretion 

occurred very rapidly, with responses to CCh being inhibited within 1 min after 

treatment. Interestingly, anti-secretory effects of UDCA on cAMP-dependent 

secretion were somewhat slower in onset, becoming apparent only within 15–30 

mins after treatment (Figure 3.5).  

 

In further characterising UDCA effects on T84 cell monolayers, it was determined that 

there was no evidence of cellular toxicity. In experiments assessing the effects of 

UDCA treatment on conductance across confluent T84 cell monolayers, it was found 

that UDCA (50 µM–1 mM; 24 h) had no significant effect, even at the highest 

concentration tested (n = 6; Figure 3.6).   

 

Furthermore, experiments were carried out in order to determine if the anti-secretory 

effects of UDCA were reversible. In these experiments, T84 monolayers were pre-

treated with UDCA (250 M; 15 min), washed in serum-free medium to remove the 

bile acid, and then incubated in fresh serum-free medium. Isc responses to CCh or 

FSK were measured at various time points after the washout period. We found that 

the anti-secretory effects of UDCA were reversible, with its effects on CCh-induced 

responses being no longer apparent 120 min after washout (Panel A, Figure 3.7); 

while its effects on FSK-induced responses were no longer apparent 60 min after 

washout (Panel B, Figure 3.7). 
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Figure 3.4: Anti-secretory effects of UDCA in T84 cell monolayers are 
concentration-dependent A) T84 cell monolayers were mounted in Ussing 

chambers for measurements of Cl
-
 secretion. After a 15 min equilibration period, cells 

were exposed to UDCA at differing concentrations (50 M–1 mM; 15 min) and Isc 
responses to CCh (100 µM) and FSK (10 µM) were measured. Results were normalised 
and expressed as a % of control responses to CCh or FSK. Panel B shows log [UDCA] 

(50 M–1 mM additions; 15 min; bilateral). Data were normalised and expressed as a % 
of control responses to CCh and were plotted as a linear graph for calculation of the IC50 

which is 204 M (n = 6–18, *** p < 0.001 compared to control responses to CCh, 
###

 p < 
0.001 compared to control responses to FSK). 
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Figure 3.5: Time course of anti-secretory effects of UDCA in T84 cell monolayers. 
T84 cell monolayers were mounted in Ussing chambers for measurements of Cl

-
 secretion.  After a 15 min 

equilibration period, UDCA (500 M; bilateral) or control (PBS) was added for various time intervals (1–60 

min) before measuring secretory responses to CCh (100 M) and FSK (10 M). Results were normalised 
and expressed as a % of control responses to CCh or FSK (n = 4–10, *** p < 0.001 compared to control 
responses to CCh or FSK). 
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Figure 3.6: UDCA does not significantly alter conductance. T84 cell monolayers were 

mounted in Ussing chambers, allowed to equilibrate and treated with varying concentrations of UDCA 

(50-1000 M; 15 min). Trans-epithelial resistance was measured and conductance calculated (mS.cm
2
) 

(n = 18).  
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Figure 3.7: Anti-secretory effects of UDCA in T84 cells are reversible. T84 cell 

monolayers were pre-treated with UDCA (250 M; bilateral; 15 min). Cells were then washed in 
serum-free medium and mounted in Ussing chambers for measurements of Cl

-
 secretion. Responses 

to A) CCh (100 M) and B) FSK (10 m) in control or UDCA-pre-treated cells were measured at 
various time points after washout. Results were normalised and expressed as % of control responses 
to CCh or FSK (n = 9, * p < 0.05, ** p < 0.01). 
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Having demonstrated anti-secretory actions of UDCA on the prototypical Ca2+ and 

cAMP-dependent agonists, CCh and FSK, we next investigated the effects on 

secretory responses induced by naturally-occurring bacterial toxins normally 

associated with diarrhoea. Cholera toxin is a potent agonist of colonic Cl- secretion 

which acts by stimulating adenylate cyclase and inducing production of cAMP (Van 

Heyningen, 1976). We found that UDCA treatment (500 M; 15 min; bilateral) 

significantly attenuated Isc responses to cholera toxin (0.1 g/ mL; apical) to 52.1 ± 

4.8% of those in control cells (n = 5, p < 0.01; Figure 3.8, Panel A). 

 

Heat stable E. coli enterotoxin (STa) is also known to promote Cl- secretion, but in 

this case its effects are mediated through via activation of guanylate cyclase and 

stimulation of cGMP accumulation (Albano, 2005). We found that, similar to its 

effects on cholera toxin, UDCA significantly attenuated STa (100 nM; apical)-induced 

Isc responses to 32.3 ± 12.0% of those in control cells (n = 4, p < 0.05; Figure 3.8, 

Panel B). 

 

Both electrolyte absorption and secretion play important and reciprocal roles in 

maintaining fluid homeostasis in the colon. Therefore we next examined whether 

UDCA might also have the capacity to alter intestinal absorptive function. In order to 

test this, amiloride-sensitive Na+ channel (ENaC) activity was induced in T84 cells 

using a previously validated method that involves pre-treatment of the cells with 4-

phenylbutyrate (4-PBA; 5 mM; 24 h) (Iordache, 2007). Treatment of the cells in this 

way induced a basal Isc of 7.6 ± 0.9 µA/ cm2, which was completely abolished by 

apical treatment with amiloride (10 µM). UDCA (500 M; 15 min; bilateral) did not 

significantly alter amiloride-sensitive Na+ currents in this model (n = 8, Figure 3.9). 
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Figure 3.8: UDCA significantly attenuates cholera toxin-induced and 
heat stable E. coli enterotoxin-induced secretory responses across 
T84 colonic epithelial cells. T84 cell monolayers were mounted in Ussing 

chambers for measurements of Cl
-
 secretion. After a 15 min equilibration period, UDCA 

(500 M; 15 min; bilateral) was added before measuring secretory responses to (A) 
cholera toxin (100 nM; apical) and (B) STa (100 nM; apical). Results were normalised 
and expressed as a % of control responses to cholera toxin or STa (n = 5, * p < 0.05, ** p 
< 0.01). 
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Figure 3.9: UDCA does not alter amiloride-sensitive Na+ currents in 
cultured epithelial cells. Monolayers of T84 cells were pre-treated with 4-

phenylbutyrate (4-PBA; 5mM) for 24 h to induce amiloride-sensitive Na
+
 channel (ENac) 

activity, as previously described (Iordache, 2007). Cells were then mounted in Ussing 

chambers for measurements of Isc and were sequentially treated with UDCA (500 M; 
bilateral) and amiloride (10 µM; apical; n = 8). 
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3.3.2 UDCA potentiates secretory function in vivo. 

It has been previously determined that concentrations of UDCA in human colonic 

fluid are normally in the region of 10 M (Mekjian, 1971, Edenharder, 1981, Gordon , 

1979). However, levels of the BA in patients on UDCA therapy are likely to be much 

higher. Clinically, UDCA therapy can cause diarrhoea as a side effect (Caspary, 

1980). Here, however we, demonstrate that it has an anti-secretory effect when 

directly applied to colonic epithelium. To further investigate this paradox, we 

analysed the effects of UDCA on colonic secretory function after administration to 

mice. Male C57B6 mice were administered UDCA (25 mg/ kg in 0.1 ml PBS (w/v)) by 

intra-peritoneal (IP) injection and after 4 h, agonist-induced secretory responses 

across ex vivo colonic tissue were measured in Ussing chambers. Interestingly, in 

contrast to its anti-secretory actions in cultured colonic epithelial cells, in UDCA-pre-

treated mice responses to CCh were potentiated to 284 ± 42% of those in control 

mice while FSK–induced responses were potentiated to 195 ± 50% of controls  (n = 

4, p < 0.05; Figure 3.10). Furthermore, baseline trans-mucosal conductance in mice 

treated with UDCA was also increased to 14.7 ±  2.0 mS.cm2 compared to 8.3 ± 0.9 

mS.cm2 in control mice (n = 5, p < 0.05). Baseline Isc in UDCA treated mice was also 

increased to 41± 5.6 compared with 23.6 ± 0.6 A/ cm2 in controls (n = 5, p < 0.05). 

 

We hypothesised that such different effects of UDCA in vitro and in vivo may be due 

to its conversion by colonic bacteria to LCA (Fromm, 1983, Edenharder , 1981). To 

test this, in collaboration with Professor Aldo Roda (University of Bologna), we 

analysed caecal BA levels in control and UDCA-treated mice. Using HPLC mass 

spectrometry, we found that the total BA concentration in the caecal contents was 

206 nmol /g in control mice and 215 nmol/ g in UDCA-treated mice, with no 

significant difference between the groups. However, a significant difference was 

noted in the qualitative composition of individual BAs. LCA concentrations in control 

mice were a mean of 3.4 nmol/ g (4 % of total BAs), compared to 9.7 nmol /g (16% 

of total BA) in UDCA-treated mice. Thus, caecal LCA levels in UDCA-treated mice 

were approximately 4-fold higher than those of controls (n = 4, p < 0.001;  

Figure 3.11), supporting our hypothesis. Figure 3.12 shows a more complete 

analysis of the % composition of individual BAs in control and UDCA-treated groups. 
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Figure 3.10: UDCA administration in vivo potentiates agonist-induced Cl- 

secretory responses across ex vivo colonic tissues. Male C57B6 mice were 

intraperitoneally injected with either UDCA (25 mg/ kg) or vehicle control (PBS), and after 4 h were 
sacrificed. Muscle-stripped colonic mucosa was then mounted in Ussing chambers for measurements 

of Isc. After a 30 min stabilisation period, tissues were sequentially treated with CCh and FSK and Isc 
responses were measured. The inset shows CCh and FSK-induced changes in Isc in UDCA-pre-
treated cells as a % of control responses (n = 5, * p < 0.05). 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: UDCA is metabolised to LCA in vivo. Male C57B6 mice were 

intraperitoneally injected with either UDCA (25 mg/ kg) or vehicle control (PBS), and after 4 h were 
sacrificed. The caecum was removed and LCA levels in the caecal contents were measured by HPLC 
mass spectrometry. Data are expressed as % of total BA pool (n = 4, *** p < 0.001) 
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Figure 3.12: Composition of the bile acid pool in the caecal content of control 
and UDCA-treated mice. Male C57B6 mice were intra-peritoneally injected with either UDCA 

(25 mg/ kg) or vehicle control (PBS), and after 4 h were sacrificed. Bile acid levels in the caecal 
contents of UDCA-treated and control mice were measured by HPLC mass spectrometry. Data are 
expressed as % of total BA pool. Endogenous- (OH) is an abbreviation for endogenous dihydroxy 
BAs the majority component of which is UDCA and excludes other di-(OH) BAs listed (i.e. DCA).  

 

3.3.3 LCA potentiates agonist-induced secretory responses across human 

colonic epithelium 

Next, we examined the effects of LCA on agonist-induced secretory responses 

across cultured colonic epithelial cells. Similar to UDCA, pre-treatment of T84 cells 

with LCA (50–250 µM; 15 min) had no effect on basal Isc. However, in contrast to 

UDCA, LCA treatment significantly potentiated subsequent responses to CCh (n = 9, 

p < 0.001;  

Figure 3.13, Panel A). LCA also caused increase in trans-epithelial conductance of 

1.5 ± 0.3 mS.cm2 compared to controls (n = 9, p < 0.05). Similar effects of LCA were 

found in human colonic mucosa mounted in Ussing chambers. LCA (50 M) 

enhanced CCh-induced Isc responses in tissues to 130.3 ± 9.9% of controls (n = 5, p 

< 0.05;  
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Figure 3.13, Panel B). Increase in conductance of 4.5 ± 1.3 mS.cm2 was also noted, 

but was not statistically significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: LCA potentiates agonist-induced Cl- secretion across human 
colonic epithelium. A) T84 cell monolayers were mounted in Ussing chambers for measurements 

of Cl
-
 secretion. After a 15 min equilibration period, cells were treated with LCA (50 – 250 M; 15 min) 

before measuring secretory responses to CCh (n = 9). In LCA-pre-treated cells (250 M; 15 min), 
responses to CCh were enhanced to 143 ± 10.3% of those in control cells. B) Muscle-stripped 

sections of human colonic mucosa were mounted in Ussing chambers and treated with LCA (50 M; 
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15 min). LCA enhanced Isc responses to CCh to 130.3 ± 9.9% of those in controls (n = 5). Data are 
expressed as a % of control responses to CCh. *p < 0.05; ***p < 0.001). 

 

3.3.4 6-MUDCA, a dehydroxylation-resistant analogue of UDCA, inhibits Cl- 

secretion both in vitro and in vivo. 

To further investigate our hypothesis that metabolism to LCA underlies the lack of 

anti-secretory actions of UDCA in vivo, we employed a non-metabolisable analogue 

of the BA, provided to us by Prof. Aldo Roda (University of Bologna). It has been 

previously shown that 6-MUDCA, unlike UDCA, cannot be dehydroxylated to LCA 

by colonic bacteria in vitro (Roda, 1994). To confirm this in vivo, we examined caecal 

LCA levels in mice treated with 6-MUDCA and found them to be similar to those in 

control PBS-treated mice (Figure 3.14). 

 

We next tested whether 6-MUDCA shared the same anti-secretory actions as its 

parent BA, UDCA, or whether the addition of a methyl group at the 6-OH position 

altered its biological activity. However, we found that apical pre-treatment of T84 cells 

with 6-MUDCA (500 M; 15 min) resulted in a similar attenuation of agonist-

induced secretory responses to that evoked by UDCA. Treatment with 6-MUDCA 

(500 M; 15 min) attenuated CCh- and FSK-induced responses to 37.1 ± 4.3% and 

48.8 ± 9.1% of those in control cells, respectively (n = 7; Figure 3.15).  

 

Having shown that 6-MUDCA is not metabolised to LCA but retains the anti-

secretory activity of UDCA, we next went on to investigate its effects on agonist-

induced secretory responses across ex vivo colonic tissue from mice. Mice were 

administered 6 MUDCA (25 mg/ kg) by intra-peritoneal injection, and after 4 h, 

colonic secretory responses were measured ex vivo. Interestingly, we found that, in 

contrast to the potentiating effects of UDCA on agonist-induced secretory responses, 

6 MUDCA inhibited CCh- and FSK-induced responses to 52.5 ± 14.7% and 36.69 

± 8.51 % of those in control mice, respectively (Figure 3.16).  

Furthermore, it was interesting to note that, in contrast to mice treated with UDCA, in 

those treated with 6-MUDCA, tissue conductances were unchanged compared to 

controls. 6-MUDCA was also without effect on basal Isc. Next, to determine the 

specificity of 6MUDCA in regulation of epithelial transport processes in vivo, we 
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examined its actions on Na+-dependent glucose transport, an important pathway for 

fluid absorption in the small intestine. Mice were treated with 6-MUDCA (25mg/ kg; 

IP), or sterile PBS for controls. After 4 h, un-stripped sections of proximal jejunum 

were mounted in Ussing chambers. Na+-dependent glucose transport was measured 

as changes in phlorizdin-sensitive Isc induced by addition of 10 mM glucose to the 

apical reservoir (Tavakkolizadeh, 2001). In these experiments, we found that 

glucose-induced changes in Isc were similar in control animals (36.3 ± 15.1 Acm2) 

to those in -MUDCA pre-treated mice (37.1 ± 10.8Acm2; n = 7, Figure 3.16). 

Thus, 6-MUDCA does not appear to alter jejunal Na+-dependent glucose transport 

in mice.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: 6MUDCA is a stable analogue of UDCA and is not metabolised 
to LCA in vivo. Male C57B6 mice were intra-peritoneally injected with either 6-MUDCA (25 

mg/kg) or vehicle control (PBS), and after 4 h were sacrificed. The caecum was removed and LCA 
levels in the caecal contents were measured by HPLC mass spectrometry. Data are expressed as % 
of total BA pool (n = 4) 
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Figure 3.15: 6-MUDCA has equivalent anti-secretory actions to UDCA in vitro. 
T84 cell monolayers were mounted in Ussing chambers for measurements of Cl

-
 secretion. After a 15 

min equilibration period, cells were pre-treated with 6-MUDCA (100 M, 500 M; 15 min, apically) or 

UDCA (100 M, 500 M; 15 min, apically) and secretory responses to CCh (100 M) and FSK (10 

M) were measured. Data are expressed as a % of control responses to CCh or FSK (n = 7, * p < 
0.05, ** p < 0.01).  

 

Table 3.1: Conductance (G) and Isc across ex vivo colonic tissues from mice 

treated with UDCA or 6MUDCA (n = 8; * p < 0.05) 

 

Treatment(M) Isc(A/cm2) G(mS.cm2) 

Control 62.1 ± 4.0 7.9 ± 0.5 

UDCA 95.4 ± 22.7 14.7 ±  2.1 * 

6-MUDCA 64.4 ± 14.9 8.1 ± 0.61 

 

 

Control 100 500 100 500

0

50

100

CCh

FSK

   UDCA   6-MUDCA

*

**

*

**
##

 #

 #

%
c

o
n

tr
o

l 
I s

c
 r

e
s

p
o

n
s

e



108 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: In vivo administration of 6-MUDCA inhibits colonic secretory 
function. Mice were intra-peritoneally injected with 6MUDCA (25 mg/ kg) or vehicle control (PBS) 

and then sacrificed after 4 h. Muscle-stripped colonic mucosa was mounted in Ussing chambers and 

changes in Isc in response to CCh (100 M) and FSK (10 M were measured. Agonist induced 

responses were significantly reduced in animals pre-treated with 6- MUDCA compared to controls. 
The trace shows  the changes in Isc over time while the inset shows  data  expressed  as a % of 
control responses to CCh or FSK (n = 5; ** p < 0.01, *** p < 0.001). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: 6-MUDCA does not alter SGLT activity across mouse jejunum. 

Male C57B6 mice were intra-peritoneally injected with 6-MUDCA (25 mg/ kg) or vehicle control 
(PBS) and after 4 h were sacrificed and the proximal jejunum was removed and mounted in Ussing 
chambers. After an equilibration period of 15 min, changes in Isc in response to addition of glucose (25 
mM, apically) were measured (n = 7) 
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3.3.5 Sidedness of the anti-secretory effects of UDCA 

To further characterise the anti-secretory effects of UDCA, we next examined if there 

is a sidedness, or polarity, to its actions. These experiments were carried out by 

assessing the effects of UDCA, or its membrane-impermeable taurine conjugate, 

TUDCA, when added apically or basolaterally to T84 cell monolayers mounted in 

Ussing chambers. As shown in Figure 3.17, Panel A, these studies revealed that 

attenuation of CCh-induced responses by UDCA was most prominent when it was 

added bilaterally (15.8 ± 4.0% of control response, n = 13, p < 0.001) or basolaterally 

(29.8 ± 5.2% of controls, n = 13, p < 0.001). Apical UDCA addition also inhibited 

CCh-induced responses but to a lesser extent (77.0 ± 9.4% of controls, n = 13, p < 

0.05). UDCA, and other unconjugated C24 BAs, are membrane-permeable and thus 

can be absorbed passively from the intestinal lumen (Hofmann, 2008). However, 

TUDCA is more hydrophilic and cannot permeate cell membranes, unless a 

transporter is present. Basolateral and bilateral addition of TUDCA (500 M) 

attenuated CCh-induced Cl- secretion to a similar degree as UDCA with bilateral 

addition, reducing responses to 39 ± 7.1 % (n = 10, p < 0.01) of controls and 

basolateral addition to 30.9 ± 7.8% of controls (n = 10, p < 0.001). In contrast, apical 

addition of TUDCA did not significantly alter CCh-induced secretory responses, 

which were 108 ± 11.9% of those in control cells (n = 10). Both UDCA (500 M) and 

TUDCA were less effective in inhibition of FSK and the pattern was similar (Figure 

3.17, panel B).  
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Figure 3.17: Sidedness of UDCA effects on agonist induced secretory responses 
in T84 cells. T84 cell monolayers were mounted in Ussing chambers for measurements of Cl

-
 

secretion. After a 15 min equilibration period, cells were treated with UDCA (500 M) or TUDCA (500 

M), added bilaterally, apically or basolaterally and Isc responses to CCh (100 M) and FSK (10 M) 
were measured. Apical addition of TUDCA did not inhibit responses significantly in contrast to UDCA, 
suggesting that UDCA enters the cell to induce attenuation of secretion. Data are expressed as % of 
control responses (n = 10, * p< 0.05, ** p < 0.01, *** p < 0.001). 
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3.3.6 Distribution of FM191, a fluorescent derivative of UDCA, in T84 cell 

In further experiments in collaboration with Dr. John Gilmer (Trinity College Dublin), 

we sought to further examine how UDCA may act on epithelial cells. We employed a 

novel fluorescent derivative of UDCA, known as FM191, in order to directly visualise  

localisation of the bile acid after treatment of T84 monolayers. FM191 is a synthetic 

derivative of UDCA containing a fluorophore attached to the side chain. The 

fluorescent moiety consists of a carbon ring with 2 amide bonds (See Panel A, 

Figure 3.18) and the compound emits fluorescence between 530 and 540 nm. The 

absorption maximum of the compound was found to be between 460 and 470 nm. 

Firstly, the biological efficacy of FM191 was assessed in voltage-clamped T84 cell 

monolayers. In these experiments, FM191 (apical, 250 M) was found to exert 

similar anti-secretory effects to UDCA (apical, 500M) (Figure 3.18, Panel B). Next, 

T84 cell monolayers were treated with FM191 (250 M, 15 min), and were then fixed 

and stained for confocal microscopy. Nuclear staining was performed with DAPI. 

Staining was also performed for the cytoskeletal protein actin. We found that FM191 

appears to mainly associate with the membrane, with a small amount distributed in 

cytoplasm (Figure 3.20). 
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Figure 3.18: FM191 exerts similar anti-secretory actions to UDCA. A) The structure 

of FM191. B) T84 cell monolayers were mounted in Ussing chambers for measurements of Cl
-
 

secretion. After a 15 min equilibration period, cells were treated FM191 (250 M; apical) or UDCA 

(500 M; apical) for 15 min, after which Isc responses to CCh (100 M) were measured. Data are 
expressed as % of control responses to CCh (n = 6; *** p < 0.001). 

 

 

Control FM191 UDCA

0

50

100

 ***

***

%
 C

o
n

tr
o

l 
re

s
p

o
n

s
e

(C
C

h
)

A 

B 



113 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20: Confocal imaging following apical addition of FM191 A) T84 cells 

were grown to confluency on transparent inserts and treated apically with FM191 (250 M; 15 min), 
after which they were prepared for confocal microscopy. This is a representative confocal image.  
Panel I shows nuclear staining with DAPI (blue), panel II shows staining for the cytoskeletal 
protein, actin (red), and panel III shows the fluorescent UDCA derivative, FM191 (green). Note, that 
the derivative is primarily associated with the cell membrane. Panel IV is a composite image 

showing all 3 stains (n = 6). B) Z- series stack images were captured of 0.5 m- thick optical 
sections encompassing the entire T84 cell monolayer. This is a representative cross-sectional 
image which demonstrates that FM191 (green) is present both apically and basolaterally within the 
monolayer, suggesting that it is capable of diffusing into the cell in order to induce its effects on 
secretion. Panel I shows the apical side of the cells at the top of the image in panel II the apical 
aspect is to the right and III shows the image from above.  
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3.3.6 UDCA inhibits Na+/ K+ ATPase pump activity and basolateral K+ channel 

currents in T84 cells. 

Having shown that UDCA, and its analogues, exert anti-secretory actions on colonic 

epithelial cells, we next set out to investigate the potential mechanisms involved. 

Since the effects of UDCA occur very rapidly (i.e. within seconds to minutes), we 

hypothesised that it is likely to act either by modulating transport protein activity or 

through altered expression of transport proteins at the cell surface. 

 

First, we examined the effects of UDCA on the activity of key transport proteins that 

comprise the Cl- secretory pathway, i.e., apical Cl- channels, basolateral K+ channels, 

and Na+/K+ ATPase pumps. Experimental conditions employed to isolate the 

activities of each of these transport proteins are described in Chapter 2. In these 

experiments, UDCA (500 M) was found to inhibit CCh (100 M)-stimulated Na+/K+ 

ATPase pump activity to 16.2 ± 3.9% of that in control cells (Figure 3.19; n = 6, p < 

0.001). Similarly, under conditions to isolate basolateral K+ conductances, UDCA 

pre-treatment attenuated Isc responses to 13.7 ± 4.1% of those in control cells 

(Figure 3.20; n = 7, p < 0.001). However, we found that UDCA pre-treatment did not 

significantly alter apical Cl- conductances (Figure 3.21, n = 8).  
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Figure 3.19: UDCA inhibits Na+/K+ ATPase pump activity in T84 cells. T84 cell 

monolayers were mounted in Ussing chambers in low Na
+
 Ringers solution and after a 15 min 

equilibration period, apical membranes were permeabilised with amphotericin B (50 M). After 15 min, 

UDCA (500 M, bilateral) was added and after a further 15 min, Isc responses to CCh (100 M) were 
measured. Under these conditions (i.e., in the absence of ionic gradients across the permeabilised 
monolayer), changes in Isc are reflective of electrogenic transport through the Na

+
/K

+
-ATPase pump. 

