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Abstract 

Cardiovascular disease is the leading cause of death worldwide, accounting 

for 29% of all global deaths and is set to rise to 23 million deaths a year by 

2030 (World Health Organisation, 2012). Arterial bypassing, both peripheral 

and coronary, is usually performed with autologously harvested vessels. 

However, the quantity available is often very limited as well as the vessels of 

elderly patients often suffering from thrombus, aneurysm formation or 

arthrosclerosis in high pressure arterial sites. The shortcomings of autografts 

has led to a substantial amount of research being directed towards tissue 

engineered vascular grafts (TEVGs) (Kakisis et al., 2005). Currently available 

artificial grafts for small diameter vasculature (<6 mm) suffer from poor 

patency rates due to thrombosis, aneurysm formation, and a compliance 

mismatch, which often stems from the inherent properties of synthetic 

polymers.  

The primary goal of the research presented in this thesis was to develop a 

small diameter tissue engineered vascular graft (TEVG) using the natural 

polymers collagen and elastin, coupled with dynamic mechanical 

conditioning. In this context, the aim was to develop a collagen-elastin 

composite scaffold with optimised intrinsic physiochemical characteristics 

which displayed the capacity to support smooth muscle cells in vitro while 

also displaying suitable viscoelastic properties. Subsequent investigation 

focused on emulating the anatomical architecture of native vessels using this 

novel collagen-elastin composite, and examining in vitro maturation through 

dynamic conditioning in a custom designed pulsatile bioreactor.  

In the study presented in Chapter 2 of this thesis, elastin addition to a porous 

collagen scaffold was shown to play a major role in altering its biological and 

mechanical response. The addition of elastin improved the viscoelastic 

characteristics with a higher degree of cyclical strain recovery and creep 

resistance, which indicates the biomaterial may possess sufficient recoil to 

be utilised for long-term cyclical distension with reduced aneurysm risk. 

Additionally, the gene expression and proliferation data suggested that the 

presence of elastin resulted in a more contractile smooth muscle cell (SMC) 

phenotype, in the absence of any exogenous stimulation. This biomaterial 
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platform was deemed to possess great potential for cardiovascular tissue 

engineering and was amenable to multiple fabrication methods. 

In Chapter 3, this biomimetic collagen-elastin composite was subsequently 

fabricated into a physiologically relevant bilayered tubular architecture. The 

bilayered scaffold consisted of a porous outer layer with an optimised 

microarchitecture to support SMCs, while the inner layer consisted of a 

dense film designed to increase the overall scaffold mechanical properties 

and present a suitable surface for future endothelial seeding. The properties 

of the dense luminal lining were shown to be highly controllable via 

crosslinking, which enabled the modification of the mechanical properties, 

degradation resistance, and inflammatory profile. These bilayered tubular 

scaffolds were ultimately considered highly suitable for further investigation 

as a TEVG. 

In Chapter 4, a novel pulsatile flow bioreactor system was developed which 

was capable of recreating the complex haemodynamic environment in vitro. 

The system was capable of applying physiological fluid shear stresses, 

cyclical strain and pulsatile pressure to mounted constructs. The flexible 

design allowed the mounting of variable diameter constructs and was 

designed to be utilised to examine the effect of mechanical stimulation on the 

in vitro maturation of the bilayered tubular collagen-elastin TEVGs described. 

In the final chapter (Chapter 5), the effect of TEVG architecture, crosslinking, 

and dynamic conditioning on the maturation of the grafts was examined in 

the custom pulsatile bioreactor from Chapter 4. Specifically, bilayered 

scaffolds coupled with EDAC crosslinking displayed far greater mechanical 

properties than single layered scaffolds and DHT crosslinking respectively. 

Furthermore, the application of dynamic conditioning resulted in further 

increases in the TEVG mechanical properties as a result of increased cell 

density, improved collagen circumferential alignment, and an apparent 

increase in vessel wall density. 

Collectively, this study has led to the development of a composite bilayered 

tubular scaffold with optimised intrinsic physiochemical characteristics to 

support smooth muscle cells in vitro while subsequently displaying suitable 

viscoelastic properties for sustained dynamic conditioning in a custom 

designed pulsatile bioreactor. 
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1.1 Introduction 

Cardiovascular disease is the leading cause of death worldwide, accounting 

for 631,636 deaths in the US alone in 2006 and 17.3 million deaths 

worldwide. This represents 29% of all global deaths and is set to rise to 23 

million deaths a year by 2030. The number of non-institutionalised adults 

with diagnosed vascular disease is estimated at 26.6 million which 

represents 12% of the US population. It is calculated that this disease cost 

the American economy $475.3 billion in the year 2009 (Centre for Disease 

Control, 2013; World Health Organisation, 2012). The primary causes of 

vascular disease are atherosclerosis, aneurysm formation, and inflammatory 

stenosis. Atherosclerosis is the most common cause of vascular disease and 

is characterised by a raised focal plaque. The plaque consists of a lipid core 

covered in smooth muscle cells, extracellular matrix, and a fibrous cap. As 

the plaque grows in size it restricts blood flow and may eventually fully block 

the vessel and require an arterial bypass. 

 

Arterial bypassing is usually performed with autologously harvested vessels, 

which are still considered the “gold standard”.  As autografts are patient 

derived there is a limited quantity available and the donor vessels are often 

suboptimal, with the saphenous vein grafts often suffering from thrombus, 

aneurysm formation, or atherosclerosis in high pressure arterial sites. 

Allografts have also previously been used; however, they have the added 

risks of tissue rejection and disease transmission and consequently are no 

longer used clinically. Artificial vascular grafts, therefore, are seen as the 

“holy grail” of vascular surgery resulting in an extensive quantity of research 

into the area (Kakisis et al., 2005). 

 

Vascular grafts constructed from synthetic materials, such as 

polytetrafluoroethylene (PTFE) and Dacron®, have displayed impressive 

long-term success in the replacement of large diameter vessels (> 6 mm). 

This success, however, has not being replicated with small diameter grafts (< 

6 mm) where there is no synthetic graft available with suitable long-term 

patency rates due to high thrombosis rates and a compliance mismatch. 
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Additionally, these synthetic grafts do not have the ability to grow and 

remodel presenting a particular disadvantage for paediatric patients. Thus, 

recent research has focused on developing suitable vascular grafts using 

tissue engineering (Fig. 1.1).  

 

Figure 1.1 Overview of differentiation for cardiovascular tissue 
engineering 

Due to the difficulty in extracting native cardiovascular cells (i.e. smooth 
muscle cells) many approaches to cardiovascular tissue engineering focus 
on generating an optimal microenvironment niche to promote differentiation 
down a cardiovascular lineage (Nakayama et al., 2014). Ultimately, both 
approaches require cells, scaffolds, and appropriate signals. 
 
Tissue engineering can be defined as a triad of scaffolds, cells, and signals 

which function synergistically to enable new functional tissue growth either in 

vitro or in vivo (Langer and Vacanti, 1993).  For cardiovascular tissue 

engineering, it is possible to utilise precursor stem cells which may be 

differentiated towards a cardiovascular lineage (Fig. 1.1) using a suitable 

microenvironment. However, the difficulty in promoting differentiation and 

maintaining the correct phenotype has led to the widespread use of 

terminally differentiated cells as a more practical option.  

 

Natural biodegradable polymers, such as collagen, were the basis of some of 

the first scaffolds for vascular tissue engineering (Hirai et al., 1994; 
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L’Heureux et al., 1993; Weinberg and Bell, 1986). Collagen is an excellent 

choice as the biomaterial for a tissue engineered vascular graft due to its 

inherently excellent biological performance, biodegradability and high 

concentration in native vasculature. These initial studies utilised cells 

embedded into tubular collagen gels, yet required the use of a Dacron® 

mesh to provide structural support. However, in the last 20 years, significant 

advances in collagen fabrication techniques has brought about increased 

interest in utilising collagen as the basis for tissue engineered vascular 

grafts. In native vessels elastin serves to dampen pulsatile flow of blood by 

its efficient storage of elastic-strain energy. Thus, the addition of elastin to a 

collagen-based scaffold might provide a more natural viscoelastic response 

and, in combination with the high tensile strength of collagen, may provide 

compliance closer to native vessels than currently available grafts. 

Compliance mismatch has frequently been cited as a major reason for the 

poor patency of prosthetic grafts (Gershon et al., 1992).  Elastin also serves 

an important role in controlling smooth muscle cell (SMC) proliferation and 

thus stabilises the arterial structure (Li et al., 1998a). 

 

Tissue engineered vascular grafts, hereafter referred to as TEVGs, have 

challenging mechanical constraints to meet, including high strength coupled 

with high elasticity, a difficult balance to achieve. Applying appropriate 

dynamic mechanical conditioning through pulsatile bioreactors has been 

shown to aid in this endeavour immensely (Engbers-Buijtenhuijs et al., 2006; 

Hahn et al., 2007; Syedain et al., 2011a). However, the highly specialised 

nature of these systems means that custom designed bioreactors remain the 

mainstay of the field. Therefore, the focus of this thesis is the generation of a 

small diameter TEVG using a combination of native SMCs, natural polymers, 

and in vitro maturation using a custom designed bioreactor. 

 

 



25 
 

1.2 Blood vessels 

Blood vessels function to carry blood to and from the heart, tissues, and 

organs of the body. They form a complex system of arteries, veins and 

capillaries which vary in size, shape, ultrastructural organisation, mechanical 

properties, biochemical and cellular content. Arteries are thick walled highly 

elastic vessels whose primary function is to carry high pressure oxygenated 

blood to organs and tissues where they branch into smaller arterioles and 

capillaries (Ratcliffe, 2000). Disruption of this system can lead to localised 

tissue damage or ultimately death, and so the blood supply must remain 

undisturbed at all times. 

1.2.1 Arterial wall composition 

The large and medium arteries consist of three distinct circumferentially 

aligned layers with each layer possessing a distinct cellular and protein 

composition. Each of these layers has a specific role in maintaining normal 

vascular form and function. These three layers, the tunica intima (inner 

layer), tunica media (middle layer) and tunica adventitia (outer layer), vary in 

thickness and composition depending on anatomical location (Fig. 1.2). 

 

The tunica intima is located on the luminal aspect of vessels and consists of 

a monolayer of endothelial cells adhered to a thin basal lamina composed of 

collagen type IV, fibronectin, and proteoglycans (Ratcliffe, 2000). The 

endothelial monolayer provides a non-thrombogenic interface for blood and 

controls the diffusion of molecules through the vascular wall. A fenestrated 

elastin dominated layer, the internal elastic lamina, separates the tunica 

intima from the tunica media (Patel et al., 2006). The  tunica media consists 

of circumferentially arranged laminae of contractile smooth muscle cells 

(SMCs) and fenestrated elastin and collagen sheets (O’Connell et al., 2008). 

The number of laminae of SMCs and extracellular matrix (primarily elastin) is 

variable depending on location in the vascular tree, and represents a 

developmental adaption to the stresses of that particular location. The 

numbers of lamellar units in an artery wall has been shown to be proportional 

to the wall stress, and so high pressure arterial sites, such as in the 
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abdominal aorta, may have up to 40 lamellar units while low pressure venous 

sites may contain only one unit (Li et al., 1998b).  

 

The external elastic lamina separates the tunica media from the tunica 

adventitia (Patel et al., 2006). The adventitia is the outer layer of an artery 

that helps anchor vessels to the surrounding tissue and provides some 

structural support. It is a collagen rich layer containing mainly fibroblasts and, 

in larger vessels, the tunica adventitia may be innervated and contain its own 

capillary network, termed the vasa vasorum (Pugsley and Tabrizchi, 2000). 

 

 

Figure 1.2 Arterial wall structure  

(A) The structure of the arterial wall is shown with each of the 3 layers 
identified. (B) The lamellar structure of a muscular artery (left) and elastic 
artery (right) is shown (Patel et al., 2006). The medial layer lamellae exist in 
a crimped state when unloaded, which contributes to the non-linear 
mechanical response of the vessel. 
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1.2.2 Haemodynamic forces 

The haemodynamic forces which arteries are exposed to leads to unique 

mechanical properties that are difficult to recapitulate. The vascular network 

is naturally pre-stressed in the longitudinal (or axial) direction and during 

surgery this is easily demonstrable where cut vessels retract. However, the 

physiological reasoning for this axial pre-stretch has been shown to be highly 

adapted to maintain an even force longitudinally over the physiological range 

of vascular pressure (60mmHg to 160mmHg) (Dye et al., 2007). Thus, as 

arteries experience systolic (~120mmHg) and diastolic (~80mmHg) pressure 

changes, the force longitudinally remains relatively constant (Humphrey et 

al., 2009). Blood pressure also induces stress in a radial direction and 

circumferentially (Fig. 1.3). The circumferential stress in the artery wall is one 

of the primary stresses in arteries and the extracellular matrix (ECM) of the 

medial layer  is arranged circumferentially to deal with this stress, including a 

circumferential orientation of the embedded smooth muscle cells (Spronck et 

al., 2014). 

  

Figure 1.1 Haemodynamic forces acting on the arterial wall 

Arteries experience radial, circumferential, and wall shear stress due to the 
pressurised pulsatile flow of blood. An axial pre-stress is also present 
natively in all vessels and contributes to normal function (Tarbell et al., 
2014). 
 
The fluid flow through the artery causes a shear stress to act on the 

endothelial cells (ECs) lining the vessel. This shear stress has been shown 

to be an important mechanotransduction pathway (the conversion of 
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mechanical stresses to biochemical responses) of biomechanical stimuli to 

ECs (Davies, 2009). Variations in mean wall shear stress results in ECs 

altering their morphology, and also regulates gene and protein expression, in 

addition to nitric oxide production (Corson et al., 1996). Long terms changes 

in mean wall shear stress can result in changes in vascular diameter and 

may even induce adaptive wall remodelling (Mattsson et al., 1997). This 

effect may be negative however, as low walls shear stress is a known 

contributing factors to the generation of diseases such as atherosclerosis 

(Davies, 2009; Passerini et al., 2004).  

1.2.3 Artery mechanical properties 

The effect of each major component of arteries on the mechanical properties 

of the tissue has been examined extensively. Popular methods of doing so 

include a selective digestion of either the collagen or elastin fibres followed 

by tensile testing. Proteoglycans contribute mainly to the compressibility of 

the tissue. The complex arrangement of collagen (type I and III), elastin, and 

proteoglycans results in the viscoelastic response of arteries to loads 

(O’Connell et al., 2008). The arterial system is highly elastic due to the high 

ratio of elastin to collagen and, as such, expands to accommodate increases 

in blood pressure. The aorta serves to dampen and smooth the pulsatile 

output of the left ventricle, thus reducing the pulse pressure. This ability of a 

blood vessel to expand and contract passively with changes in pressure is 

referred to as vessel compliance. Vessel compliance is defined as the 

change in volume of a vessel over the change in pressure. The compliant 

phase of vessels is where the load is primarily carried by the elastin fibres 

and collagen fibres are still crimped (Humphrey, 2013). As strain increases 

collagen fibres begin to be recruited and stiffness increases (Fig. 1.4). Aortic 

compliance is therefore a very important characteristic as, along with stroke 

volume, it determines pulse pressure.  
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Figure 1.4 Stress-strain response of arterial tissue 

Representative stress-strain curve for tensile testing of arterial tissue with a 
compliant toe region and as strain increases collagen fibres begin to be 
recruited and thus, stiffness increases (Connell et al., 2012). 
 
The degree of elasticity of an artery changes depending on the proximity to 

the heart with compliance being highest close to the heart and steadily 

decreases as one moves away. The elasticity is determined by the structure 

and composition of the arterial wall while the stiffness is partially controlled 

by the regulatory function of the endothelial lining of the vessel (Holzapfel et 

al., 2000). This ability to control stiffness allows the arterial system to 

accommodate the large changes in cardiac output experienced during daily 

living. In the long term, arteries can adapt to changes in physiological 

conditions by changing their structural composition, such as changing the 

thickness of the medial layer (Pugsley and Tabrizchi, 2000). 

1.2.4 Cardiovascular diseases 

Cardiovascular disease (CVD) is the leading cause of death worldwide, 

accounting for 610,000 deaths in the US alone in 2013 and 17.5 million 

deaths worldwide (Centre for Disease Control, 2013; World Health 
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Organisation, 2012). This represents 31% of all global deaths and is set to 

rise to 23 million deaths a year by 2030. The number of non-institutionalised 

adults with diagnosed cardiovascular disease is estimated at 26.6 million 

which represents 12% of the US population (Yang et al., 2015). It is 

calculated that this disease cost the American economy $320.1 billion in the 

year 2011 (Mozaffarian et al., 2014). The morbidity rate of CVD continues to 

rise worldwide due to the prevalence in society of risk factors such as 

obesity, lack of exercise, diabetes, unhealthy diets, stress, and smoking. 

However, our ability to combat CVD has improved with advanced treatment 

modalities resulting in reduced mortality of the disease (O’Flaherty et al., 

2013).  

 

Within CVD, many of the disorders are characterised by a narrowing or 

blockage of the vasculature leading to reduced blood flow and tissue 

damage. The primary causes of vascular disease are atherosclerosis, 

aneurysm formation, and inflammatory stenosis. A coronary artery aneurysm 

is defined as a localised and permanent dilation of a coronary artery by more 

than 1.5 times of its normal diameter. The incidence of coronary aneurysms 

has been reported to be between 1.5 - 5% (Syed and Lesch, 1997). Although 

the incidence is low, if left untreated, the aneurysm may rupture leading to a 

systemic inflammatory response and a high mortality rate (Pahlavan and 

Niroomand, 2006). Atherosclerosis has been shown be the cause of 50% of 

coronary aneurysms (Syed and Lesch, 1997). Moreover, atherosclerosis is 

the most common cause of vascular disease and is characterised by a raised 

focal plaque (Fig. 1.5). The plaque consists of a lipid core covered in smooth 

muscle cells, extracellular matrix and a fibrous cap. As the plaque grows in 

size it restricts blood flow and may eventually fully block the vessel and 

require an arterial bypass. Additionally, the atherosclerotic plaque results in a 

loss of local vessel elasticity and potential calcification of the arterial walls. 
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Figure 1.5 Development of atherosclerotic lesions  

Healthy vessel wall (A) is infiltrated by macrophages (B) which begin forming 
foam cells and begin the degenerative cascade (C) which results in an 
atherosclerotic lesion (D) (Libby et al., 2011). 

1.2.5 Traditional treatments  

Treatment for diseased and damaged vessels is usually angioplasty, 

stenting, or bypass grafting. The SYNTAX trial, a large randomised 

controlled trial of 1800 patients with coronary artery disease, compared 

coronary artery bypass grafting versus percutaneous coronary intervention 

(PCI) using drug-eluting stents. Results from the study indicate that coronary 

artery bypass grafting remains the standard of care for patients with multi-

vessel or left coronary artery disease due to a lower incidence of major 

adverse cardiac and cerebrovascular events versus PCI after both 3 years 

and 5 years post-surgery (Kappetein et al., 2011; Mohr et al., 2013). 