The inset shows maximal changes in Isc in UDCA-treated cells expressed as a % of control cells (n = 
6, *** p < 0.001).  
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Figure 3.20: UDCA inhibits basolateral K+ channel currents in T84 cells. T84 cell 

monolayers were apically permeabilized with amphotericin B (50 M). A K
+
 gradient (123.2–5.2 mM) 

was created across the basolateral membrane by addition of a high K
+
 (123.2 mM) Ringer’s solution, 

in which NaCl is substituted with K
+
 - gluconate, to the apical reservoir. Ouabain (100 M) was added 

basolaterally to inhibit Na
+
/K

+
-ATPase pump activity. Under these conditions, changes in Isc are 

reflective of changes in basolateral K
+
 conductance (IK). The inset shows maximal changes in IK in 

UDCA-treated cells expressed as a % of control cells (In conditions, as described, to isolate 

basolateral K
+ 

 current, UDCA (500 M, 10 min, bilateral) attenuated Isc to 13.7 ± 4.1 (n = 7, *** p < 
0.001) of controls.  
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Figure 3.21: UDCA does not alter apical Cl- conductances. T84 cell monolayers were 

mounted in Ussing chambers and an apical to basolateral Cl
-
 gradient (119.8 – 4.8 mM) was 

established by replacing NaCl in the apical solution with equimolar Na-gluconate. Monolayers were 

basolaterally permeabilized by addition of nystatin (100 g/ mL), and after a 35 -min re-equilibration 

period, cells were stimulated with forskolin (FSK; 10 M). Under these conditions, changes in Isc 
reflect apical Cl

-
 currents (ICl). The inset shows maximal changes in ICl in UDCA-treated cells 

expressed as a % of control cells (n = 8). 

 

3.3.7 Effects of UDCA on cellular localisation of Na+/K+ ATPase pumps and 

KCNN4.  

Since UDCA inhibits the activity of Na+/K+ ATPase pumps and K+ channels, we next 

went on to determine if UDCA might be altering the cell surface expression of these 

proteins. Firstly, using an immunohistochemical approach, the effects of UDCA on 

localisation of these proteins was assessed in both T84 cells and isolated human 

colonic crypts. However, in these experiments we found no differences in the 

localisation of Na+/K+ ATPase  subunit in T84 cells, or KCNN4 in T84 cells or human 

colonic crypts, were apparent between UDCA pre-treated cells or crypts and 

untreated cells or crypts. Figure 3.24 shows representative stains for Na+/K+ ATPase 

 and KCNN4 from control and UDCA treated monolayers of T84 cells (Kelly, 2012) 

and Figure 3.25 shows image panels stained with actin/ DAPI and anti KCNN4 from 

UDCA treated and control isolated human colonic crypts (Control pre-treatment was 

with PBS). 

 UDCA 
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Figure 3.24:  UDCA does not alter localisation of the Na+/K+ ATPase- subunit 
or KCNN4 inT84 cells. T84 cells were grown to confluency on transparent filters. Cells were 

treated apically with UDCA (500 M, 15 min), after which localization of Na
+
/K

+
 ATPase- subunits 

and KCNN4 was investigated by confocal microscopy in two separate series of experiments. The 
image shows a 4 panel split planar image from control and UDCA-treated cells stained for Na

+
/K

+
 

ATPase- or KCNN4. There was no significant difference noted in localisation of either antibody (n= 
4-12). 
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Figure 3.23: UDCA does not affect KCNN4 localisation in human crypts. 
Human colonic crypts were isolated and treated with UDCA (500 M, 15 min). Crypts were then 
fixed and stained for confocal imaging. The image is representative of 3 similar experiments and 
shows a 4 panel split planar image from A) control and B) UDCA-treated colonic crypts. I Blue 
staining represents nuclear staining with DAPI II green staining represents KCNN4, III red 
represents the cytoskeletal protein actin and IV shows a composite image with all stains 
present.No significant difference was noted in localisation of KCNN4 after UDCA treatment in 
isolated human crypts (n = 3). 
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In further experiments surface expression of both the Na+/K+-ATPase pumps and 

KCNN4 in UDCA-treated T84 cell monolayers was determined quantitatively by cell 

surface biotinylation. This confirmed that there was no significant alteration in either 

the cellular or surface expression of Na+/K+-ATPase  subunits or KCNN4 after 

treatment with UDCA (Figure 3.24).   

 

 

Figure 3.24: UDCA does not alter cell surface expression of Na+/K+ ATPase 

or KCNN4. A) After treatment with UDCA (500 µM; 15 min), total cellular and basolateral surface 

expression of the Na
+
/K

+
-ATPase  subunit was analysed by western blotting or cell surface 

biotinylation, respectively. The bar chart represents densitometric analysis of 8 similar experiments. 

B) After treatment with UDCA (500 µM; 15 min) total cellular and basolateral surface expression of 

KCNN4 was analysed. The lower panel shows densitometric analysis of 3 similar experiments. 
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3.4 Discussion:  

Previously published studies from this, and other, groups have suggested that acute 

exposure to UDCA does not promote Cl- secretion across colonic epithelial cells 

(Keely, 2007). In this chapter, we confirm these previous findings, but more 

importantly, we go on to further demonstrate that UDCA exerts potent anti-secretory 

effects on agonist-induced secretory responses. Of note, we show that UDCA did not 

alter TER, suggesting the effects of the BA are not due to a loss of cell viability, but 

are rather due to specific actions on the colonic Cl- secretory pathway.  The anti-

secretory actions of UDCA are intriguing compared to other dihydroxy BAs, such as 

DCA and CDCA, which are known to be pro-secretory at pathophysiological 

concentrations and which are thought to cause diarrhoea in conditions of bile acid 

malabsorption (Hofmann, 2008). The studies described here also underline a 

marked chemical specificity which exists for BA-induced Cl- secretion and suggest 

that modification of BA structure by colonic bacteria is likely to significantly modulate 

their functional properties.  

 

Anti-secretory effects of UDCA are very rapid in onset, becoming apparent as early 

as 1 min after UDCA treatment. Such a rapid onset of action suggests that the 

effects of UDCA are mediated by post-transcriptional mechanisms, such as those 

involving membrane perturbations, modifications of key membrane transport 

proteins, or alterations in the generation of intracellular 2nd messengers. 

Interestingly, the effects of UDCA treatment on cAMP-induced secretory responses 

are slower in onset than its effects on Ca2+-mediated agonists, with significant effects 

only becoming apparent between 15–30 min after treatment. Such temporal 

differences in the effects of UDCA on Ca2+- and cAMP-dependent secretory 

responses suggest the involvement of multiple signalling pathways, and these issues 

are further explored in Chapter 4. 

 

When assessing the specific cellular compartments upon which UDCA acts, factors 

such as membrane permeability and diffusion capacity must be taken into account. It 

has been previously demonstrated that the most common mechanism by which 

unconjugated Bas enter into colonic epithelial cells is by passive diffusion (Hofmann, 

2008). Thus, unconjugated BAs can exert their effects either at the cell surface or in 
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the cytosol. In an effort to determine whether UDCA must enter colonic epithelial 

cells to exert its effects on Cl- secretion, we adopted a number of approaches. Initial 

sidedness studies revealed that UDCA has greater efficacy when added 

basolaterally. These data are interesting in light of previous studies that show that 3 

basolateral transporters, Na+-taurocholate co-transporting polypeptide (NTCP, 

SLC10A1), organic anion transporting polypeptide (OATP) 1B1 (OATP-C) and 

OATP1B3 (OATP8) mediate the uptake of UDCA, GUDCA, and TUDCA by human 

hepatocytes. Thus, a basolateral transporter may also mediate UDCA uptake in 

colonic epithelial cells. Previous work has noted an enhanced expression of the 

basolateral human multidrug resistance protein 3 (MRP3) in the presence of another 

BA, CDCA (Maeda, 2006, Inokuchi, 2001). To test this hypothesis, we employed the 

taurine conjugate of UDCA, TUDCA, which due to its increased hydrophobicity, 

cannot cross cell membranes unless a transport protein is present. These 

experiments showed that similar to UDCA, TUDCA inhibited agonist-induced 

secretory responses when added to the basolateral side of T84 cells. However, in 

contrast to UDCA, its effects on CCh were less notable when applied apically. It is 

worth noting that apical addition of UDCA is also less potent than basolateral 

addition.  Interestingly, responses to FSK were similar to those of UDCA apically. 

Thus, our studies support the idea that there is likely to be a transport protein for 

UDCA, and its conjugated derivatives, on the basolateral membrane and that apical 

entry of the BA occurs to a lesser extent, and by passive diffusion. This is supported 

by previous findings from this group which showed that basolateral UDCA entry into 

T84 cells is approximately 6-fold more efficient than apical entry (Keely, 2007). 

Interestingly, immune-histochemical studies after apical addition of a fluorescent 

UDCA analogue, FM191, showed preferential localisation of the compound to the 

cell membrane but also that there was diffusion into the cytosol. This supports the 

idea that apical UDCA can enter the cytosol and then subsequently acts on 

basolateral transport proteins to inhibit secretion. Finally, the semi-synthetic 

derivative of UDCA, 6-MUDCA, exerted similarly potent anti-secretory effects when 

added apically, suggesting that 6-methylation does not alter  the diffusion capacity of 

the compound negatively, as described previously (Roda, 1994).This similar 

permeability of 6-MUDCA across the apical membrane of colonic epithelia would be 
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favourable when considering the potential use of the compound as an orally-

administered therapeutic. 

 

In further experiments, possible mechanisms by which UDCA inhibits Cl- secretion 

across colonic epithelial cells were explored. We turned our attention to a number of 

downstream targets by investigating the effects of UDCA on the activities of specific 

transport proteins that comprise the Cl- secretory pathway. We first investigated the 

effects of UDCA on Na+/K+-ATPase pump activity using a well-established assay 

(Lam, 2003). In these experiments, we found that UDCA treatment attenuated 

Na+/K+-ATPase activity to a similar degree to that by which it inhibited agonist-

induced trans-epithelial Cl- secretory responses. However, in further experiments we 

found that UDCA did not alter cellular abundance of the Na+/K+-ATPase  subunit, 

suggesting that it does not alter pump expression. This is hardly surprising given the 

rapidity by which UDCA exerts its anti-secretory effects. Several studies suggest that 

Na+/K+-ATPase activity can also be regulated through altered trafficking of the  

subunit to the cell membrane (Chow, 1995, Bystriansky, 2007). However, when we 

examined localisation of the protein by confocal microscopy or cell surface 

biotinylation, we found this to be also unaltered by UDCA treatment. Thus, UDCA 

appears to rapidly inhibit Na+/K+-ATPase activity through a mechanism that does not 

involve its altered expression or cell surface localisation. Other possible mechanisms 

that could be involved include reductions in mitochondrial ATP production and 

availability (Papandreou, 2006), direct effects on the pump, or effects on regulatory 

proteins, such as FXYD proteins (Papandreou, 2006).  

 

By maintaining membrane hyperpolarisation, K+ efflux across the basolateral 

membrane is a rate-limiting step for Ca2+-dependent epithelial secretory responses 

(Barrett, 2000). We therefore examined whether UDCA exerts its anti-secretory 

actions through modulation of the Ca2+-dependent basolateral K+ channel 

conductance, KCNN4 (Flores, 2007). Employing a well-established technique for 

measuring basolateral K+ currents (Dawson, 1983), we found that, similar to its 

actions on trans-epithelial Cl− secretion, UDCA treatment also inhibited CCh-induced 

K+ currents. This suggests that UDCA limits Ca2+-dependent Cl− secretion by 

inhibiting K+ recycling through basolateral KCNN4 channels. Although there is little 
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information in the literature regarding regulation of K+ channels by UDCA, it is worth 

noting that previous work has shown that the pro-secretory BA, TDCA, activates 

Ca2+-dependent basolateral K+ channels, thereby providing the driving force for 

apical exit of Cl- (Moschetta, 2003). In further experiments, we employed confocal 

microscopy to determine whether UDCA inhibits K+ conductances by altering the 

localisation or abundance of KCNN4 in the basolateral membrane. However, we 

observed no apparent alterations in the localisation or abundance of KCNN4, 

suggesting UDCA acts by an alternative mechanism that regulates channel activity, 

rather than membrane expression. A possible mechanism could be indirect 

modulation of one or more of the basolateral K+ channels via activation of protein 

kinases and subsequent channel phosphorylation which could subsequently lead to 

reduced channel activity and thus reduction in Cl- secretion. In support of this 

suggested hypothesis,  previous work from our laboratory has shown that oestradiol, 

which has inhibitory effects on Cl- secretion, activates PKC  and PKACI, which in 

turn associate with the KCNQ1 channel resulting in its phosphorylation (O'Mahony, 

2007). It has also been observed that the PKC agonist phorbol ester may block 

basolateral K+ currents in T84 cells and reduced Cl– secretion (Reenstra, 1993).  

 

While the anti-secretory effects of UDCA demonstrated in these studies suggest that 

the BA may be useful as a new drug to treat diarrhoea, this idea is not borne out in 

clinical practice. In fact, when used in the clinic, UDCA is an exceptionally safe drug, 

with the only notable side effect being diarrhoea. Interestingly, in the current studies 

we found that, in contrast to its anti-secretory effects on cultured epithelial cells, 

administration of UDCA to mice in vivo, led to an enhancement of subsequent 

secretory responses across ex vivo colonic tissues. We hypothesised that the pro-

secretory effect of UDCA that occurs in vivo could be explained by the fact that the 

bile acid is rapidly dehydroxylated by enteric bacteria to yield LCA (Fromm, 1983). In 

support of this hypothesis, we found that there were significantly greater amounts of 

LCA in the caecal contents of UDCA-treated animals compared to controls. 

Furthermore, in direct contrast to the anti-secretory actions of UDCA, LCA enhanced 

agonist-induced secretory responses, both in cultured colonic epithelia and in 

resected human tissues. 
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In light of our findings that administration of UDCA to mice increases colonic LCA 

levels and enhances agonist-induced secretory responses, we hypothesised that a 

non-metabolisable analogue of UDCA might retain anti-secretory actions in vivo.  To 

test this hypothesis we employed 6-MUDCA, a dehydroxylation-resistant analogue 

of UDCA. In contrast to UDCA, 6-MUDCA is stable against 7-dehydroxylation when 

incubated with human stool in anaerobic conditions, suggesting the compound would 

not be metabolised in the colon (Roda, 1994).This was confirmed in our in vivo 

mouse studies where LCA levels in 6-MUDCA-treated animals were comparable to 

those in controls. Importantly, we also demonstrated that addition of a hydroxyl 

group to the 6-carbon position of UDCA did not alter its anti-secretory actions in vitro. 

Furthermore, we found that, in contrast to UDCA, 6-MUDCA exerts anti-secretory 

actions in vivo, supporting the idea that metabolism to LCA prevents the anti-

secretory activity of UDCA from being apparent in vivo. 

 

While our data suggest that stable analogues of UDCA may be useful for treatment 

of diarrhoeal diseases, it is widely accepted that, in health at least, absorption of fluid 

and electrolytes predominates throughout the intestine (Geibel, 2005). Thus, for 

appropriate fluid homeostasis to occur there must be reciprocal regulation of Cl- 

secretion and Na+ absorption. Therefore, experiments were also conducted to 

examine the effects of UDCA on intestinal epithelial absorptive function. To measure 

UDCA effects on ENaC function, expression of the channel was induced in T84 cell 

monolayers using an established experimental approach (Iordache, 2007), while in 

order to assess its effects on SGLT-1 activity, proximal jejunum from 6-MUDCA-

treated mice was used. In these experimental settings, it was found that neither 

UDCA nor 6-MUDCA had significant effects on absorptive processes. Thus, while 

potential effects of UDCA on Na+/H+ exchange remain to be investigated, our data 

suggest that UDCA, and its analogues, specifically inhibit secretory processes and 

that should therefore be useful in treating intestinal disorders associated with 

secretory diarrhoea. 

 

One important question that arises from these studies relates to how UDCA can 

specifically inhibit secretory processes through inhibition of Na+/K+ ATPase activity, 

but at the same time does affect absorption. One possibility could be that UDCA 
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alters interactions between the Na+/K+ ATPase pump and regulatory proteins in a 

cell-specific manner. As already mentioned, several proteins are known to bind to 

and regulate Na+/K+ ATPase activity, including FXYD proteins (Lindzen, 2006), 

translationally-controlled tumour protein (Jung, 2004), and modulator of Na+/K+ 

ATPase (Mao, 2005). Indeed, such regulatory proteins provide an attractive 

mechanism for inhibition of the Na+/K+ ATPase pump, since many are expressed in a 

cell-specific manner and could explain why UDCA specifically inhibits Cl- secretory 

responses, while Na+ absorptive processes, including electrogenic Na+ absorption 

through ENaC and SGLT-1 activity, remain unaltered. Similarly, proteins that 

regulate the activity of KCNN4, the Ca2+-dependent K+ channel, are known to exist 

and could represent targets for UDCA action (Joiner, 2001). Future studies will focus 

on elucidating the molecular mechanisms by which UDCA inhibits the activities of 

these transport proteins. 

 

In summary, we present data in this chapter to suggest that, unlike other dihydroxy 

BAs, UDCA exerts anti-secretory actions on colonic epithelial cells. We also present 

data to suggest that such anti-secretory actions are not normally apparent in vivo 

since UDCA is rapidly metabolised to LCA by bacteria in the colon. Anti-secretory 

effects of UDCA, and its derivatives, appear to be mediated by inhibition of multiple 

components of the Cl- secretory pathway, including Na+/K+ ATPase pumps and 

basolateral K+ channels. While mechanisms by which UDCA inhibits transport 

protein activity remain to be elucidated, they do not appear to involve altered protein 

expression or localisation. In conclusion, our data suggest that non-metabolisable 

analogues of UDCA may represent a novel class of anti-diarrhoeal drug that acts 

through directly targeting epithelial secretory function. 
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4.1. Introduction  

In Chapter 3, novel effects of UDCA in attenuating colonic epithelial secretory 

function were described and the non-metabolisable analogue of UDCA, 6-MUDCA, 

was shown to have potent anti-secretory effects in vivo. However, before we can 

further target UDCA, or its derivatives, as potential therapeutic agents for diarrhoeal 

disease, it is important to further elucidate the mechanisms by which they exert their 

anti-secretory effects.  

 

As a basis for the studies described in this Chapter, it is first necessary to consider 

what is already known of the signalling mechanisms that regulate fluid and 

electrolyte secretion in the colon. Such mechanisms can involve modulation of the 

activity, abundance, or localisation of the specific transport proteins involved. 

However, given that the anti`-secretory effects of UDCA occur very rapidly (within 

minutes) and are associated with alterations in the activity, but not surface 

expression, of key transport proteins, it is most likely that UDCA modulates signalling 

processes that are involved in acute regulation of the secretory pathway. Such 

mechanisms could include i) direct interaction with transport proteins, ii) alterations in 

production of pro-secretory 2nd messengers, or iii) interaction with downstream 

effector enzymes. To set these studies in context, in the following sections an 

introduction to the main 2nd messengers and effector enzymes involved in regulation 

of epithelial secretory responses is provided. 

 

4.1.1. Intracellular Ca2+ 

Ca2+ is an important intracellular 2nd messenger, that controls a diverse range of 

cellular processes, including enzyme activities, cell attachment, motility, morphology, 

metabolic processes, cell-cycle progression, signal-transduction, replication, gene 

expression and, of particular relevance to the current studies, electrochemical 

responses (Berridge, 2000, Hofer, 2005). As a consequence of its critical roles in 

regulating cellular physiology, extracellular Ca2+ concentrations are tightly regulated 

at the levels of intestinal Ca2+ absorption, exchange of Ca2+ to and from bone, and 

renal Ca2+ reabsorption (Barrow, 2006). Resting intracellular concentrations of Ca2+ 

are normally maintained in the range of 10 –100 nM, typically 4 orders of magnitude 

lower than external concentrations. To maintain this low intracellular concentration, 

http://en.wikipedia.org/wiki/Molar_concentration
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Ca2+ is actively pumped from the cytosol to the extracellular space, or into the 

endoplasmic reticulum (ER), and to a lesser extent, the mitochondria. Upon 

appropriate stimulation, Ca2+ levels in the cytoplasm can increase, either as a 

consequence of its release from intracellular stores or its entry across the plasma 

membrane (Clapham, 2007).  

 

Ca2+ release from intracellular stores 

When Ca2+ signalling is stimulated in a cell, Ca2+ enters the cytoplasm from one of 

two general sources: it is released from intracellular stores, or it enters the cell 

across the plasma membrane. In Ca2+-storing organelles, such as the ER and 

mitochondria, Ca2+ ions bind to specialized Ca2+-binding proteins, such as 

calsequestrin (Katz, 2005). In the cytosol, there are also Ca2+ buffers; the calbindins, 

calmodulin, and S-100 protein families, which serve to redistribute Ca2+ within the 

cell (Gackiere, 2006, Sharma, 2006).  

 

The most common signalling pathway triggering release of Ca2+ from the intracellular 

stores involves activation of PLC and generation of IP3 (inositol triphosphate) and 

DAG from PIP2 (phosphatidylinositol (4, 5)-bisphosphate). PLC can be differentially 

activated by a wide variety of cell surface receptors, including those for growth 

factors (Hyun, 2011); cytokines (Chung, 2012); G-protein coupled receptors 

(GPCRs) (Yan, 2003; Okamoto, 2004; O'Mullane, 2009), and integrins (Hyduk, 

2007). PLC hydrolyses the membrane phospholipid, PIP2 to form the two classical 

intracellular 2nd messengers IP3 and DAG. DAG activates protein kinase C (PKC), 

while IP3 diffuses to the endoplasmic reticulum (ER), binds to the IP3 receptor, and 

thus releases Ca2+ (Kachintorn,1993)  from the ER (Gackiere, 2006).   

 

Cellular Ca2+ entry: The most common mechanism of regulated Ca2+ entry into 

epithelial cells is however through store-operated Ca2+ entry (SOCE), whereby 

depletion of intracellular stores due to the actions of IP3, or other Ca2+-releasing 

signals, activates a signalling pathway that leads to the opening of plasma 

membrane Ca2+ channels, known as store-operated channels (SOCs) (Putney, 

2001). The resulting current is referred to as a Ca2+-release-activated Ca2+ current 

(ICRAC). Mechanisms through which ICRAC occurs are still under investigation, but 

recent studies suggest that phospholipase A2, nicotinic acid adenine dinucleotide 

http://en.wikipedia.org/wiki/Endoplasmic_reticulum
http://en.wikipedia.org/wiki/Mitochondria
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phosphate (NAADP) (Moccia, 2003), and STIM-1 (Baba, 2006) may also be 

involved. 

 

In excitable cells, Ca2+ influx may also occur through highly selective voltage-gated 

Ca2+ channels (VGCCs). VGCCs are expressed in colonic epithelia and T84 cells 

(Wang, 2000). L-type Ca2+ channels have been shown to play a key role in the 

mediation of oscillation at the neuro-epithelial junctions of guinea pig colon where 

Ba2+, a K+ channel inhibitor, evokes  Ca2+-dependent oscillatory Cl- secretion via 

activation of sub-mucosal cholinergic neurons in guinea pig distal colon (Nishikitani, 

2007). 

 

Transient receptor potential (TRP) channels are non-specific cation channels, which 

are subdivided into 3 groups; TRPC, TRPV and TRPM. TRPC channels respond 

indirectly to hormones and transmitters through PLC activation and via 2nd 

messengers, such as DAG (Gackiere, 2006, Nowycky, 2002).TRPA-1 channels are 

expressed in human and rat colon (Kaji et al., 2011). TRP channels are often 

functionally associated with GPCRs and linked with Ca2+ signalling and are involved 

in the motility of the small intestine (Nozawa, 2009).  