Vascular grafting, therefore, remains the gold standard of care for the leading 

cause of death worldwide. 

 

Arterial bypassing, both peripheral and coronary, is usually performed with 

autologously harvested vessels. In clinical practice, autologous vascular 

grafts (autografts) are considered the current “gold standard”. Autografts are 
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vessels, usually the saphenous vein or internal thoracic artery, which are 

taken from non-essential sites on the patient’s body and re-implanted where 

needed. However, the quantity available is often very limited as well as the 

saphenous vein of elderly patients often suffering from thrombus, aneurysm 

formation or arthrosclerosis in high pressure arterial sites. Additionally, the 

secondary surgery site also results in an increased infection risk. Allografts 

have also previously been used however they have the added risks of tissue 

rejection and disease transmission and consequently are no longer used 

clinically. The shortcomings of autografts and allografts have led to a 

substantial amount of research being directed towards artificial vascular 

grafts (Kakisis et al., 2005). 

 

Vascular grafts constructed from synthetic materials such as expanded 

polytetrafluoroethylene (ePTFE) and polyethylene terephthalate (PET), 

commonly known by the trade name Dacron®, have displayed impressive 

long-term success in the replacement of large diameter vessels (> 6 mm). 

This success, however, has not being replicated with small diameter grafts (< 

6 mm) where there is no synthetic graft available with suitable long-term 

patency rates. High thrombosis rates and compliance mismatch are 

frequently cited as the causes of the poor patency rates. Additionally, these 

synthetic grafts do not have the ability to grow and remodel presenting a 

particular disadvantage for paediatric patients. Thus, recent research has 

focused on developing suitable vascular grafts using tissue engineering. 

Tissue engineering offers the potential of replacing a patient’s damaged or 

diseased vessels with tissue engineered vessels which aim to function well 

haemodynamically, have the ability to remodel and repair in response to 

injury or altered conditions, and possess the long-term durability and growth 

potential of native vasculature. 
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1.3 Tissue Engineering 

The emerging field of tissue engineering holds much promise for vascular 

tissue repair. The term “tissue engineering” can be defined as “an 

interdisciplinary field that applies the principles of engineering and the life 

sciences toward the development of biological substitutes that restore, 

maintain, or improve tissue function” (Langer and Vacanti, 1993). While the 

tissue engineering field may be relatively new, the idea dates as far back as 

circa. 800BC when skin grafting was first described by Sushrata in his work 

“Sushruta Samhita” (Ang, 2005). Gasparo Tagliacozzi (1546-1599), widely 

hailed as the founding father of plastic surgery, arguably also laid the 

foundation for the goals of tissue engineering with his widely quoted 

statement “We restore, repair and make whole, those parts....which nature 

have given but which fortune has taken away”.  

 

Figure 1.6 Tissue engineering triad  

Tissue engineering requires the development of suitable biomaterial 
scaffolds to act as a platform to seed cells and apply appropriate signalling 
(Images adapted from (Al-Munajjed and O’Brien, 2009; Cartmell et al., 2002; 
Dantzer and Braye, 2001; Thorpe et al., 2010). 
 
Practically speaking, tissue engineering can be defined as a triad of 

scaffolds, cells, and signals which function synergistically to enable new 

functional tissue growth either in vitro or in vivo (Fig. 1.6). This thesis focused 
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on the development of a tissue engineered vascular graft (TEVG), which 

involved the development of a novel scaffold platform (Chapter 2), suitable 

architecture (Chapter 3), and in vitro maturation in a custom designed 

bioreactor to apply physiologically relevant biomechanical signals (Chapters 

4/5) Consequently, the requirements for each of these facets will be 

examined in further detail. 

1.4 Cells 

Cells are a vital component of the tissue engineering triad as they are 

involved in remodelling and secretion of the extracellular matrix (ECM) which 

forms the structural framework for tissue. It is required that the cell source be 

viable, easily extractable, and possess the functional characteristics 

necessary for a vascular cell. The optimal cell type for vascular tissue 

engineering has yet to be elucidated. Cell sources may be extracted from the 

same intended patient (autologous), transplanted from another human 

(allogeneic), or sourced from a different species (xenogeneic). The field of 

tissue engineering of vascular grafts generally focuses on replicating the 

medial layer of native vessels as this layer is responsible for much of the 

vessels mechanical strength and vasoactivity. For vascular tissue 

engineering of the medial layer, the field has generally focused on utilising 

allogeneic smooth muscle cells (SMCs), autologous fibroblasts, or 

autologous mesenchymal stem cells (MSCs).  

1.4.1 Endothelial cells 

Vascular endothelial cells (ECs) form the luminal lining of blood vessels 

where they are crucially involved in maintaining vessel patency. The EC 

interface between blood and the vessel wall achieves this antithrombotic 

effect primarily by i) minimising plasma protein attachment to the vessel wall, 

ii) production of nitric oxide (NO) and prostacyclin which regulates platelet 

adhesion/activation, iii) inhibition of the blood coagulation cascade though 

heparan sulfate, and iv) production of the protease tissue plasminogen 

activator which breaks down thrombus by converting plasminogen to plasmin 

(Fig. 1.7)  (Li and Henry, 2011). Indeed, this has been shown multiple times 
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where TEVGs with an EC lining maintain an open patent lumen while unlined 

TEVGs quickly became occluded (Deutsch et al., 1999; Seifalian et al., 2002; 

Shindo et al., 1987). 

 

Figure 1.7 Anticoagulant properties of normal endothelium. 

Disrupted/activated endothelium favours thrombosis (left) while normal 
endothelium (right) inhibits thrombosis (Kumar et al., 2014). 
 
Endothelial cells also crosstalk with SMCs and reduce the risk of intimal 

hyperplasia by reducing SMC proliferation (Nackman et al., 1998; Tsai et al., 

2009). In the generation of a TEVG the effect of ECs is rather complicated 

with co-cultures of ECs and SMCs resulting in reduced ECM production 

versus SMC culture alone (Bulick et al., 2009), an undesirable characteristic 

for generating a TEVG. As a result, the most appropriate approach when 

maturing TEVGs has been found to mature the vessel with SMCs/fibroblasts 

and to culture ECs immediately pre-implantation to provide a suitable non-

thrombogenic lining (Quint et al., 2011). Additionally, ECs are partially 

responsible for vascular tone by releasing vasoconstrictors (e.g. endothelin) 

and vasodilators (e.g. NO, prostacyclin) which act on SMCs, and thus are 

necessary to generate a vasoactive vessel (Lüscher, 1990).  

 

While the role of ECs has clearly been highlighted, the optimal method of 

creating and maintaining a confluent endothelium has yet to be determined. 

Initial research in the area focused on in vitro seeding of ECs on TEVGs, 
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however issues with EC sloughing, where the lining becomes disrupted due 

to high shear stress from trauma during implantation, has resulted in the field 

examining other approaches (Johnson et al., 2000; Meinhart et al., 2005; 

Rosenman et al., 1985). One of the most promising approaches involves the 

in situ recruitment of circulating endothelial progenitor cells (EPCs) (Shi et 

al., 1998) or the encouragement of native EC migration through the 

anastomosis sites (Zhang et al., 2004). Endothelial progenitor cells are a 

small circulating population of mononuclear cells which may differentiate 

towards an endothelial cell lineage (Asahara, 1997; Peichev et al., 2000). 

EPCs exhibit a number of cell markers including CD133+, CD34+, and 

vascular endothelial growth factor receptor-2 (VEGFR2). Therefore, it has 

been shown to be possible to coat TEVGs with these specific antibodies to 

encourage homing of native EPC (Rotmans et al., 2005).  

 

Coatings with less specificity for a single cell type have also being examined, 

such as TEVGs functionalised with fibronectin-derived RGD peptide (Zheng 

et al., 2012), and laminin-derived YIGSR peptide (Jun and West, 2005). 

While this approach greatly simplifies the fabrication process, it does require 

the initial lumen surface to be non-thrombogenic during the time is takes for 

the circulating EPCs/native ECs to coat the TEVG lumen. Consequently, 

recent research has sought to alleviate this problem by releasing 

anticoagulants such as heparin (Conklin et al., 2002; Yao et al., 2014), 

antiplatelet adhesion molecules such as nitric oxide (Taite et al., 2008; Zhao 

et al., 2013), or creating surfaces which are inherently non-thrombogenic, 

such as elastin coated surfaces (de Torre et al., 2015; Simionescu et al., 

2006; Waterhouse et al., 2011). 

1.4.2 Mesenchymal stem cells  

Mesenchymal stem cells (MSCs) have been extensively investigated as an 

alternative cell source for vascular tissue engineering due to the difficulty in 

isolating autologous smooth muscle cells. MSCs are multipotent progenitor 

cells capable of differentiating towards a number of different lineages under 

appropriate conditions, including smooth muscle and endothelial cells (Gong 

and Niklason, 2011; Kim et al., 2005; Wingate et al., 2012). Additionally, 
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MSCs are more easily accessible, from a clinical perspective, as well as 

exhibiting a higher proliferation capacity than SMCs (Gong and Niklason, 

2011; McKee et al., 2003). Their role in a regenerative capacity is further 

enhanced by the immunomodulatory role they exhibit (Aggarwal and 

Pittenger, 2005). 

The ability of MSCs to differentiate towards a SMC lineage has been 

examined through a defined multitude of mechanochemical conditions (Gong 

and Niklason, 2008). Differentiation factors commonly utilised for SMC 

differentiation include transforming growth factor-β1 (TGF-β1) (Zhang et al., 

2009), numerous members of the platelet derived growth factor family 

(PDGF-BB, PDGF-CC), ascorbic acid, basic fibroblast growth factor (bFGF), 

hepatocyte growth factor (HGF) and vascular endothelial growth factor 

(VEGF).  

 

In addition to soluble growth factors, environmental factors such as 

extracellular matrix proteins (Lozito et al., 2009) and mechanical forces 

(Kobayashi et al., 2004) have also been shown to play an important role in 

the differentiation towards SMCs (Gong and Niklason, 2011). Furthermore, 

ECM matrix stiffness, architecture and composition have each been shown 

to be involved in directing MSC differentiation (Engler et al., 2006; Wingate et 

al., 2012). Despite the wide range of growth factors and the various 

combinations examined in the literature, a robust protocol for the controlled 

differentiation of MSCs towards either synthetic or contractile SMC has not 

been established. Many of the published data pertaining to differentiation of 

MSCs towards a SMC lineage fail to report the expression of late stage SMC 

markers such as smooth muscle-myosin heavy chain (Wingate et al., 2012; 

Zhang et al., 2009). 

 

Very little research into the effect of the natural protein elastin on MSC or 

SMC differentiation has been published. Gong and Niklason have previously 

shown that MSCs seeded on elastin coated substrates resulted in a 

significant increase in calponin gene expression versus uncoated surfaces 

although alpha-SMA and cell proliferation levels were not significantly 

different (Gong and Niklason, 2008). Additionally, Park (Park et al., 2004) 
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have shown that MSCs seeded on elastin-coated membranes expressed 

higher levels of alpha-actin protein than on collagen-coated membranes 

when subjected to equiaxial strain. While it is clear that MSCs present great 

potential for vascular tissue engineering, the lack of reproducibility between 

donors and lack of a robust differentiation protocol has led many researchers 

to revert to utilising allogeneic smooth muscle cells. 

1.4.3 Smooth muscle cells (SMCs) 

Vascular smooth muscle cells (SMCs) are primarily responsible for the ability 

of the human body to actively alter the diameter of vasculature through 

contraction which leads to precise control over the volume and pressure of 

blood delivered to the tissues of the body. These mature, contractile smooth 

muscle cells exhibit a particularly low level of migration, proliferation, and 

extracellular matrix (ECM) production. However, mature SMCs display 

extraordinary plasticity over the course of their life and may switch phenotype 

in response to local environment changes (Rensen et al., 2007). These local 

environment changes may result in SMCs changing from a contractile 

phenotype to a more synthetic phenotype (Fig. 1.8). Synthetic SMCs display 

drastically increased cell migration, proliferation, and ECM production and 

this phenotype is generally observed during vessel wall remodelling. Vessel 

wall remodelling may be required following vascular injury or in response to 

altered physiological conditions such as pregnancy or exercise (Yoshida and 

Owens, 2005). 
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Figure 1.8 Smooth muscle cell phenotypic plasticity 

SMCs can display a phenotypic continuum from contractile (left) to synthetic 
(right). Contractile SMCs are present in native vessels and display a spindle-
like morphology and respond to vascular agonists. Synthetic SMCs are 
present in pathological vessel conditions, display a fibroblast-like 
morphology, and proliferate rapidly while producing large amount of ECM 
(Beamish et al., 2010). 
 

For the purposes of vascular tissue engineering, smooth muscle cells are a 

vitally important component of a bioengineered vessel as they function to 

synthesise important structural ECM components such as elastin, collagen I, 

and collagen III. The ability to control the phenotype of SMCs may be very 

advantageous as it could allow in vitro maturation of vascular grafts through 

inducing high ECM producing synthetic smooth muscle cells followed by a 

switch to a contractile phenotype to produce vessels which would contract 

and relax in response to vascular agonists. It is this latter function of SMCs, 

contractility, which has arguably been the most difficult function to replicate in 

vitro. Mature SMCs express a number of protein monomers, such as α-SMA, 

calponin, and smooth muscle-myosin heavy chain, which form force 

generating myofilaments. These contractile protein monomers are commonly 

utilised as markers of SMC differentiation (Gong and Niklason, 2008). 

However, SMCs quickly revert to a synthetic phenotype upon expansion in 
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vitro and so alternative methods need to be investigated to control this 

phenotypic switch. However, cell behaviour is also dictated by the substrate 

upon which they are cultured upon, whether that be a 2D surface, or more 

preferably, a 3D scaffold. 

 

1.5 Scaffolds  

The primary requirement of a tissue engineered scaffold is to help guide the 

growth of 3D functional tissue in vivo. The scaffold can be considered 

analogous to the natural extracellular matrix produced by cells through 

providing structural support, adhesion sites, facilitating movement, regulating 

a cell’s behaviour, and assisting cell-to-cell recognition. The requirements for 

a tissue engineered scaffold are numerous and are often application specific 

(Gleeson and O’Brien, 2011). Some of the key factors examined in this 

project are:  

1. Biocompatibility  

2. Biodegradability 

3. Bulk Mechanical Properties 

4. Pore Size and Pore Size Distribution 

5. Porosity, Pore Interconnectivity and Permeability 

 

1. Biocompatibility  

Historically, biocompatibility has been defined as “the ability of a material to 

perform with an appropriate host response in a specific situation”  (Williams, 

1987). This definition is very broad as it must encompass the very diverse 

applications to which biomaterials are utilised. For tissue engineering 

scaffolds, a more appropriate definition of biocompatibility has been 

proposed (Williams, 2008): 

ñThe biocompatibility of a scaffold or matrix for a tissue engineering product 

refers to the ability to perform as a substrate that will support the appropriate 

cellular activity, including the facilitation of molecular and mechanical 

signalling systems, in order to optimise tissue regeneration, without eliciting 

any undesirable local or systemic responses in the eventual hostò 
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Further to the definition of biocompatibility above, the degradation products 

of a scaffold biomaterial must also be biocompatible. This requirement is 

especially important when considering synthetic polymers such as 

polyglycolic acid (PGA). PGA has previously been used to create successful 

scaffolds for vascular tissue engineering although the material’s hydrolysis 

products have been implicated to be involved in the dedifferentiation of 

SMCs (Gong and Niklason, 2011; Niklason et al., 2001). Additionally, the 

hydrolysis products can lead to a lowering of local pH levels and a resulting 

inflammatory response (Athanasiou et al., 1996).  

 

2. Biodegradability 

Biodegradability refers to materials which can be broken down in the 

physiological environment via biological agents or environmental conditions 

such as temperature or pH. Biodegradable materials are very suitable for 

applications that only require temporary implant presence. At a mechanical 

level it is desirable for a gradual stress transfer and thus a slow degradation 

rate. This gradual stress transfer minimises the problems associated with 

rigid vascular grafts such as failure at the anastomosis site due to a 

compliance mismatch. 

 

At the biological level, it is desirable for the degradation level to match the 

rate of new tissue growth which generally necessitates a faster degradation 

rate. A considerable challenge in tissue engineering scaffolds is modifying 

the degradation rate of biomaterials to strike a balance between these two 

factors; mechanical and biological. A major advantage of biodegradable 

materials is that they do not require an additional surgical procedure for 

implant removal as well as circumventing the potential toxicity and safety 

problems associated with long term implants. Biodegradability is linked 

inextricably to biocompatibility as the degradation products must also be 

biocompatible (Bouten et al., 2011). 

 

3. Bulk mechanical properties 

The required bulk mechanical properties of a scaffold can vary enormously 

depending on the application. All tissue engineered scaffolds should have 
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adequate integrity to withstand surgical handling and subsequent 

implantation.  There is contention and contradictory evidence in the literature 

as to the most suitable approach for vascular tissue engineering. The focus 

of a significant amount of research is towards scaffolds which strive to 

maximise the burst pressure of the scaffolds with compliance and biological 

suitability often relegated due to this (Girton et al., 2000; Hoerstrup et al., 

2001; Isenberg et al., 2006). Numerous researchers have reported suitable 

burst pressures although this was associated with a compliance mismatch 

(L’Heureux et al., 1998; Niklason et al., 1999). The compliance of native 

vessels is primarily influenced by the high concentration of elastin within the 

vessel walls and the relative alignment of the other ECM components. 

Possible reasons for the association of compliance mismatch and graft 

failure may be failure at the anastomosis site due to high strain, turbulent 

flow resulting in a change in endothelial cell biochemistry and unnatural 

stress resulting in intimal hyperplasia(Salacinski et al., 2001a, 2001b; Sarkar 

et al., 2007; Tai et al., 2000).Thus, the most appropriate approach would 

seem to find a suitable compromise between burst pressure strength and 

other important mechanical properties, such as compliance. 

 

4.  Substrate stiffness 

Substrate stiffness plays a critical role in the biological response of cells to a 

scaffold as it has been shown to influence cell migration and development, 

proliferation and morphology (Discher et al., 2005). It has previously shown 

that mesenchymal stem cells (MSCs) are extremely sensitive to substrate 

stiffness and they specify their lineage and phenotype partially based on this. 

They have shown that a comparatively soft substrate resulted in neurogenic 

differentiation, a moderately stiff substrate resulted in a myogenic 

differentiation, and a highly stiff matrix results in osteogenic differentiation 

(Engler et al., 2006). Harley (Harley et al., 2007) has investigated the 

difference between the bulk mechanical properties of Coll-GAG scaffolds and 

the stiffness of the substrate which seeded cells would experience. It was 

found that the individual strut modulus (~5MPa) was in the order of 2.5 x 103 

times higher than the bulk modulus of the scaffold (~200Pa). This large 

disparity is a property inherent of highly porous scaffolds. A substrate 
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stiffness of 11-15kPa has previously been shown to result in myogenic 

differentiation of MSCs and so this can be used during the biomaterial design 

stage to help produce a scaffold with suitable substrate stiffness for vascular 

tissue engineering (Engler et al., 2006; Wingate et al., 2012). 