 

Regulation of colonic secretion by Intracellular Ca2+:  

There is a significant body of evidence to suggest that alterations in intracellular Ca2+ 

play a significant role in the regulation of intestinal fluid and electrolyte transport. In 

early studies, Donowitz et al. used 3,4,5 -trimethoxybenzoate 8-(N,N-diethyl amino) 

octyl ester  (TMB8), an inhibitor of intracellular Ca2+ release, to assess  the role of 

Ca2+ in electrolyte transport in rabbit ileum, and found that the effects of the 

muscarinic agonist, CCh, but not serotonin, were inhibited. This suggests specific 

roles for different pools of intracellular Ca2+ in mediating transport responses to 

different neuroimmune agonists (Donowitz, 1986). The same group  later went on to 

show that increases in intracellular Ca2+ act through PKC to regulate NaCl 

absorption in the rabbit ileum (Donowitz, 1989). Increases in intracellular Ca2+ have 

also been shown to stimulate both Cl- and HCO3
- secretion in some intestinal cell 

lines and to inhibit electroneutral NaCl absorption and electrogenic Na+ absorption 

(Barrett, 2006). 
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Agonist-induced elevations in intracellular Ca2+ have been shown to regulate 

epithelial Cl- secretion by several mechanisms. Barrett et al., have shown that 

elevations in [Ca2+]i alone are a sufficient signal to induce Cl- secretion in colonic 

epithelial cells (Kachintorn, 1993) . Indeed, intracellular Ca2+ directly regulates the 

activity of key transport proteins involved in epithelial secretion. K+ efflux across the 

basolateral membrane through the Ca2+-dependent channel, KCNN4, is an 

important, rate-limiting, step in the Ca2+-dependent epithelial secretory responses. 

This process appears to involve calmodulin (Fogg, 1994).This is very relevant to the 

effects of UDCA on colonic secretion given that we have already demonstrated that 

UDCA inhibits basolateral K+ channel activity. 

  

 Furthermore, the molecular identification of TMEM-16A, an apical Ca2+-activated Cl- 

channel, has provided new insights into how elevations in intracellular Ca2+ promote 

Cl- secretion. However, the role of this channel in mediating Ca2+-dependent 

secretory responses in the intestine is still unclear (Ousingsawat, 2009). 

 

Although release of Ca2+ from intracellular stores exerts pro-secretory effects on 

colonic epithelial cells, there is also some evidence to suggest that increases in 

intracellular Ca2+ can also activate signalling pathways that negatively regulate Cl- 

secretion. For example, at the same time that they induce Cl− secretion, Ca2+-

dependent agonists also activate a MAPK-mediated anti-secretory mechanism, 

which may serve to limit the extent and duration of secretory responses to such 

agonists (Keely, 2003). Furthermore, previous studies have shown that while release 

of Ca2+ from intracellular stores is pro-secretory in colonic epithelial cells, the 

subsequent influx of extracellular Ca2+ across the plasma membrane is anti-

secretory (Vajanaphanich, 1995). The existence of such anti-secretory mechanisms 

likely underlies the observations that there is a relatively poor correlation between 

the magnitude and duration of increases in intracellular Ca2+ and associated Cl- 

secretory responses (Dharmsathaphorn, 1989a). In general, Ca2+- evoked secretory 

responses are transient and terminate even if the Ca2+ signal persists (Keely, 2000).  

 

4.1.2. Cyclic nucleotides 

Levels of cAMP within epithelial cells are regulated by a family of adenylate cyclases 

(AC) that respond to neuroimmune agonists of GPCRs. Consequently, intracellular 
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levels of cAMP can be up- or down-regulated, depending upon which type of GPCR 

is activated. While GsPCRs are positively coupled to AC, GiPCRs inhibit activity of 

the enzyme (Hall, 2012). Several neural, immune and hormonal regulators of cAMP 

levels exist, including VIP and prostaglandins, which stimulate AC activity, and 

somatostatin, a GiPCR agonist, which is inhibitory (Kimberg, 1971).  Furthermore, 

exogenous substances, such as Vibrio cholera enterotoxin, can over-activate the 

cAMP-dependent signalling pathway through irreversible activation of Gs proteins by 

ADP ribosylation and prolonged adenyl cyclase activation.  

 

cGMP is another important cyclic nucleotide which acts as a 2nd messenger in 

epithelial transport. Association of cGMP agonists with the extracellular domain of 

guanylyl cyclase receptor (GC-R) activates the intracellular catalytic domain that 

then converts GTP into cGMP (Parkinson, 1997). cGMP, in turn, activates cGMP-

dependent protein kinase (PKG) II, the conventional downstream effector for this 

cyclic nucleotide, resulting in secretory diarrhoea (Parkinson, 1997, Zhang, 1999). 

Heat stable enterotoxin (STa) is a cGMP agonist and binds to the GCR, thus 

increasing cGMP levels and producing a pro-secretory effect as described above 

and thus this relationship forms part of the crosstalk between enteric pathogens and 

the intestine (Fasano, 2000) . The endogenous ligand for this receptor is guanylin. 

This family of peptides play an important role in intestinal fluid and electrolyte 

homeostasis and also in linking the mechanisms of the kidney and the intestine.  

 

With respect to intestinal fluid and electrolyte transport, increases in either cAMP, or 

cGMP, have been shown to stimulate Cl- secretion and to inhibit Na+ absorption 

(Donowitz, 1986). cAMP regulates each of the transport proteins involved in the Cl- 

secretory pathway, including CFTR , Na+/K+ ATPase pumps, NKCC, and other K+ 

channels (Reynolds., 2007, Bargon, 1998, Alzamora, 2011, Schulzke, 2011, Ward, 

2011). Cellular responses to agonists that elevate levels of cAMP are terminated by 

the activity of phosphodiesterases (PDE), which hydrolyses cAMP to 5’-AMP, and 

also by complex signalling mechanisms that lead to receptor desensitisation and 

internalisation (Kunzelmann, 2002).  

  

Importantly, it has been shown that the Ca2+ and cAMP-dependent pro-secretory 

pathways do not function independently of one another but that crosstalk exists 
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between them. For example, in the rat colon, agonist-induced activation of 

adenylayte cyclase (AC) is positively affected by the presence of Ca2+ (Calderaro, 

1993). Conversely, regulation of Ca2+ transients by VIP occurs via activation of AC 

and increased synthesis of cAMP (Hagen, 2006). Important crosstalk exists between 

these two pathways and in fact synergistic Cl- secretion may occur when both types 

of agonist are present in T84 cells (Vajanaphanich, 1995). 

 

4.1.3. Protein Kinases  

The human genome contains about 500 genes encoding kinases (Manning, 2002), 

many of which are involved in mediating downstream effects of intracellular Ca2+ and 

cAMP in regulating epithelial transport responses. Kinases that have received 

particular interest with respect to regulation of epithelial transport include the 

mitogen-activated protein kinases PKC, PKA and ERK-MAP kinases. 

 

The PKC family of kinases: 

PKC isoforms are divided into 3 groups, conventional (cPKC), novel (nPKC) and 

atypical PKCs (aPKC) as demonstrated in Figure 4.1, cPKCs are known to be Ca2+-

activated, phospholipid-dependent and sensitive to phorbol esters. nPKCs are 

activated by phospholipids and similar to cPKC isoforms, are also activated by 

phorbol esters. However, they do not require Ca2+ for catalytic activity. The aPKC 

group is not activated by either phospholipids or phorbol esters. Each member of the 

PKC family has regulatory and catalytic domains. The catalytic domains are highly 

homologous within the family and have 3 phosphorylation sites. One is a threonine 

residue located in the catalytic domain and the others are Ser and Thr residues 

located within the carboxyl-terminal region of the catalytic domain (Yamamoto, 

2006).  In rabbit distal colon PKC activation appears to be necessary for BA 

stimulation of Cl- secretion (Kanchanapoo, 2007). 
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Figure 4.1: The PKC super family (Byrne , 2010). Each isoform is composed of a regulatory 

and catalytic domain and the family is divided into 3 subgroups based on their structures: the 
conventional, novel, and atypical PKCs. 

 

In relation to colonic epithelial secretion and of interest to our findings in relation to 

the anti-secretory effects of UDCA, inhibitory signalling in response to PKC activation 

has been shown to play a role.  PKC activation is thought to occur downstream or in 

parallel with EGFr transactivation in the negative regulation of chloride secretion in 

the colonic epithelium (Reynolds, 2007). Direct activation of PKC is thought to inhibit 

Cl- secretion by preventing activation of the secretory machinery of the cell through 

subsequent elevation in intracellular Ca2+ (Kachintorn, 1993) or cAMP (Matthews, 

1993). 

 

PKA: (Protein Kinase A) refers to a family of enzymes whose activity is dependent 

on cellular levels of cAMP. PKA is also known as cAMP-dependent protein kinase. 

When the concentration of cAMP rises (e.g. through activation of ACs by GPCRs), 

cAMP binds to the two binding sites on the regulatory subunits, which leads to the 

release of the catalytic subunits. They then catalyse the transfer of ATP terminal 

phosphates to protein substrates. This phosphorylation usually results in a change in 

activity of the substrate. PKA and cAMP are involved in many cellular processes 

including colonic epithelial fluid secretion where PKA is involved with acute 

regulation of Cl- exit apically through cAMP-induced secretion. PKA has been shown 

to directly interact with CFTR through direct phosphorylation of the channel (Berger, 

1993). NKCC1 is also phosphorylated by PKA. cAMP is also responsible for gating 
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KCNQ1/KCNE3 K+ channels. The kinases which are involved with the Ca2+ 

signalling pathway are less well understood, but it has been demonstrated that PKA 

can activate the Ca2+ sensitive K+ channel but that PKC does not (Cole, 1996).  

 

Mitogen-Activated Protein Kinases: The MAPKs are a group of enzymes responsible 

for phosphorylating serine and threonine amino acids in many effector proteins. 

There are 7 families of MAPKs, the best characterised of which are extracellular 

regulated kinase 1/2 (ERK 1/2), p38 MAP kinase, and the c-Jun N-terminal kinase 

(JNK) (Coulombe, 2007). GPCRs recruit these pathways through a number of 

methods, including transactivation of the EGFr or activation of the Src family kinases 

(Keely, 2003). Once activated, MAPKs may stimulate other effector proteins or 

translocate to the nucleus and activate gene transcription. The activation of 

ERKMAPKs has been extensively studied (Broom, 2009) and activation may occur 

with many GPCR agonists including VIP and CCh (Bertelsen , 2004a). This leads to 

a signalling cascade involving Ras, Raf (MAPKKK), and mitogen extracellular kinase 

(MEK) (MAPKK). 

 

MAP kinases are an important regulatory mechanism in epithelial ion transport. 

Interestingly, Barrett et al., have demonstrated that Ca2+-mediated transactivation of 

EGFR/MAP kinase pathways in T84 cells play a central role in the negative regulation 

of Ca2+-mediated Cl− secretion (Keely, 2003, Keely, 1998). These studies 

established the M3AChR–Ca2+–EGFR transactivation pathway and the contribution 

of downstream MAP kinase signalling to negative regulation of Ca2+-dependent fluid 

secretion in the T84 cell model. 

 

4.1.4. BA effects on 2nd messengers and kinase activity 

There are a number of studies which show that UDCA and other BAs regulate 2nd 

messengers and kinases that are involved in regulation of epithelial transport 

function. For example, it has been shown that pro-secretory BAs increase colonic 

epithelial Cl- secretion through elevating intracellular levels of Ca2+ 

(Dharmsathaphorn, 1989b). Similarly, Moschetta et al., have demonstrated that 

activation of Ca2+-dependent basolateral K+ currents, through TDC-induced apical 

Ca2+ influx, provides the driving force for epithelial secretion of Cl- ions (Moschetta, 
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2003). Effects of BAs on colonic epithelial intracellular Ca2+ levels have been 

previously reported with DCA causing a rise while UDCA was not deemed to have 

an effect in the ACL-15 colonic cancer cell line however its effects on intracellular 

Ca2+ have not been previously demonstrated in either a secretory cell line or in 

isolated human crypts as shown here (Momen, 2002) . It has also been 

demonstrated that amylase secretion from rat pancreatic acini in response to the BA 

are abolished by removal of extracellular Ca2+, implying the involvement of Ca2+ 

influx (Shinozaki, 1995). Furthermore, UDCA and TUDCA induce sustained 

elevations in Ca2+ in hepatocytes (Beuers, 1993, Bouscarel, 1993) and activate 

membrane-bound PKCs (Stravitz , 1996), while cytosolic free Ca2+ is required for 

TUDCA-induced exocytosis and insertion of transport/carrier proteins into the apical 

membrane (Beuers , 1993).  

 

In relation to BA effects on cAMP-induced secretion, it has been demonstrated 

previously that DCA affects the transport properties of the distal colon through 

modulation of both the cAMP- and Ca2+-dependent signalling pathways (Mauricio, 

2000). In contrast, in isolated crypts DCA activated a Ca2+-regulated K+ conductance 

but had no effect on cAMP (Mauricio, 2000). There is little known of the role of 

UDCA in regulating cAMP levels in colonic epithelial cells, but Bouscarel et al., have 

demonstrated that the BA inhibits glucagon-induced cAMP formation in hepatocytes 

(Bouscarel, 1995). In contrast, UDCA has also been shown not to affect basal cAMP 

levels in rabbit intestinal loops but in this model it was also without effects on net 

secretion (Rahban, 1980).  

 

In addition to regulating intracellular levels of pro-secretory 2nd messengers, BAs 

also signal to a number of kinases that can be involved in regulating epithelial 

transport function. For example, BAs have been shown to modulate the Golgi 

membrane fission process via a protein kinase C and protein kinase D-dependent 

pathway in colonic epithelial cells (Byrne, 2010). In hepatocytes, inhibition of bile 

salt-induced apoptosis by cAMP involves a PKA-dependent Ser/Thr phosphorylation 

of the CD95 (Reinehr, 2004). Interestingly, inhibition of the MAPK and PI3K 

pathways enhances UDCA-induced apoptosis in primary rodent hepatocytes (Qiao, 

2002). In relation to effects on colonic secretion it has been found that physiological 

concentrations of DCA (50 M) can result in rapid phosphorylation of both ERK and 
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p38 MAP kinases implicating them in its effects on down regulation of colonic Cl- 

secretion at these concentrations (Keating, 2009). 

 

4.2. Aim:  

While, BAs have the capacity to modulate 2nd messengers and signalling pathways 

that are known to be involved in regulating intestinal epithelial transport function, how 

UDCA exerts its actions in colonic epithelia are still poorly understood. The primary 

goal of this chapter was to investigate signalling mechanisms underlying the anti-

secretory effects of UDCA on colonic epithelial cells. In particular, we aimed to: 

- Examine the effects of UDCA on intracellular levels of the pro-secretory 2nd 

messengers, Ca2+ and cAMP, in colonic epithelial cells.  

- Examine the role of PKA, PKC, and ERK-dependent signalling mechanisms in 

mediating anti-secretory actions of UDCA in colonic epithelial cells.  

 

4.3. Results:  

4.3.1. UDCA elevates intracellular levels of Ca2+ in colonic epithelial cells 

Previous studies have shown that agonists of GqPCRs, typified by CCh, induce 

biphasic increases in cytosolic [Ca2+] in colonic epithelial cells: an initial release from 

intracellular stores, followed by influx from the extracellular milieu that is required for 

sustained, oscillatory signalling (Kachintorn, 1993). It has also been shown that 

despite prolonged elevations in [Ca2+]i, Cl- secretory responses to CCh are transient 

in nature (Kachintorn, 1993), suggesting that there is a complex relationship between 

intracellular Ca2+ levels and Cl- secretory responses. Thus, having demonstrated 

anti-secretory effects of UDCA on Ca2+-dependent secretory responses in Chapter 3 

of this Thesis, we became interested in investigating how the BA might regulate 

levels of intracellular Ca2+.  

 

Experiments were first carried out to assess the effects of CCh on intracellular Ca2+ 

in our T84 cells. A standard approach for measuring intracellular Ca2+ levels, using 

Fura-2/AM-loaded T84 cells and assessing changes in fluorescence ratio upon 

addition of CCh (100 M), was employed. We found that CCh stimulated an 

immediate elevation of intracellular Ca2+, corresponding to Ca2+ release from 

intracellular stores, followed by a plateau phase, corresponding to Ca2+ entry (n = 12; 



138 

 

Figure 4.2: Panel A). Next, the effects of UDCA on intracellular Ca2+ levels were 

assessed. UDCA (250 μM) also increased intracellular levels of Ca2+ (n = 12; Figure 

4.2: Panel B). Responses to UDCA occurred immediately and were concentration-

dependent, with effects being observed at concentrations from 10−500 M (Figure 

4.3). In subsequent studies, UDCA was employed at a concentration of 250 μM, 

since this concentration elevates intracellular Ca2+ and effectively inhibits agonist-

induced Cl- secretion (IC50 ~ 200 M).  

 

Further investigation revealed that UDCA (250 M) also inhibited subsequent CCh-

induced Ca2+ mobilization by 63 ± 0.6% compared to controls (n = 12, p < 0.05; 

Figure 4.4, Panel A). Similarly, pre-treatment with CCh (100 Mameliorated UDCA-

induced elevations in intracellular Ca2+ (n = 12, p < 0.01, Figure 4.4; Panel B). 
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Figure 4.2:  UDCA elevates intracellular Ca2+ in T84 cells. 
T84 cells were grown to 70% 

confluency on glass coverslips and loaded with Fura/2AM for 45 min in serum-free medium. Cells were 
perfused with physiological perfusion solution, mounted on the stage of a Nikon microscope and after 
equilibration for 15 min were stimulated with A) CCh (100 μM) or B) UDCA (250 μM) followed by CCh 
(100 μM). Changes in intracellular Ca

2+
 were measured by determining the F340/380 ratio in 15-20 

regions of interest (ROI). Traces shown are representative of n = 12 individual experiments. 
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Figure 4.3:  UDCA induces elevations in intracellular Ca2+ in a concentration-
dependent manner. T84 cells were grown to 70% confluency on glass coverslips and loaded with 

Fura/2AM for 45 min in serum-free medium. Cells were then mounted on the stage of a Nikon 
microscope and after equilibration for 15 min, UDCA was added and changes in fluorescence recorded 

(F340/380). UDCA (10 - 500 M) induced significant increases in intracellular Ca
2+

 compared to control 

even at low doses with maximal responses noted at concentrations ≥ 250 M. Graph represents the log 

concentration dose response. Calculated EC50 was 29 M (n = 6, * p < 0.05, ** p < 0.01, *** p < 0.001) 
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Figure 4.4: UDCA pre-treatment ameliorates subsequent Ca2+ mobilisation by 
CCh. UDCA (250 M; apical) was added to Fura 2AM loaded T84 cells and  F340/380 was measured. 

This was followed by addition of CCh (100 M) A) UDCA (250 M) inhibited subsequent Ca
2+

 
mobilization responses to CCh by 63 ± 0.57% of control cells in Fura/ 2AM loaded T84 cells (n = 12, *p 

< 0.05). B) Similarly, pre-treatment with CCh (100 M) ameliorated subsequent Ca
2+

 mobilization 

responses to UDCA (250 M), (n = 12, **p < 0.01).   
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4.3.2. UDCA induces Ca2+ influx and store-operated Ca2+ entry in T84 cells.  

To determine whether UDCA-induced elevations of intracellular Ca2+ were due to 

influx of extracellular Ca2+ or release from intracellular stores, extracellular Ca2+ was 

removed from the perfusion solution and replaced with the Ca2+ chelator, EGTA 

(ethylene glycol-bis(2- aminoethylether)- N, N, I’, N’- tetraacetic acid; 1mM). Under 

these conditions, the CCh-induced peak in intracellular Ca2+, which is due to release 

from intracellular stores, was not significantly altered, with the F340/380 value being 

0.099 ± 0.05 in Ca2+-free PSS compared to 0.12 ± 0.005 in controls (Figure 4.5, 

Panel A, n = 6). In contrast, the mean difference between baseline and average 

plateau phase values was reduced to approximately 30% of controls in cells in Ca2+-

free medium (F340/380 = 0.03 ± 0.004 compared to 0.1 ± 0.002 in controls (n = 6; p < 

0.01)). This finding would be expected because sustained Ca2+ signalling requires 

influx from the extracellular milieu. Interestingly, removal of Ca2+ from the 

extracellular bathing solution abolished UDCA-induced Ca2+ elevations.F340/380 

values were 0.12 ± 0.007 in control cells compared to 0.02 ±  0.009  in Ca2+-free 

bathing solution (Figure 4.5, Panel B, n = 6, ** p < 0.01). 
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Figure 4.5: UDCA-induced elevations in intracellular Ca0.1+ are due to influx of 
extracellular Ca2+. T84 cells were grown to 70% confluency on glass coverslips and loaded with 

Fura/2AM for 45 min in serum-free medium. Cells were perfused with physiological perfusion solution, 
mounted on the stage of a Nikon microscope and after equilibration for 15 min were stimulated with 
UDCA or CCh in the presence or absence of Ca

2+
 in the medium. A) CCh-induced peak Ca

2+
 levels 

were not significantly affected by removal of extracellular Ca
2+

, as can be seen on the trace and the 

bar-chart insert showing mean F340/380, however the plateau phase was reduced with a marked 
dissipation occurring within seconds of the spike in contrast to the longer plateau phase when Ca

2+
 is 

present (n = 6, **p < 0.01). B) Removal of Ca
2+

 from the extracellular bathing solution abolished 
UDCA-induced Ca

2+
 elevations. Both trace and insert demonstrate little change in baseline 

intracellular Ca
2+

 when UDCA is added in the absence of extracellular Ca
2+

(n = 6, ** p < 0.01). 
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Having shown that influx of extracellular Ca2+ was necessary for UDCA to elevate 

intracellular Ca2+, we next employed SKF96365 (SKF; 100 µM), an inhibitor of store-

operated Ca2+ entry (SOCE) (Merritt, 1990) to further investigate the role of Ca2+ 

influx. Firstly, responses to CCh were analyzed in the presence of extracellular Ca2+. 

CCh induced an initial peak of [Ca2+]i, corresponding to release from intracellular 

stores, followed by a plateau phase which was inhibited  to 70 ± 11% of controls in 

the presence of SKF96365 (n = 6; *p < 0.05). Pre-treatment with SKF96365 (100 

µM; 30 min) did not significantly alter the initial peak in intracellular Ca2+ induced by 

CCh (79.8 ± 12.3% of controls, n = 6, Figure 4.7 4.6).  

 

Pre-treatment with SKF96365 (100 µM; 30 min) (Hartford, 2008) ameliorated the 

UDCA-induced rise in intracellular Ca2+ to a F340/380 value of 0.0126 ± 0.008 (Panel 

A, Figure 4.7.7), representing a reduction to 5.2 ± 3.2 % of control responses (**p < 

0.01, n = 6, Panel B, Figure 4.7). Pre-treatment with SKF96365 also partially 

reversed the inhibitory effects of UDCA on subsequent Ca2+ mobilization by CCh 

(100 µM). These data suggest that UDCA-induced elevations in intracellular Ca2+ are 

dependent on SOCE and that by inhibiting SOCE, subsequent CCh-induced Ca2+ 

mobilization can be restored.  

 

Concurrent experiments were carried out to assess how SOCE inhibition altered 

effects of UDCA on Cl- secretion. T84 cell monolayers were pre-treated with 

SKF96365 (100 µM; apical; 30 min) and placed in Ussing chambers for 

measurements of CCh-induced Isc. Isc responses to CCh in cells pre-treated with 

UDCA (500 M; bilateral; 15 min) in the presence of SKF96365 (100 M; 30 min pre-

treatment) were 50.3 ± 18.0% of controls (*p < 0.05, n = 6). This was approximately 

5-fold greater than responses in cells exposed to UDCA alone (9.7 ± 3.6% of 

controls, ***p < 0.001, n = 6, Figure 4.8), suggesting the involvement of SOCE in 

mediating the anti-secretory effects of UDCA.  
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Figure 4.6:SKF96365 inhibits store-operated Ca2+ entry in T84 cells. T84 cells, grown 

to 70% confluency on coverslips, were loaded with Fura-2/AM. In controls, CCh (100 µM) induced an 
initial peak of [Ca

2+
] i, corresponding to release from intracellular stores, followed by a plateau phase. 

This plateau phase in particular, was inhibited significantly in the presence of SKF96365 (100 µM; 30 
min pre-treatment; n = 6; p < 0.05). SKF96365 did not however significantly alter the peak elevation in 
intracellular Ca

2+
 induced by CCh (n = 6). 
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Figure 4.7: UDCA-induced elevations in intracellular Ca2+ are mediated by store 
operated Ca2+ entry. A) T84 cells loaded with Fura-2/AM were pre-treated with SKF96365 

(100µM; 30 min) and response to UDCA and CCh ( F340/380) was measured (n = 6). Panel B) 
demonstrates a reduction in UDCA response in the presence of SKF96365 to 5.18 ± 3.2 % of control 
UDCA response (n = 6, ** p < 0.01).  
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Figure 4.8: SKF96365 partially reverses the anti-secretory effect of UDCA on 
CCh responses. T84 cells pre-treated with SKF96365 (100 µM; 30 min) were placed in Ussing 

chambers and Isc responses to secretory agonists were measured.  Isc in response to CCh in cells 
pretreated with UDCA (500 µM; 15 min) and SKF96365 was  50.3 ± 18% of controls (*p < 0.05, n = 
6), 5 -fold higher than CCh -induced Isc responses in cells pre-treated with UDCA alone which was 9.7 
± 3.6% of controls (n = 6, *** p < 0.001).  

 

4.3.3. The effects of Ca2+ channel inhibitors on UDCA-induced intracellular Ca2+ 

responses 

It has been previously demonstrated in T84 cells that the initial increase in [Ca2+]i in 

response to CCh is due to the release of Ca2+ from internal stores, whereas the 

contribution of extracellular Ca2+ occurs later and, at least partially, involves 

verapamil-sensitive channels (Reinlib, 1989). Therefore, we wished to assess role of 

L-type Ca2+ channels in mediating responses to UDCA. T84 cells were pre-treated 

with verapamil, a selective inhibitor of L-type Ca2+ channels (100 M; 30 min, 

optimised  through series of experiments, not shown) and cells were subsequently 

exposed to UDCA (250 μM) and CCh (100 μM). Verapamil pre-treatment led to 

significant attenuation of UDCA-induced increases in intracellular Ca2+ to 25.5% ± 

0.5% of those in control cells (n = 4, p < 0.05, Figure 4.9, Panels A and B). 
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Interestingly, we found that pre-treatment with verapamil also partially reversed the 

effects of UDCA on subsequent CCh-induced Ca2+ mobilization (Panel A). 

 

Two members of the transient receptor potential (TRP) super-family, TRP vanilloid 

(TRPV5 and TRPV6), are specialised epithelial Ca2+ channels responsible for Ca2+ 

entry in the intestine and kidney, respectively (Nijenhuis et al., 2005). Ruthenium red 

(RR) is a non-selective TRP channel inhibitor and also a modulator of Ca2+-ATPase 

pumps. To determine the involvement of these proteins in mediating responses to 

UDCA, T84 cells were pre-treated with RR (100 M; 30 min, optimized and previously 

published, Nijenhuis, 2005) and subsequently exposed to UDCA (250 μM) and CCh 

(100 μM) and changes in intracellular Ca2+ noted. It was found that, in contrast to 

inhibitors of SOCE or L-type channels, RR did not significantly alter UDCA-induced 

Ca2+ mobilization (Figure 4.10, n = 4, Panels A and B). 

 

In summary, our findings from these studies suggest that UDCA induces large and 

transient increases in intracellular Ca2+ through activation of store-operated and 

voltage-gated channels in colonic epithelial cells. Furthermore, this influx of Ca2+ 

appears to, at least partially; mediate anti-secretory actions of UDCA. In our next 

series of experiments we set out to more fully elucidate the molecular mechanisms 

involved by investigating the potential roles of ERK-MAP kinase and PKC in UDCA-

induced responses. 
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Figure 4.9: Verapamil inhibits UDCA-induced intracellular Ca2+ responses in 
T84 cells. T84 cells were grown to 70% confluency on glass coverslips and loaded with Fura/2AM 

for 45 min in serum-free medium. Cells were perfused with physiological perfusion solution, 
mounted on the stage of a Nikon microscope and after equilibration for 15 min were stimulated 

and F340/380 measured. A) Cells pre-treated with verapamil (100 M; 30 min) were subsequently 

treated with UDCA (500 μM) and CCh (100 μM) and  F340/380 measured. B) Verapamil pre-
treatment attenuated UDCA-induced Ca

2+
 mobilization (n = 4, *p < 0.05). 
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Figure 4.10: Ruthenium Red does not alter UDCA-induced intracellular 
Ca2+ responses. T84 cells were grown to 70% confluency on glass coverslips and loaded 

with Fura/2AM for 45 min in serum-free medium. Cells were perfused with physiological 
perfusion solution, mounted on the stage of a Nikon microscope and after equilibration for 15 

mins were stimulated and F340/380 measured. A) Cells pre-treated with Ruthenium Red (100 

M; 30 min) were subsequently treated with UDCA (500 μM) and CCh (100 μM) and  F340/380 

measured. B) Pre-treatment with Ruthenium Red did not significantly alter UDCA-induced Ca
2+

 
mobilization (n = 4). 
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4.3.4. The effects of ERK MAPK and PKC inhibitors on the antisecretory effects 

of UDCA in T84 cells 

Previous work has shown that GqPCR-induced transactivation of the EGFr with 

subsequent activation of ERK MAP kinase constitutes a signalling pathway limiting 

secretory responses to CCh (Keely, 1998). Furthermore, Vajanaphanich et al., have 

shown that  inhibition of Ca2+ influx, in contrast to release of Ca2+ from intracellular 

stores may underlie an anti-secretory mechanism in colonic epithelia (Vajanaphanich 

, 1995). Given this knowledge, and that our data suggests that anti-secretory effects 

of UDCA require Ca2+ influx, we decided to examine the potential involvement of 

ERK -MAP kinase in UDCA-induced elevations in intracellular Ca2+ inhibition of ERK 

MAP kinase with the inhibitor PD98059 (10 M; 30 min, conditions optimised for all 

kinase inhibitors used in T84 cells, Mroz, 2012), reduced UDCA-induced elevations in 

intracellular Ca2+ to 28.8 ± 0.4% of those in control cells (n = 3, ** p < 0.01, Figure 

4.11, Panels A and B). Furthermore, in cells pre-treated with PD98059, UDCA (250 

M) did not inhibit subsequent CCh–induced elevations in intracellular Ca2+. In fact, 

spike responses to CCh in UDCA + PD98059-treated cells were comparable to those 

in control cells treated with CCh alone (F340/380 = 0.12 ± 0.06; n = 6, Figure 4.11, 

Panel C). These data suggest that activation of ERK MAPK is involved in mediating 

the effects of UDCA on influx of extracellular Ca2+.  

 

Having demonstrated a role for ERK-MAPK in mediating the effects of UDCA on 

Ca2+ influx, we assessed its involvement in mediating anti-secretory actions of the 

BA. T84 cell monolayers pre-treated with PD98059 (10 M; 30 min) were placed in 

Ussing chambers and Isc responses to secretagogues were measured in cells 

exposed to UDCA (500 M; 15 min). Responses to CCh in cells treated with UDCA 

were 15.0 ± 3.2% of those in controls (p < 0.001, n = 6) compared to 60.0 ± 22.5 % 

in cells treated with UDCA + PD98059 (Figure 4.12), implying partial reversal of 

effects with ERK-MAPK inhibition. 
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Figure 4.11: ERK-MAPK inhibition with PD98059 reduces UDCA–induced 
elevations in intracellular Ca2+ and restores subsequent CCh-induced Ca2+ 
mobilization. T84 cells were grown to 70% confluency on glass coverslips and loaded with 

Fura/2AM for 45 min in serum-free medium. Cells were perfused with physiological perfusion 
solution, mounted on the stage of a Nikon microscope and after equilibration for 15 min were 

stimulated and F340/380 measured. A) Cells pre-treated with PD98059 (10 M; 30 min) were 

exposed to UDCA (250 M; 15 min) and CCh (100 M) and F340/380 measured. Pre-treatment with 
PD98059 reduced UDCA-induced intracellular Ca

2+
 elevation (n = 3, *p < 0.05, See Inset).B) 

PD98059 pre-treatment abolished the inhibitory effect of UDCA on subsequent CCh responses (n= 
6, ***p < 0.001). 
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Figure 4.12: ERK-MAP kinase inhibition partially reverses the anti-secretory 
effects of UDCA on CCh responses. T84 cells seeded onto Millicell filters were cultured for 

10–15 days prior to use until a trans-epithelial resistance of >1000 ohms.cm
-2

 was achieved. T84 

monolayers placed in Ussing chambers were pre-treated with PD98059 (10 M; 30 min) followed by 

UDCA (500 M, 15 min) and Isc responses to CCh were measured. CCh responses in cells treated 
with both UDCA and PD98059 were partially ameliorated, compared to cells treated with UDCA (n = 
6, *** p < 0.001). 

 

Previous studies have shown that PKC activation can occur upstream or 

downstream of ERK MAPK and that it can also exert negative effects on colonic 

epithelial secretory responses (Fiorotto, 2007). Thus, in order to investigate a 

potential role for PKC in mediating the anti-secretory actions of UDCA, a general 

PKC inhibitor, bisindolylmaleimide I (Bis I), was used. However, we found that PKC 

inhibition did not alter the anti-secretory effects of UDCA, with responses to CCh in 

cells pre-treated with both Bis I (5 M; 30 min) and UDCA (500 M; 15 min) being 

13.2 ± 4.1 % of controls, compared to responses that were 10.7 ±.4.2 % of controls 

in cells treated with UDCA alone (n = 6, Figure 4.13). 
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Figure 4.13: PKC inhibition does not alter UDCA inhibition of CCh- induced Cl- 
secretion. T84 cells seeded onto Millicell filters were cultured for 10–15 days prior to use until a 

trans-epithelial resistance of >1000 ohms.cm
-2

 was achieved. T84 monolayers placed in Ussing 

chambers were then pre-treated with bisindolylmaleimide I (Bis; 5 M; 30 min) followed by UDCA 

(500 M; 15 min). UDCA reduced Isc responses to CCh (100 M) to a similar extent both in cells pre-
treated or not pre-treated with Bis (n = 6, *** p < 0.001).   

 

4.3.5. The effects of UDCA on cAMP-induced secretory responses 

In Chapter III, it was noted that UDCA not only exerts anti-secretory effects on Ca2+-

dependent responses, but that it also downregulates cAMP-dependent responses in 

colonic epithelial cells. Having investigated the role of Ca2+ influx in mediating anti-

secretory actions of UDCA on Ca2+-dependent secretagogues, we next went on to 

elucidate potential mechanisms involved in its effects on cAMP-induced secretion. 

Given that previous work has suggested crosstalk between Ca2+- and cAMP-

dependent signalling pathways, we investigated the effects of inhibiting SOCE and 

ERK MAPK on the inhibitory effects of UDCA on cAMP-induced secretory responses 

in T84 cells. First, we found that the SOCE inhibitor, SKF96365 (100 µM; 30 min), did 

not significantly alter the inhibitory effect of UDCA (500 M; 30 min) on FSK-induced 

responses. In untreated cells, UDCA reduced FSK-induced response to 23 ± 5% of 

those in control cells , while in SKF-pre-treated cells, UDCA attenuated FSK 

responses to 54 ± 9% of controls (p < 0.05, n = 5; Figure 4.14, Panel A). We also 

assessed the effects of ERK-MAPK inhibition on FSK-induced responses. 

Interestingly, it was noted that PD98059 pre-treatment (10 M; 30 min), partially 
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reversed attenuation of FSK-induced responses by UDCA with responses being 

restored to 74 ± 16 % of controls (n = 5, Figure 4.14, Panel B). 

 

Next, experiments were carried out to determine if UDCA has the capacity to alter 

basal or agonist-stimulated levels of cytosolic cAMP. T84 cell monolayers were grown 

on permeable supports and after 24 h in serum-free medium, cells were treated with 

UDCA (500 M, bilateral) for 30 min at 37 0C in a 5% CO2 atmosphere. Cells were 

then exposed to apical FSK (10 M) for 10 min, after which they were lysed on ice 

using 0.1M HCl. Lysates were then centrifuged and cAMP levels in the supernatants 

were measured using a commercially available assay. In these experiments we 

found that UDCA treatment did not significantly alter basal or FSK-stimulated levels 

of cAMP (Figure 4.15, n = 6). 
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Figure 4.14: Effects of SKF96365 and PD98059 on UDCA inhibition of forskolin-
induced cAMP-mediated secretory responses in T84 cells. T84 cell monolayers seeded 

onto Millicell filters were cultured for 10–15 days prior to use until a trans-epithelial resistance of 
>1000 ohms.cm

-2 
 was achieved. Monolayers were then placed in Ussing chambers and pre-treated 

with A) SKF96365 (SK; 100 µM; 30 min) or B) PD98059 (10 M; 30 min) and then treated with UDCA 

(500 M; 15 min). Secretory responses to FSK (100 µM) were measured as Isc and are presented as 
% control responses (n = 5, ** p < 0.01, *** p < 0.001).  
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Figure 4.15: UDCA does not alter basal or FSK-induced elevations in 
intracellular cAMP. T84 cells seeded onto Millicell filters were cultured for 10–15 days prior to use 

until a transepithelial resistance of >1000 ohms.cm
-2

 was achieved. Monolayers were then acutely 

treated with UDCA (500 M; 30 min), stimulated with FSK (10 M; 10 min), and then lysed. cAMP 
levels in the lysates were measured using a commercially-available assay kit and results were 
expressed as pmol/ mg of protein. UDCA did not significantly alter (A) basal or (B) FSK-stimulated 
cAMP levels (n = 6).   
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Since our data suggested that UDCA inhibits cAMP-induced secretory responses 

without altering cAMP levels, experiments were next carried out to determine if a 

more downstream target is involved. In these experiments, T84 cell monolayers were 

pre-treated with the PKA inhibitor, H-89 (5 M, 30 min), and subsequent Isc 

responses to FSK (10 µM) were recorded. We found that in cells pre-treated with 

UDCA (500 µM), PKA inhibition reversed the anti-secretory actions of UDCA (n = 3, 

Figure 4.16).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: PKA inhibition reverses UDCA effects on forskolin- induced Cl- 
secretion. Cells pre-treated with H-89 were then treated with UDCA (500 M; 15 min) and 

subsequent FSK responses were recorded. In control cells, UDCA reduced FSK response to 35.05 ± 
3.02% of controls, while in H-89 pre-treated cells, there was no significant difference between FSK 
responses between control and UDCA treated cells (n = 3, *** p< 0.001).   
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4.4 Discussion 

In Chapter 3, we found that UDCA inhibits both Ca2+- and cAMP-dependent Cl- 

secretion across colonic epithelial cells through inhibition of basolateral Ca2+-

dependent K+ channels and Na+/ K+ ATPase activity. In the studies described in this 

Chapter, we set out to determine signalling mechanisms involved by investigating 

the effects of UDCA on levels of 2nd messengers and protein kinases known to be 

involved in regulating colonic Cl- secretion. Intriguingly, our experiments revealed 

that UDCA rapidly induces elevations in intracellular Ca2+ in T84 cells. Furthermore, 

even though increases in intracellular Ca2+ are normally associated with pro-

secretory actions in epithelial cells (Kachintorn, 1993), in the case of UDCA, they 

appear to mediate the anti-secretory effects of the BA.  

 

Removal of extracellular Ca2+ abolished UDCA-induced elevations in intracellular 

Ca2+. Thus, the rise in intracellular Ca2+ with UDCA is likely to be mediated by influx 

of Ca2+ from the extracellular space, rather than release from intracellular stores. 

BAs have been shown in multiple studies to stimulate increases in intracellular Ca2+. 

TDCA, at high pro-secretory concentrations causes release of intracellular Ca2+ and 

stimulates Cl- secretion in T84 cells (Devor, 1993). This, in direct contrast to the 

effects we have found with UDCA, appears to occur through activation of K+ and Cl- 

conductances via an IP3-mediated release of Ca2+ from intracellular stores. 

Increases in free cytosolic Ca2+ derived from extracellular sources, with subsequent 

increases in Cl- secretion have also been previously described in response to high 

concentrations of other BAs in T84 cells (Dharmsathaphorn, 1989b). Interestingly, we 

found that, although UDCA induces similar elevations in intracellular Ca2+ it results in 

an anti-secretory effect. These data suggest that different pools of Ca2+ may exert 

opposing effects on colonic Cl- secretion.  

 

This idea is supported by the previous work by Vajanaphanich et al., demonstrating 

that GqPCR agonists stimulate biphasic increases in intracellular Ca2+ with the initial 

spike in intracellular Ca2+ due to release from intracellular stores and the later influx 

of extracellular Ca2+ resulting in an anti-secretory effect (Vajanaphanich, 1995).  
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Furthermore, previous data presented from this laboratory has demonstrated that 

ERK-mediated Ca2+ influx across the apical membrane of T84 cells constitutes an 

anti-secretory signalling mechanism that limits Ca2+-dependent Cl- secretory 

responses in colonic epithelial cells (Hartford, 2007). In vivo, such a pathway would 

serve to limit the extent of fluid secretion occurring when mucosal levels of Ca2+-

dependent neuro-immune agonists are elevated. Thus, the data from the current 

studies suggest that UDCA exerts anti-secretory actions because it only stimulates 

Ca2+ influx, without inducing a pro-secretory spike in Ca2+ release from intracellular 

stores. 

 

One of the crucial findings of this work is the apparent modulation of store- operated 

Ca2+ entry by UDCA resulting in inhibition of Cl- secretion. Having shown that 

elevations in intracellular Ca2+ in response to UDCA are due to Ca2+ influx, we then 

sought to determine how Ca2+ influx was occurring. Previous studies investigating 

inhibition of Ca2+-dependent Cl- secretion across canine colonic epithelium by 

prostanoids has suggested a locus for the inhibitory effects at the level of store 

operated Ca2+ entry (Larsen, 2002). Interestingly, we found that in the presence of a 

selective inhibitor of SOCCs, SKF96365, UDCA-induced elevations in intracellular 

Ca2+ were significantly reduced. Furthermore, SKF96365 was found to reverse the 

anti-secretory effects of UDCA on CCh-induced responses in Ussing chambers. 

Thus, it appears that Ca2+ influx through SOCCs, which are known to be expressed 

in colonic epithelium (Koslowski, 2008, Sun, 2012), mediate the anti-secretory 

actions of UDCA. Although, the mechanism by which this occurs remains 

speculative, one candidate for store-operated Ca2+ entry  is MS4A12, a novel colon-

specific store-operated Ca2+ channel. Koslowski et al., identified MS4A12, a 

sequence homologue of CD20, to be a colonic epithelial cell lineage gene confined 

to the apical membrane of colonocytes with strict transcriptional repression in all 

other normal tissue types. Ca2+ flux analyses in that study identified MS4A12 as a 

novel component of store-operated Ca2+ entry in intestinal cells (Koslowski, 2008). In 

future work, it would be interesting to assess the effects of UDCA on the activity of 

these channels. 

 

In addition to SOCCs, we also investigated the potential for voltage-gated Ca2+ 

channels, Ca2+ ATPase activity, and TRP channels in mediating responses to 
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UDCA. L-type Ca2+ channels are expressed in colonic epithelial cells where they 

have a predominantly membrane distribution and they have been shown to have 

increased expression in colon cancers (Wang, 2000). Similarly, Ca2+ ATPase pumps 

are expressed in normal colonic mucosa as well as in reduced quantities in colon 

cancer specimens (Ruschoff , 2012), while TRPA1 has been shown to be expressed 

in isolated normal rat colonic mucosa (Kaji , 2011) while TRPV6 is expressed in the 

colon and is likely to have a protective effect in colon cancer (Lehen'kyi , 2012). Our 

studies suggest that UDCA effects are selective for SOCCs and voltage-gated entry, 

but that the BA does not affect TRP channels or Ca2+ ATPase activity. This is based 

on the observations that ruthenium red, which blocks both TRP channels and 

Ca2+ATPase pumps, did not alter UDCA-induced elevations in intracellular Ca2+, 

while verapamil, an L-type Ca2+ channel blocker, similar to SKF96365, attenuated 

UDCA-induced Ca2+ responses.  

 

Interestingly, in addition to Ca2+ influx, our studies also implicate ERK MAP kinase in 

mediating the anti-secretory effects of UDCA. Of relevance to these findings, 

previous studies have also implicated MAPKs in anti-secretory signalling 

mechanisms stimulated by Ca2+-dependent agonists in colonic epithelial cells. For 

example, the muscarinic receptor agonist, CCh, stimulates ERK MAPK activation in 

T84 cells via a mechanism involving transactivation of EGFR, thus limiting agonist-

induced secretory responses (Keely, 1998). Subsequent studies also demonstrated 

that GqPCR-induced p38 MAPK activation constituted a similar, but distinct, anti-

secretory signalling pathway to that of ERK, while JNK MAPK has also been found to 

be involved in limiting Cl- secretory responses by inhibition of K+ channel currents  

(Donnellan, 2010). The effects of GqPCR agonists on activation of MAPKs were 

shown to be mimicked by thapsigargin, an agent that specifically elevates 

intracellular Ca2+, and were abolished by the Ca2+ chelator BAPTA-AM, implying a 

role for intracellular Ca2+ in mediating these responses (Keely, 2003).  

 

In examining a possible role for ERK MAPK in mediating UDCA-induced Ca2+ influx 

in colonic epithelial cells, we found that PD98059, a highly specific ERK MAP kinase 

inhibitor (Alessi, 1995), reduced UDCA-induced elevations in intracellular Ca2+ and 

partially reversed the anti-secretory effect of the BA. Thus, our data support the idea 

that activation of ERK-MAPK is likely to be involved in mediating effects of UDCA on 
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influx of extracellular Ca2+ through SOCCs. In support of this idea, there have been 

previous reports in the literature that UDCA can induce activation of ERK MAPK in 

intestinal epithelial cells and hepatocytes (Schoemaker, 2004; Marzioni,2006; 

Krishna-Subramanian, 2012). Furthermore, ERK activation has also been shown to 

play an important role in agonist-induced elevations in intracellular Ca2+ through 

activation of SOCCs in T84 cells (Hartford, 2007) and also in other cell types (Selway, 

2012). 

 

Previous work suggests that PKC plays an important role in mediating the effects of 

UDCA in some systems (McMillan, 2003, Marzioni, 2006). Furthermore, various 

isoforms of PKC play important roles in regulating colonic epithelial secretion (van 

den Berghe, 1992, Chow, 2000, Harvey, 2002), and PKC has also been shown to be 

activated both upstream and downstream of ERK-MAPK in various systems (Palma-

Nicolas, 2008, Moon, 2010). Interestingly, PKC has also been shown to mediate 

both proliferative and apoptotic responses to UDCA in colonic epithelial cells (Byrne, 

2010, Looby, 2005). Thus, we also carried out preliminary experiments to investigate 

a potential role for PKC in mediating the anti-secretory effects of UDCA. However, 

using Bis I as a general inhibitor of PKC, we found it to have no significant effect on 

the anti-secretory activity of UDCA, even though the inhibitor has been previously 

shown to be effective in T84 cells at the concentration employed (McKay, 2007). 

Thus, our current studies do not support a role for PKC in mediating UDCA actions 

on colonic secretion. However, it must be acknowledged that these studies are quite 

preliminary and further work assessing the effects of UDCA on activation of different 

PKC isoforms in colonic epithelial cells should be conducted.  

 

While elevation in intracellular Ca2+ is one of the major pathways for promoting 

intestinal epithelial Cl- secretion, the other predominant pathway is that mediated by 

cAMP. Thus, we also investigated UDCA actions on basal and FSK-stimulated levels 

of cAMP in colonic epithelial cells. However, we found UDCA to be without effect, 

which is in keeping with previous findings where UDCA was shown to be without 

effect on mucosal cAMP levels in a rabbit intestinal loop model (Rahban, 1980). 

Similarly, Bouscarel et al found no alterations in basal cAMP levels in hepatocytes in 

response to UDCA (Bouscarel, 1995). Previous studies have shown that in intestinal 

epithelial cells, as in most cell types, cAMP-dependent signalling occurs through 



163 

 

activation of PKA (Rudolph, 2007). Future work could assess the role of PKA in 

mediating the anti-secretory effects of UDCA on cAMP-dependent responses. 