 

4. Pore size and pore size distribution 

The control of the distribution of pores and pore size in a scaffold is 

imperative to the biological performance of the scaffold and should be unique 

to the particular application it is required for in vivo. Pore size may be used to 

preferentially exclude or promote in-growth of certain cell types. This data 

may then be utilised in the design of a multi-layered vascular scaffold to 

reduce the risk of neointimal hyperplasia of SMCs. Previous research has 

shown that pore size can have a significant effect on cell attachment, 

proliferation and migration with collagen based scaffolds (Murphy et al., 

2010; O’Brien et al., 2005). The optimal pore size for SMCs and MSCs for 

vascular engineering has been reported as being in the range of 75μm to 

120μm (Kang et al., 1999; Ross and Tranquillo, 2003). An average pore size 

of between 10μm and 45 μm has been shown to be ideal for fibrovascular 

infiltration and endothelialisation of the luminal aspect of grafts (He and 

Matsuda, 2002; Zhang et al., 2004).  

 

Previous in vivo results have shown that a mean pore size of >100 μm 

results in an increased rate of tissue in-growth and vascularisation (Cao et 

al., 2006; Mikos et al., 1993; Oh et al., 2007). However, for vascular tissue 

engineering the permeability of a scaffold is a very important factor to 

consider, with large pore sizes leading to an increase in permeability and 

potentially leakage of a vascular graft. While it is important to prevent 

leakage from scaffolds with large pore sizes, reducing pore sizes below 

approximately 50 um would likely result in an inability of cells to infiltrate to 

any great depth into the scaffold and potentially result in core necrosis due to 

a lack of nutrient transfer and vascularisation. Therefore, a compromise must 

be sought between a suitable pore size for cellular attachment and 

infiltration, and an appropriate permeability which will not result in graft 

leakage. 
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5. Porosity, pore interconnectivity, and permeability 

A central requirement for tissue engineered scaffolds is that they must 

possess sufficient mass transport and mechanical function to stimulate tissue 

repair. Mechanical function and mass transport are both inextricably linked to 

the porosity, pore interconnectivity, and permeability of the scaffold. Porosity 

can be defined as the percentage of void space in a solid (Leon, 1998). It 

has been suggested by multiple researchers that a scaffold should possess a 

porosity of 90% or greater for effective tissue repair (Gleeson and O’Brien, 

2011; Harley et al., 2006; Rezwan et al., 2006). In vivo studies have shown 

that a high porosity results in an increase in vascularisation and tissue in-

growth versus low porosity scaffolds (Karageorgiou and Kaplan, 2005).  In 

addition to a high void fraction, or porosity, an open-cell pore geometry will 

result in highly interconnected pores that allows for enhanced angiogenesis 

due to increased cell distribution and migration. 

 

1.5.1 Biomaterial composition  

Tissue engineered scaffolds can be fabricated from a wide range of 

biomaterial classes. The scope of this project involves the use of the natural 

biodegradable polymers collagen and elastin and so subsequent chapters 

will focus solely on these pertinent materials and suitable crosslinking 

methods to increase their structural stability. 

 

Collagen 

The natural polymer collagen is the most abundant structural protein in the 

body with 28 genetically distinct types identified to date  (Veit et al., 2006). It 

is found in high concentrations in connective tissues such as skin, ligaments, 

tendons, and the cardiovascular system. It is composed of polypeptide 

chains of amino acids arranged in a right handed triple helical structure (Fig. 

1.9A). All collagen utilised within this project is collagen type I, which is the 

primary structural collagen present in native vasculature.  
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Figure 1.9 Collagen for tissue engineering  

(A)  Overview of collagen triple helix structure (Shoulders and Raines, 2009). 
(B)  Freeze-Dried collagen-GAG scaffolds. 
 
Collagen isolated for tissue engineering purposes is generally of a bovine, 

porcine or murine origin. Collagen often suffers a loss of structural integrity 

during the isolation process and is an inherently heterogeneous protein. Its 

heterogeneity can cause it to denature easily, even at body temperature 

(Leikina et al., 2001), however it usually occurs several degrees above 

normal body temperature. This denaturation process, where collagen breaks 

down from its naturally occurring quaternary structure into a random chain 

configuration, is a very important consideration when selecting a suitable 

scaffold fabrication process and crosslinking method(Miles and Bailey, 2001). 

Freeze-drying, or lyophilisation, is a suitable technique which has been 

extensively used by the laboratory at RCSI to fabricate highly porous 

collagen based scaffolds (Fig. 1.9 & 1.10) (O’Brien et al., 2004). 

 

Figure 1.10 Scanning electron micrograph of porous collagen structure 

SEM of the open porous nature of a Collagen-Glycosaminoglycan scaffold 
(O’Brien et al., 2004) 

.             

 

                 

 

A 

 

B 
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With reference to the aforementioned ideal tissue engineered scaffold 

requirements, collagen exhibits excellent biocompatibility and 

biodegradability. As a collagen matrix forms part of the natural vascular 

growth, healing, and remodelling processes, it is ideally suited as a scaffold 

material for a vascular graft. The major disadvantage associated with 

collagen scaffolds is the inherently low stiffness and strength which it imparts 

when it is not in a highly organised structure. However, this can be improved 

significantly through physical and chemical crosslinking methods which can 

also be used to control the degradation rate (Koh and Atala, 2004). 

 

Elastin 

Elastin is an extracellular matrix protein responsible for the elastic properties 

of many tissues. It is present in high concentration in native vasculature and 

can form up to half of the total protein content in highly elastic vessels. It is a 

highly insoluble hydrophobic protein usually present in arteries as a large 

covalently crosslinked network arranged in wavy concentric layers.  In native 

vasculature elastin serves to act as a recoil component and prevents 

aneurysm formation via its efficient strain-energy storage. From a 

mechanical viewpoint, it has previously been reported that at 35% strain in 

native arteries, a minimum of 48% of the arterial load is carried by elastin 

(Lammers et al., 2009). Additionally, elastin has been shown to control the 

proliferation of smooth muscle cells and may have a role in the prevention of 

intimal hyperplasia (Li et al., 1998a, 1998b). 

 

Elastin is an extremely durable protein and as such, it has an extremely low 

turnover rate in vivo (Shapiro et al., 1991). Consequently there exists a 

significant challenge in stimulating cells to synthesize this essential protein 

either in vitro or in vivo (Long and Tranquillo, 2003). Due to a difficult 

purification process, the use of elastin for the fabrication of tissue 

engineering scaffolds has only emerged in the last decade. The high 

extensibility and resilience of this protein, coupled with its low stiffness, may 

allow it to provide improved mechanical properties for tissue engineered 

vascular grafts. Thus, the addition of elastin to a collagen-based scaffold is 

expected to provide a more natural viscoelastic response and, in 
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combination with the high tensile strength of collagen, may provide 

compliance closer to native vessels than currently available grafts (Gershon 

et al., 1992). 

 

1.6 Tissue engineered vascular grafts (TEVGs) 

While a number of standard scaffold requirements must be appeased to 

generate 3D functional tissue, the highly optimised nature of native tissue 

results in a large number of specific requirements for a successful tissue 

engineered vascular graft (TEVG). All TEVGs should have adequate integrity 

to withstand surgical handling, suitable suture retention strength, and 

sufficient burst pressure and compliance to ensure it can withstand the 

challenging haemodynamic environment. In addition to the mechanical 

considerations for a vascular graft, it is also a necessary requirement for a 

graft to enable an appropriate healing response. This requires that the graft 

is not susceptible to neointimal hyperplasia, inflammation, or fibrous 

encapsulation. Neointimal hyperplasia can be defined as a migration and 

proliferation of SMCs to the intima where they form a proteoglycan rich 

matrix which may occlude the vessel or give rise to an atherosclerotic lesion 

(Cizek et al.). Furthermore, a TEVG must be non-thrombogenic, infection 

resistant, and be vasoactive in order to integrate as a functional tissue with 

the cardiovascular system. The specific requirements of a TEVG and the 

related scaffold characteristics are listed in Table 1-1, below. 

 

In order to satisfy these requirements, a number of different approaches 

have been investigated, with altered biomaterial classes, architectures, 

fabrication technologies, and approaches to tissue maturation. In terms of 

biomaterials utilised for TEVGs, there are four main classes, namely: 

¶ Decellularized tissue 

¶ Synthetic biodegradable polymers 

¶ Cell-sheet engineering 

¶ Natural biodegradable polymers  
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Table 0-1 Key requirements for a tissue engineered vascular graft. 

TEVG Specific Requirements 
Related Scaffold 

Characteristics 

1. Adequate integrity to withstand surgical handling, 

suitable suture retention strength and flexibility. 
¶ Bulk Mechanical Properties 

2. Leak resistance but permeability sufficient to allow 

diffusion of nutrients necessary for tissue growth and 

maturation. 

¶ Pore Size and Pore Size 

Distribution 

¶ Porosity, Pore 

Interconnectivity and 

Permeability 

3. Suitable mechanical properties such as burst 

strength, compliance and the ability to withstand long-

term cyclical strain. 

¶ Bulk Mechanical Properties 

4. Appropriate healing response i.e. no neointimal 

hyperplasia, inflammation, or fibrous encapsulation.  

¶ Biocompatibility  

¶ Biodegradability 

5. Grafts must be non-thrombogenic, biocompatible 

and infection resistant. 
¶ Biocompatibility  

6. Active physiological properties such as 

vasoconstriction and dilation. 

¶ Biocompatibility  

¶ Mechanical properties 

7. Resist aneurysm formation due to creep. If a recoil 

element, such as elastin, is not present in a vessel 

then permanent dilation of the vessel may occur 

(aneurysm). 

¶ Biocompatibility  

¶ Biodegradability 

¶ Bulk Mechanical Properties 

8. Easy to manufacture, sterilize, and store, as well as 

be economical and available in a variety of sizes. 
   N/A 

 

1.6.1 Decellularized TEVGs 

Decellularized TEVGs are produced by removing the cellular and antigenic 

components from xenografts or allografts to leave behind the intact native 

ECM (Fig. 1.11). Decellularization may be achieved with numerous methods 

encompassing physical, chemical, or enzymatic methods (Crapo et al., 

2011). The choice of decellularization method is informed by the tissue 

density, organisation, architecture, and retainment of biological properties. 
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Physical methods such as pressure, agitation, or abrasion can be utilised for 

large tissues but invariable tissue damage occurs due to the high forces 

applied to the tissue. Alternative methods such as detergents, 

hyper/hypotonic solutions, or gentle enzymatic treatments often result in less 

tissue damage and the improved removal of antigens (Conklin et al., 2002; 

Yang et al., 2010). While the primary aim of decellularization is the removal 

of potential antigens, it is imperative that the mechanical properties are 

retained and so extensive optimisation of the process must be completed to 

balance the effects of decellularization and loss of structural integrity 

(Sheridan et al., 2012). 

 

Figure 1.11 Decellularized TEVG fabrication 

Native arteries are harvested from a viable animal source, and decellularized 
using chemical, mechanical, or enzymatic methods. Autologous cells may be 
sourced from the patient, expanded, and seeded upon the decellularized 
matrix to create a TEVG (Seifu et al., 2013). 
 

The origin of the tissues may be vascular or non-vascular, such as carotid 

arteries or small intestinal submucosa (SIS) respectively. Utilising native 

arteries has been shown to have a number of advantages including 

possessing the native ECM composition and architecture as well as excellent 

mechanical properties. Commercially available grafts, such as bovine carotid 

based Artegraft® and bovine mesenteric vein based ProCol®, have been 

available clinically for up to 45 years yet widespread adoption has not been 

realised. This is primarily due to the limited advantages which these grafts 
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offered clinically over cheaper synthetic grafts in long-term trials (Brems et 

al., 1986; Guidoin et al., 1989; VanderWerf et al., 1975). Failure of these 

grafts was determined to primarily be due to thrombosis or aneurysm 

formation which could stem from the lack of cell infiltration observed in the 

grafts. 

 

While decellularized TEVGs retain their native ECM structure, poor cell 

infiltration due to the highly dense tissue inhibits any significant cell migration 

(Berardinelli, 2006; Chemla and Morsy, 2009). This lack of cellularity within 

the TEVGs results in degrading mechanical properties over time in vivo and 

ultimately contributes significantly to graft failure. Novel seeding techniques 

have been developed to attempt to overcome this problem, such as magnetic 

nanoparticle guided cell-seeding (Shimizu et al., 2007), creating longitudinal 

seeding channels (Sheridan et al., 2014a), or a combination of biochemical 

and biophysical stimulation to encourage cell migration (Sheridan et al., 

2014b). Furthermore, adverse immunogenic responses are often still 

encountered due to remaining antigens within the decellularized TEVGs 

(Allaire et al., 1997). While it is clear that there are a number of advantages 

to utilising decellularized TEVG, progress with these grafts has been marred 

by the time consuming decellularization process, issues with vessel sourcing, 

poor cell infiltration, and lack of control over the final vessel geometry. 

Bioengineers have thus sought to create custom TEVGs using advanced 

fabrication techniques and a variety of synthetic and natural polymers. 

 

1.6.2 Synthetic biodegradable polymer TEVGs 

Synthetic biodegradable polymers, such as polyglycolic acid (PGA), are 

commonly used as a basis for TEVGs. The premise behind utilising 

biodegradable synthetic polymers is that the polymers would exhibit sufficient 

strength to withstand implantation in high pressure arterial sites while also 

slowly being degraded and replaced by functional vascular tissue. 

Consequently, these polymers are often formed as copolymers to control the 

degradation rate and mechanical properties of the resulting scaffolds.  
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One of the first viable TEVGs was reported by Shinoka and colleagues who 

utilised a polyglactin/polyglycolic acid tubular mesh seeded with autologous 

myofibroblasts and implanted in an ovine pulmonary artery (Shinoka et al., 

1998). While this initial study was a TEVG of diameter 15mm, it did serve as 

a proof of concept study and the field of vascular tissue engineering greatly 

expanded after. One of the first groups to report success with small diameter 

(< 6mm) TEVGs was Niklason and colleagues who utilised a SMC seeded 

polyglycolic acid based mesh to generate mechanically impressive grafts  

after 8 weeks of bioreactor conditioning (Niklason et al., 1999). These grafts 

have displayed promising results in a porcine carotid artery model where 

they remained patent for 30 days (Quint et al., 2011), and also as an 

arteriovenous shunt in baboons (Dahl et al., 2011). Following successful 

trials of these grafts this technology has recently progressed towards the 

clinic through spin-out company Humacyte Inc. (Dahl et al., 2011). The first 

human clinical trials of this technology began in mid-2013 where the tissue 

engineered graft was implanted as an arteriovenous graft for haemodialysis 

access in order to test in vivo efficacy and safety. It should be noted, 

however, that the TEVGs were decellularized to remove the seeded cells 

prior to human trials due to the allogeneic cell source (Dahl et al., 2011; 

Quint et al., 2012).   

 

While these trials are extremely encouraging there are yet doubts over the 

technology as many synthetic based vascular grafts have exhibited poor long 

term patency rates due to issues such as compliance mismatch, thrombosis, 

rejection, intimal hyperplasia, calcification, and infection. Additionally, 

biodegradable synthetic polymers, such as PGA, have been shown to 

dedifferentiate SMCs due to their hydrolysis products  (Gong and Niklason, 

2011; Niklason et al., 2001). Furthermore, PGA degrades into glycolic acid, 

which can be removed via the Krebs cycle or excreted by the kidneys 

unchanged, however the high concentrations released can lead to a lowering 

of local pH levels and a resulting inflammatory response (Athanasiou et al., 

1996). Endothelialisation of the luminal aspect of these grafts has previously 

been utilised to reduce thrombogenicity with a good success rate (Gao et al., 

2008). The patency of these grafts can additionally be improved via 
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passivation of biologics such as heparin (Dimitrievska et al., 2015), growth 

factors, or antibiotics (Thomas, 2003). Despite the advances in synthetic 

biodegradable scaffolds, many of the grafts can have a limited potential for 

remodelling as well as a lack of vasoactivity. 

 

Cell-free approaches utilising synthetic polymers have recently come to the 

fore due to impressive in vivo results (Allen et al., 2014; Matsumura et al., 

2013; Wu et al., 2012). Cell-free approaches require tightly controlled 

degradation characteristics to enable tissue growth rate at the same rate as 

polymer degradation. Wang and colleagues have developed a fast degrading 

polymer, poly (glycerol sebacate) (PGS), which displays impressive 

mechanical properties and is resorbed within 60-90 days in vivo  (Wang et 

al., 2002). Additionally, as PGS is an elastomer it allows the efficient transfer 

of mechanical stimulation to seeded SMCs which migrate into the porous 

walls, resulting in high levels of elastin formation in vitro (Gao et al., 2008; 

Lee et al., 2011). Adapting this polymer for use as a cell-free TEVG in vivo 

has displayed impressive results in a rat abdominal aorta model and rapidly 

remodelled to resemble native arteries after 3 months (Wu et al., 2012). 

Furthermore, at 1 year these grafts became innervated, exhibited substantial 

elastin expression, and displayed good patency rates of 80%  (Allen et al., 

2014). Due to the rapid degradation rate, it remains to be seen whether the 

tissue regenerative rate of the patient cohort requiring a TEVG is capable of 

matching the rate of polymer degradation. 

 

1.6.3 Self-assembled TEVGs 

A completely autologous technique to fabricate vascular grafts via self-

assembly, sometimes termed cell-sheet engineering, relies on stimulating 

cells to produce high levels of extracellular matrix proteins followed by 

assembly around a support mandrel and in vitro maturation of the construct 

(Fig. 1.12a). The autologous cells are generally fibroblasts isolated from skin 

biopsies which are cultured for up to 6 weeks to produce a sheet of cell 

embedded in extracellular matrix. This cell-sheet is detached from the cell 
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culture substrate and rolled around a mandrel and cultured for up to 10 

weeks until the layers fuse into a homogenous tissue.  

 

 

Figure 1.12 Self-assembled TEVG fabrication 

Cell-sheet engineering (a) involves culturing to produce high levels of ECM 
and wrapping this cell-sheet around a mandrel for maturation. An alternative 
method involves creating cell aggregates and forming them into tubular 
shapes using custom molds (b) or 3D printing around degradable supports 
(c) (Pashneh-Tala et al., 2015).  
 

Utilising this technique, L’Heureux and colleagues (L’Heureux et al., 1998) 

have shown that the TEVGs display burst pressures similar to native vessels 

and vascular reactivity, such as a response to vascular agonists  (L’Heureux 

et al., 2001). Results using this strategy have, thus far, been very promising 

and have produced moderately successful clinical trials as arteriovenous 

(AV) shunts in human patients through the spin-out company Cytograft 

Tissue Engineering, Inc (Wystrychowski et al., 2014). However, due to the 

method in which these TEVGs are produced, they require very long culture 

times (~24 weeks) as well as the high cost associated with long term culture 

(L’Heureux et al., 2007). Additionally, the tissue formed is primarily 

composed of collagen with negligible quantities of elastin observed leading to 

vessels with a compliance of  2% - 3.1% per 100 mmHg (Wystrychowski et 
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al., 2014), a significant mismatch from native vessels which display values 

generally ranging from 8% -11.5% per 100 mmHg for human muscular 

arteries (Konig et al., 2009; Tai et al., 2000). In an effort to counteract a 

number of these issues they have moved towards using banked cells 

(allogenic) due to cost and manufacturing considerations. Furthermore, they 

have expanded the technology to create ECM threads which may be utilised 

to produce woven grafts, which has been patented (L’Heureux and 

McAllister, 2010) yet scientific details remain unpublished (Peck et al., 2011). 

 

An alternative method of producing self-assembled TEVGs is to create cell 

pellets or aggregates which are arranged in a tubular shape using a mold 

and allowed to fuse during culture to produce a tubular structure (Fig. 1.12b). 

This approach enables precise control over the final architecture by utilising 

a mold machined to the exact dimensions required, although extended 

culture to ensure fusion is required (Gwyther et al., 2011). While this 

approach does allow control of relative cell positioning and density, the cell 

numbers required (>100 million per 1cm construct) limited its potential for 

clinical application (Kelm et al., 2010). While the use of a mold allows easy 

repeatability and a structure upon which to mature the delicate tissue, a 

layer-by-layer assembly approach using 3D printing would seem to offer far 

greater flexibility (Fig. 1.12c). Previous research has shown the ability to print 

a custom a tubular structure from multicellular spheroids within a 3D printed 

agarose support structure (Norotte et al., 2009). The flexibility of the 

approach allows the potential generation of complex architectures such as 

bifurcations, tortuous vessels, or vessels with varying diameters along its 

length.  Furthermore, the ability to control the spatial organisation of cells 

allows the ability to replicate complex cell organisations, such as in native 

vasculature (Guillotin and Guillemot, 2011). Utilising this technique has 

resulted in vessels with burst pressures of up to 773 mm Hg, although once 

again, the high required cell numbers limit the clinical applicability of this 

technique (Marga et al., 2012) 
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1.6.4 Natural biodegradable polymer TEVGs 

Natural biodegradable polymers, such as collagen and fibrin, were the basis 

of some of the first tissue engineered vascular grafts (Hirai et al., 1994; 

L’Heureux et al., 1993; C. . Weinberg and Bell, 1986). For the purpose of 

vascular tissue engineering, collagen is an excellent choice as the basis of a 

tissue engineered scaffold due to its inherently excellent biological 

performance, biodegradability and high concentration is native vasculature. 

Each of these early collagen grafts were formed from cells seeded in a 

collagen gel. However, this method produced scaffolds with poor mechanical 

properties due to the disorganised nature of the collagen which was 

randomly orientated. These early collagen-based grafts displayed very low 

burst pressures of 90 mmHg and thus each of the grafts required the use of 

a Dacron® mesh to provide structural support (Hirai et al., 1994) 

 

Despite the limitations associated with these early grafts, significant 

advances in collagen fabrication techniques over the last 20 years have 

enhanced the potential for development of successful collagen-based tissue 

engineered vascular grafts. Fabrication methods such as magnetic alignment 

of the collagen, coupled with the use support mandrels to control the 

direction of scaffold compaction, can greatly influence the maturation of 

collagen-based TEVGs (Barocas et al., 1998).  The use of dynamic 

mechanical conditioning through bioreactor technologies has also been 

shown to improve ECM deposition, orientation, and ultimately improve the 

strength of the TEVGs (Schutte et al., 2010; Seliktar et al., 2000). Further 

research into improved biofabrication methods and maturation strategies are 

needed to create collagen-based vascular grafts capable of being utilised 

effectively in the arterial system.  

 

While collagen does represent the primary structural protein in arteries 

(along with elastin), greater success in fabricating TEVGs has been reported 

using alternative natural polymers such as chitosan, silk fibroin, or fibrin. 

Chitosan has previously been utilised to form TEVGs where a combination of 

industrial knitting, thermally induced phase separation, and a high wall 



56 
 

density led to burst pressures up to 4300 mm Hg, although compliance was 

unreported (Zhang et al., 2006). While the strength of these TEVGs was 

impressive, the low wall porosity was not suitable for efficient cell migration. 

A chitosan based TEVG with a higher wall density resulted in similar 

mechanical properties to collagen-based TEVGs (Zhu et al., 2009). Due to 

the improved biological properties of collagen, and no clear mechanical 

advantage to utilising chitosan, recent research has focused on more 

mechanically robust polymers.   

 

Silk fibroin, a protein generally extracted from the silkworm Bombyx Mori, 

exhibits extraordinary toughness, a slow degradation rate, and is amenable 

to a large variety of fabrication methods allowing potentially precise control 

over the final TEVG properties (Kundu et al., 2013). Biologically, electrospun 

silk fibroin has been shown to be highly suitable for vascular cell culture 

where SMCs and ECs  remained viable and maintained a native phenotype 

(Zhang et al., 2008). Unfortunately, silk fibroin exhibits a very high stiffness 

(Lovett et al., 2008) which results in a low compliance value for TEVGs 

(Marelli et al., 2010). Nevertheless, in vivo testing in a rat model revealed a 

patency rate of 85% at 1 year, although histologically the very slow 

degradation rate resulted in large proportions of silk remaining in the vessel 

walls (Enomoto et al., 2010). 

 

Fibrin has arguably been the most successful natural polymer employed thus 

far for TEVGs. A major advantage of fibrin is that it can be extracted from a 

patient’s blood, and if combined with patient extracted cells, may be able to 

provide a totally autologously sourced TEVG. As fibrin is a gel formed from 

the polymerisation of fibrinogen by thrombin, it can be easily molded to 

recreate complex architectures such as heart valves (Flanagan et al., 2007; 

Jockenhoevel et al., 2001). Numerous investigations to improve the 

mechanical strength of fibrin based TEVGs have been reported, including 

varying biochemical stimulation (Grouf et al., 2007), optimisation of protease 

inhibitors such as aprotinin (Jockenhoevel, 2001), altered cell density (Yao et 

al., 2005), or fusing concentric layers of tissue (Huynh and Tranquillo, 2010). 

Burst pressures of up to 600 mm Hg have been reported using a 
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combination of these culture techniques (Huynh and Tranquillo, 2010). 

Furthermore, in vivo results in a low pressure ovine jugular vein model 

revealed good patency and extensive remodelling (Swartz et al., 2005). The 

relatively high burst pressure of fibrin TEVGS when compared to collagen 

gels primarily stems from the enhanced contraction, and consequently 

enhanced density, observed during extended culture (Grassl et al., 2003). By 

applying mechanical conditioning for up to 9 weeks in a bioreactor, the burst 

pressure of these TEVGs can reach up to approximately 1500 mm Hg 

although suture retention strength was below the values necessary for 

surgical implantation (Syedain et al., 2011b).  

 

It is clear that no single natural polymer presents the ideal properties to 

satisfy all the requirements for a TEVG. A hybrid of synthetic and natural 

polymers provides an interesting approach to this problem by leveraging the 

advantages of each polymer class, while minimising the adverse properties. 

By incorporating a polylactide-based mesh as a backbone, the group of 

Jockenhoevel have shown the ability to improve the mechanical properties of 

fibrin-based TEVGs at a shorter timepoint of 21 days (Tschoeke et al., 2008).  

Further success of this approach was demonstrated by implanting these 

hybrid TEVGs in ovine carotid arteries, where good patency was observed 

up to 6 months (Koch et al., 2010). However, the ideal TEVG would be 

biomimetic and be fabricated solely from the natural components found in the 

native tissue. 

 

1.6.5 Elastin in TEVGs 

Elastin has been utilised in many forms for both cardiac and vascular specific 

tissue engineering applications. While decellularized TEVGs have intact 

native elastin, minimal production of elastin has been observed in all other 

TEVG types. In vivo elastin matrix assembly is a complex and tightly 

regulated process which involves the secretion of tropoelastin, cell surface 

aggregation coordinated by fibulins, partial crosslinking through lysyl 

oxidase, further aggregation, excretion and localisation to extracellular 

microfibrils (mainly composed of fibulins), followed by coalescence and 
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further crosslinking with lysyl oxidase (Wagenseil and Mecham, 2007). While 

the secretion of tropoelastin is regulated by a single gene (ELN), it is the 

complex spatial and temporal process to form the insoluble proteins which 

has inhibited the field from replicating the required conditions (Csiszar, 

2001).  

 

From a tissue engineering perspective, the deposition of insoluble elastin has 

been shown to be influenced by numerous factors including scaffold 

degradation rate, stiffness, topography, and growth factor supplementation 

(Pashneh-Tala et al., 2015). An initial requirement for elastin production has 

been shown to be a 3D culture environment as 2D culture interferes with 

elastogenesis by SMCs (Lin et al., 2011). The stiffness of this environment 

has also been shown to be crucial, with a low compressive modulus (50-80 

kPa) resulting in significantly enhanced elastin expression versus high 

modulus scaffolds (3 MPa) (Crapo and Wang, 2010). Furthermore, 

elastogenesis is also sensitive to the biochemistry of the scaffold (Kim et al., 

1999b), with fibrin providing a distinct advantage over other natural polymers 

(Koch et al., 2010; Long and Tranquillo, 2003), although this may be 

enhanced partially by fibrins fast degradation rate which is also involved in 

regulating elastogenesis (Wu et al., 2012) . In addition to scaffold properties, 

biochemical cues such as culture supplementation with transforming growth 

factor-β1 (TGF-β1) and hyaluronan oligomers are also specifically implicated 

in this process (Kothapalli and Ramamurthi, 2009a) as is mechanical 

straining (Kim et al., 1999a). It is clear that great strides in understanding 

elastogenesis have been made in the last decade, however a lack of control 

over the spatial and temporal expression in vitro has resulted in this 

approach not yet achieving its potential for tissue engineering. A more 

practical approach has therefore been taken in the field to circumvent this 

issue by utilising elastin, and elastin derived molecules, directly in the 

biofabrication step of TEVGs rather than attempting to induce cells to secrete 

it. 

 

An alternative approach is to use the soluble precursor of elastin, 

tropoelastin, or soluble hydrolysed elastin which both retain many interesting 
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characteristics for tissue engineering purposes. Buttafoco and colleagues 

have shown the ability to electrospin soluble hydrolysed elastin with collagen 

to produce TEVGs matching native vessel composition (Buttafoco et al., 

2006b). Improved mechanical properties could be obtained by 

electrospinning the hydrolysed elastin with synthetic polymers such as 

poly(lactic-co glycolic acid) PLGA (Han et al., 2011; Stitzel et al., 2006). 

Furthermore, by altering the quantity of elastin the TEVG compliance can 

also be tailored (Sell et al., 2006). Electrospinning onto rotating mandrel 

allows the ability to easily create tubular structures ideal for use as a TEVG, 

including the ability to create multi-layered TEVGs (McClure et al., 2012). 

However, the biological effects of these soluble elastin forms are markedly 

different from the insoluble parent protein This is primarily due to altered 

binding sites available, although interestingly tropoelastin generally facilitates 

improved cell binding and spreading versus hydrolysed elastin (Bax et al., 

2009; Broekelmann et al., 2008). SMC response to native insoluble elastin 

has been shown to result in reduced proliferation and a contractile 

morphology while tropoelastin has the opposite effect and results in a 

proliferative synthetic morphology (Satyajit K. Karnik et al., 2003; Mochizuki 

et al., 2002). It is clear that while soluble elastin forms may be amenable to 

fabrication processes such as electrospinning, the native biological response 

is altered and thus insoluble elastin remains the optimal form for generating a 

TEVG. 

 

Mature elastin’s very large size, insolubility, and high hydrophobicity, limit the 

manipulation of the material and therefore limits its use due to its 

incompatibility with many biofabrication techniques. Freezedrying is one such 

technique which is suitable for insoluble proteins, such as elastin, while 

retaining both biological activity and native molecular structure. Chapter 2 of 

this thesis focused on the utilisation of elastin as a composite with collagen 

via freeze-drying, with the ultimate aim of creating a biomimetic TEVG. 
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1.7 Maturation of TEVGs 

As detailed in Section 1.1, tissue engineering requires an appropriate 

scaffold, cell source, and the application of signals to encourage tissue 

maturation. These signals may be biochemical or mechanical in nature and 

often must be tailed for the specific tissue of interest. 

1.7.1 Biochemical signals 

L’Heureux produced the first completely biological TEVG with sufficient 

mechanical properties for implantation. A key factor in this achievement was 

the utilisation of a high concentration of ascorbic acid, a cofactor for collagen 

synthesis, to induce SMCs to produce enhanced quantities of ECM 

(L’Heureux et al., 1998). The ability to biochemically alter cellular response is 

a very useful tool for tissue engineering where the protein composition and 

ultimately the mechanical properties of the engineered tissue can be tailored 

independently of scaffold chemistry or microarchitecture. Ascorbic acid 

supplementation has been shown to result in improved SMC proliferation, 

ECM deposition, and consequently enhanced the mechanical properties of 

hyaluronic acid based TEVGs (Arrigoni et al., 2006). However, ascorbic acid 

also modulates the expression profile of the proteins deposited, with elastin 

production severely impeded concomitant with increased production of 

collagens I and III (Davidson et al., 1997). Coupled with the effect of  

ascorbic acid on proliferation, it has also been shown to cause reduced 

calponin expression, indicating a switch to a synthetic SMC phenotype 

(Gong and Niklason, 2008). A similar pro-synthetic phenotype effect has 

been reported with platelet derived growth factor-BB (PDGF-BB), basic 

fibroblast growth factor (bFGF), and hepatocyte growth factor (HGF) (Gong 

and Niklason, 2008; Kurane et al., 2007; Sheridan et al., 2014b). 

 

The addition of transforming growth factor-beta1 (TGF-β1)  during culture of 

fibrin based TEVGs has been shown to increase collagen production 4-fold 

and ultimate strength  and modulus 10-fold (Grassl et al., 2003). Insulin was 

found to have a synergistic effect and further increased these properties. 

However, TGF-β1 has also been shown to reduce cell numbers versus 
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controls, while enhancing expression of the contractile markers α-SMA 

(Grouf et al., 2007) and calponin  (Gong and Niklason, 2008). Thus, it can be 

concluded that TGF-β1 has a pro-contractile phenotype effect. 

 

An alternative method for increasing the mechanical stability of TEVGs 

involves inhibiting proteolytic activity and thus inhibiting scaffold degradation. 

Completely biological TEVGs created from fibrin commonly utilise inhibitors 

of fibrin degradation e.g. aprotinin or tranexamic acid to maintain mechanical 

stability while the embedded cells proliferate and produce more stable ECM 

(Cholewinski et al., 2009; Swartz et al., 2005). Lysyl oxidase, the 

extracellular enzyme responsible for crosslinking the soluble pre-cursors of 

collagen and elastin into the insoluble fibrils, has also been investigated to 

improve the mechanical properties of tissue engineered constructs 

(Elbjeirami et al., 2003; Makris et al., 2014). Importantly, lysyl oxidase has 

also been shown to enhance SMC synthesis of elastin while cell phenotype 

and matrix metalloproteinase (MMP) production were unaltered  (Kothapalli 

and Ramamurthi, 2009b). Rather than relying on cell-mediated ECM 

production or inhibition of proteolytic activity, crosslinking of the base scaffold 

or TEVG prior to cell seeding may offer a more practical approach to 

improving the mechanical properties and degradation rate of TEVGs. 

 

1.7.2 Crosslinking of scaffolds 

Crosslinks are chemical bonds formed between polymer chains in order to 

alter a polymer’s physical properties. Natural polymers, such as collagen and 

elastin, contain amino acid residues that may form large networks of 

crosslinked fibres via a wide range of biophysical or chemical crosslinking 

methods. One effect of crosslinking collagen or elastin fibres to each other is 

increased structural stability which can result in stronger and stiffer scaffolds. 

Additionally, crosslinking can serve to control the degradation rate of 

collagen/elastin scaffolds in vitro and in vivo. Degradation of natural proteins 

in vivo is caused by cleavage of peptide bonds by collagenase enzymes. In 

this thesis, several crosslinking methods were utilised in order to tailor the 

mechanical properties and degradation rate of a novel scaffold for vascular 
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tissue engineering. The crosslinking methods of interest in this thesis include 

both physical (dehydrothermal, riboflavin/UV) and chemical (glutaraldehyde, 

(-ethyl-3-(3-dimethyl aminopropyl) carbodiimide, microbial transglutaminase) 

crosslinking mechanisms. 

 

Dehydrothermal (DHT) crosslinking 

It has previously been shown by our research group that dehydrothermal 

(DHT) treatment is an effective crosslinking method and sterilisation 

technique for collagen based scaffolds (Haugh et al., 2009). As the residual 

(bound) moisture is evaporated, the amino acids in the collagen molecules 

are altered and they bind to neighbouring free amino acid groups, this is 

referred to as crosslinking. In collagen, the application of temperature greater 

than 90oC results in condensation reactions between the carboxyl groups of 

aspirate or glutamate residues and amino acids of lysine or hydroxylysine. 

These crosslinks stabilise the matrix and thus alter its mechanical properties. 

A potential disadvantage of this method is that it may denature part of the 

collagen and so a suitable compromise must be reached between the level 

of crosslinking and the resulting denaturation. 

 

EDAC Crosslinking 

EDAC (1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide) is a chemical 

crosslinking agent which forms “zero length” crosslinks of approximately 1nm 

between adjacent collagen molecules. EDAC forms isopeptide bonds 

between the carboxyl and amino groups of multiple residues. The by-product 

of the crosslinking reaction is soluble urea which can be easily washed away. 

The advantages of using this chemical crosslinker is that the small bond size 

does not alter the microstructure whereas other chemical crosslinking, such 

as the use of glutaraldehyde, may form long polymer chains as well as 

having a potential cytotoxic effect (Hey et al., 1990; Powell and Boyce, 

2006). 

 

Glutaraldehyde crosslinking 

Glutaraldehyde has been widely used as a crosslinking agent for 

bioprosthetics and tissue engineered scaffolds. Glutaraldehyde forms 
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crosslinks between aldehyde groups and the e-amine groups of lysine or 

hydroxylysine residues in collagen. It has, however, been shown to be 

cytotoxic by inducing apoptosis in cells (Gough et al., 2002; Hey et al., 1990). 

Additionally, glutaraldehyde has been shown to cause increased calcification 

of collagen based scaffolds versus uncrosslinked and EDAC crosslinked 

controls (Golomb et al., 1987; Jorge-Herrero et al., 1999; Olde Damink et al., 

1996). Despite its drawbacks, it has been included in this study due to its 

widespread use so that it may be used as a comparison for the other 

crosslinking methods. 