 

In summary, in the current Chapter, we sought to identify signalling mechanisms 

underlying the anti-secretory actions of UDCA on colonic epithelial cells. We 

identified that UDCA stimulates an acute and transient rise in intracellular Ca2+ which 

appears to be due to an influx of extracellular Ca2+ through membrane SOCCs and 

L-type Ca2+ channels. In turn, influx of Ca2+ appears to attenuate subsequent 

secretagogue-induced release of Ca2+ from intracellular stores. This mechanism 

appears to involve activation of ERK MAP kinase but seems to be independent of 

PKC. This pathway appears to be a key mechanism by which UDCA inhibits Ca2+-

dependent secretion and might explain why agonist-induced KCNN4 and Na+/K+ 

ATPase activity become attenuated after UDCA treatment (cf. Chapter III, Figures 

3.21-3.27). In contrast, although UDCA also attenuates cAMP-induced Cl- secretory 

responses, it does so without altering intracellular levels of this 2nd messenger. 

 

In conclusion, UDCA exerts complex actions on both Ca2+- and cAMP-dependent Cl- 

secretory pathways in colonic epithelial cells, effects which in vivo would be 

expected to be associated with reduced luminal fluid and electrolyte secretion in 

response to neuro-immune agonists (Figure 4.17). Further elucidation of the 

mechanisms involved may lead to the development of new ways in which to target 

epithelial transport processes for treatment of intestinal diseases. 
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Figure 4.17: Schematic representation of UDCA effects on Ca2+ signalling and 
Cl- secretory responses in the colonic epithelium. Pro-secretory agonists such as CCh, 

stimulate release of Ca
2+

 from intracellular stores, which promotes Cl
-
 secretion (black arrows). UDCA 

stimulates increases in cytosolic Ca
2+

 through activation of voltage-gated Ca
2+

 channels and store-
operated Ca

2+
 channels in an ERK MAPK-dependent fashion (red arrows). By a mechanism that has 

yet to be defined, Ca
2+

 influx attenuates subsequent Cl
-
 secretory responses by inhibiting the activity 

of basolateral K
+
 channel currents and Na

+
/ K

+
 ATPase activity. 
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The effects of UDCA on  
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5.1 Introduction 

Studies described in Chapter III demonstrated a novel anti-secretory action of UDCA 

in isolated colonic epithelial cells. However, while cultured epithelial cells are very 

useful as reductionist models for studies of epithelial transport, transport function in 

vivo is typically regulated by nerves, entero-endocrine cells, and immune cells, which 

upon activation release a diverse group of mediators and neurotransmitters. Thus, in 

order to assess its effects under more physiological conditions, we carried out 

studies to examine the role that UDCA plays in regulating secretory function across 

intact colonic mucosal tissues from rats and humans in vitro. 

 

5.1.1 Neuroimmune regulation of colonic secretion  

As discussed in the general Introduction, It is well known that the enteric nervous 

system (ENS) plays an important role in regulating intestinal fluid transport (Hubel, 

1985). Signals from the ENS serve to control intestinal blood flow, motility and fluid 

transport processes (Hubel, 1985). Among the most predominant neurotransmitters 

involved in regulating fluid and electrolyte secretion in the colon are acetylcholine 

(ACh), which acts via increases in intracellular Ca2+, and vasoactive intestinal 

polypeptide (VIP), which elevates intracellular cAMP (Kunzelmann, 2002). However, 

there are a myriad of other neurotransmitters which exert varying levels of control on 

secretory responses in the colon (see Table 1.1, Chapter 1). Furthermore, not all 

neurotransmitters are pro-secretory, for example, neuropeptide Y inhibits colonic 

epithelial secretion, and is commonly found in interneurons, motor neurons or 

secreto-motor neurons. Its analogue, peptide YY is located in neuroendocrine L-cells 

which predominate in the colorectal mucosa (Cox, 2010), while pancreatic 

polypeptide is found in only a few scattered neurons. Three Y receptor types are 

functionally significant in human colon (Y1, 2 and 4) and their activation results in 

anti-secretory or pro-absorptive responses (Cox, 2007, Christofi, 2004, Mannon  

1999).  

 

Cells of the mucosal immune system are densely packed into the lamina propria of 

the intestine and many mediators released from these cells have important actions in 

regulating Cl- secretion (Keely, 2009). These cells can be activated in response to 

luminal pathogens, and a wide array of other stimuli, and it is thought the pro-
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secretory actions of their mediators serves to wash away luminal toxins. Such 

responses mainly involve mast cells and neutrophils, which release many different 

secretagogues including, prostaglandins, leukotrienes, adenosine and reactive 

oxygen species (Barrett, 2000).  

 

5.1.2 Bile acids in the intact colon  

It has been well documented in humans, that when levels of colonic BAs enter the 

pathophysiological range they exert pro-secretory and anti-absorptive actions 

(Mekjian , 1971). These effects are thought to underlie the diarrhoea that commonly 

occurs in many conditions of BA malabsorption, such as in terminal ileitis, right 

colonic Crohn’s Disease, or post-resection of the right hemicolon or terminal ileum. 

There is  also evidence to suggest that  chronic diarrhoea induced by BAs can occur 

as a consequence of excessive BA synthesis, rather than malabsorption (Hofmann, 

2009).Though the effects of BAs on mucosal permeability and bacterial uptake have 

been studied in human biopsies , their effects on human colonic Cl- secretion have 

not been fully elucidated (Munch, 2007). 

 

Both conjugated and unconjugated BAs have been shown to rapidly induce Cl- 

secretion in a variety of experimental models in vitro and in vivo (Chadwick, 1979, 

Dharmsathaphorn, 1989b, Binder, 1975); (Mauricio , 2000); (Venkatasubramanian, 

2001, Gelbmann , 1995). In these models, BAs can exert these pro-secretory effects 

either by acting directly on the epithelial cells themselves, or indirectly, through 

stimulation of nerves and other regulatory cells within the mucosa (Gelbmann et al., 

1995).There is however a strict structure-activity relationship  for luminal BAs in 

promoting secretion, with only dihydroxy BAs, such as DCA and CDCA, being 

effective (Chadwick,1979, Gordon, 1979).There have, to date, been very few studies 

of the effects of UDCA on secretory function in intact colonic tissues, with those that 

have been carried out being limited to animal models (Caspary, 1980, Hardcastle, 

1987). 
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5.2 Aims:  

The primary aims of this chapter were to: 

 Examine the effects of UDCA on Cl- secretion across intact colonic mucosal 

tissues from rats and humans.   

 Determine the role of the ENS in mediating responses to UDCA.  

 Examine the effects of long-term treatment with UDCA on colonic epithelial 

function. 

 

5.3 Results  

5.3.1 Tissue collection and patient selection 

Resected human colonic tissue was collected from consented patients undergoing 

elective colorectal surgery in our institution between Jan 2009 and March 2011 (See 

Materials and Methods for detail on collection and selection process). The patient 

data were anonymised and relevant demographic information, indication for surgery 

and site of sample were recorded. Those with rectal cancers who had received 

standard of care neoadjuvant chemo/radiotherapy were excluded from this study on 

the grounds of the potential presence of inflammation and fibrosis after treatment. 

Likewise, patients undergoing emergency surgery for obstructive symptoms were 

excluded, given the likely presence of acute inflammation. Patient medications were 

examined and record made of any patients taking BA sequestrants or UDCA.   

 

64 subjects undergoing colonic resection were included in the initial studies 

described in this chapter, none of which were on UDCA or BA sequestrant therapy at 

the time of tissue collection. The majority of patients were male (64%) and the 

median age was 68. The majority of patients underwent surgery for colorectal tumour 

excision. Below is a table summarising the patient demographics (Table 5.2). A 

different subgroup of patients and controls from which endoscopic biopsies were 

obtained are described later (See Table 5.3). 
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Table 5.2 Patient Demographics 

 

 

 

5.3.2 Bilateral UDCA stimulates basal ion transport across human and rat 

colonic mucosa. 

We first set out to determine what effect, if any, UDCA (500 µM; bilateral) had on 

basal Isc across muscle-stripped human colonic mucosal tissues mounted in Ussing 

chambers. We found that at this concentration, bilateral addition of UDCA caused an 

immediate, although transient, increase in basal Isc when applied bilaterally. In 

UDCA-treated tissues Isc increased by 118.5 ± 37.8% compared to control  (i.e., to 

156.8 ± 27.4 A/ cm2 compared to a basal Isc of 78.7 ± 17.8 A/ cm2 in untreated 

controls (mean Isc = 77.3 ± 10.8 A/ cm2; n = 4; p <  0.05, Figure 5.1). These 

findings were in marked contrast to the lack of effect of UDCA on basal Isc in T84 cells 

(cf. Chapter III, Figure 3.3).   
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Figure 5.1: Bilateral UDCA stimulates a transient increase in Isc across human 
colon. Muscle-stripped human colonic mucosa was mounted in Ussing chambers and allowed to 

equilibrate. UDCA (500 M; bilateral addition) was then added and changes in Isc were measured). 
Panel A demonstrates the time course of Isc responses to UDCA (added at t = 0), while Panel B 
demonstrates the mean peak Isc in UDCA treated–tissues, compared to paired controls (n = 4, *p < 
0.05).   
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Next, the concentration-dependence of responses to UDCA was examined, with 

concentrations ranging from 100 M–1 mM. These experiments revealed the pro-

secretory actions of UDCA to be concentration-dependent with a maximal effect 

occurring at 500 M (n = 4, Figure 5.2).  

 

 

 

1.5 2.0 2.5 3.0 3.5

0

50

100

**

*

log [UDCA]

%
 c

o
n

tr
o

l


I s
c

 

 
Figure 5.2: Effects of UDCA on human colonic electrolyte transport are 
concentration-dependent. UDCA (100 µM–1 mM, bilateral) was added to voltage-clamped 

sections of muscle-stripped human colonic mucosa mounted in Ussing chambers. Isc was measured 
over time and compared to untreated controls. Maximal increases in Isc were noted at concentrations 

of 500 M. Mean basal Isc was 40.2 ± 12.1 A/ cm
2
 before treatment, with UDCA (500 M) inducing a 

maximal Isc response of 116 ± 7 A/cm
2 

(n = 4, p < 0.01). UDCA at concentrations of 100 M, 250 

M, and 1 mM  resulted in increased mean Isc of 1.2 ± 5 A/cm
2
, 19.2 ± 7 A/ cm

2
, and 97 ± 21 A/ 

cm
2
, respectively (n = 5, *p < 0.05, **p < 0.01). Graph is representative of the log concentration dose 

response and calculated EC50 was 339 M. 

 

In the next series of experiments, we set out to determine the sidedness of 

responses to UDCA in human colon. UDCA was added either apically or 

basolaterally and Isc responses were compared to untreated control samples. These 

studies revealed that pro-secretory actions of UDCA were only apparent upon 

basolateral addition. Basolateral addition of UDCA (500 M) stimulated an Isc 

response of 50 ± 6.3 A/ cm2 (n = 7, p < 0.001). In contrast, apical addition of UDCA 

(500 M) did not significantly alter Isc when compared to the spontaneous increases 

in basal Isc observed in untreated controls (n = 7; Figure 5.3). 
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Figure 5.3: Isc responses to UDCA in human colon are apparent only upon 
basolateral addition. UDCA (500 M) was added to voltage-clamped sections of human colon 

either apically or basolaterally and Isc was measured and compared to untreated controls (n = 7; *** 
p < 0.001).  

 

In parallel experiments we also studied the effects of UDCA on muscle-stripped 

segments of rat colon. Male Sprague-Dawley rats aged 6–12 weeks were sacrificed, 

their colons removed, stripped of underlying smooth muscle, and mounted in Ussing 

chambers (0.3 cm2 inserts) for measurements of Isc.  Similar to its effects in human 

tissue, UDCA (500 M) stimulated transient increases in Isc in rat colon. Effects of 

UDCA were significant only at the higher concentrations tested, with  mean  Isc  

responses of 29 ± 6.25 A/ cm2  and  20 ± 2.94 A/ cm2,  occurring at 500 µM and 

1mM UDCA, respectively (n = 4, p < 0.05, Figure 5.4 

Figure 5.4). Also similar to findings in human tissue, increases in Isc due to UDCA 

were only apparent upon basolateral addition of the bile acid. Basolateral addition of 

UDCA (500 M) resulted in a Isc of 35.5 ± 11.4 A/cm2 (n = 3, p < 0.05), while 

apical addition did not significantly alter basal Isc (Figure 5.5, n = 3).  
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Figure 5.4: UDCA stimulates Isc responses in a concentration-dependent 
manner in rat colon. UDCA (50 –1 mM; bilateral) was added to muscle-stripped sections of 

rat colon in Ussing chambers and changes in Isc were measured. Graph represents the log 

concentration dose response. Calculated EC50 was 349 M (n = 4; *p < 0.05 for 500 and 1000 M 
additions) 
 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.5: Isc responses to UDCA are only apparent upon basolateral addition 
to rat colonic mucosa. UDCA (500 M) was added to voltage-clamped sections of rat colon 

either apically or basolaterally and Isc was measured and compared to untreated controls (n = 3; *p < 
0.05).  
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Thus, our findings indicate that, in contrast to its anti-secretory effects in cultured 

epithelial cells, UDCA stimulates Isc responses in intact colonic tissue. Although in 

the current studies, we did not carry out a characterization of the charge carrying ion 

involved, such responses are most likely to be due to increased Cl- secretion, as has 

been shown for UDCA in the small intestine (Hardcastle, 2001). Since responses to 

UDCA are only observed in the setting of intact colonic tissue, we hypothesized that 

its actions are likely to be indirect and mediated by activation of enteric nerves.   

 

5.3.3 UDCA-induced Isc responses in human colon are mediated by enteric 

nerves. 

To investigate the potential involvement of the ENS in mediating responses to UDCA 

in human colon, a potent neurotoxin, tetrodotoxin (TTX), was used. In tissues pre-

treated with TTX (0.1 μM), we found that UDCA-induced Isc responses were 

significantly reduced, suggesting that they are neuronally-mediated. Basolateral 

addition of UDCA (500 M) stimulated increase in Isc in untreated tissues compared 

to TTX-pre-treated tissues (n = 7, p < 0.05, Figure 5.6). Isc in TTX-pre-treated 

tissues after UDCA treatment was similar to that seen in control tissues, treated with 

TTX alone (Figure 5.6). In order to further characterise neuronally-mediated 

responses to UDCA, we used atropine (1M; 30 min), a competitive antagonist of 

muscarinic acetylcholine receptors. In these experiments, Isc responses to UDCA 

(500 M) were significantly attenuated in the presence of atropine from 38.3 ± 6.8 to 

15.3 ± 2.2 A/cm2 (n = 3, p < 0.05), suggesting that they are mediated by activation 

of muscarinic secreto-motor neurons (Figure 5.7).Thus, taken together, these data 

indicate that pro-secretory effects of UDCA in human colon are only apparent upon 

basolateral addition of relatively high concentrations (> 250 M) and that these 

responses are indirectly mediated through activation of muscarinic nerves. 
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Figure 5.6: UDCA-induced Isc responses in human colon are significantly 
reduced by TTX pre-treatment. Voltage-clamped sections of human colon were pre-treated 

with TTX (0.1 M; 30 min) before addition of UDCA (basolateral; 500 M; 15 min) and Isc responses 
were measured and compared to control clamped human colon which was not treated with TTX. 

Responses to UDCA were significantly reduced by TTX pre-treatment from a rise of 32.2 ± 9.8 A / 

cm
2
 in response to UDCA in controls  compared to only  6.8 ± 3.0 A / cm

2
 in TTX pre-treated tissues 

(n = 6). In TTX-pre-treated tissues, changes in Isc after UDCA treatment were similar to spontaneous 
Isc changes in the control. The control was human tissue treated with TTX alone with no addition of 
UDCA (n = 6; * p < 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: UDCA-induced Isc responses in human colon are attenuated by the 
muscarinic antagonist, atropine. Human colonic tissues mounted in Ussing chambers were 

pre-treated with atropine (1 M; 30 min; basolateral) and subsequent Isc responses to UDCA (500 

M, basolateral) were measured (n = 3, *p < 0.05). 
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5.3.4 UDCA exerts anti-secretory actions in TTX- pretreated human and rat 

colon  

Next, the effects of UDCA on agonist-stimulated Isc responses across human colonic 

tissue were assessed. In these experiments, all tissues were first pre-treated with 

TTX to remove the influence of enteric nerves. Interestingly, we found that under 

these conditions, UDCA exerts similar anti-secretory actions to those it exerts in 

cultured epithelial cells. In TTX-pre-treated tissues, UDCA (500 μM; bilateral; 15 min) 

significantly attenuated subsequent responses to CCh (100 μM) and FSK (10 μM) to 

9.8 ± 4.0 and 25.1 ± 3.1 % of those in tissues treated with TTX alone (n = 8, p < 

0.01, Figure 5.8). These anti-secretory effects were concentration-dependent with 

significant attenuation of both CCh- and FSK-induced responses apparent at a 

concentration of 100 μM UDCA (Figure 5.9). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.8: UDCA exerts anti-secretory effects in TTX- pre-treated human 
colonic mucosa. Muscle-stripped sections of human colon were mounted in Ussing chambers for 

measurements of Isc. Both tissues were pre-treated with TTX (0.1 M; 30 min), not shown, before 
treatment with UDCA (500 μM; 15 min). Isc responses to CCh (100 μM; basolateral) and FSK (10 μM; 
apical) were then measured (n = 8, p < 0.01). 
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Figure 5.9: Anti-secretory actions of UDCA on CCh and FSK responses in 
human colon are concentration-dependent. Sections of human colonic mucosa were 

mounted in Ussing chambers and pre-treated with TTX before treatment with UDCA (50–500 M; 
bilateral; 15 min) and subsequent agonist-induced responses were measured (n = 6; *p < 0.05, ***p < 
0.001).  

 

In a parallel series of experiments, we also examined the effects of UDCA on 

agonist-induced secretory responses across voltage-clamped rat colonic tissues. In 

these experiments, tissues were sequentially stimulated with CCh and FSK after Isc 

responses to UDCA had resolved. Under these conditions, UDCA at concentrations 

ranging from 100 μM–500 μM significantly attenuated both CCh and FSK-induced 

secretory responses (n = 4; Figure 5.10).  
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Figure 5.10: UDCA attenuates agonist-induced Cl- secretion in a concentration-
dependent manner in rat colon. Muscle stripped sections of rat colonic mucosa mounted in 

Ussing chambers were pre-treated with UDCA (50–500 M; bilateral; 15 min) and subsequent 
responses to CCh (100 μM; basolateral) and FSK (10 μM; apical) were then measured. UDCA pre-
treatment attenuated Isc responses to both CCh (100 μM; basolateral) and FSK (10 μM; apical) in a 
concentration-dependent manner (n = 4; *p < 0.05, **p < 0.01, ***p < 0.001). 

 

5.3.5 Anti-secretory actions of UDCA in human colonic mucosa are 

independent of the enteric nervous system.  

To determine what effect, if any, TTX might play in mediating the anti-secretory 

effects of UDCA, a series of experiments was carried out in which human colonic 

mucosa was treated with UDCA (500M, bilateral) in the presence and absence of 

TTX and Isc in response to CCh and FSK were compared. TTX pre-treatment did 

not significantly alter the anti-secretory effects of UDCA on agonist-stimulated 

secretory responses (n = 6, Figure 5.11, Panel A, n = 4, Panel B). Importantly, TTX 

pre-treatment alone did not significantly alter control CCh or FSK-induced 

responses, which in TTX-pre-treated tissues were 106 ± 33% (n = 5) and 111.8 ± 37 

% (n = 4), respectively, of those in untreated controls. 
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Figure 5.11: TTX pre-treatment does not alter the anti-secretory effects of 
UDCA in human colon. Voltage-clamped sections of muscle-stripped human colon were 

mounted in Ussing chambers and pre-treated with UDCA (500 M) or PBS (control) in the presence 

or absence of TTX (0.1 M; 30 min pre-treatment) before measuring Isc responses to sequential 

addition of CCh (100 M) and FSK (10 M). Data were normalised and expressed as % control 
responses. There was no significant difference in the effect of UDCA pre-treatment on CCh or FSK-
induced responses between control and TTX pre-treated tissues. Panel A illustrates % control 
responses to CCh in tissues pre-treated with UDCA in the presence or absence of TTX with CCh-
induced responses being reduced to 14.7 ± 9.8 % of controls in untreated tissues and 35.2 ± 8.1% of 

controls in TTX pre-treated tissues (0.1 M; 30 min; n = 6). Panel B illustrates % control responses to 

FSK in tissues pre-treated with UDCA in the presence or absence of TTX), while FSK-induced 

responses were reduced to 37.5 ± 9 % of controls in untreated tissues and 48 ± 13 % in TTX-pre-

treated tissues (0.1 M; 30 min; n = 4).  
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5.3.6 Basolateral UDCA is more effective in exerting anti-secretory actions in 

human colon 

We previously found that UDCA exhibited more profound anti-secretory effects when 

added basolaterally to cultured monolayers of T84 cells (c.f. Chapter III; Figure 3.17). 

Thus, we next assessed the sidedness of UDCA effects on agonist-induced 

secretory responses across sections of human colon. We found that, similar to 

cultured epithelial cells, UDCA (500 M) was significantly more effective at inhibiting 

CCh-induced secretory responses when added to the basolateral side of the tissue 

(n = 4; p < 0.05; Figure 5.12). Interestingly, although less effective than basolateral 

addition, the effects of apical UDCA on CCh-induced responses were significant 

compared to controls. Thus, the sidedness of anti-secretory actions of UDCA in 

human tissue is similar to that of its effects in cultured colonic epithelial monolayers.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: Sidedness of anti-secretory effects of UDCA in human colon. 
Voltage-clamped sections of muscle-stripped human colon were mounted in Ussing chambers and 

were pre-treated with UDCA (500 M; 15 min) on the apical or basolateral side. Isc responses to CCh 

(100 M) were then measured. Data were expressed as % control responses. Basolateral addition of 
UDCA reduced CCh-induced responses to 36 ± 8.3% of controls, compared to  a reduction to 62 ± 6.1 
% of controls upon apical addition of the BA (n = 4; ***p < 0.001, **p < 0.01). 

 

5.3.7 The effects of Lithocholic acid and 6 -MUDCA on Isc responses in human 

colonic tissue. 

As previously discussed in Chapter III, UDCA is rapidly metabolised in vivo to LCA in 
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secretagogues, such as CCh, in cultured epithelial cells. Thus, we also wished to 

examine the effects of LCA on CCh-induced secretory responses in human colon. 

We found that, similar to its effects on cultured epithelial cells, LCA (50 M; 15 min 

pre-treatment) significantly enhanced Isc responses to CCh in human colonic tissue 

to 130 ± 9% of those in control tissues (n = 3, *p < 0.05, Figure 5.13). Trans-mucosal 

conductances after LCA treatment were marginally higher than controls but not to a 

significant level (19.3 ± 1.3 mS.cm2 in treated tissues compared to 12.2 ± 1.68 

mS.cm-2 in controls, n = 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: LCA potentiates CCh-induced Isc responses in human colon. 
Voltage-clamped sections of muscle-stripped human colon were mounted in Ussing chambers and 

pre-treated with control (PBS; bilateral addition; 15 min) and LCA (50 M; bilateral; 15 min) before Isc 

responses to CCh (100 M) were measured. Data are expressed as % control response (n = 3; *p < 
0.05).  
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In Chapter 3, 6-MUDCA, a non-metabolisable UDCA analogue, was found to have 

a similar potency to UDCA in exerting anti-secretory actions on cultured epithelial 

monolayers (cf. Chapter 3; Figure 3.15). We also demonstrated that 6-MUDCA 

exerts anti-secretory actions in an in vivo mouse model. In order to determine if it 

also exerts anti-secretory effects in human colonic mucosa, tissues were pre-treated 

with MUDCA (500M; apical; 15 min) and subsequent CCh-induced responses 

were recorded. MUDCA (500M; apical; 15 min) significantly attenuated CCh-

induced responses (n = 3, p < 0.05; Figure 5.14, Panel A). Responses to CCh were 

reduced to 16.6 ± 4.4 A/cm2 in 6-MUDCA-treated tissues compared to 30 ± 2.3 

A/ cm2 in untreated controls (n = 3, p < 0.05, Figure 5.14, Panel B). This represents 

a reduction of CCh-induced responses to 55 ± 6.3% of controls, which is comparable 

to the anti-secretory action of UDCA at similar concentrations. These experiments 

were done in the absence of TTX. It appears from these experiments that the pro-

secretory action of 6-MUDCA is much less than that of UDCA. 
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Figure 5.14: 6-MUDCA inhibits CCh responses in human colon.A) Voltage-

clamped sections of muscle-stripped human colon were mounted in Ussing chambers and pre-treated 

with 6-MUDCA (500M; apical; 15 min) or PBS (control) before Isc responses to CCh (100 M) were 

measured. B) 6-MUDCA attenuated subsequent CCh-induced responses to 55 ± 6.3% of those in 
controls (n = 3, *p < 0.05).  
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5.3.8 Effects of long-term oral UDCA therapy on colonic transport function.  