 

Riboflavin/Ultraviolot crosslinking 

Riboflavin/ultraviolet (UV) crosslinking is a photochemical crosslinking 

treatment which relies on riboflavin as a photosensitiser. The application of 

ultraviolet light causes free radicals to be formed on tyrosine and 

phenylalanine which can form crosslinks. Riboflavin is added to act as a 

photosensitiser to ultraviolet light which helps release an increase quantity of 

free radicals and thus may speed up the reaction (Fig. 1.13). Riboflavin has 

been shown to be a biocompatible and non-toxic photosensitiser although 

high levels of riboflavin/UV crosslinking may cause cytotoxic effects due to 

high levels of free radicals. As free radicals display a very short half-life, only 

cells seeded onto scaffolds prior to crosslinking would be affected (Ibusuki et 

al., 2007; Mi et al., 2011; Tirella et al., 2012). 
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Figure 1.13 Method of riboflavin assisted UV crosslinking 

Ultraviolet light strikes the riboflavin molecules which results in the 
generation of free oxygen radicals and consequently crosslinks (Tirella et al., 
2012) 
 
Microbial transglutaminase crosslinking 

Discovered by the Japanese company Ajinomoto Corporation Inc., microbial 

transglutaminase (mTGase) is a calcium-independent enzyme derived from 

the bacteria Streptomyces mobaraensis. Microbial transglutaminase 

catalyses the reaction of the isopeptide bond ε-(γ-glutamyl)lysine between 

lysine and glutamine residues in collagen. As a crosslinking method it is of 

particular interest for tissue engineering applications as it does not alter the 

triple helical structure of collagen or affect its banding period. Furthermore, it 

has previously been shown to enhance cell attachment, spreading, 

proliferation, and stimulate angiogenesis (Chau et al., 2005; Garcia et al., 

2008). Additionally, mTGase has been shown to increase collagenase 

resistance and improve mechanical properties of collagen scaffolds (Chen et 

al., 2005). 

 

1.7.3 Dynamic mechanical conditioning through bioreactors 

Native vascular tissue consists of three distinct circumferentially aligned 

layers with each layer possessing a distinct cellular and protein composition. 
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This composite structure leads to a complex multifactorial biomechanical 

environment. Consequently, this has led to the development of a number of 

alternative methods for the culture of tubular vascular constructs which can 

be generally categorised as endothelium biomechanical simulators (Moore et 

al., 1994; Zhao et al., 1995), medial layer biomechanical simulators (Huang 

and Niklason, 2011), or complete physiological mimicking biomechanical 

simulators (Tschoeke et al., 2009). In native tissue, medial and adventitial 

cells primarily experience cyclical hoop stress and strain imparted by the 

cardiovascular haemodynamics. These cells sense and respond to changes 

in these biomechanical signals during pathological conditions, such as 

atherosclerosis, where altered hoop strains and stresses are imparted. Thus, 

medial layer simulating bioreactors generally focus on the response of 

medial layer cells, such as SMCs, to physiological or pathological levels of 

cyclical strain. Medial layer simulating bioreactors, such the systems 

described by Seliktar (Seliktar et al., 2000), and Isenberg and Tranquillo 

(Isenberg and Tranquillo, 2003), indirectly apply the cyclical distension 

required for hoop stress and strain via inflating compliant tubes hydraulically 

or pneumatically (Fig. 1.14). 

 

 
Figure 1.14 Medial layer simulating bioreactor designs 

(A) Cyclical distension of the silicone sleeve via pulsatile fluid flow imparts 
physiologically relevant hoop stress and strain to the cell-seeded construct 
(Seliktar et al., 2000). (B) Distension of the mandrel is achieved by a 
pneumatic system (Isenberg and Tranquillo, 2003) 
 
Endothelium biomechanical simulators focus on studying the effects of 

biomechanical cues, such as fluid shear stress, on endothelial cells.  

 

 

A B 
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Endothelium biomechanical simulating bioreactors such as the systems 

described by Moore (Moore et al., 1994) and Ziegler (Zhao et al., 1995) , 

apply fluid shear stress via peristaltic pumps which provide a pulsatile fluid 

flow through rigid tubes onto which endothelial cells are seeded. While it has 

been well documented that vascular cells respond to a number of different 

mechanical cues independently, their normal cell physiology is, in part, 

regulated by the wide variety of forces they are subjected to in vivo including 

cyclical strain, shear stress, and hydrodynamic pressure. Although medial 

and endothelium simulating bioreactors have merit in understanding the 

isolated effects of certain biomechanical forces on vascular cells, it is often 

the synergistic effects of these forces which elicits the normal physiological 

response in vitro (Zhao et al., 1995). Thus, recent research has begun to 

focus on the application of complete physiological simulators in order to 

provide a biomimetic environment for graft maturation in vitro. 

 

The complex physiological biomechanics of the human circulatory system 

are often best emulated through a reproduction of the haemodynamics via 

pulsatile flow systems. The cyclical waveform of the pressure, fluid flow, and 

strain experienced by vessels in vivo can be reproduced in a number of 

different ways. Some of the previously used methods to apply this cyclical 

waveform include compressed air driven pulse duplicators (Hoerstrup et al., 

2001), peristaltic pumps (Tschoeke et al., 2009), syringe pumps (Syedain et 

al., 2011), or a combination of pumps (Conklin et al., 2000). Peristaltic 

pumps offer the simplest method to produce an intraluminal pulsatile flow 

which can closely mimic the flow and pressure profile of the native 

vasculature. The pulsatile flow of fluid causes shear stress to be imparted to 

the luminal aspect of mounted grafts while the pressure profile of the flow 

causes cyclic distension which imparts cyclical strain to medial layer cells. 

There is contention and contradictory evidence in the literature as to the 

most suitable bioreactor culture conditions for the maturation of a tissue 

engineered blood vessel. A significant portion of early work focused on 

applying physiological conditions such 5%-10% cyclic strain, 120/80 mmHg 

pressure, and 10 dyne/cm2 shear stress (Conklin et al., 2000). Applying 

dynamic physiological conditions resulted in increasing the rate of tissue 
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maturation versus statically cultured vessels. However, researchers are now 

reporting improved tissue maturation by imparting foetal or pathological-like 

biomechanical conditions over physiological conditions. Conditions such as 

foetal pulse rates (Solan et al., 2009, 2003) and incremental cyclical strains 

(Syedain et al., 2008) have led to increased collagen deposition and 

subsequently improved mechanical properties. Consequently, further 

research into the application of suitable biomechanical cues to developing 

vascular grafts is needed in order to fully elucidate the ideal culture 

conditions and ideal bioreactor system to impart those conditions. 

Consequently, Chapters 4 and 5 of this thesis will examine these areas. 
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1.8 Thesis Objectives/Aims  

The primary goal of the research presented in this thesis was to develop a 

small diameter tissue engineered vascular graft using the natural polymers 

collagen and elastin, coupled with dynamic mechanical conditioning.  To 

achieve this, we sought to develop tubular collagen-elastin scaffolds with 

optimised intrinsic physiochemical characteristics which displayed the 

capacity to support smooth muscle cells in vitro while subsequently 

displaying suitable viscoelastic properties capable of sustained 

biomechanical conditioning in a custom designed pulsatile bioreactor.  

To accomplish this, the specific objectives of the thesis were as follows:  

 

1) Develop a collagen-elastin composite scaffold with potential application for 

vascular tissue engineering and examine the influence of elastin addition on 

the resultant scaffold microstructure, mechanical properties, and in vitro 

response to smooth muscle cells (Chapter 2).  

 

2) Develop a biofabrication strategy to produce a multi-layered collagen-

elastin tubular scaffold with a physiologically relevant tubular architecture. 

Further control over the physiochemical properties of these tubular scaffolds 

was examined through a multitude of crosslinking techniques (Chapter 3). 

 

3) To design, develop, and validate a versatile pulsatile bioreactor for 

dynamic conditioning of small diameter vascular grafts including the multi-

layered collagen-elastin tubular scaffold developed in the previous chapter 

(Chapter 4). 

 

4) Examine the effect of vessel architecture, crosslinking, and dynamic 

conditioning in the custom pulsatile bioreactor from Chapter 4, on the 

maturation of collagen-elastin based tissue engineered vascular grafts 

(Chapter 5). 
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Chapter 2: Effect of elastin incorporation on the 

microstructure, mechanical properties, and biological 

response of collagen scaffolds for cardiovascular 

tissue engineering 
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2.1 Introduction 

A major challenge in cardiovascular tissue engineering is the design and 

fabrication of biomaterials with suitable biological instructive cues to guide 

cell behaviour, while additionally supporting the challenging haemodynamic 

mechanical environment once implanted in vivo (Annabi et al., 2013; Quint et 

al., 2011). These instructive cues are chemical, physical, and mechanical in 

nature and play a major role in governing cellular adhesion, migration, 

proliferation, and differentiation, while encouraging synthesis of appropriate 

proteins/glycosaminoglycans (Cameron et al., 2014; Nakayama et al., 2014). 

Cells natively receive a large quantity of these cues through interaction with 

the extracellular matrix (ECM) and so a biomimetic approach to biomaterial 

design has a number of innate advantages. Natural-based materials, such as 

collagen and fibrin, are thus ideal candidates to construct biomaterial 

scaffolds from as they can form part of an adaptive tissue which is 

mechanically and biologically responsive to the haemodynamic environment 

(Grassl et al., 2003; Huynh and Tranquillo, 2010). The ubiquitous nature of 

collagen in the body and comparatively good mechanical properties in 

comparison to other natural polymers has thus led to its widespread use for 

cardiovascular tissue engineering as a cardiac cell delivery patch (Roche et 

al., 2014) and vascular graft among others(Kumar et al., 2013; Schutte et al., 

2010). 

 

Despite numerous advances in biofabrication methods for natural polymers, 

these collagen-based scaffolds often do not meet the mechanical 

requirements for the dynamic cardiovascular environment. Often this stems 

from the propensity of collagen-alone to creep over time, a process which 

would lead to aneurysm formation in vivo if utilised as a vascular graft 

(Dunphy et al., 2014; Seliktar et al., 2000; Singh et al., 2015). In order to 

address some of the mechanical limitations of natural polymers such as 

collagen, composites have been developed in order to improve the strength 

of the scaffolds while also retaining biological activity (Heydarkhan-Hagvall et 

al., 2008; Tillman et al., 2009; Tschoeke et al., 2009; Wise et al., 2011). 

Natural polymers, such as collagen and fibrin, have been combined with 
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synthetic polymers, such as polylactic acid and polyethylene terephthalate, in 

order to further enhance the mechanical properties of the vessels (Burrows 

et al., 2012; Koch et al., 2010). While the strength of vascular grafts can be 

improved via the incorporation of synthetic polymers, this also generally 

reduces the compliance of the scaffolds as the synthetic polymers are 

relatively stiff. Consequently, despite some advances in the area, many of 

these grafts suffer from a compliance mismatch in comparison to a native 

vessel (Tiwari et al., 2002). Additionally, biodegradable synthetic polymers, 

such as PGA, have been shown to dedifferentiate SMCs due to their 

hydrolysis products (Gong and Niklason, 2011; Niklason et al., 2001) which 

may also lead to a lowering of local pH levels and a resulting inflammatory 

response (Athanasiou et al., 1996). Consequently, recent research has 

begun to focus on creating composites of purely natural polymers to 

engineer a regenerative niche which can guide cell behaviour and ultimately 

promote tissue regeneration. 

 

In native vasculature, elastin serves to dampen the pulsatile flow of blood by 

its efficient storage of elastic-strain energy. From a tissue engineering 

perspective, the high extensibility and resilience of this protein, coupled with 

its low stiffness, may allow it to closer match the mechanical properties of 

native cardiovascular tissue. In particular, the addition of elastin to vascular 

scaffolds has been shown to alter the mechanical response of scaffolds 

through increasing compliance and reducing thrombogenicity (Wise et al., 

2011). In addition, elastin has been attributed with activating pathways which 

govern the proliferation and differentiation of vascular cells. Specifically, 

elastin has been found to stimulate gene expression of the SMC markers α-

SMA and calponin in vitro for MSCs seeded on elastin coated substrates 

(Gong and Niklason, 2008; Park et al., 2004). Elastin can bind to the 67kDa 

elastin/laminin binding protein which has been shown to be involved in 

mechanotransduction (Spofford and Chilian, 2003), ECM assembly (Li et al., 

1998), cell chemotaxis and proliferation (Mochizuki et al., 2002). It is clear 

that emulation of native tissue composition by elastin incorporation would 

therefore address many of the biological and mechanical issues seen in this 

field. However, there is a dearth of research on native elastin in tissue 
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engineering due to the proteins large size and insolubility which makes it 

incompatible with many biofabrication techniques. Previous studies utilizing 

elastin have primarily focused on initial incorporation methods and 

characterisation (Buttafoco et al., 2006b; Grover et al., 2012) the effects of 

elastin in vivo(Daamen et al., 2008, 2005). Thus, the effects of native elastin 

on biomaterial properties have yet to be fully elucidated for cardiovascular 

tissue engineering. 

 
 
In this study, we hypothesised that the presence of elastin in a porous 

collagen scaffold would markedly alter the mechanical and biological 

response and, from a cardiovascular tissue engineering perspective, that its 

incorporation would produce a more natural viscoelastic response while 

inducing a more contractile SMC phenotype. The aim of the study was thus 

to elucidate the influence of elastin addition on the microstructural and 

mechanical properties of collagen scaffolds and to examine the biological 

response of smooth muscle cells when seeded on the composite scaffolds. 

Specifically, after elastin incorporation, we investigated the resultant scaffold 

microarchitecture via scanning electron microscopy and used histological 

techniques to quantify pore architecture and elastin distribution. Mechanical 

properties were investigated via compression and uniaxial tensile testing 

while viscoelastic response was assessed by examining creep and cyclical 

strain recovery analysis.  Subsequently, we assessed the effect of elastin 

addition on SMC phenotypic modulation towards a synthetic or contractile 

phenotype by assessing cell proliferation and gene expression.  
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2.2 Materials and Methods 

2.2.1 Scaffold fabrication 

Fabrication of collagen-elastin scaffolds 

To fabricate Collagen-Elastin (CE) scaffolds, a freeze-drying process was 

used. Firstly, it was necessary to prepare a co-suspension of collagen and 

elastin in an aqueous acetic acid solution as per Fig 2.1. This collagen-

elastin suspension was produced by mixing 0.5% w/v of fibrillar Type I 

bovine collagen (Integra Life Sciences, Plainsboro, NJ) and elastin from 

bovine neck ligament (Sigma-Aldrich, Germany) in 0.05M acetic acid. Elastin 

was blended into the collagen and acetic acid suspension in one of three 

different concentrations: 1:0.1 collagen:elastin ratio (CE10), 1:0.35 

collagen:elastin ratio (CE35) and 1:1 collagen:elastin ratio (CE100) - which 

corresponds to the ratios found in dry native skin, lung and arterial tissues 

respectively. The suspension was then added to a mixing vessel, cooled to 

4oC, where it was blended using an overhead blender (Ultra Turrax T18, IKA 

Works Inc., Wilmington, NC) at a speed of 15000rpm to homogenise the 

suspension, A desiccator was used to degas the high viscosity suspension 

and it was then placed in a stainless steel pan and freeze-dried at a cooling 

rate of 0.9 oC/minute to a final freezing temperature of -40oC (Advantage EL, 

Vir-Tis Co., Gardiner NY).  This freeze-drying profile has been previously 

optimised by O’Brien et al. (2004) to develop collagen-based scaffolds with a 

homogeneous pore structure. 

Following freeze-drying the scaffolds were dehydrothermally (DHT) 

crosslinked as per Haugh et al. (2009). Briefly, the scaffolds were subjected 

to a DHT treatment of 105oC for 24 hours at 0.05 bar in a vacuum oven 

(Vacucell 22, MMM, Germany). This crosslinking method also sterilises the 

scaffolds for use in cell culture. 

 



74 
 

 

 

Figure 2.1 Fabrication of collagen- elastin composite scaffolds 

Collagen and elastin were blended together to form a co-suspension in 
acetic acid before controlled freeze-drying was used to produce an open 
porous scaffold network. Carboyxlic groups were then covalently crosslinked 
to the free amine groups to form stable amide bonds via dehydrothermal 
treatment. 
 

 

2.2.2. Scaffold microstructural characterisation 

 

Assessment of elastin distribution in the CE scaffolds 

Histological analysis was performed to evaluate the spatial distribution of 

elastin within the freeze-dried scaffolds. Scaffold samples were placed in a 

solution of 10% formalin for 30 minutes followed by embedding in paraffin by 

an automatic tissue processor (ASP300, Leica, Germany). The samples 

were sectioned at 10μm using a microtome (Leica RM 2255, Leica, 

Germany) and mounted on glass histology slides followed by 

deparaffinization in xylene. The slides were then stained with a modified 

Verhoeff-van Gieson staining procedure adapted from the manufacturer’s 

instructions  (Sigma-Aldrich, Dublin, Ireland) and coverslips were applied 

with DPX mountant. The mounted sections were imaged on a microscope 

(Nikon Eclipse 90i, Nikon, Japan) and digital images were recorded at 10x 
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magnification using the attached control unit connected to a PC and imaging 

software (Nikon DS Camera control unit, Nikon, Japan with NIS Elements 

Basic Research V3.06, Nikon Instruments Europe, The Netherland). 

 

Effect of elastin addition on scaffold mean pore size, porosity, and pore 

architecture 

The scaffold mean pore size was determined using a polymer resin 

embedding technique as previously described (O’Brien et al., 2004). 

Samples were embedded in a JB-4 glycomethacrylate (Polysciences, 

Germany) resin according to the manufacturers protocol and serially 

sectioned at 10μm using a microtome (Leica RM 2255, Leica, Germany). 

Sections were stained with toluidine blue and digital images were acquired 

before quantification by a pore typography analyser script previously written 

for MATLAB® (MathWorks Inc, MA, USA) (Haugh et al., 2010). The software 

thresholds the images, identifies pore boundaries, and the mean pore size 

was calculated from best fit ellipses inside each pore. A minimum of 200 

pores were analysed for each scaffold variant and samples were selected 

from multiple batches in order to account for the inherent batch variability in 

pore sizes. 

Additionally, scanning electron micrographs were acquired at 5kV and a 

magnification of 350x to further examine the pore architecture. 

 

The porosity of scaffolds was calculated using the density of the scaffolds (ρ 

scaffold) in relation to the theoretical dry solid composite as per Equation (1), 

below. The solid composite scaffold density was calculated using the mass 

of collagen and elastin used and their relative densities, ρ solid =1.3 g/cm3 for 

both proteins(Hoffmann et al., 2003; Yannas and Burke, 1980). The density 

of the scaffolds was calculated by measuring their volume and mass using a 

digital Vernier callipers (Krunstoffwerke, Radionics, Dublin, Ireland) and 

digital scale respectively (Mettler Toledo MX5,  Mason Technology, Dublin, 

Accuracy ±0.01mg).   

ὖέὶέίὭὸώ Ϸ ρ
”

” ὼ ρππ                    (1)                                        
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2.2.3. Scaffold mechanical characterisation 

Effect of elastin addition on scaffold compressive and tensile properties 

Uniaxial tensile testing of the scaffolds was performed using a uniaxial 

tensile testing machine (Z050, Zwick/Roell, Ulm, Germany) with a 5N load 

cell (Haugh et al., 2009). Samples for testing were freeze-dried in a custom 

dog-bone mold as per ASTM Standard D638, type V (American Society for 

Testing and Materials International). The scaffolds were pre-hydrated in PBS 

(Sigma-Aldrich, Germany) for 1 hour prior to transfer to the testing rig in 

order to test the hydrated response of the scaffolds as per in vivo conditions. 

A tensile preload of 0.01N was applied followed by testing at a rate of 

5mm/minute until failure. The tensile modulus was determined at low strain 

(2-5%) and high strain (20-25%).  

Unconfined compression testing of the scaffolds was performed using 

cylindrical samples punched out of sheets. Compressive testing was 

performed at a rate of 10%/minute up to a maximum strain of 10%. The 

compressive modulus was defined as the slope of the stress strain curve 

between 2% and 5% which avoids the less stiff toe region below 2% strain 

and the densification region at levels higher than 5%. To account for the 

effect of scaffold density on the resulting mechanical properties the specific 

compressive modulus and specific tensile modulus was determined by 

dividing the modulus by the scaffold density ( ). 

 

Effect of elastin addition on scaffold creep and cyclical strain recovery. 

The above analysis revealed that CE100 scaffolds were optimal for further 

testing due to the good distribution of elastin and low standard error on the 

mechanical and microstructural analysis, indicating a homogenous scaffold. 

Tensile creep testing and cyclical strain recovery analysis were then 

performed in order to elucidate the viscoelastic response of the scaffolds. All 

tests were performed using a uniaxial tensile testing machine (Z050, 

Zwick/Roell, Ulm, Germany) with a 5N load cell. Samples for testing were 

fabricated and prepared as per the uniaxial tensile testing. Creep testing was 
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performed for 10 minutes at a loading level equivalent to 33% of the ultimate 

tensile strength of each sample (Berglund et al., 2005). A tensile preload of 

0.01N was first applied followed by three preconditioning cycles to 5% strain 

at a strain rate of 5mm/minute. Creep data was analysed with Burger’s four-

parameter constitutive model (Eqn. 2), with the schematic shown in Fig. 2.6. 

The model consists of a Maxwell unit (spring and dashpot in series) and 

Voigt unit (spring and dashpot in parallel) in series and can be described by 

the following equation: 

                      ‐ὸ ὸ ρ Ὡὼὴ     (2)                

 

Where the strain (‐) at a given time (ὸ) was modelled utilising the applied 

stress („) by utilising the generalised reduced gradient algorithm to match 

the experimental and model curves by minimising the sum of the square 

error between the two curves. The four variants in the nonlinear model 

represent elastic parameters (Ὑ and Ὑ) and viscous parameters (– and 

–).  

Cyclical strain recovery was performed by applying a preload of 0.01N 

followed by 25 cycles at 5mm/min to 10% strain. The degree of strain 

recovery after 25 cycles was determined using the following equation (3) 

where ‐  is the applied strain and‐ ὔ) is the strain after N cycles (Lendlein 

et al., 2001): 

                Ὑ              (3)                             

 

2.2.4. Analysis of the biological response 

Cell Culture and scaffold seeding 

The biological performance of the CE scaffolds was assessed using a human 

smooth muscle cell line with collagen-only scaffolds fabricated at the same 

temperature and crosslinking levels acting as controls. CE100 scaffolds were 

determined to be the optimal scaffolds for this in vitro testing due to the good 

distribution of elastin and homogenous architecture and mechanical 
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properties. The human smooth muscle cell (hSMCs) line was purchased 

from ATCC (CRL-1999) having been previous extracted from the aorta of an 

11-month old female Caucasian. Cells were cultured using the 

recommended complete growth media and subculturing procedures as per 

the manufacturer’s instructions.  

Scaffolds of diameter 8mm and height 3.5mm were hydrated in PBS for 30 

minutes prior to cell seeding. Scaffolds were seeded at a density of 2.0x 105 

per sample with cells seeded using a previously optimised technique 

(Murphy et al., 2010). Cell seeded scaffolds were cultured for up to 14 days 

in complete growth media consisting of Ham’s F-12K (ATCC 30-2004, LGC 

Standards, Middlesex, UK) supplemented with 10% foetal bovine serum, 2% 

penicillin/streptomycin (Sigma-Aldrich, Arklow, Ireland), 50 μg/mL ascorbic 

acid (Sigma-Aldrich, Arklow, Ireland), 16ul/ml 1x ITS (Insulin, Transferrin, 

Selinium) (BD Biosciences, Oxford, UK), 10 mM HEPES, 10mM TES, 0.03 

mg/ml endothelial cell growth supplement (Sigma-Aldrich, Arklow, Ireland). 

Media was changed every 3 days. 

 

Effect of elastin addition on cell density and cell-mediated scaffold 

contraction 

Cell number was quantified via an Invitrogen Quant-iT™ PicoGreen dsDNA 

kit (Biosciences, Dublin, Ireland). Four scaffolds per group (n=3) at each of 

the time points (4, 7 and 14 days) were homogenised in 1 mL of 0.2M 

carbonate buffer with 1% triton to lyse cells using a hand-held homogeniser 

(Finemech, Portola Valley, CA, USA) equipped with a T6 homogenising shaft 

attachment (Finemech). Cell number was then quantified as per Singer 

(Singer et al., 1997)using a Picogreen dsDNA assay kit which fluorescently 

labels double-stranded DNA. The samples were prepared in triplicate and 

the fluorescence was read at an emission of 520 nm after excitation at 480 

nm using a fluorescence spectrophotometer (Wallac Victor2™ 1420 

multilabel counter, Perkin Elmer Life Sciences, Waltham, MA, USA). Sample 

fluorescence was compared to a standard curve to determine cell number. 

Scaffold contraction was measured at each timepoint using Vernier callipers 

(Krunstoffwerke, Radionics, Dublin, Ireland) and graphed as percentage 
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contraction versus day 0. This data can be utilised for cellular solids 

modelling and also give an indication of cell-mediated contraction forces. 

 

Effect of elastin addition on gene expression 

The relative RNA levels for genes of interest were measured by reverse 

transcription followed by quantitative real-time polymerase chain reaction. 

Total RNA was isolated utilising a Qiagen RNeasy mini kit and DNase set 

(Qiagen, Crawley, Uk) as previously described (Duffy et al., 2011). RNA 

concentration and purity was determined via a spectrophotometer 

(NanoDrop Technologies, Inc., Rockland, DE). Total RNA (200ng) was 

reversed transcribed to cDNA using a QuantiTect Reverse Transcription kit 

(Qiagen) and a thermal cycler (Mastercycler Personal, Eppendorf, UK), as 

per the manufacturer’s instructions. A QuantiTect SYBR Green PCR kit was 

utilised with a 7500 Real-Time PCR System (Applied Biosystems, UK) in 

order to perform real time polymerase chain reactions in duplicate for each 

sample. Predesigned and validated human QuantiTect primer assays 

(Qiagen) were utilised for the mRNAs of interest, namely; collagen type 1 

(Coll 1), alpha-smooth muscle actin (αSMA), Calponin 1 (Calponin), and 

smooth muscle-myosin heavy chain 11 (SM-MHC). These target genes were 

chosen as they represent early stage (αSMA), mid-stage (calponin) and late 

stage (SM-MHC) SMC markers as well as ECM production (Coll 1). Gene 

expression results were normalised to the reference gene, 18S, using the 

ς  method. 

 

Statistical analysis 

Statistical analysis was conducted using one-way or two-way ANOVA 

followed by the Holm-Sidak post hoc test for pairwise comparisons using 

Sigmaplot Version 11.2 (Systat Software Inc., USA). A P-value of 0.05 or 

less was considered statistically significant (p≤0.05). The strength and 

direction of linear relationships between material parameters was determined 

using the Pearson product moment correlation coefficient (r), while the 

coefficient of determination (r2) was utilised to indicate the degree of linear 
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association between factors. A strong positive correlation is considered to 

exist if the r is between 0.7 and 1 (Taylor, 1990). 

 

2.3 Results 

2.3.1 Effect of elastin addition on collagen scaffold microarchitecture  

Histological analysis was used to determine the spatial distribution of elastin 

within the scaffold matrix and to determine whether the method of elastin 

incorporation was appropriate (Fig. 2.2A). Some minor clumping of elastin 

was observed at lower concentrations (CE10 & CE35) but elastin was found 

to be homogenously distributed at higher concentrations, as observed in the 

CE100 scaffolds (Fig. 2.2A). SEM analysis revealed that elastin was 

primarily observed to be encapsulated by the collagen (Fig. 2.2B); although 

at higher magnification some single elastin fibres are visible and thus 

available for cell binding (Fig. 2.2C). The SEM analysis also shows the highly 

interconnected pore architecture and porous nature of the scaffolds. 

Analysis of the scaffold porosity indicated that there was a strong linear 

decrease (Pearson Correlation Coefficient, r =-0.97) in the porosity of the 

scaffolds (Fig. 2.2E) with increasing elastin concentration.  A significant 

reduction (p < 0.001) in percentage porosity was found between the CE100 

scaffolds versus all other scaffolds. Additionally, there is a significant 

decrease (p < 0.05) between the collagen-only and CE10 scaffolds. The 

reduction in porosity may be explained by the increased overall protein 

concentration with the addition of elastin, although the absolute difference in 

porosity is <0.5%. However, all scaffolds exhibited mean porosities above 

98.8%, far greater than the porosity of ≥ 90% that is desired for effective 

tissue repair (Zeltinger et al., 2001; Gleeson and O’Brien, 2011). 
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Figure 2.2 Effect of elastin addition on scaffold microarchitecture 

Modified Verhoeff-van Gieson staining was performed on paraffin embedded 
scaffolds to determine the distribution of collagen (red) and elastin (black) in 
collagen scaffolds and CE scaffolds (A). SEM images (B) of the scaffolds 
showing the excellent pore interconnectivity, homogenous pore structure and 
porous nature. Individual elastin fibres are visible at higher magnification and 
are partially encapsulated by collagen (C). Macroscopically all scaffold 
variants produced homogenous scaffold sheets (D) with very high porosities 
(E). (*) denotes p<0.05 versus indicated group or  (^) versus all other groups. 
Scale bar = 200 microns 
 

The addition of elastin did not significantly affect the pore size (Fig. 2.3) of 

the scaffolds at higher concentrations (CE35 & CE100) but did reduce the 

pore size at low concentrations (CE10) versus the other elastin containing 

scaffolds (p<0.05) (Fig. 2.3). A mean pore size (± standard deviation) of 87.7 

± 4.6 μm, 84.8± 2.3 μm, 96.1± 6.0 μm and 93.5± 2.9 μm was found for the 

collagen-only, CE10, CE35, and CE100 scaffolds respectively (Fig. 2.3B). All 

scaffolds had mean pore sizes within the optimal range of 60μm-150μm 

proposed for MSCs and SMCs (Jeong et al., 2005; Lee et al., 2008; Zeltinger 

et al., 2001). 
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Figure 2.3 Effect of elastin addition on scaffold pore size 

Micrographs of polymer embedded sections reveal minimal changes to pore 
architecture with the addition of elastin (A). Mean pore size was measured as 
the average of the major and minor diameter of a best-fit ellipse to each pore 
(B). The addition of elastin resulted in a negligible change in mean pore size 
for all scaffolds, although CE10 scaffolds exhibited a statistically significant 
reduction in pore size versus the CE35 and CE100 scaffolds (p<0.05). (*) 
denotes p<0.05 statistical significant difference in comparison to CE35 & 
CE100. Scale bar = 200 microns 
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2.3.2 Effect of elastin addition on collagen scaffold mechanical 

properties 

Elastin addition resulted in a decrease in scaffold compressive modulus 

versus collagen controls (p<0.05) (Fig. 2.4A). A compressive modulus (± 

standard deviation) of 0.32±0.04 kPa, 0.26±0.03 kPa, 0.26±0.05 kPa and 

0.25±0.03 kPa was found for the collagen-only, CE10, CE35, and CE100 

scaffolds respectively. Scaffold specific compressive modulus ( ) was 

calculated to account for differences in scaffold density due to the addition of 

elastin, with a strong decreasing linear trend observed (r = -0.9). Collagen 

scaffolds had a significantly higher specific compressive modulus than all 

elastin containing scaffolds (p<0.05) while the CE100 scaffolds had a 

significantly lower specific compressive modulus than all other groups 

(p<0.05). Additionally, scaffold tensile properties were also examined with 

representative stress-strain curves shown in Fig. 2.5A. While no significant 

difference was observed in the uniaxial tensile properties (Fig. 2.5B), when 

density was again accounted for it was found that elastin resulted in a 

concentration dependant decrease in scaffold specific tensile modulus which 

further corroborates the results obtained via compressive testing. These 

results indicate that elastin results in a reduction in scaffold stiffness in a 

concentration dependent manner. 

 

 

Figure 2.4 Effect of elastin addition on scaffold compressive properties. 

Elastin addition reduced the compressive moduli of all scaffolds versus the 
collagen control (p<0.05) (A). When scaffold density is accounted for via the 
scaffold specific compressive modulus (modulus divided by density) a strong 
decreasing linear trend is found (r = -0.9) with a coefficient of determination 
(r2) of 0.81 (B). This indicates that elastin addition results in reduced scaffold 
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stiffness in a concentration dependant manner. (*) indicates p<0.05 versus 
CE10, CE35, and CE100 groups. (^) denotes p<0.05 versus Coll, CE10, and 
CE35. 
 

 

Figure 2.5 Effect of elastin addition on scaffold tensile properties. 

Representative stress-strain curves of uniaxial tensile tested scaffolds (A) 
and relevant mechanical properties (B). No significant difference in strain to 
failure, ultimate tensile strength, low strain modulus, or high strain modulus 
was observed with the addition of elastin (p>0.05). When scaffold density is 
accounted for a decreasing linear trend of specific tensile modulus (C) is 
observed with increasing elastin concentrations, with CE100 scaffolds having 
significantly lower moduli than the collagen controls (p<0.05), and a 
coefficient of correlation (r2) of 0.851. (*) indicates p<0.05 difference to 
collagen controls. 
 

While compressive and tensile testing allowed analysis of many important 

material mechanical properties they do not allow analysis of the viscoelastic 

properties, the time-dependent mechanical characteristics important for the 

long term success of a tissue engineered vascular construct. Creep (Fig. 

2.6A) and cyclical strain recovery (Fig. 2.6B) tests were therefore performed 

to determine the viscoelastic characteristics of the scaffolds. It was found 

that elastin addition resulted in improved creep resistance as determined by 

the total induced strain and the viscoelastic model fitting parameters (Fig. 

2.6). Specifically, elastin incorporation resulted in a 3.5-fold decrease 

(p<0.05) in induced strain caused by creep (CE100: 13.8 ± 3.6%, Coll: 48.24 
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± 7.1%). The early creep response is modelled by the instantaneous strain 

level parameter,Ὑ, which was increased by 2.6-fold (p<0.05) with the 

addition of elastin, indicating a reduced instantaneous strain level. Elastin 

also resulted in a 2.7-fold and 4.3-fold increase in the transition region 

parameters 2  and ʂ respectively, indicating that elastin results in a lower 

strain magnitude and a shorter duration in the transition region. Furthermore, 

an 8.7-fold increase in ʂ, the parameter which governs long term 

viscoelastic behaviour,  indicates an increased resistance to long term 

deformation/creep. The large increase in ʂ due to elastin may indicate long 

term strain rates reaching values close to zero. 

 

Additionally, elastin addition resulted in a significant increase in the 

percentage cyclic strain recovery (Fig. 2.6B) versus collagen scaffolds 

(p<0.05). The presence of elastin caused scaffolds to recover 82.8% of the 

applied strain while collagen scaffolds recovered to 13.1% of the applied 

strain following 25 cycles to 10% strain. The cyclical strain regime applied 

was a dynamic test of scaffold viscoelastic properties by applying stepwise 

strain inputs to simulate pulsing vasculature.  

 

 

 



86 
 

 

Figure 2.6 Effect of elastin addition on collagen scaffold creep 
response and cyclical strain recovery. 

Elastin addition was found to significantly affect the creep response and 
cyclical strain recovery of collagen scaffolds. Collagen-only scaffolds 
exhibited an induced strain of 48.24 ± 7.1% while CE100 scaffolds exhibited 
a significantly lower (p<0.05) induced strain of 13.8 ± 3.6% (A). Elastin 
addition significantly improved (p<0.05) the cyclical strain recovery of the 
scaffolds (B). Burgerôs four parameter constitutive model (C) was fit to the 

creep data to determine the (D) viscous parameters (– and –) and (E) 

elastic parameters (Ὑ and Ὑ). Elastin resulted in higher moduli values for 

Ὑ and Ὑ, which indicates a lower instantaneous strain level and a lower 

overall strain magnitude respectively. Furthermore, elastin caused a 

significant increase in –and –, indicating an increased resistance to long 

term deformation/creep and a shorter duration in the transition region.  
(*) indicates p<0.05  
 

2.3.4 Effect of elastin addition on in vitro response 

Having determined the effects of elastin addition on collagen scaffold 

microarchitectural and mechanical properties we next sought to determine its 

effect on cellular response. From the above analysis, the CE100 scaffold 

was determined to be the optimal scaffold and so was utilised for all in vitro 

experiments. 
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DNA content was quantified on each scaffold at timepoints up to 14 days to 

determine smooth muscle cell proliferation. Elastin addition resulted in a 2.2-

fold increase in initial cell attachment in the CE100 scaffolds (43.6% ± 

11.1%) versus the collagen controls (20.2% ± 1.8%). However, when 

examining cellular proliferation the collagen-only scaffolds displayed 

significantly higher levels of proliferation at days 7 and 14 than the CE100 

scaffolds (p < 0.05, Fig. 2.7A). The increased proliferation on the collagen-

only scaffolds resulted in comparable cell numbers between the groups by 

day 14 (p > 0.05). Consequently, while elastin resulted in higher initial cell 

numbers, cell proliferation was inhibited over the 14 days, indicative of the 

cells becoming quiescent wh0ich is a hallmark of the contractile SMC 

phenotype (Rensen et al., 2007. Elastin addition also caused an increased 

resistance to cell-mediated contraction by day 14 (p<0.05) (Fig. 2.7B). Coll 

scaffolds retained 35.8% of the original area at day 14 while CE100 scaffolds 

retained 44.1% of their original area.  

 

 

Figure 2.7 Effect of elastin addition on smooth muscle cell proliferation 
and cell-mediated scaffold contraction. 