Thus far in our studies, the acute effects of direct UDCA, LCA or 6MUDCA 

treatment of human colonic epithelial cells and mucosal tissues had been 

investigated. However, there is little data currently available regarding the long-term 

consequences of UDCA therapy on colonic secretory function in humans. Thus, 

experiments were carried out on voltage-clamped endoscopic samples obtained 

from patients receiving oral UDCA therapy (average dose of 8–10 mg/ kg), in order 

to determine if there were any alterations on basal or agonist-stimulated transport 

function. Control samples were obtained from patients who were deemed to have a 

normal endoscopic examination and who had no previous treatment with UDCA or 

bile acid sequestrants and no previous history of IBD or cancer.   

 

Demographics of patients for this study are outlined in Table 5.3. Indications for 

colonoscopy in the UDCA group were; 1) surveillance for colorectal cancer in the 

setting of primary sclerosing cholangitis (PSC) and ulcerative colitis (UC) (n = 3), and 

2) previous occurrence of polyps (n = 1). The indications for UDCA therapy were for 

treatment of PSC (n = 3) and for treatment of primary biliary cirrhosis (PBC) (n = 1). 

All patients included had macroscopically normal colons. In the case of those with a 

previous diagnosis of colitis only those with quiescent colitis were included. In the 

control group, 2 patients were examined due to a family history of colorectal cancer, 

and 2 had a previous history of polyps. All control colonoscopies were 

endoscopically normal and participants were asymptomatic at time of endoscopy.  

 

Table 5.3 Demographics of patients included in a study of chronic UDCA 
treatment on colonic transport function 

 

Demographic Control (n = 4) UDCA (n = 4) 

Gender (M:F) 3:1 3:1 

Mean Age (range) 39.2 (22-67) 39.7 ( 28-54) 
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Since the size of the tissues used in these studies was small, potential difference 

(PD) measurements were used as an index of electrogenic ion transport, since 

changes in Isc were too small to measure using our apparatus (Grubb, 1994, Goerg , 

1988). We found that there was no appreciable difference in basal PD between 

patients on UDCA therapy and controls. Basal PD in patients on UDCA therapy was 

79 ± 24% of controls (n = 4, Figure 5.15, Panel A). Although CCh-induced PD 

responses were variable in both patient cohorts, no appreciable differences were 

noted. A significant CCh response was recordable in both groups compared to 

spontaneous changes in PD, which were minimal. Mean basal PD was 0.15 ± 0.07 

mV. The mean CCh-induced PD was 0.5 ± 0.10 mV in the control group, compared 

to  0.57 ± 0.16 mV in the UDCA-treated group (n = 4, Figure 5.15, Panel B). 
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Figure 5.15: Long-term oral UDCA therapy does not alter basal or CCh-induced 
changes in trans-epithelial PD in human colon. Jumbo biopsies taken during endoscopic 

examination of patients on oral UDCA therapy or controls were mounted in Ussing chambers (window 
area = 0.03 cm

2
). After allowing the tissues to equilibrate, basal PD was noted as a measure of basal 

Cl
-
 secretion and then CCh (100 M)-induced changes in PD were measured. Data are expressed as 

% control response or in mV. A) There was no appreciable difference between basal PD measured   
in patients on UDCA therapy compared to healthy matched controls (Patient n = 8,  4 on UDCA 
treatment, 4 age and sex matched  controls). B) Similarly, no differences in CCh-induced changes in 
PD were observed between the treatment and control groups (n = 4). 

 

 

 

 

 

 

 

 

Control UDCA 

0.0

0.2

0.4

0.6

0.8


P

.D
. 
p

o
s
t 

C
C

h

(m
V

)

Control UDCA

0

50

100

B
a
s
e
li
n

e
 P

.D
.

( 
%

 c
o

n
tr

o
l)

A 

B 



187 

 

5.4 Discussion  

The data described in this chapter are the first to characterize the effects of UDCA 

on basal and agonist-induced ion transport in human colon in vitro. First, we 

demonstrated that UDCA, when added basolaterally to either rat or human colonic 

tissue in vitro, gives rise to a monophasic increase in Isc which is concentration 

dependent. These data are in direct contrast to our findings in T84 cells (c.f. Chapter 

III), where UDCA had no effect on basal Isc. This suggests that the actions of UDCA 

in intact colonic tissue are likely to be mediated by indirect mechanisms, such as 

through activation of neural or immune cell populations in the mucosa. In this regard, 

we found that, similar to its effects in murine small intestine (Hardcastle, 2001), the 

effects of UDCA in human colon were inhibited by the neurotoxin, TTX, suggesting 

that they are neuronally-mediated. Thus, our data suggest that, similar to other 

dihydroxy bile acids, such as DCA, UDCA has the capability to recruit the enteric 

nervous system to regulate epithelial function (Karlstrom, 1986; Fihn, 2003). 

Furthermore, our studies with the muscarinic receptor antagonist, atropine, revealed 

that in contrast to its effects in mouse ileum (Hardcastle, 2001), the pro-secretory 

actions of UDCA in human colon are mediated through cholinergic activation of 

muscarinic receptors. Although, further investigation is required to identify the 

muscarinic receptor subtype involved in mediating responses to UDCA, previous 

studies suggest that it is likely to be the M3 receptor (Cheng., 2002, Sun, 2004). 

 

Our studies cannot rule out the possibility that other indirect effects could also be 

involved in mediating the actions of UDCA on colonic transport function in vivo. For 

example, BAs have been shown to activate mucosal mast cells in mouse intestine 

(Quist, 1991), with consequent histamine release contributing to BA-induced 

secretory responses (Gelbmann, 1995). Entero-endocrine L-cells are also stimulated 

by the presence of BAs (Parker, 2012), and it is therefore conceivable that BA 

effects on colonic secretion could also be regulated by entero-endocrine means. The 

sub-epithelial myofibroblastic sheet is also an important source of mediators, such as 

prostaglandins (Edwards, 2006, Powell, 1999), that can regulate epithelial transport 

function (Schultheiss, 2005). However, the role that UDCA plays in regulating mast 

cells, L-cells, and fibroblasts remains to be determined and could be the focus of 

future work.  
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Although experiments were not performed in the current studies to identify the 

charge carrying ion responsible for UDCA-induced increases in Isc in human colon, it 

is likely that these responses are due to increased Cl- secretion. This is based on the 

observation that responses to UDCA are abolished by atropine, which blocks the 

effects of ACh at the neuro-epithelial junction, and previous studies have shown that 

alterations in Isc in response to ACh, or its analogue, CCh, are due to electrogenic Cl- 

secretion (Dharmsathaphorn , 1986). Further experiments could be carried out in the 

future to confirm this, using loop diuretics, such as bumetanide, to inhibit NKCC1 or 

by substituting Cl- in the bathing solution with impermeant anions, such as gluconate.    

 

While basolateral UDCA stimulates Cl- secretion in intact colon, our data also show 

that, similar to its effects on T84 cells, UDCA inhibits subsequent secretory responses 

to both Ca2+ and cAMP-dependent agonists. Interestingly, this anti-secretory effect is 

also apparent upon apical addition of UDCA, which does not stimulate pro-secretory 

responses. Furthermore, the anti-secretory effects of UDCA are not sensitive to TTX. 

Together these data confirm that, in contrast to other dihydroxy BAs, the direct 

effects of UDCA on colonic epithelial cells are anti-secretory. It is also important to 

note that the anti-secretory effects of UDCA occur at lower concentrations than do its 

pro-secretory actions. Thus, elevated levels of UDCA in the lumen could be 

expected to exert anti-secretory/anti-diarrhoeal actions. 

 

However, when considering the data presented in this chapter, the question arises 

as to whether these anti-secretory concentrations of UDCA are achievable during 

therapy? It should be noted that the UDCA concentrations employed in the current 

studies were higher than physiological ranges of UDCA found in the colon, which 

have been reported to be in the range of 5–10 M (Gleich, 1971; Adler, 1975). 

However, it is hypothesised that to achieve sufficiently high concentrations of UDCA 

for it to exert anti-secretory actions it would likely require either topical administration 

or the use of delayed release or bacterially-resistant analogues.  

 

When considering the effects of UDCA on colonic epithelial secretory function, it is 

also important to consider its major metabolite, LCA, which has been shown to 

become the predominant colonic BA during UDCA therapy (Sinakos, 2010). In this 
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chapter we also present for the first time data illustrating the effects of LCA on 

human colonic epithelial secretion. LCA has directly contrasting effects to UDCA in 

that it potentiates secretagogue-induced responses, thus confirming our previous 

findings in T84 cells. This supports the idea that it is due to its rapid metabolism to 

LCA that underlies the tendency of UDCA to cause diarrhoea in patients. The 

mechanisms involved in mediating the effects of LCA are not yet known but could 

involve activation of specific bile acid receptors. In particular, LCA is an agonist of 

the TGR5 receptor. TGR5 is a cell surface receptor for BAs which has been shown 

to be expressed on enteric nerves (Camilleri, 2011). Unpublished studies from this 

laboratory have also found it to be expressed on colonic epithelial cells. TGR5 is a 

GsPCR and it is coupled to elevations in intracellular cAMP (Kawamata, 2003, Li, 

2011). Thus, activation of TGR5 by LCA, could serve to prime the epithelium for 

enhanced responsiveness to subsequent exposure to Ca2+-dependent 

secretagogues. However we did not find an increase in basal Isc with addition of LCA 

which may confound this theory somewhat. Future work in this area could investigate 

the molecular mechanisms involved in the actions of LCA, focussing on targets such 

as TGR5. Studies of the effects of LCA on transport protein activity and surface 

expression are also required in order to gain a deeper understanding of its actions 

on colonic secretory function. However, suffice as to say that our studies in intact 

human colonic tissue support the idea that in order to exploit the anti-secretory 

actions of UDCA in the clinic, a metabolically-stable analogue would be required. 

 

The studies presented here have focussed specifically on the acute and direct 

effects of UDCA on colonic epithelial secretory function in vitro. In further studies we 

were interested in investigating if oral therapy with UDCA might alter colonic 

transport function. In this work, we found that long-term UDCA therapy did not 

appear to alter agonist-induced responses across colonic tissues from these 

patients. There are a number of possible reasons for this apparent lack of action in 

patients. Firstly, sufficient levels of the drug may not have reached the colon in the 

particular subset of patients studied. This could have been due to the doses used 

being too low, or the presence of inflammation in some patients could have caused a 

more rapid transit and excretion of the drug from the bowel. Alternatively, as 

discussed above, UDCA may have been metabolised too rapidly for its anti-secretory 
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effects to become apparent. Studies of the effects of drugs like 6-MUDCA in 

humans would be useful to determine if this is the case.    

 

In conclusion, the current studies demonstrate that UDCA has dual actions on ion 

transport across colonic mucosal tissues. At high concentrations, UDCA stimulates 

secretory responses through activation of cholinergic nerves, while at lower 

concentrations; it can exert direct anti-secretory effects. Our findings support the 

idea that oral administration of metabolically stable UDCA analogues could be useful 

for treating intestinal disorders associated with diarrhoea. 
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Chapter 6 

An investigation of the  

anti-inflammatory effects of 

UDCA on 

colonic epithelial cells. 
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6.1 Introduction  

6.1.1 Inflammatory Bowel Disease 

Inflammatory bowel disease (IBD) is a common and debilitating immune-mediated 

inflammatory disorder which, as described in Chapter 1. Profuse and bloody 

diarrhoea along with abdominal pain and malnutrition are common features among 

patients with IBD. Regulation of the intestinal innate immune system in these 

diseases has been the subject of intense research and with the evolution of our 

understanding of the processes involved; it has become a target for development of 

new therapeutics in combating these debilitating conditions. The overall incidence 

per 100,000 for IBD in Europe, at ages 15–64 years, has been estimated as 10.4 for 

UC (95% CI: 7.6–13.1) and 5.6 (95% CI: 2.8–8.3) for CD. Rates of UC in Northern 

centres were 40% higher than those in the South (rate ratio (RR) = 1.4 (95% CI: 1.2–

1.5)) and for CD they were 80% higher (RR = 1.8 (95% CI: 1.5–2.1), suggesting a 

regional variability independent of factors such as tobacco use and education 

(Shivananda, 1996). 

 

6.1.2 Altered immunity in the pathogenesis of IBD 

While the precise initiating factors in IBD are not well-defined, it is known that altered 

immune regulation leads to prolonged mucosal inflammation, which is amplified and 

perpetuated by recruitment of leucocytes from the blood. Up-regulation of nuclear 

transcription factors, such as NFB, is likely to underlie the subsequent local release 

of cytokines, eicosanoids, and other mediators of inflammation, including reactive 

oxygen species, prostaglandins, and platelet activating factor, nitric oxide, proteases 

and growth factors. In UC, cytokine release from non T-helper lymphocytes 

generates a largely humoral response, while in Crohn’s, a cell-mediated response is 

induced by T-helper 1 cells (Csutora, 2006). 

 

Toll-like receptors (TLRs) play a key role in regulating innate immunity (Marshak-

Rothstein, 2006). TLRs and their place in whole body immunity has been described 

in the General Introduction, so here the focus is on specific TLR- and cytokine-

mediated effects in relation to the pathogenesis of IBD. 
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6.1.3 TLR recognition and IBD 

Primary human IECs (intestinal epithelial cells) constitutively express TLR-3 and 

TLR-5 and low levels of TLR-2 and TLR-4 (Cario, 2000). However, expression of 

TLR-4 in the colon is increased in UC (Cario, 2000). In addition, a number of risk 

variants in the TLR-1/-2/-6 genes have been associated with distinct disease 

phenotypes of IBD (Cario, 2010). Monocytes from inflamed intestinal tissue also 

respond to LPS with increased expression of  IL-1and a higher percentage of 

intestinal DCs express TLR-4 in IBD patients compared to controls (Hausmann, 

2002). Challenge of MyD88/TRIF-deficient mice with the commensal bacterium, 

Escherichia coli K-12, resulted in recovery of more live bacteria from the spleen than 

in control mice (Slack, 2009), suggesting that prevention of bacterial invasion is 

dependent on intact TLR signalling. Furthermore, TLR signalling as outlined in 

Figure 6.1: has been shown to play a role in maintaining the integrity and function of 

the intestinal epithelium. Mechanisms involved are unclear but are currently being 

addressed (Lavelle, 2010). Since TLR-4 and TLR-2 over-expression and NOD-like 

receptor mutations have all been clearly associated with the pathogenesis of IBD, 

the current studies focussed on cytokine production in response to ligands of these 

receptors and the potential for UDCA in interfering with these responses. 

 

TLR-2: TLR-2 is thought to play a particularly important role in maintenance of 

intestinal barrier integrity (Cario, 2007). Treatment of IECs with the TLR-2, agonist 

Pam3CSK, resulted in increased intercellular communication through the gap 

junctional connexion, Cx43, during cell injury (Ey, 2009). Among Caucasians, TLR -2 

genetic mutations are associated with a more severe disease phenotype in UC 

patients (Pierik, 2006). Furthermore, in a neonatal rat model of necrotizing 

enterocolitis there is increased expression of both TLR-2 and TLR-4 (Le Mandat 

Schultz, 2007). Combined, these data highlight the importance of TLR-2 in intestinal 

barrier function. Although further characterisation is required, this evidence serves to 

promote the idea of targeting TLR-2 signalling as a potential therapeutic approach in 

intestinal inflammatory diseases. 

 

TLR-4: Previous studies have shown that stimulation of IECs with TLR-4 agonists 

induces proliferation, NFB activation, and the release of pro-inflammatory cytokines 
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(Otte, 2004). However, responses to LPS are variable in intestinal cells (Hornef, 

2002) due to highly variable expression of TLR-4 (Cerovic, 2009), making it difficult 

to fully characterise responsiveness to TLR stimuli in in vitro studies. TLR-4 

antagonists have been shown to inhibit the development of colitis in a DSS model as 

have antibodies to TLR-4 (Ungaro, 2009), while necrotising enterocolitis results in 

increased expression of TLR-4 compared to controls (Le Mandat Schultz, 2007). 

These data indicate an important role for TLR-4 in inflammation in the colonic 

mucosa.   

 

NOD-like receptors: NOD-like receptors, as mentioned in the Introduction to this 

thesis, constitute a recently identified family of intracellular PRRs (Creagh and 

O'Neill, 2006). The physiological importance of NOD-1 and NOD-2 in immune 

responses is evident from the association of their mutations with inflammatory 

diseases in humans. Crohn’s disease has a complex pathology, as already outlined, 

but there is an established link between the disease and NOD-2 mutations 

(Okumura, 2009). NOD-1 gene polymorphisms have also been shown to be 

associated with susceptibility to both CD and UC (McGovern, 2005). MDP has been 

shown to stimulate NOD-2 responses in colonic epithelial cells (Canto, 2009, 

Richardson, 2010). Interestingly, there may be inhibitory interactions between stimuli 

of NOD-2 and TLR-4, which may explain a protective role for NOD-2 that has been 

observed in some intestinal diseases, such as necrotizing enterocolitis of the new-

born (Richardson, 2010). 
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Figure 6.1: TLR signalling pathways. TLRs are transmembrane proteins that act alone or in 

heterologous pairs to detect invading microbes, triggering signalling pathways that ultimately lead to 

the release of inflammatory cytokines through the NFB pathway or the release of interferons through 
the IRF3 pathway. TLRs can localize to the cell membrane or to endosomes and can differ in terms of 
the adaptor molecules (circles) that relay their intracellular signals. Some of the adaptor molecules 
(MyD88, TRIF, and TRAM) have been characterised, while others remain unidentified (Adapted from 
MacKichan 2005). 

 

TLRs and cytokine release in the gut: The mucosal surfaces of the gastrointestinal 

tract are continually exposed to an enormous antigenic load of microbial and dietary 

origin, yet homeostasis is normally maintained. TLRs have a key role in maintaining 

the integrity and function of the epithelial barrier and in promoting maturation of the 

mucosal immune system and it is known that there is up regulation of a number of 

TLRs in intestinal inflammation (Hausmann, 2002). Under these conditions, TLR 

stimulation by pathogens may result in release of pro-inflammatory cytokines 

(Creagh, 2006). Prolonged, excessive, or inappropriate cytokine release, such as 

that which occurs in IBD, can result in damage to the epithelium.  In experimental 

conditions, prolonged  exposure of HT29 cells to various cytokines (e.g. IL-6, TNF-, 

IFN-) reduced both epithelial barrier function and electrolyte transport (Hiribarren, 

1993). Human colonic epithelial cells and cell lines are also known to produce IL-8 

(Eckmann, 1993), a potent neutrophil chemo-attractant, and leukotrienes that may 

be involved in the initiation and regulation of mucosal inflammatory responses. 

Colonic epithelial cell lines can also respond to a broad array of cytokines (e.g. 
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TNF, IL-I, IL-4, IL-6, IFN-) with altered gene expression and growth characteristics 

(Jung, 1995). 

 

Cytokines play an essential role in intercellular communication by delivering signals 

which influence the activation, growth, differentiation or migration of their target cells. 

Alone and in combination, pro-inflammatory cytokines are known to attract and 

activate inflammatory cells and thus may provide an important early signalling 

system for the initiation and amplification of mucosal inflammatory responses in the 

early stages of bacterial infection (Jung, 1995). As mentioned previously, it is thought 

that it is excessive and prolonged pro-inflammatory cytokine release that is 

responsible for tissue damage in inflammatory bowel conditions.  

 

6.1.4 Modulation of cytokine activity as a therapeutic option in IBD 

The recognition that altered cytokine expression is important in the pathogenesis of 

IBD prompted the trial of anti-TNF- antibodies, and IL-11 and IL-1 receptor 

antagonists, for treating the disease. Of these, only TNF- antibodies have been 

fully-licensed for use in patients. Infliximab and Adalimumab are currently licensed 

for use in CD (Colombel, 2010), (Kamm, 2011), and Infliximab for moderate-severe 

UC (Feagan, 2007). With further research, it is likely that a panel of cytokine-based 

therapies will become available for use, especially in patients with refractory/non-

responsive IBD (Sandborn, 2011, Toussirot, 2012, Klotz, 2005). Future strategies 

might also include gene transfer techniques for induction of protective cytokines, 

such as IL-4 and IL-10 (Csutora, 2006). Thus, the roles that different cytokines play 

in pathogenesis of IBD and their potential as targets for development as new 

therapeutics, continues to be a field of intense research interest. In the current 

studies, we selected a number of cytokines, known to be important in the 

development of IBD, for investigation. 

 

RANTES:  

RANTES, also known as CCL5 (C-C motif ligand 5), is an 8 kDa protein classified as 

a chemotactic cytokine, or chemokine. It is released upon activation of normal T cells 

and has a range of pro-inflammatory activities (Tawadrous, 2012, Alcendor, 2012, 

Hu, 2012). It is chemotactic for T cells, eosinophils, basophils, and leucocytes. It has 
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been shown to interact with the CC chemokine receptors; CCR-3 (Struyf, 2001), 

CCR-5 (Proudfoot, 2001), and CCR-1 (Proudfoot, 2001). 

 

RANTES also activates the G-protein coupled receptor, GPR75. Along with IL-2 and 

IFN-RANTES induces proliferation/activation of certain natural-killer cells and it is a 

HIV-suppressive factor, released from CD8+ T cells. The importance of RANTES is 

underlined by the fact that it has been shown to be up-regulated in more than 100, 

mainly granulomatous, human diseases, including IBD. It has been shown that there 

is increased expression of both RANTES and IL-8 in the epithelium of patients with 

both CD and UC (McCormack, 2001, Thomas, 2012), where it is chemotactic for T 

cells, eosinophils, and basophils, and plays an active role in recruiting neutrophils 

into inflammatory sites. In combination with other cytokines (i.e., IL-2 and IFN-γ) that 

are released by T cells, RANTES also induces the proliferation and activation of 

certain natural-killer (NK) cells to form CHAK (CC-chemokine-activated killer) cells.  

 

IL-8: 

IL-8 is a pro-inflammatory cytokine that is produced by immune cells and epithelial 

cells and primarily functions to induce chemotaxis. There are many receptors at the 

cell surface capable of binding IL-8; the most frequently studied being the G protein-

coupled serpentine receptors, CXCR1, and CXCR2 (Bondurant, 2012). IL-8 is a 

member of the CXC chemokine family and is one of the major mediators of 

inflammatory responses. IL-8 and -10 other members of the CXC chemokine gene 

family form a cluster in a region mapped to chromosome 4q.Through a chain of 

biochemical reactions, IL-8 is secreted and its primary function is the induction of 

chemotaxis in its target cells (e.g. neutrophils). While neutrophil granulocytes are the 

primary target cells of IL-8, there is a relatively wide range of cells (endothelial cells, 

macrophages, mast cells, and keratinocytes) which also respond to this chemokine. 

IL-8 secretion is increased by a range of stimuli, including oxidant stress, causing the 

recruitment of inflammatory cells which induces a further increase in oxidant stress, 

making it a key mediator of localized inflammation (Vlahopoulos, 1999). UC is 

characterized by increased production of IL-8 (Arijs, 2011, Guimbaud, 1998), and 

recent studies in patients with IBD noted that expression of IL-8 was increased in 

patients with active ileal CD (Arijs, 2011). IL-8 is produced mainly in the colonic 
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lamina propria in IBD, and its expression correlates with the degree of mucosal 

inflammation (Daig, 1996).  

 

6.1.5 Bile acids and intestinal inflammation 

Many studies have shown that there is increased delivery of BAs to the colon in 

conditions of IBD. The most severe bile acid malabsorption (BAM) occurs in Crohn’s 

patients after resection of the distal ileum, but BAM can occur in surgically untreated 

CD patients, regardless of disease localisation (Lenicek, 2011). Physiological studies 

in humans suggest that BAM may be caused by an abnormal negative feedback 

system, resulting in increased synthesis of bile salts and entry into the colon, thereby 

causing watery diarrhoea (Surawicz, 2010). Some patients with terminal ileitis suffer 

from significant BAM, even if the inflammation is locally limited. There are data to 

suggest that limited acute ileitis impairs active BA uptake in the terminal ileum. It also 

diminishes active BA and glucose absorption in more proximal segments of the small 

intestine, likely by a systemic effect (Stelzner, 2001). This systemic effect may 

aggravate BA malabsorption in patients with limited ileitis. The most prominent of the 

colonic BAs, DCA, has been well-established as being pro-inflammatory (Muhlbauer, 

2004). Indeed, DCA is known to induce IL-8 secretion and to activate NFB in HT29 

cells (Lee, 2004), actions that are opposed by taurine conjugated UDCA (Muhlbauer, 

2004). The stimulatory effect of DCA is reproduced in some but not all other 

intestinal cell lines (Payne, 1998). 