Elastin addition was found to significantly increase initial cell attachment 
(43.6%±11.1%) versus the collagen controls (20.2%±1.8%) (data not 
shown). However, the Coll scaffolds exhibited increased proliferation over 
the 14 days with significantly higher proliferation at days 7 and 14 (p<0.05). 
Elastin addition resulted in increased resistance to cell-mediated contraction 
by day 14 (p<0.05). Coll scaffolds contracted to 35.8 ± 3.5% of the original 
scaffold area by day 14 while CE100 scaffolds contracted to 44.1 ± 2.5% of 
the area at day 0. (*) denotes p<0.05 statistical significant difference in 
comparison to collagen. 
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Real-time RT-PCR analysis (Fig. 2.8) shows that, overall, elastin addition 

results in an earlier and more sustained expression of the mid and late stage 

contractile smooth muscle cell markers, calponin and smooth muscle myosin 

heavy chain (SM-MHC) respectively. It is evident that the mid/late stage 

SMC markers appear to be expressed much earlier in the presence of elastin 

than in the collagen controls (Figs.2.8 C, D).  In particular, stable expression 

of calponin and SM-MHC was found in the presence of elastin as early as 

day 4. Additionally, elastin addition resulted in increased Coll I gene 

expression at day 4 although comparable expression levels were observed 

between the scaffold groups at all other timepoints (Fig. 2.8A). The level of α-

SMA expression, an early SMC marker, was found to significantly increase 

over time in both groups and the presence of elastin resulted in a 3.1-fold 

higher expression at day 14 than the collagen control scaffolds (Fig. 2.8B).  

 
Figure 2.8 Effect of elastin addition on SMC gene expression. 

The effect of elastin addition on SMC gene expression of Coll I (A), ŬSMA 
(B), Calponin (C), and SM-MHC (D) at timepoints up to 14 days. While 
elastin addition resulted in a significant increase in Col1 gene expression at 
day 4 the results are comparable at days 7 and 14 (A). The early stage SMC 
marker Ŭ-SMA was expressed at similar levels at days 4 and 7 but increased 
expression was observed on CE100 scaffolds by day 14. Elastin addition 
also resulted in significantly higher gene expression of the mid/late stage 
contractile SMC markers, calponin and SM-MHC at timepoints 4 and 7 days. 
By day 14 similar expression levels of SM-MHC were found in both groups 
but Calponin expression remained significantly higher in the CE100 
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scaffolds. Gene expression was normalised to the housekeeping gene 18S 
and expressed as fold change versus cell seeded collagen scaffolds at day 
0. (*) denote p<0.05. 
 

2.4 Discussion 

The overall goal of this study was to investigate the effects of elastin addition 

on collagen scaffold microstructure, mechanical properties, and 

subsequently the response to seeded smooth muscle cells (SMC) in vitro. 

The results demonstrate that elastin addition resulted in minimal changes to 

scaffold pore architecture with both scaffold porosity and pore size still within 

the ideal ranges for tissue engineering applications. Mechanically, elastin 

decreased the scaffold compressive and tensile specific moduli in a 

concentration dependant manner (Figs. 2.4 & 2.5). More importantly from a 

cardiovascular perspective, the viscoelastic properties were significantly 

improved with elastin addition (Fig. 2.6). A 6-fold increase in cyclical strain 

recovery and 3.5-fold decrease in induced creep strain was found. Thus, 

elastin reduces the collagen scaffolds stiffness but also provides viscoelastic 

properties more representative of native cardiovascular tissue. Furthermore, 

elastin was found to result in the modulation of SMC phenotype towards a 

contractile state which was determined via reduced proliferation (Fig. 2.7A) 

and significantly enhanced expression of early (α-SMA) (Fig. 2.8B), mid 

(calponin) (Fig. 2.8C), and late stage (SM-MHC) contractile proteins (Fig. 

2.8D). Taken together, the ability of elastin to alter the mechanical and 

biological response of collagen scaffolds has led to the development of a 

biomimetic biomaterial highly suitable for cardiovascular tissue engineering.  

 

For cardiovascular biomaterial design, elastin is an ideal protein to examine 

as a composite with collagen due to its important mechanical and biological 

role in vivo. However, the structural-functional relationship of native elastin is 

difficult to ascertain due to the protein’s large size and insolubility and thus 

many studies have focused on elastin-based peptides (Lim et al., 2008), 

hydrolysed elastin (Leach et al., 2005), or its soluble precursor, tropoelastin 

(Mithieux et al., 2004). While this provides us with increasing knowledge of 
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the molecular basis for elastin’s mechanical and biological effects, the use of 

the native insoluble protein fibres provides numerous advantages for tissue 

engineering. Utilising peptides of native ECM molecules which contain cell 

binding motifs has attracted much research, especially those based on 

fibronectin (RGD), laminin (YIGSR), and elastin (VGVAPG) (de Mel et al., 

2008). However, the bioactivity of peptides is significantly altered from the 

derived protein with the selectivity, affinity, activity, and proteolytic sensitivity 

changed (Martino et al., 2009). Thus, individual peptides can never 

recapitulate the multi-faceted effects or intricacies of their parent ECM 

proteins, in addition to usually lacking the fibrillar structure of native proteins 

and consequently having reduced mechanical properties. 

 

We have successfully created composite scaffolds of collagen and elastin 

and found that, morphologically, elastin was homogenously distributed at 

higher concentrations (CE100), with the elastic fibres primarily encapsulated 

in the collagen struts (Fig. 2.2 A,B,C). Elastin addition caused a decrease in 

scaffold porosity in a concentration dependant manner from 99.3% to 98.8%, 

although the porosity is still within the suggested ideal range for effective 

tissue repair (Rezwan et al., 2006). Buttafoco has have previously reported a 

porosity of 90% for collagen-elastin freeze-dried scaffolds(Buttafoco et al., 

2006a); however, the scaffolds were constructed from a starting suspension 

of twice the protein concentration used in the current study and so they are 

not directly comparable. Due to the elastic fibres being encapsulated by the 

collagen struts there were only minor variations in the scaffold mean pore 

size (84.8μm-96.1μm) and pore architecture was unaffected (Fig. 2.3). This 

mean pore size range has previously been reported to result in effective cell 

migration, proliferation (Lee et al., 2008) and ECM production (Ross and 

Tranquillo, 2003) while facilitating sufficient nutrient exchange for 

SMCs/MSCs. Previous in vivo results have shown that a mean pore size of 

>100 μm results in an increased rate of tissue in-growth and vascularisation 

(Cao et al., 2006; Mikos et al., 1993; Oh et al., 2007). However, for vascular 

tissue engineering the scaffold permeability is a very important factor to 

consider with large pore sizes leading to an increase in bulk fluid 

permeability and potentially leakage of a vascular graft. This poses a 
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challenge in specifying an ideal pore size as an average pore size of less 

than approximately 50 μm would likely result in core necrosis due to a lack of 

nutrient transfer and vascularisation. A suitable balance in pore size and 

vascular leakage can be achieved by maturing scaffolds in vitro as the cells 

contract the scaffold and produce new matrix, both leading to a reduction in 

the permeability of the scaffold.  

 

Extensive examination of the mechanical properties of the scaffolds was 

carried out including analysis of the compressive, tensile, and viscoelastic 

characteristics (Figs. 2.4-2.6). Elastin addition was found to reduce the 

compressive modulus of the scaffolds, with a maximum decrease of 22% 

observed in the CE100 scaffolds versus the collagen controls (p<0.05). 

Interestingly, the uniaxial tensile properties were unaltered with elastin 

addition. However, when density differences in the scaffolds are accounted 

for, via calculation of the specific modulus ( ), we found a strong 

decreasing linear correlation with scaffold specific compressive modulus and 

specific tensile modulus (r2 = 0.81). This indicates that elastin addition 

reduces the stiffness of collagen scaffolds in a concentration dependant 

manner. Moreover, when the viscoelastic characteristics were examined it 

was found that elastin significantly improved the creep characteristics and 

cyclical strain recovery of collagen scaffolds. A four parameter viscoelastic 

model was utilised to determine the creep parameters from the experimental 

data (Fig. 2.6C). The mathematical model accurately represented the 

experimental data with a coefficient of determination (r2) ranging from 0.9-

0.98 for all tests. Elastin seems to confer an ability to resist long term creep 

in scaffolds, as determined via the 3.5-fold decrease in induced strain 

(p<0.05) and a 8.7-fold increase in ʂ, indicative of increased resistance to 

long term deformation/creep. Further increases in the parameters which 

govern the instantaneous strain (Ὑ), transition region duration (ʂ), and 

strain magnitude (2 ) support the importance of elastin as a load bearing 

cardiovascular protein which is imperative to store elastic-strain energy and 

prevent creep of cardiovascular tissue. This was further tested dynamically 
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with cyclical straining where elastin resulted in a 6-fold increase in recovery 

strain versus collagen alone. 

 

Similar levels of creep as the collagen control analysed in this study have 

previously been reported for collagen gels (Berglund et al., 2005). Native 

arteries exhibit significant resistance to creep while being cyclically strained 

for approximately 2.5 billion cycles over a person lifetime. This remarkable 

creep resistance has been attributed primarily to the presence of elastin with 

can be demonstrated through elastase-induced degradation which results in 

aneurysm formation in vivo (Anidjar et al., 1990; Halpern et al., 1994). 

Indeed, multiple reports of tissue engineered vessels with an absence of 

elastin in their structure have exhibited graft dilation via creep in vivo 

(Niklason et al., 2001; L’Heureux et al., 2007).  Additionally, the ability to 

tailor the stiffness of a scaffold with elastin in a concentration dependant 

manner is a powerful tool to tailor the cell microenvironment to reduce the 

risk of unwanted calcification found in a number of cardiovascular tissue 

engineered scaffolds (de Valence et al., 2012; Tedder et al., 2009). Overall, 

these results suggest that elastin addition causes a more native-like 

viscoelastic response which may be capable of sufficient elastic recoil and 

creep resistance for the cardiovascular environment.  

 

Contrary to expectations, the stiffer collagen scaffolds contracted more than 

the collagen-elastin scaffolds (Fig. 2.7).  Using this volumetric contraction 

data we can calculate that the final density of the scaffolds increases to 

~200mg/cm3 for both scaffold types which may indicate an upper limit to the 

contraction based on final protein density. As the struts in the scaffolds 

collapse due to cell-mediated contraction a densification regime is entered 

and the stress would sharply rise, thus inhibiting further cell–mediated 

contraction. Interestingly, we can also use this data to calculate the changes 

in scaffold elastic modulus during contraction via cellular solids 

modelling(Caliari and Harley, 2014; Ryan et al., 2014) with the collage-

elastin scaffold modulus closely matching native heart tissue at ~33kPa and 

the collagen scaffold calculated to reach ~150kPa, more similar to a fibrotic 

scar or bone (Berry et al., 2006; Bhana et al., 2010). However, it should be 
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noted that the local stiffness of the scaffold struts is expected to be higher 

than this bulk stiffness, although the cells will experience large gradients due 

to the differing stiffnesses of collagen (~5MPa) and elastin (~0.5MPa) 

(Nowatzki and Tirrell, 2004). In terms of the stiffness of native blood vessels, 

low strain artery moduli have previously been reported to range from 700kPa 

for porcine carotid arteries (Sheridan et al., 2012) to 16.7kPa for human 

coronary arteries (Kural et al., 2012). Thus, the scaffolds described are within 

the normal stiffness range for whole arteries. However, the tunica media 

generally displays a significantly lower modulus than other artery layers, in 

the range of 1.3kPa for human coronary arteries (Holzapfel et al., 2005) and 

190kPa for human carotid arteries (Khamdaeng et al., 2012). Thus, the 

scaffolds described would be highly suitable for use as a media layer 

equivalent rather than a whole artery. 

 

Subsequent SMC proliferation and gene expression analysis revealed that 

the addition of elastin significantly affected both parameters (p<0.05), 

indicating phenotype modulation due to ECM interaction (Figs. 2.7 & 2.8). 

The ability to control SMC phenotype is an important characteristic for 

cardiovascular tissue engineering due to the extraordinary plasticity these 

mature cells display in response to local environment changes (Rensen et 

al., 2007). These local environmental changes may result in SMCs changing 

from a quiescent-like contractile phenotype to a more synthetic phenotype. 

Synthetic SMCs display drastically increased cell migration, proliferation and 

ECM production and this phenotype is generally observed during vessel wall 

injury or pathological conditions (Yoshida and Owens, 2005). Our results 

indicate that seeded SMCs revert to a synthetic phenotype when cultured on 

collagen-only scaffolds, as determined via the enhanced cell proliferation 

(1.5-fold) and lower expression of multiple contractile proteins, including α-

SMA, calponin, and SM-MHC  (Figs. 2.7 & 2.8). This corresponds well to the 

work of Yamamoto (Yamamoto et al., 1993) and Stegemann and Nerem 

(Stegemann and Nerem, 2003) who have previously shown that collagen 

type I stimulates proliferation but simultaneously results in the reduction of 

the contractile protein α-SMA.  
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Notably, with the addition of elastin, the SMCs became quiescent 

(proliferation was inhibited over the 14 days), while the contractile proteins α-

SMA, calponin, and SM-MHC were all significantly upregulated at multiple 

timepoints (p<0.05). Thus, elastin addition results in a phenotypic switch to a 

more contractile SMC phenotype.  

Elastin has previously been identified as an important regulator of SMC 

phenotype where the soluble elastin peptides present in diseased arteries 

can modulate SMCs towards a proliferative synthetic phenotype (Mochizuki 

et al., 2002). However the specific effects of the whole insoluble protein are 

markedly different to the soluble peptides where elastin is known to have an 

anti-proliferative effect and thus is critical in maintaining the native contractile 

phenotype. Numerous mechanisms as to why this occurs have been 

reported including the insoluble elastin sequestering growth factors otherwise 

involved in SMC proliferation (Urbán et al., 2002) and direct anti-mitotic 

signalling through the protein itself (Li et al., 1998). The direct signalling has 

been reported to occur through G-protein coupled receptors, the 67-kDa 

elastin binding protein, and a variety of integrins (Bax et al., 2009; Lee et al., 

2014). This corresponds well to previous work that has suggested that 

elastin is involved in maintaining a contractile phenotype both in vitro (Gong 

and Niklason, 2008; Yamamoto et al., 1993)and in vivo (Satyajit K Karnik et 

al., 2003). Conflicting results on the effects of elastin on SMCs in 3D 

scaffolds have also been reported with SMCs showcasing synthetic 

phenotype hallmarks, such as proliferation and migration, on a number of 

elastin containing scaffolds (Boland et al., 2004; Buttafoco et al., 2006a). 

However, we believe we have demonstrated the first conclusive evidence 

that elastin can be utilised to direct SMC phenotype in a 3D environment for 

tissue engineering purposes. It was hypothesised that elastin addition may 

have resulted in the downregulation of Coll I gene expression due to the 

phenotype modulation, but no significant difference was observed after day 4 

(Fig. 2.8). It is clear that complex cell-ECM signalling is occurring in the 

scaffolds due to the scaffold composition, mechanical properties, and 

architecture. However, the collagen-elastin scaffolds described here would 

seem to emulate many of the desirable characteristics for cardiovascular 
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tissue engineering and represents a promising biomaterial platform for 

further investigation. 

 

 

2.5 Conclusion 

In this study, we have shown that elastin addition to a porous collagen 

scaffold can play a major role in altering its biological and mechanical 

response. With the addition of elastin we observed a higher degree of 

cyclical strain recovery and creep resistance which indicates the biomaterial 

may possess sufficient recoil to be utilised for long-term cyclical distension 

for cardiovascular tissue engineering. While scaffold remodelling will occur 

once the scaffolds are cell seeded, the environment presented by the 

collagen-elastin composite scaffolds closer mimics the native mechanical 

response and protein composition of arterial tissue and may lead to improved 

formation of arterial tissue. Additionally, the presence of elastin resulted in a 

more contractile-like SMC phenotype which is necessary for vasoactivity and 

inhibition of intimal hyperplasia in vivo. This biomimetic biomaterial is 

amenable to multiple fabrication methods and represents a versatile 

biomaterial platform which is capable of being applied for numerous tissues 

including skin, elastic cartilage, lung tissue engineering, or as a cardiac patch 

for cell delivery. 
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3.1 Introduction 

Tissues are 3D self-assembled constructs developed to serve very precise 

needs based on their location. The organisation of the cells and ECM 

components in a tissue ultimately dictates the tissues potential function and 

is highly adapted to deal with any mechanical loads which it will encounter 

(Stella et al., 2010). This hierarchical structuring from the nanostructure to 

the macrostructure is a tightly regulated and complex process which has 

proven elusive to recreate fully in vitro (Fratzl and Weinkamer, 2007). Thus, 

bioengineers have resorted to developing biofabrication tools and techniques 

in order to aid in recreating tissues ex vivo. The ideal tissue engineered 

vascular graft (TEVG) would thus mimic native tissue microenvironment and 

structure, and be composed of a multi-layered lamellar structure (Fig. 3.1).  

 

The biofabrication technique selected ultimately dictates the possible end 

architectural constraints. Multiple techniques now exist to generate structures 

with control over the nano/microstructure and with the capability to generate 

large, anatomically correct scaffolds with a suitable macrostructure. 

However, many of these techniques are limited to either synthetic polymers 

capable of withstanding the elevated temperatures required for 3D printing 

techniques (e.g fused deposition modelling) or require specialist 

photosensitive materials (e.g. stereolithography, two-photon polymerisation). 

Freezedrying, as a technique, is amenable to a broad range of materials and 

is highly suitable for thermosensitive natural polymers which may denature 
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under elevated temperature conditions. However, freezedrying is often seen 

as limited in the scope of microstructural and macrostructural manipulation 

possible. Previous work has shown that although the microstructure can be 

manipulated, it is influenced by the composition (Ryan et al., 2014) as well as 

the specific freeze-drying conditions, such as freezing rate (O’Brien et al., 

2004) and final freezing temperature (Haugh et al., 2009). Therefore, 

optimisation of microstructure may be achieved by altering these parameters. 

Hierarchical structured scaffolds can be fabricated through a combination of 

techniques to leverage the advantages of each while minimising the 

disadvantages. So far, this thesis has demonstrated that generating three 

dimensional porous scaffolds from collagen and elastin (Chapter 2) elicits a 

number of distinct advantages as a template for tissue regeneration. Utilising 

this data we next sought to further optimise this biomaterial by structuring it 

hierarchically. Specifically, we sought to create a physiologically relevant 

bilayered tubular architecture through generation of a porous outer layer 

(analogous to the tunica media) and a dense film inner layer (analogous to 

the tunica intima). 

 

Traditional tissue engineered vascular grafts are created as a single 

homogenous layer in a tubular structure. Some of the earliest work utilising 

natural polymers for this application were in the form of easy to fabricate 

collagen gels. Indeed, a number of researchers have investigated SMC-

seeded collagen type I gels which were compacted by the seeded cells over 

time to produce vascular grafts (L’Heureux et al., 1993; Seliktar et al., 

2003a). However, due to the low polymer density and disorganised matrix 

formed, these grafts did not possess the required mechanical properties for 

the challenging haemodynamic environment (Barocas et al., 1998; Hirai et 

al., 1994). Consequently, the field progressed to incorporate synthetic 

polymer meshes within the natural polymers in order to improve the overall 

graft mechanical properties (Tillman et al., 2009; Tschoeke et al., 2008). 

However, despite the limitations associated with these early grafts, 

significant advances in natural polymer fabrication techniques over the last 

20 years have enhanced the potential for development of a successful 

collagen-based tissue engineered vascular grafts. The hierarchical 
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structuring of natural polymers, like collagen, can be achieved by altering the 

protein concentration between the layers to leverage the effect of density on 

mechanical properties (Caliari et al., 2011; Kumar et al., 2013). The 

integration of a dense luminal layer would further match the native 

architecture, would potentially increase mechanical properties, and provide a 

suitable surface for endothelialisation. While it is clear that emulation of 

natural vessel architecture and polymer composition has distinct advantages, 

the optimal combination of biomaterial and architecture for vascular tissue 

engineering applications has yet to be elucidated. 