 

BAs may also play a role in the pathogenesis of intestinal inflammation by activating 

the signalling pathways that control cell proliferation. CDCA, DCA and LCA all have 

stimulatory effects on the expression of the proto-oncogene, c-fos, in Caco-2 cells 

(Di Toro, 2000). Another mechanism by which DCA can aggravate inflammation is 

by disruption to the Golgi apparatus, an organelle critical for normal cell function. 

Analysis of Golgi architecture in vivo using tissue microarrays by Long et al., 

revealed Golgi fragmentation in both UC and colorectal cancer tissue. Interestingly, 

they further demonstrated that DCA can disrupt the structure of the Golgi. Inhibition 

of this DCA-induced Golgi fragmentation by UDCA was mediated via the GR (Byrne, 

2010). This represents a potential mechanism of observed chemo-preventive effects 

of UDCA in benign and malignant disease of the colon. Thus, it can be extrapolated 
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that dihydroxy BAs such as DCA have pro-inflammatory effects in the intestine and 

that these effects may be counteracted by UDCA.   

 

In contrast to the other dihydroxy BAs, there is significant evidence that UDCA exerts 

anti-inflammatory activity in the intestine. Studies have shown that UDCA treatment 

mildly reduces intestinal permeability and oxidative stress in the indomethacin model 

of ileitis in rats (Bernardes-Silva, 2004). Similarly, UDCA counteracts ibuprofen-

induced intestinal ulceration in rats (Lloyd-Still, 2001). UDCA also inhibits IL-1 and 

DCA-induced activation of NF-B and AP-1, and inhibits iNOS synthesis in human 

colon cancer cells (Shah, 2006, Invernizzi, 1997). More recently, a Belgian group 

have been studying the protective effects of TUDCA on intestinal inflammation in a 

DSS-induced colitis model, noting that  large doses (500 mg/ kg) administered intra-

peritoneally result in significant reductions in intestinal inflammation and this process 

is thought to be driven by epithelial IRE1 activation, thereby altering the contribution 

of the unfolded protein response to intestinal inflammation (Laukens, 2012). 

 

BA effects on epithelial barrier function: The organization of the colonic epithelium is 

directed towards maintaining a continuous layer of cells with functional maturity at 

the surface, with a constant supply of epithelial cells migrating upwards from the 

crypts. Cells are lost by shedding at the surface or by undergoing apoptosis in situ, 

followed by shedding or phagocytosis. The nature of the predominant form of cell 

death under normal circumstances remains uncertain but probably involves multiple 

mechanisms. Death of abnormal cells in the crypts is an important process that 

prevents clonal expansion and tumour formation. Apoptosis of normal cells is largely 

secondary to the effects of exposure to luminal factors, such as short-chain fatty 

acids, or cytokine-induced death in association with inflammation. In IBD, there is 

known to be increased rates of epithelial cell death (Chen, 2010). In turn, this can 

lead to a compromised barrier function, impaired epithelial restitution, loss of stem 

cells and regenerative capacity, and can have relevance to carcinogenesis (Sturm, 

2008).  

 

BAs are well known to regulate apoptosis in the intestine. Toxic BAs induce 

apoptosis by activating both ligand-dependent and -independent death receptor 
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oligomerization. There have been several studies suggesting that it is the 

hydrophobicity of BAs that is the most important determinant of their pro-apoptotic 

activity (Powell, 2001). Gilmer et al recently studied relationships between 

lipophilicity and cytotoxicity using multiple derivatives of UDCA, which is less 

hydrophobic than other dihydroxy BAs (Roda, 1990), in an oesophageal cell line and 

found them to have no effects on cell viability (Shiraki, 2005; Sharma, 2010). This is 

in keeping with the findings of multiple other studies of UDCA actions on cell viability 

in various models (Invernizzi,1997;Bellentani, 2005). 

 

UDCA and its taurine-conjugated form (TUDCA), both show cyto-protective 

properties. Indeed, these molecules have been described as potent inhibitors of 

classic pathways of apoptosis in liver cells, although their precise mode of action 

remains to be clarified (Amaral et al., 2009). UDCA is currently considered the first 

choice therapy for several forms of cholestatic immune syndromes. However, the 

beneficial effects of both UDCA and TUDCA have been tested in other experimental 

pathological conditions which involve dysregulated apoptosis, including neurological 

disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases (Amaral, 

2009). UDCA can also interfere with the death receptor pathway, inhibiting caspase-

3 activation (Lim, 2010). DCA and LCA on the other hand, have been shown to 

promote proliferation in colon cancer lines which express M3 receptors and EGFR 

(Cheng, 2005). 

 

BAs and epithelial tight junctions: UDCA has been shown to have inhibitory effects 

on cytokine-induced changes in paracellular permeability in hepatocytes (Hanada, 

2003). However, there is conflicting evidence regarding the effects of BAs on 

intestinal epithelial permeability. Both CDCA (0.5 mM) and UDCA (0.5 mM) have 

been shown to significantly increase mucosal permeability to lactulose in jejunum 

and ileum. In these studies, tight junctions appeared to be loosened by the addition 

of 1 mM CDCA, suggesting that this is a major site where BAs transiently increase 

small intestinal permeability (Fasano, 1990). Furthermore in Caco-2 cells, CA, DCA 

and CDCA, but not UDCA, decreased trans-epithelial electrical resistance and result 

in redistribution of tight junction proteins. CDCA and DCA also induce reversible 

EGFr phosphorylation and occludin dephosphorylation in this setting, suggesting that 

these BAs modulate intestinal permeability through interaction with these proteins 
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(Raimondi, 2008). Furthermore, BAs which activate the nuclear receptor, FXR, may 

be protective in the context of inflammation through their effects on TJs. FXR 

activation has been shown in a DSS mouse model of colitis to prevent inflammation, 

partly through inhibition of increases in epithelial permeability (Gadaleta, 2011). 

 

6.1.6 Anti-inflammatory actions of UDCA 

UDCA has been well-described to have anti-inflammatory actions (Hylemon, 2009), 

most notably in the liver where it has been widely used as a therapeutic in 

cholestatic immune diseases, such as primary biliary cirrhosis and primary 

sclerosing cholangitis (Pardi, 2003). Though still not completely understood, the anti-

inflammatory effects of UDCA in the hepatobiliary tree are complex. Its mechanisms 

of action in PBC are mediated, at least in part, via a modulation of protein 

biosynthetic pathways (Chen, 2008), while in a cholangitis model, UDCA suppresses 

hepatocyte IL-2 production (Miyaguchi, 2005).  

 

BAs are also important in progression of oesophageal disease. Reflux of gastro-

duodenal contents (including BAs) and consequent inflammatory responses are 

associated with the development of Barrett's oesophagus (BO) and the promotion of 

oesophageal adenocarcinoma (OAC). DCA has been proposed to play an important 

role in the development of OAC through regulation of  apoptosis and COX-2-

regulated cell survival, suggesting that the balance between these 2 opposing 

signals may determine the transformation potential of DCA as a component of the 

refluxate (Looby, 2009). In contrast, UDCA has no such cytotoxic effects on 

oesophageal cells, as demonstrated in numerous studies (Bozikas, 2008, Huo, 

2011). However, to date, clinical studies have not shown UDCA treatment to  alter 

the pathologic appearance of BO, although it does exhibit some clinical efficacy in 

bile reflux related gastritis (Huo, 2011; Bozikas, 2008, Burnat, 2010, Rosman, 1987). 

Based on these previous studies and the ever-growing body of evidence that 

suggests UDCA to be primarily anti-inflammatory, there is a compelling case for 

further investigating whether this BA also exerts anti-inflammatory effects on 

intestinal epithelial cells, thereby providing a good target for the development of new 

drugs to treat IBD.  
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6.2 Aim:  

The primary aim of this chapter was to investigate if UDCA exerts anti-inflammatory 

actions on colonic epithelial cells. Specifically, we aimed to determine:  

 

i) The effects of UDCA on basal and TLR-stimulated cytokine release from 

colonic epithelial cells. 

 

ii)  The effects of UDCA on epithelial barrier function, cell growth, and 

apoptosis. 
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6.3 Results: 

6.3.1 UDCA regulates basal cytokine release from T84 cell monolayers 

Initial experiments were carried out to assess whether UDCA might affect basal 

cytokine release from colonic epithelial cells, T84 cells were grown to 70–80% 

confluency on 96 well plates and, after serum starvation for 24 h, were treated with 

UDCA (250 M; 24 h). Levels of the pro-inflammatory chemokines, RANTES, IL-6 

and IL-8, were then measured in the culture medium by ELISA and compared to 

levels in untreated controls. These experiments revealed that UDCA pre-treatment 

(250 M; 24 h)  significantly reduced basal release of RANTES from T84 cells, 

reducing levels to 42 ± 19% of controls (n = 6, p < 0.05, Figure 6.2, Panel A). In 

contrast, UDCA was found to have no significant effect on basal levels of either IL-8 

(n = 6) or IL-6 (n = 4) (Figure 6.2, Panels B and C, respectively).  

 

Having shown that UDCA can alter basal RANTES release from colonic epithelial 

cells, we next went on to assess whether the BA could affect cytokine release in 

response to common TLR agonists. Preliminary experiments were first carried out to 

determine which TLR agonists could induce cytokine release in our cell culture 

model, paying particular attention to those agonists most relevant to IBD (data not 

shown). Thus, a series of optimization experiments were performed with a variety of 

TLR ligands at a range of concentrations in the T84 cell line. We found that the 

optimal concentration for stimulation of TLR-4 with lipopolysaccharide (LPS) was 100 

ng/ mL, which caused a 2.4 ± 0.31 fold increase in RANTES release compared to 

controls (n = 6, p < 0.001, Figure 6.3, Panel A). The optimal concentration for The 

optimal concentration for stimulation of TLR-2 with Pam3Cys was 10 μg/ mL, which 

induced a 2.01 ± 0.24 fold increase in RANTES levels compared to controls (n = 6, p 

< 0.001, Figure 6.4, Panel A). The optimal concentration noted for stimulation with 

muramyl dipeptide (MDP), the ligand for NOD stimulation, was 1 g/ mL and induced 

a 1.62 ± 0.42 fold increase in RANTES levels compared to controls (n = 8, p < 0.05, , 

Figure 6.5 Panel A).  Finally, stimulation of TLR-3 with Poly I: C was found to be 20 

μg/ mL, which caused a 3.0 ± 0.09 fold increase in RANTES release above controls 

(n = 6, p < 0.001, Figure 6.6  Panel A).   
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Figure 6.2: UDCA inhibits basal RANTES release from T84 cells. T84 cells were 

grown to 70-80% confluency in 96 well plates and then serum starved for 24 h. They were then 

exposed to UDCA (250 M; 24 h) and levels of various pro-inflammatory cytokines (RANTES, IL-6 
and IL-8) were measured by ELISA and compared to untreated control cells (n = 6, * p < 0.05). 
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6.3.2 UDCA downregulates TLR-driven RANTES secretion from T84 cells.  

To assess the effects of UDCA on TLR-stimulated cytokine secretion, we initially 

focused on RANTES having noted a change in basal levels. UDCA pre-treatment 

(250 M; 24 h) was found to significantly inhibit LPS-induced RANTES release to 

39.1 ± 7.3% of that from control cells (p < 0.001, n = 6 Figure 6.3 Panel A). An 

analysis of the concentration dependence of UDCA for this effect demonstrated that 

at concentrations from 25 – 500 M the BA caused significant reduction of RANTES 

release from LPS-stimulated cells (Figure 6.3, Panel B). UDCA (250 M; 24 h) also 

inhibited TLR-2-induced RANTES release in response to Pam3Cys (10 μg/ml) to 

34.3 ± 6.8% of that from control cells (p < 0.001, n = 6,Figure 6.4 Panel A). Analysis 

of the concentration-dependence of the BA revealed that concentrations ranging 

from 100–500 M significantly reduced RANTES release from Pam3Cys-stimulated 

T84 cells (Figure 6.4, Panel B). UDCA pre-treatment (250 M; 24 h) also inhibited 

NOD-2-induced RANTES release with muramyl dipeptide (MDP, 1 μg/ mL) to 27.9 ± 

10.3% of that from controls (p < 0.001, n = 6, Figure 6.5, Panel A). Again, the effects 

of UDCA were concentration-dependent in the range of 100–500 M but were not 

statistically significant (Figure 6.5, Panel B). In contrast, UDCA did not alter TLR-3 

stimulated RANTES release with Poly I: C at concentrations ranging from 25 – 

250M with some effect noted at 500 M (n = 12, Figure 6.6 ) implying that its 

effects were predominantly affecting the membrane bound TLRs. 
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Figure 6.3: UDCA pre-treatment significantly attenuates TLR-4-driven RANTES 
secretion from T84 colonic epithelial cells. A) T84 cells grown to 70–80% confluency in 96 

well plates were exposed to UDCA (250 M) for 30 min before stimulating with LPS (100 ng/ mL) for a 

further 24 h (n = 6). B) UDCA pre-treatment at concentrations ranging from 25–500 M significantly 
reduced RANTES release from LPS-stimulated T84 cells compared to control response. Graph 
represents relationship of log [UDCA] to percentage control response where control response is 
100%. All concentrations used resulted in significantly lower % RANTES release. Calculated EC50 

was 197 M (n = 4; *p < 0.05, **p < 0.01, ***p < 0.001). 
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Figure 6.4: UDCA pre-treatment significantly attenuates TLR-2-driven RANTES 
secretion from T84 colonic epithelial cells. A) T84 cells grown to 70 - 80% confluency in 96 

well plates were exposed to UDCA (250 M; 30 min) then to Pam3Cys (10 μg/ mL; 24 h) and 
RANTES levels compared to unstimulated controls (n = 6). B) UDCA pre-treatment at concentrations 

ranging from 100–500 M significantly reduced RANTES release from LPS-stimulated T84 cells. 
Graph represents relationship of log [UDCA] to percentage control response where control response 
is 100%. All concentrations used resulted in significantly lower % RANTES release. Calculated EC50 

was 39 M (n = 4; *p < 0.05, **p < 0.01, ***p < 0.001). 
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Figure 6.5: UDCA pre-treatment significantly attenuates NOD-driven RANTES 
secretion from T84 colonic epithelial cells. A) T84 cells grown to 70-80% confluency in 96 

well plates were exposed to UDCA (250 M; 30 min) followed by muramyl dipeptide (MDP 1μg/ mL; 
24 h) and RANTES levels were compared to untreated controls (n = 6). B) UDCA at concentrations 

from 100 – 500 M caused significant reduction in RANTES release from MDP-stimulated T84 cells 
Graph represents relationship of log [UDCA] to percentage control response where control response 

is 100%. Only 250 M concentration resulted in significantly lower % RANTES release. Calculated 

EC50 was 79 M (n = 6; *p < 0.01, ***p < 0. 001). 
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Figure 6.6: UDCA pre-treatment does not alter TLR-3-driven RANTES secretion 
from T84 colonic epithelial cells. A) T84 cells grown to 70-80% confluency in 96 well plates 

were exposed to UDCA (250 M; 30 min pre-treatment) then to Poly I: C (20 g/ mL; 24 h) and 
subsequent RANTES levels were measured and compared to controls (n = 6). B) UDCA did not alter 

Poly I: C-induced RANTES release at concentrations ranging from 25 ˗ 250 M (n = 12; *p < 0.05, 
***p < 0.001). Graph represents relationship of log [UDCA] to percentage control response where 

control response is 100%. Only 500 M concentration resulted in significantly lower % RANTES 

release. Calculated EC50 was 178M (n = 12; *p < 0.05). 
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6.3.3 UDCA selectively regulates TLR-4-driven IL-8 secretion from T84 cells.   

Having shown that UDCA pretreatment reduced not only basal RANTES release but 

also TLR-driven secretion of this pro-inflammatory chemokine, we next turned our 

attention to another important cytokine, IL-8. Although, UDCA does not appear to 

alter basal levels of cytokine production, we hypothesized that it may have a role to 

play in regulating agonist-induced release of the cytokine. Thus, we assessed the 

effects of UDCA pre-treatment on Poly I: C and LPS stimulated IL-8 release. Poly I: 

C (20 μg/ mL; 24 h) and LPS (100 ng/ mL; 24 h) induced 1.83 ± 0.07 and 2.9 ± 0.24 

fold increases in IL-8 release (n = 3, p < 0.01), respectively (Figure 6 UDCA pre-

treatment (250 M; 24 h) inhibited LPS-induced IL-8 release to 67.3 ± 15 % of 

controls (n = 3, p < 0.05;Figure 6 Panel A). However, UDCA (250M; 24 h) was 

without significant effect on Poly I: C-induced IL-8 release (n = 4,Figure 6 , Panel B. 
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Figure 6.7:  UDCA pre-treatment significantly attenuates TLR-4, but not TLR-3 
driven, IL-8 secretion from T84 cells. T84 cells grown to 70–80% confluency in 96 well plates 

were exposed to UDCA for 30 min before treatment for 24 h with A) LPS (100 ng/ mL; n = 3) or B) 
Poly I: C (20 μg/ mL; n = 4. *p < 0.05; ***p < 0.001 compared to cells not treated with UDCA. 
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6.3.4 The effects of UDCA on TLR stimulated cytokine levels in human colon.  

In order to characterise the effects of UDCA in a more physiological setting, 

experiments were next carried out to examine effects of UDCA on cytokine release 

from resected human colonic tissue. Firstly, a series of preliminary experiments were 

undertaken to determine the time course over which resected human tissue remains 

viable in vitro (Figure 6.8). Tissue was mounted in Ussing chambers and bathed in 

physiological Ringers’ solution, aerated with O2/CO2 mix and maintained at 37 0C. 

Based on tissue conductance measurements, which were stable for 6 h, this time 

point was selected for subsequent studies (Figure 6.8 6.9). LPS stimulation (100 ng/ 

mL; 6 h) of human colonic mucosa resulted in increased basolateral RANTES 

release by 3-fold, compared to unstimulated controls (n = 3, p < 0.001). This 

response was abolished by pre-treatment with UDCA (250 M; 30 min). Similarly, 

LPS stimulated IL-8 release was increased to 959 ± 22 pg/ mL compared to 435 ± 46 

pg/ mL in unstimulated controls (n = 3, p < 0.001). This response was abolished by 

pre-treatment with UDCA (250 μM; Figure 6.9). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8: Time course of conductance changes across resected human 
colonic tissue in Ussing chambers. Under the experimental conditions used (37 

0
C, bathed 

in physiological Ringers solution and aerated with 5% O2/ 95% CO2 mix), control conductance across 
resected human colonic mucosa remains unchanged for 6 h, with a rise in conductance (denoting loss 
of barrier integrity and likely cell death) observed at the 12 and 24 h time-points (n = 3, *p < 0.05, ***p 
< 0.001). In view of this, all subsequent treatments were carried out for a maximum of 6 h 
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Figure 6.9: UDCA attenuates LPS-driven IL-8 and RANTES release human 
colonic mucosa in vitro. A) Resected human colon was mounted in Ussing chambers and 

exposed to UDCA (250 M, 30 min pre-treatment) then to LPS (100 ng /mL; 6 h). RANTES levels 
were measured and compared to controls (n = 3; *** p < 0.001). B) Under similar conditions, IL-8 
levels were measured (n = 3, ***p < 0.001).  
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6.3.5 The effects of UDCA on epithelial barrier function.  

Having gained some insights into the effects of UDCA on cytokine release from 

colonic epithelial cells, we went on to investigate its effects on other aspects of 

intestinal innate immunity. Excessive increases in epithelial barrier permeability 

occur under inflammatory conditions and this breach in barrier function plays an 

important role in pathogenesis of disease (Taylor, 1998, Hering, 2012). It was thus 

important to determine if UDCA has the capacity to alter epithelial barrier integrity. 

One simple measure of monolayer integrity which has been widely validated in the 

T84 cell model is the use of trans-epithelial conductance measurements (Madsen, 

1997). In experiments assessing the effects of UDCA treatment on conductance 

across confluent T84 cell monolayers, it was found that UDCA (50 M –1 mM; 24 h) 

had no significant effect (cf. Chapter III, Figure 3.6, n = 6). Similarly, UDCA (250 M; 

15 min) did not alter conductance when added bilaterally to rat (Figure 6.10, Panel A, 

n = 6) or human colonic mucosal tissues (Panel B, n = 10). Interestingly, however, it 

was noted that when UDCA (100 mg/ kg) was injected intra-peritoneally into C57BL6 

mice, subsequent conductance measurements across ex vivo colonic tissues 4 h 

later were 1.78 fold higher than those in control mice while in 6- MUDCA treated 

animals, conductance levels were comparable to controls (Figure 6.11).  
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Figure 6.10: UDCA does not alter basal conductance across human or rat 
colonic tissue in vitro. Panel A shows that UDCA (250 M; 30 min) does not significantly alter 

conductance across voltage clamped rat colonic mucosa (n = 6). Panel B shows that UDCA (250 M; 
30 min) does not alter conductance across human colonic mucosal tissues (n = 10). 
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Figure 6.11: UDCA administration in vivo increases basal conductance across 
ex vivo colonic tissues. Male C57B6 mice were intra-peritoneally injected with either UDCA 

(25 mg/kg), 6MUDCA (25 mg/ kg) or vehicle control (PBS), and after 4 h were sacrificed. Muscle-
stripped colonic mucosa was then mounted in Ussing chambers, TER was measured, and 
conductance (G) calculated (n = 5, *p < 0.05).Conductance was significantly higher in UDCA-treated 

animals while in 6- MUDCA-treated animals conductance was comparable to controls.  

 

6.3.6 UDCA effects on colonic epithelial cell growth and apoptosis. 

UDCA has thus far been shown to exhibit marked anti-inflammatory properties by 

reducing cytokine release from colonic epithelium. However, intestinal innate 

immunity is a complex process involving multiple variables. Another crucial factor 

upon which intestinal barrier function depends is the appropriate balance between 

epithelial cell growth and death. Thus, experiments were conducted to assess the 

effects of UDCA on epithelial cell viability. T84 cells were seeded onto 96 well plates 

and allowed to attach. Cells were then treated with UDCA (10 M–1 mM; 24 h). 

Using a commercially-available cell viability assay (c.f. Chapter II), no significant 

effect of UDCA was observed at any concentration tested (n = 3; Figure 6.1). 
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Figure 6.12: UDCA does not alter epithelial cell viability. The effects of pre-treatment 

with UDCA on cell viability were measured, using a commercially available XTT assay. Cells were 

treated with UDCA for 1 h, 4 h, 24 h, 48 h and 72 h, at concentrations ranging from 10 M–1 mM. A 
representative graph for the 24 h treatment is shown. Graph demonstrates the % control response 
absorbance for log [UDCA] where control response is o. There was no significant difference noted at 
any concentration (n = 6). 

 

Potential effects of UDCA on apoptosis were also investigated. Caco2 cells grown on 

96 well plates were treated with UDCA 100 M for 24 h. This was followed by 

treatment with the apoptotic stimulants cycloheximide (5 g/ mL) and TRAIL (25 ng/ 

mL). The % of late-phase apoptotic cells was then measured by flow cytometric 

analysis (c.f. Chapter II). We found that pre-treatment with UDCA resulted in a 

significant reduction in the % of apoptotic cells to 34.6 ± 2.0 % in UDCA-treated 

group, compared to 63.7 ± 9.0% in cells exposed to TRAIL/CHX alone. The values 

for % apoptotic cells in the absence of any treatments was 4.5 ± 0.3% (Figure 6.1, n 

= 6).  
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Figure 6.13: UDCA pre-treatment attenuates TRAIL/CHX-induced apoptosis in 
Caco- 2 cells. Cycloheximide (5 g/ mL) and TRAIL (25 ng/ mL) were used to induce apoptosis in 

Caco- 2 cells and the % of apoptotic cells was measured by flow cytometry (n = 6, **p < 0.01, ***p < 
0.001 compared to untreated cells; 

##
p < 0.01 compared to cells treated with TRAIL/CHX alone). 
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6.4: Discussion  

Perturbed homeostasis, release of cytokines and disruption of cellular apoptotic 

pathways are critical determinants in the pathogenesis of IBD. TLR signalling plays 

an important role in maintaining intestinal homeostasis, with altered expression of 

TLR in IBD being first described 10 years ago (Cario, 2010). Since then, studies from 

many groups have led to the current concept that TLRs are key regulators of innate 

intestinal defense (Lavelle, 2010). Recent findings in murine models of colitis have 

helped to reveal the mechanistic importance of TLR dysfunction in IBD pathogenesis 

(Fukata, 2005, Ocampo, 2012, Hardenberg, 2012). It has become evident that 

environment, genetics, and host immunity form a multidimensional, and highly 

interactive, regulatory triad that controls intestinal TLR function. Imbalanced 

relationships within this triad may promote aberrant TLR signalling, thereby 

contributing to inflammatory processes in the intestine (Cario, 2010). Data presented 

in this chapter suggest that UDCA may have the ability to interfere with this 

regulatory triad by virtue of its ability to inhibit TLR-induced cytokine production. 

 

Multiple factors regulate TLR signalling and expression at different anatomical sites 

within the intestine. Thus, in the current studies it was initially important to ascertain 

which TLR ligands regulate cytokine release from our colonic epithelial model. We 

found that the T84 cell line expresses relatively high basal levels of RANTES and 

lower levels of IL-8 and IL-6. Previous work has shown similar levels of basal 

RANTES and IL-8 release in T84 and HT-29 cells (Chen, 2006, Nandakumar, 2009). 

It is also now well-established that RANTES is released upon activation of normal T 

cells and that it exerts a range of pro-inflammatory activities (Alcendor, 2012; Hu, 

2012; Tawadrous, 2012). Examples of RANTES activities include recruiting 

leucocytes into inflammatory sites and inducing proliferation and activation of certain 

natural-killer (NK) cells (Maghazachi, 1996). Importantly, it has been noted that 

mucosal expression of RANTES is increased in biopsies from patients with either CD 

or UC (McCormack, 2001), and that RANTES expression is also significantly up 

regulated in colonic epithelial cells of mice susceptible to colitis, such as Foxo4-null 

mice (Zhou, 2009). Thus, RANTES could provide a good target for developing new 

therapeutics for intestinal inflammation. Indeed, our current findings in T84 cells and 
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normal colonic mucosa indicate that UDCA may exert anti-inflammatory effects by 

reducing basal RANTES levels.  

 

The effects of UDCA on basal cytokine secretion appear to be relatively cytokine 

specific, since even though it reduced RANTES release, it did not significantly alter 

basal IL-6 release from T84 cells. However, preliminary studies using TLR ligands 

also failed to show significant stimulation of IL-6 release from T84 cells. It should be 

noted that given the low basal levels of IL-6 present in the cell line, changes in 

response to UDCA may be difficult to detect. The low basal levels and lack of 

stimulation of IL6 release in our studies correlate with previous work investigating IL-

6 levels in T84 cells (Ledesma, 2010). However, previously published data from other 

systems are not conclusive regarding the effects of UDCA on IL-6 levels. For 

example, in a clinical trial where UDCA (1.5 mg/ kg) was used to treat patients with 

heart failure, levels of TNF-α and IL-6 were found to be unchanged, or even 

increased, compared to placebo (von Haehling, 2012)  In contrast, UDCA (50 M) 

reduced IL-6 production in an in vitro model of ethanol-induced cytotoxicity using 

Hep G2 liver cells (Neuman, 1998). Interestingly, further studies by van Milligen et al, 

showed that baseline serum levels of IL-6 were normal and IL-8 levels were 

increased in patients with primary sclerosing cholangitis, but that neither of these 

parameters were significantly altered by UDCA therapy (van Milligen, 1999). Our 

current studies also found that UDCA had no significant effect on basal IL-8 levels 

released from cultured colonic epithelial cells. Again, it is possible that this apparent 

lack of effect could be due to the relatively low basal IL-8 levels released from T84 

cells (Ledesma, 2010, Zheng, 2008), which could make it difficult to detect UDCA-

induced changes. Notably however, our studies did reveal that UDCA significantly 

inhibited agonist-stimulated IL-8 and RANTES release from both cultured T84 cells 

and human tissue. Thus, the effects of UDCA on epithelial release of these cytokines 

might be particularly important in the context of IBD, when elevated levels of 

agonists for TLRs occur in the mucosa. 

 

A particularly intriguing finding of the current studies was the apparent differential 

effects of UDCA on TLR-stimulated cytokine release. While, UDCA inhibited 

responses to agonists acting at membrane TLR-2 and TLR-4, it had no effect on 
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those to activation of endosomal TLR-3. This observation may help to define the 

mechanisms by which UDCA has its effects. This differential effect on TLR-4 and 

TLR-2 stimulation has particular relevance in IBD where both of these TLRs become 

up regulated (Frolova, 2008; Szebeni, 2008). 

 

In terms of looking at the mechanism involved, it has been well established that 

activation of membrane TLR-2 or -4 stimulates an MyD88-dependent pathway 

(Takeda, 2004) leading to activation of NF (Toubi, 2004). Indeed, previous studies 

have shown that taurine-conjugates of UDCA can oppose the effects of DCA on 

NFB activation in HT-29 cells (Lee, 2004, Muhlbauer, 2004). There is thus a need 

to further investigate the potential role of NFB inhibition in mediating the effects of 

UDCA on colonic epithelial cells. 

 

We have also shown here, that UDCA may reduce NOD-2-stimulated cytokine 

release. Polymorphisms in the NOD-like receptor family confer genetic risk for IBD in 

a mouse population (Natividad, 2012). MDP, the NOD ligand used in these 

experiments, has been shown to induce experimental colitis in rabbits and 

interestingly, similar to what is seen in some patients with IBD, an associated 

pericholangitis (Kuroe, 1996).  The implications of this are that UDCA, already known 

to ameliorate immune-mediated cholestasis, may also play a role in inhibiting MDP-

mediated colonic inflammation. However, more work in disease models will be 

necessary to ascertain if this is truly the case.  

 

In order to assess UDCA effects on barrier integrity, trans-epithelial conductance 

was used as a measure of epithelial barrier integrity (Taylor, 1998). Acute treatment 

with UDCA was found to have no adverse effects on epithelial monolayer integrity. 

This contrasts with the effects of other dihydroxy BAs, such as DCA and may be 

reflective of the unique physicochemical properties of UDCA. BA lipophilicity is 

believed to be the most important determinant of cytotoxicity, although this 

relationship is still not well-characterized. Roda et al., have demonstrated the order 

of lipophilicity amongst BAs to be DCA > CDCA > UDCA (Roda, 1990), which 

corresponds to their relative cytotoxicities (Perez, 2009), pro-secretory activity 

(Keely, 2007) and pro-inflammatory responses (Munch, 2007). Furthermore, Gilmer 
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et al recently studied relationships between lipophilicity and cytotoxicity using 

multiple derivatives of UDCA in an oesophageal cell line and found them to have no 

adverse effects on cell viability (Shiraki, 2005; Sharma, 2010). This is in keeping with 

the findings of multiple other studies assessing UDCA effects on cell viability 

(Invernizzi, 1997). Future studies could assess whether UDCA might have protective 

effects against agents which reduce TER in the colonic epithelia such as IFN and 

TNF

 

In addition to their cytotoxic effects, BAs are known to have important roles in 

regulating cell growth and apoptosis. Previous studies on the effects of UDCA and 

TUDCA on apoptosis in cholangiocytes share a number of common features with our 

current findings. For example, administration of UDCA or TUDCA prevented 

apoptosis in bile duct ligation-vagotomized rats (Marzioni, 2006). Shiraki et al noted 

that both DCA and UDCA reduced proliferation in of HT-29 colon cancer cells 

(Shiraki, 2005). Other in vitro work in colonic cell lines indicates that UDCA can 

suppress epithelial cell growth and mitogenic signalling through inhibiting the 

mitogenic activity of receptor tyrosine kinases, such as the EGFr, through increased 

receptor degradation (Feldman, 2009). In contrast, in the current studies, we found 

no effect of UDCA on basal T84 cell growth as determined using the XTT assay.  

 

Colonic epithelial barrier function is determined by a balance between cell growth 

and apoptosis. Previous data demonstrate cytoprotective properties of UDCA 

(Amaral, 2009). Indeed, our data further support the idea that UDCA exerts 

cytoprotective effects by showing that it reduced the number of apoptotic cells under 

CHX/TRAIL-stimulated conditions. Such anti-apoptotic effects of UDCA are in direct 

contrast to other dihydroxy BAs (Saeki, 2012). For example, it has been previously 

shown that cytotoxicity associated with DCA is due to the induction of apoptosis, by 

a process requiring caspase-3 activity (Ignacio, 2011, Glinghammar, 2002). 

However, this is not always the case,  since DCA can also induce cell death by 

necrosis (LaRue, 2000). As mentioned in the introduction to this chapter, there have 

been several studies suggesting that it is the hydrophobicity of BAs that determines 

their pro-apoptotic activity (Powell, 2001). The activation of death receptors by BAs 

invariably signals the mitochondrial pathway of apoptosis in type II cells, such as 
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hepatocytes. Hydrophobic BAs also partially activate death-receptor-dependent 

survival pathways, such as the NF-B signalling pathway. In fact, Akt-dependent NF-

B activation is required for BAs to rescue colon cancer cells from stress-induced 

apoptosis, leading to resistance to chemotherapy and radiation (Shant, 2009). 

 

Whatever the mechanism underlying its anti-apoptotic actions, our data suggest that 

UDCA may be a useful agent in preserving barrier function under conditions of 

inflammation. However, when considering such a use for UDCA, one must also 

consider the long-term risks of inhibiting apoptosis in terms of potential development 

of dysplasia and cancer.   

 

Another potential limitation to the use of UDCA as treatment for IBD could be that 

bacterial degradation to LCA in the colon could limit its therapeutic activity. Thus, we 

propose that a metabolically stable analogue of UDCA, such as 6-MUDCA could 

provide a more efficacious anti-inflammatory response. Future studies could be 

carried out in mouse models of colitis to determine if this is the case. 

 

In summary, the data presented in this chapter suggest that UDCA can exert anti-

inflammatory and cytoprotective effects on colonic epithelium. UDCA reduces TLR-

stimulated cytokine release and maintains epithelial barrier integrity through 

inhibition of apoptosis. Although further studies are required to elucidate the 

mechanisms involved, our data suggests that UDCA should be beneficial in 

treatment of IBD. Esmaily et al., have recently shown that UDCA treatment 

concomitantly with silabinin is protective in a rat experimental model of colitis 

(Esmaily, 2011). However, even though UDCA has been widely used in patients with 

PSC and concomitant UC, it has not been reported to exert substantial anti-

inflammatory effects in the colon. We hypothesise that this could be due to bacterial 

metabolism of UDCA to LCA, which would limit its therapeutic efficacy. Indeed, it has 

been proposed that since UDCA treatment dramatically increases colonic LCA 

levels, this may underlie the adverse effects and reduced survival observed in PSC 

patients treated with high dose UDCA (Sinakos, 2010). Thus, future studies 

examining the effects of metabolically stable analogues of UDCA in animal models of 

IBD could lead to the development of a new approach to treat these diseases. 



224 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 7 

General Discussion 
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The work described in this thesis provides novel insights into the effects of UDCA, a 

widely used therapeutic BA, on colonic epithelial function. We have discovered new 

effects of UDCA on both colonic secretory function and innate immunity, as 

demonstrated by studies in cells, an animal model, and resected human tissues. 

While previous work has established that UDCA, unlike other dihydroxy BAs, lacks 

secretory actions in the colon (Mekjian 1971, Rahban, 1980, Gelbmann, 1995), we 

present data to show that it also exerts potent anti-secretory actions in vitro.  

 

Intriguingly, we found that, in contrast to such anti-secretory actions in vitro, UDCA 

potentiated secretagogue-induced responses in vivo. We propose that such effects 

are due to metabolism to LCA, and may underlie the diarrhoeal side effects that can 

occur when UDCA is used therapeutically (Alberts, 2005). This is supported by data 

showing that 6-MUDCA, a 6-methylated derivative of UDCA that is completely 

resistant to bacterial dehydroxylation (Roda, 1994) did not alter caecal LCA levels 

and significantly inhibited secretagogue-induced responses across voltage-clamped 

colonic tissues. These findings suggested to us that 6MUDCA could have several 

advantages over its mother compound, UDCA, as a targeted therapeutic for colonic 

disease. Cytotoxicity data in cells and resected tissue has proven it safe thus far; 

however further studies in animal disease models would help to clarify side effects or 

toxicity issues.  

 

While 6-MUDCA and UDCA have been demonstrated to exert potent effects when 

directly applied to the human colonic epithelium, it is unclear what the bioavailability 

might be upon oral administration to humans. One of the disadvantages of 6 

MUDCA is that, even though it is not metabolised by dehydroxylation, like other BAs, 

it too would be expected to become concentrated in the enterohepatic circulation, 

thereby lowering its delivery to the colon and increasing its propensity for systemic 

side effects. Thus, to further enhance efficacy, strategies using a colonic drug 

delivery system to enhance delivery to the desired target could be utilized. Such 

strategies would bypass the major absorptive pathways of the ileum (Assifaoui, 

2013, Xiao, 2012). Slow release polysaccharide based matrices (Rehman, 2013, 

Mihaela, 2013) and nanoparticle technology, currently under development (Pertuit, 

2007), offer the prospect of direct treatment at the disease site and, consequently, 



226 

 

lower dosing and reduction of systemic side effects. It is interesting in this context 

that the aim of this strategy is to bypass the enterohepatic circulation, which is 

conversely so advantageous in delivering bile acids for therapy in liver disease 

(Kubota, 1988). 

 

 As mentioned above, the use of 6-MUDCA prevents formation of LCA in the colon. 

The consequences of this are still unclear and could also be a target for future 

investigation. Recently, it has been shown that activation of TGR5 (upon which LCA 

acts) is protective against production of pro-inflammatory cytokines in Crohn’s 

Disease (Yoneno, 2013). LCA is also known to down-regulate NF B in colon cancer 

cell lines (Yoneno, 2013, Sun, 2008). Given these anti-inflammatory effects, this 

begs the question as to whether the metabolism of UDCA to LCA could in fact be 

beneficial to long-term intestinal health. ELISA studies similar to those performed 

with UDCA and 6-MUDCA assessing the direct effect of LCA on cytokine 

production from colonic epithelium would be helpful, along with further investigations 

into the role of TGR5 activation (if any) in mediating the effects of UDCA and its 

metabolites on intestinal inflammation. On the other hand, there is also substantial 

evidence to suggest that LCA may be detrimental to colonic health, especially in 

terms of increasing colon cancer risk. LCA has been shown to stimulate invasion and 

proliferation of colonic epithelial cells through a number of oncogenic signalling 

pathways (Kozoni, 2000). Thus its carcinogenic potential must be weighed against 

its potential anti-inflammatory effects.  

 

Furthermore, greater understanding of the role of bacterial degradation as 

demonstrated by the dehydroxylation of UDCA to LCA may help further enhance the 

efficiency of future drug delivery methods (Vadlamudi, 2012). As alluded to above, 

there may be numerous beneficial effects mediated by BAs in the colon. Probiotics 

could potentially be used to increase relative UDCA levels in the colon to enhance 

these effects. There have been recent studies in mouse models assessing the 

effects of probiotics and prebiotics on total faecal BA levels, and there is some 

discussion as to whether faecal BA measurements could be used to assess the 

effects of these dietary measures on the colonic environment. However, larger 

powered studies and more stringent measurements, including that of individual BA 
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levels, are needed to make more solid conclusions on the effects of probiotics on 

bioavailability of therapeutic BAs in the colon (Kuo, 2013). 

 

Our work using a taurine conjugate of UDCA has provided some insights into how 

UDCA may exert its actions, and suggests that UDCA must enter the cells before 

exerting anti-secretory actions. We also found that upon entry into colonic epithelial 

cells, UDCA rapidly inhibits activity of some of the key transport proteins (the Na+/K+ 

ATPase pumps and basolateral K+ channels) required for Cl- secretion, without 

altering localization or abundance of these proteins. Further studies of the effects of 

UDCA on KCNQ1, TMEM16A and NKCC1 could provide further detailed insight into 

the mechanisms involved with the anti-secretory effects of UDCA. Work presented 

here suggests that UDCA has little effect on either ENaC-related fluid absorption or 

SGLT-1 activity, but the colon also absorbs NaCl via the coupled operation of apical 

NHE3 and Cl-/HCO3 exchanger SLC26A3 (DRA) (Talbot, 2010).  In future studies, it 

is thus important to further assess the effects of UDCA on these exchanger proteins 

which play important roles in regulation of colonic Na+ and fluid absorption.  

 

Further investigation of the molecular mechanisms by which UDCA exerts its anti-

secretory actions should also be interesting. These could include investigating the 

potential mechanism by which UDCA inhibits the activity of Na+/K+ ATPase pumps 

and K+ channels. Several lines of research could be pursued. For example, UDCA 

may act by altering the generation of signals that activate these transport proteins, or 

alternatively could alter their association with regulatory proteins. As mentioned 

previously, several regulatory proteins are known to bind to the Na+/K+ ATPase and 

to modulate its activity, including FXYD proteins (Garty, 2006), translationally-

controlled tumour protein (Jung, 2004), and modulator of Na+/K+ ATPase (Mao, 

2005). The role of such proteins could be investigated by using immune-

precipitations, confocal microscopy, or siRNA. 

 

Our studies suggest that the effects of UDCA on transport protein activity may, in 

fact, be related to stimulation of Ca2+ influx, which in contrast to the pro-secretory 

actions of Ca2+ released from intracellular stores, appears to be anti-secretory. This 

observation would suggest that elevations in different pools of Ca2+ within the cell 
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can have drastically different consequences for epithelial secretory function. This is a 

novel and highly interesting finding. It would be interesting to assess whether the 

down-regulation of basolateral transport protein activity by UDCA is distinct from, or 

if it is a related process, to influx of extracellular Ca2+. There is some precedence in 

the literature for this differential pooling of Ca2+ (Keely, 2003, Epple, 2001). In fact, it 

could be hypothesized that the anti-secretory effects of UDCA are mediated by 

reduced Ca2+ release from intracellular stores as a consequence of the preferential 

activation of the MAPK-dependent pathway of Ca2+ influx.  These pathways could 

also represent new targets for development of future anti-secretory, anti-diarrhoeal 

agents. 

 

While studies in cultured epithelial cells have yielded some intriguing insights, our 

work also suggests that responses to UDCA in human tissue are more complex. In 

addition to direct anti-secretory actions on colonic epithelial cells, UDCA can also 

induce transient Cl- secretory responses through activation of the enteric nervous 

system. However, the interplay between the environment and the colonic epithelium 

is complex and further studies assessing the effects of other key factors, such as 

those released by paracrine cells and intestinal immune cells would yield valuable 

insights. It would be interesting to pursue the neuronal effects of UDCA and to 

further assess what type of nerves could be involved.  Thus, some interesting 

questions raised by our work to date include, does the neuronally-mediated pro-

secretory effect that occurs via nerves reduce the potential for UDCA analogues as 

anti-diarrhoeals? Furthermore, UDCA appears to activate the muscarinic nerve 

receptor as demonstrated by its lack of effect in the presence of atropine. In addition, 

what are the effects of UDCA on other cells found within the colonic mucosa? There 

is a possibility to build on the T84 reductionist model by using co-culture experiments 

to determine how UDCA affects epithelial interactions with cells, such as fibroblasts, 

macrophages, IELs, etc. (Toumi, 2003, Nishitani, 2013, Taylor, 1997, Beltinger, 

1999).  

 

Data presented in this thesis also suggest a potentially protective role for UDCA in 

intestinal inflammation by preventing pro-inflammatory cytokine release and 

epithelial apoptosis. Dysregulation of these processes are key factors underlying the 
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pathogenesis of IBD, and our findings therefore suggest potential clinical 

applications for stable analogues of UDCA in treatment of colonic inflammation or in 

prophylactic treatment for IBD-related colorectal cancer (Byrne, 2010, Serfaty, 2010; 

Pardi, 2003).  

 

Future studies could be undertaken to delineate the precise mechanisms of UDCA 

down-regulation of cytokine secretion in the colonic epithelium. Such studies could 

be designed to more deeply investigate the regulation of inflammatory cytokine 

production by epithelial cells and there is great potential for the use of new tools for 

studying regulation of gene expression both at the transcriptional and 

posttranscriptional levels. There are a number of possible modes of transcriptional 

regulation by UDCA which could mediate its effects on cytokine production. These 

include transcriptional repression, production of a blocking factor, and potentially 

epigenetic modifications. There is also the possibility that these effects are due to 

posttranscriptional mechanisms, through effects on microRNA (miRNAs) production 

or through altered proteasomal degradation. Thus, an important next step in these 

studies it to measure changes in mRNA levels of various cytokines or inflammatory 

mediators in response to UDCA treatment. Future work could then also focus on 

investigation of miRNA involvement in regulation of epithelial responses to BAs. 

Recent studies in rat liver show that miR-21, may play a significant role in modulating 

proliferation and cell cycle progression genes and that interestingly, miR-21 is 

induced by UDCA in regenerating rat liver (Castro, 2010). There has also been a link 

between liver cell apoptosis and miR-34a/SIRT1/p53 signalling, which can also be 

modulated by UDCA (Castro, 2013). Thus, it would be interesting to investigate if 

UDCA may also modulate miRNA expression in the colonic epithelium to regulate 

cytokine production and barrier function.  

 

While experiments carried out in cultured colonic epithelial cells and isolated human 

tissue are valuable tools in evaluating the potential efficacy of new therapies and are 

essential in elucidating molecular mechanisms underlying regulation of secretion and 

inflammation, future directions for this work should include the use of animal models 

of disease and eventually placebo controlled clinical trials. To this end, an analysis of 

the effects of UDCA could be undertaken in a number of IBD disease models, 

including the dextran sulphate (DSS) or TNBS-induced colitis models (Wirtz., 2007), 
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IL-10 knockout mice (Kang, 2013). Studies in models of diarrhoeal disease would 

also be useful, such as  the mouse model of ova-albumin-induced allergic diarrhoea 

(Duncker,2012), or C. difficile infection (Sadighi, 2013) given the prevalence of this 

problem in health care facilities and the rising incidence of refractory cases 

(Ananthakrishnan, 2011). There are of course various advantages and 

disadvantages attached to each of these models. The DSS model for instance is 

widely used and  is well-appreciated for its simplicity, offering many similarities to 

human IBD without huge expense or technical complexity (Perse, 2012). It is 

however somewhat of a “blunderbuss” or “destroy all in its path” approach and does 

not account for subtle variations in what is a finely regulated system which can lead 

to drastically different clinical manifestations. Thus, use of this model may need to be 

modified to determine effects of UDCA treatment in conditions of milder disease. The 

most widely used of the gene-targeted models is the IL-10 deficient mouse. IL-10 

knockout mice develop a chronic inflammatory bowel disease which shares many 

characteristics of human IBD (Davidson, 1996). The advantages of the IL-

10−/− model is that it is a well-established Th1-mediated model of trans-mural colitis, 

which is responsive to various therapeutic agents. However, disease onset and 

severity are variable and may require months to develop. The T cell transfer model is 

the best-characterized model of colitis induced by disruption of T cell homeostasis 

and causes inflammation in both large and small bowel making it useful for studies of 

Crohn’s disease in particular. However, the techniques are complex and expensive 

and there is a possibility that mice may develop little or no disease (Ostanin, 2009). 

 

The effects of any new therapeutic agent must, however, be measured in patients in 

order to truly realise their potential. Already our research has shown safety and 

efficacy of UDCA in cell models, animal models, and in human colonic tissue. 

Further safety and efficacy analyses in animal models of disease could then logically 

be translated to assessment in control and disease patient samples as part of a 

series of controlled trials, with the ultimate goal of examining the effects of 

6MUDCA, both clinically and biochemically.  

 

In conclusion, it has been shown that UDCA has predominantly anti-secretory and 

anti-inflammatory effects in the colonic epithelium and with modification of its 
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structure and improved drug delivery methods, there is potential for these beneficial 

effects to be harnessed for therapeutic effect.  Ultimately, it is our hope that the work 

carried out for this thesis contributes to our evolving knowledge of the role of BAs in 

intestinal homeostasis and will yield new molecular targets for the development of 

more effective and specific therapeutic tools for patients with intestinal disease. 
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