 

In addition to their inherently excellent biological properties, natural polymers 

offer the ability to easily modify their mechanical properties and degradation 

rates through crosslinking. Crosslinking, as a technique, offers the powerful 

ability of being able to tune a material’s properties independently of the 

density or microstructure by creating covalent bonds between nearby 

collagen molecules. Thus, a hierarchically structured scaffold can be further 

fine-tuned to match the desired mechanical properties. While the native 

collagen crosslinking pathway occurs through the enzyme lysyl oxidase in 

vivo, the harsh extraction procedures used to process collagen for medical 

device applications result in the degradation of these bonds. Thus, 

exogenous methods based upon physical, chemical, or alternative enzymatic 

methods are often utilised (Koh and Atala, 2004; Tierney et al., 2013). These 

exogenous crosslinks are capable of causing vastly improved mechanical 

properties but also result in cytotoxicity and/or unwanted cellular responses 

such as calcification. Crosslinking also can be used to tailor the degradation 

rate of the biomaterial where a slow degradation rate allows a gradual stress 

transfer to occur and is favourable from a mechanical viewpoint. However, 

biologically the most favourable outcome would be for the degradation rate to 

match the rate of new tissue growth which generally necessitates a faster 

degradation rate. The ideal solution involves striking a balance between the 

mechanical and biological suitability of the degradation rate for effective 

tissue repair. Interestingly, crosslinking has also being implicated as being 

involved in host-biomaterial interactions by modifying the immunogenic 

response (McDade et al., 2013). 
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3.1.1 Objectives 

The overall objective of this chapter was to develop bilayered tubular 

scaffolds with controllable properties for use as a tissue engineered vascular 

graft. This chapter focused on optimising the architecture of the previously 

optimised biomaterial composition from Chapter 2. In line with these 

objectives, the specific aims of this study were: 

 

¶ Study 1: Develop the optimal biofabrication method to produce porous 

collagen-elastin tubular scaffolds using a custom designed mold and 

varying the freezing rate to control microstructure. 

 

¶ Study 2: Develop dense protein films with controllable mechanical 

properties and degradation rates through varied crosslinking 

procedures. Additionally, the effect of crosslinking on the inflammation 

response of macrophages was also examined in vitro. 

 

¶ Study 3: Develop bilayered tubular scaffolds by selecting the optimal 

methods from studies 1 and 2 above. The microstructure was further 

optimised through altering the freezing direction (horizontal v vertical) 

and mold materials during fabrication. Preliminary in vitro culture 

focused on examining tubular scaffold seeding and compaction on a 

custom constrainment rig during static culture. 
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Figure 3.1 Graphical abstract of the chapter aims 

The initial study focused on developing tubular porous scaffolds using the 
optimal composition from Chapter 2. Hierarchically structuring to mimic 
native architecture (left) was providing by a dense film layer (intima mimic) 
on the luminal aspect and a porous outer layer (media mimic) to form a 
bilayered tubular scaffold (right). Control over the mechanical properties, 
degradation rate, and inflammation response was examined via crosslinking. 
Validation of cells seeding and static culture effects were also performed. 

3.2 Materials and Methods 

3.2.1 Study 1: Development of tubular scaffolds 

In order to be able to produce tubular scaffolds via freezedrying a custom 

designed mold was machined in Trinity College Dublin mechanical 

engineering workshop. Preliminary experiments focused on examining a 

number of alternative mandrel materials, altered outer mold diameters, and 

altered freezing cycles in order to achieve a reliable fabrication process. A 

collagen-elastin suspension (CE100) was created as per Section 2.2.1.  The 

suspension was then pipetted into the mold (Fig. 3.2), which had an outer 

diameter of 11mm and an inner diameter of 5mm, and freeze-dried as per 

Section 2.2.1. Due to shrinkage of the scaffold during the freezedrying 

process the final wall thickness was approximately 2.5mm. This thickness 

was selected based upon the contraction data obtained in Section 2.3.4, 

where it was calculated that an initial wall thickness of 2.5mm would contract 

to <1mm after 14 days culture.  
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Figure 3.2 Cross-section schematic of the mold used for producing 
tubular scaffolds. 

The interstitial space between the mold outer casing and the mandrel is filled 
with the collagen-elastin suspension and freezedried. The mold casing and 
mandrel are both stainless steel to ensure they transfer heat efficiently to 
result in a homogenous freezing profile. Once freezedried the mold is easily 
disassembled and the tubular scaffold can be removed from the mandrel.  
 

To enable the production of multiple tubular scaffolds per freezedrying cycle 

the mold was designed with eight cavities. Additionally the external diameter 

of the mold cavities ranged from 9 mm to 12 mm to allow controllable 

variation in the wall thickness of the tubular scaffold walls (Fig. 3.3).  The 

mandrel size could also be altered although for the scope of this project it 

was maintained as 5 mm. 

 

 

Figure 3.3 Custom designed mold for tubular scaffold fabrication. 

(A) The custom designed mold consists of two machined stainless steel 
plates which are held together via hex head screws (B) A 5mm diameter 
mandrel fits down the mold cavity to create an interstitial space where the 
protein suspension can be freezedried to form tubular scaffolds.  

      

 

B A 



103 
 

3.2.1.1 Effect of freezing rate on tubular scaffold microarchitecture 

Two distinct freezing rates were examined to determine the optimal 

microarchitecture capable of supporting the growth of smooth muscle cells. 

The optimal pore size should be large enough to facilitate effective cell 

migration to within the scaffold structure. Samples were frozen via controlled 

freezing on the freeze-drier shelf at 1°C/min, or via liquid nitrogen immersion 

which would produce a freezing rate of >50°C/min. All samples were then 

transferred to the freeze-dryer and dried using a previously optimised drying 

profile (O’Brien et al., 2004). Microstructural analysis was performed via SEM 

as per Section 2.2.2. 

3.2.2 Study 2: Protein film development with controllable mechanical 

properties, degradation rates, and inflammation response 

 

The design for the bilayered tubular scaffolds required a dense, non-porous 

protein mat or film which could be incorporated as a luminal layer. The native 

tunica intima is primarily composed of a dense elastin rich layer (internal 

elastic lamina) along with collagens and proteoglycans, and so the protein 

blend from Chapter 2 (CE100) was deemed highly suitable for this 

application. A solvent casting technique was selected and preliminary work 

examined the relationship between volume and the resulting film thickness. 

Briefly, Collagen-Elastin (CE100) protein suspensions were fabricated using 

the same procedure as Section 2.2.1. Following degassing the suspension 

was transferred to a polytetrafluoroethylene (PTFE) plate with a square 

stainless steel mold clamped over the edges of the PTFE plate (Fig. 3.4). 

The optimal volume was determined to be 1ml of protein suspension per 288 

mm2. Controlled dehydration of the solvent was achieved under a fume hood 

for 24 hours to achieve formation of a protein film. PTFE was chosen as the 

dehydration substrate as it possesses excellent non-stick properties in 

addition to a very low coefficient of friction and being highly hydrophobic. 

This allowed for easy removal of the dehydrated films. As per Section 2.2.2, 

films were examined under SEM and also embedded in JB-4 
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glycomethacrylate, sectioned, stained with toloudine blue, and imaged to 

determine an accurate value of film thickness. 

 

 

Figure 3.4 Film dehydration setup. 

CE100 films were prepared by dehydrating the protein suspension on a 
PTFE plate for 24 hours under controlled conditions until water content was 
negligible. 
 
 

3.2.2.1 Crosslinking to control film physiochemical properties  

Following fabrication of the films a number of crosslinking treatments were 

examined in order to provide control over the resulting mechanical 

properties. As the films will bear the majority of the mechanical load due to 

the far greater density, the crosslinking technique used will ultimately 

determine the mechanical response of the final bilayered scaffold. An 

additional advantage of crosslinking is that it generally increases the 

resistance to degradation in vivo. This is an important characteristic as 

ideally we wish to match the rate of degradation to the rate of new tissue 

formation. The panel of crosslinking treatments ranged from physical 

treatments (dehydrothermal), chemical (carbodiimide based crosslinker, 

glutaraldehyde), combination physical/chemical (riboflavin + UV), and 

enzymatic (microbial transglutaminase). 

 

Dehydrothermal (DHT) Crosslinking 

Following dehydration the films were dehydrothermally (DHT) crosslinked as 

per Haugh et al. (2009). Briefly, the films were subjected to a DHT treatment 

of 105°C for 24 hours at 0.05 bar in a vacuum oven (Vacucell 22, MMM, 

Germany).  
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EDAC Crosslinking 

Films were prepared for crosslinking by the chemical crosslinker EDAC (1-

ethyl-3-(3-dimethyl aminopropyl) carbodiimide) by hydrating in phosphate 

buffered saline for 1 hour (PBS, Sigma-Aldrich, Germany). The EDAC/NHS 

solution was at a concentration of 3 mM EDAC per gram of collagen with the 

addition of the catalyst N-Hydroxysuccinimide (NHS) at a concentration of 

2.5 mM per mol EDAC as found optimal for scaffold stiffness by Haugh et al. 

(2011). Films were immersed for 2 hours in the EDAC/NHS solution followed 

by washes in PBS to remove any residual EDAC and the urea by-product of 

the reaction.  

 

Glutaraldehyde Crosslinking 

Films were prepared for crosslinking by hydrating in phosphate buffered 

saline for 1 hour followed by immersion for 2 hours in a 0.2% 

glutaraldehyde/PBS solution at room temperature. Following crosslinking, the 

films were washed in PBS three times to remove any residual glutaraldehyde 

followed by a final wash in distilled water (Charulatha and Rajaram, 2003, 

1997). 

 

Riboflavin/UV Crosslinking 

Films were prepared for crosslinking by hydrating in phosphate buffered 

saline for 1 hour. Following hydration the films were immersed in a 0.1 % 

wt/vol (2.657 mM) solution of Riboflavin 5′-phosphate sodium salt hydrate 

(Sigma-Aldrich, Dublin, Ireland) in PBS and crosslinked via exposure to 

ultraviolet light (Fig. 3.4) at a wavelength of 365nm for 120 minutes with a 4 

watt lamp (UVGL-25, UVP Ltd, Upland, California, USA). The lamp intensity 

was 750 µW/cm² at 3" (76.2mm) from the films. This corresponds to 0.045 

joules/minute and a total energy exposure of 5.4 joules/ cm² for the 

crosslinked films after 120 minutes.  Following crosslinking, the films were 

washed in PBS three times to remove any residual riboflavin.  

  

Microbial Transglutaminase (mTGase) Crosslinking 

Microbial transglutaminase (Activa WM) was a kind gift from Ajinomoto Co. 

Inc, Japan. The product, Activa WM, contains the enzyme microbial 
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transglutaminase combined with maltodextrin. The maltodextrin was not 

expected to have any effect on the collagen or elastin in the films and its 

excellent solubility means that it could be easily washed off the films once 

crosslinking was complete (Schloegl et al., 2012). The quantity of microbial 

transglutaminase to use for crosslinking was optimised in a separate study 

(results not shown). The optimal concentration of the enzyme containing 

powder was 10mg per mg of collagen. The enzyme was dissolved in PBS 

and the films were incubated for 12 hours at 37°C. Following crosslinking, 

the films were washed in PBS three times to remove any residual 

maltodextrin and enzyme. 

 

3.2.2.2 Quantification of film crosslinking efficiency 

Quantification of the film crosslinking efficiency was determined via analysis 

of the reaction of free primary amines with 2,4,6-trinitrobenzene sulfonic acid 

(TNBS), which yields a yellow coloured product which is read colormetrically. 

As these primary amines are consumed in the crosslinking reactions, the 

relative level of crosslinking can be determined by comparing the number of 

free amines in the uncrosslinked samples to the amines in the crosslinked 

samples. 

Briefly, each protein film sample of weight 5mg was added to a screw-top vial 

containing 500μl of 4% w/v NaHCO3 (pH8.5) and 500μl of 0.5% w/v TNBS 

(Sigma-Aldrich, Dublin, Ireland). Sampled were reacted for 2 hours at 37°C 

before the addition of 1ml of 6M HCl and allowed to solubilise at 60°C for a 

further 2 hours. Samples were diluted with 2mls of dH20 and allowed to cool 

before absorption at 345nm was read using a spectrometer (Wallac 

Victor2™ 1420 multilabel counter, Perkin Elmer Life Sciences, Waltham, MA, 

USA)). A standard curve was generated using the amino acid L-arginine. 

 

3.2.2.3 Effect of crosslinking on film enzymatic degradation resistance  

Film degradation properties were assessed using bacterial collagenase from 

Clostridium histolyticum (C7926 Sigma Blend Type F, Sigma-Aldrich, Dublin, 
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Ireland). Films were cut into evenly sized pieces (~15mg in weight) and 

hydrated for 1 hour at 37°C in a buffer containing 0.1 M Tris-HCL and 0.05 M 

CaCl2 at pH 7.4. Using this buffer, collagenase solutions were formulated 

and added to the hydrated films to give a final activity of 25 units/ml. The 

films were incubated for a further 2 hours at 37°C before the degradation 

reaction was stopped by placing the samples in an ice bath and adding 0.25 

M EDTA (pH 9) at a ratio of 1:6 EDTA:buffer. Samples were centrifuged at 

12,000 rpm for 10 minutes and the supernatant was removed. Distilled water 

was added to the sample followed by vortexing and re-centrifugation. 

Washing was repeated 3 times with distilled water and then 3 times with 

ethanol. Samples were air dried followed by a gravimetric assessment of the 

samples to determine the percentage of protein remaining. The optimal 

degradation time of 2 hours was assessed experimentally (results not 

shown). The optimal degradation time was determined as the time at which 

partial degradation had occurred for all groups yet below complete 

degradation. This allowed an accurate representation of the relative 

differences between crosslinking treatments. 

 

3.2.2.4 Effect of crosslinking on film mechanical properties 

Tensile testing of the films was performed using a uniaxial tensile testing 

machine (Z050, Zwick/Roell, Ulm, Germany) with a 5N load cell. Samples for 

testing were cut from the sheet using a razor blade and a dog-bone mold as 

per ASTM Standard D638, type V (American Society for Testing and 

Materials International). Samples were then tested as per Section 2.1.6. 

 

3.2.2.5 Effect of crosslinking on film inflammatory response 

Following determination of the optimal crosslinking treatments from a 

mechanical and degradation perspective, the inflammatory response of the 

three best treatments was determined using primary human 

monocytes/macrophages to determine any potential negative inflammatory 

potential. The effect of crosslinking on film inflammatory response was 
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assessed via assaying the release of the inflammatory cytokine TNFα from 

primary human macrophages seeded on the crosslinked films. Under 

approved licence from the RCSI Ethics Committee human blood from 3 

donors was extracted into syringes containing 3.8% w/v tri-sodium citrate 

(0.129M) as an anticoagulant. Ficoll-Paque Plus density gradient 

centrifugation was utilised to isolate the peripheral blood mononuclear cells 

(PBMC) fraction which includes monocytes, T cells, NK cells, B cells, 

dendritic cells and basophils. Briefly, the sodium citrate buffered blood was 

diluted 1:1 with PBS before careful addition of the blood/PBS mixture into 

Ficoll-Paque Plus (Fisher-Scientific Ltd, Dublin, Ireland) at a ratio of 2:1. 

Following centrifugation at 300rcfs with no brake the white blood cell ring 

fraction was extracted carefully before further centrifugation. Any residual red 

blood cells were lysed using 5mls of Red Cell Lysis Buffer (Miltenyl Biotec) 

and the isolated PBMCs are resuspended in RPMI-1640 medium (Sigma-

Aldrich, Dublin) and counted using a haemocytometer. 

The PBMC fraction contain numerous cell types and so to isolate monocytes 

a positive selection procedure was applied using magnetic separation to 

antibody bound superparamagnetic microbeads. CD14 was selected as a 

suitable marker for monocytes. Briefly, 20μl of CD14 microbeads were added 

per 107 cells in the PBMC fraction and incubated for 15 minutes at 4°C to 

allow binding. Magnetic separation of the CD14 positive cells was then 

achieved using MACS LS columns (Miltenyi Biotec Ltd, Surrey, UK) and the 

MACS separator as per the manufacturer’s instructions.  

 

Monocyte seeding and culture 

CE100 films were fixed within CellCrown™ cell culture inserts (Scaffdex Oy, 

Tampere, Finland) to maintain an even strain on the films and prevent 

undulations and consequent uneven cell dispersion. The purified human 

monocytes were seeded at a density of 3 x 105 cells per cm2 of the CE100 

films. Monocytes were cultured for up to 2 days in RPMI-1640 supplemented 

with 10% foetal bovine serum (FBS, Biosera, East Sussex, UK) and 2% 

penicillin-streptomycin (Sigma-Aldrich, Dublin, Ireland). The differentiation of 

the monocytes towards an inflammatory macrophage phenotype (M1 
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phenotype) was then assessed by TNFα release using an enzyme linked 

immunosorbent assay (ELISA). 

 

Tumour necrosis factor α (TNFα) release and assessment using enzyme 

linked immunosorbent assay (ELISA) 

The cytokine TNFα was selected as a suitable marker of inflammatory 

response from primary human macrophages. A human TNFα DuoSet ELISA 

assay (R&D systems, Abington, UK) was used as per the manufacturer’s 

instructions to quantify the levels of TNFα released by the CD14+ 

monocytes. This assay uses a mouse anti-human TNFα capture antibody, a 

biotinylated goat anti-human TNFα detection antibody, and a recombinant 

human TNFα protein as standard. Horseradish peroxidase (HRP)-

tetramethylbenzidine substrate solution was used for colorimetric detection. 

3.2.3 Study 3: Development of bilayered tubular scaffolds a porous 

outer layer and dense film layer 

In order to mimic the multi-layered structure of native arteries we combined 

the porous tubular scaffold and dense film, developed above, to create a 

physiologically relevant bilayered tubular architecture (Fig. 3.5). This 

biomimicry endows a large number of advantages with the porous layer 

offering a highly suitable environment for SMCs, while the dense film layer 

provides increased mechanical integrity and a suitable smooth surface for 

future endothelialisation. 

 

The dense CE100 films were hydrated in 0.5M acetic acid for 90 minutes 

followed by wrapping around the stainless steel mandrel to form a 2-ply tube. 

The 2-ply tube was then air-dried under a fume hood to ensure fusion of the 

layers. The CE100 film-coated mandrels were then placed into the tubular 

scaffold fabrication mold with the interstitial space filled with CE100 

suspension. The suspension and film coated mandrel were maintained in 

contact for 30 minutes prior to freezedrying to allow the films surface to 

hydrate and partially solubilise due to the acetic acid present in the 

suspension. This process resulted in fusion between the film and resulting 

porous scaffold (Fig. 3.5).  
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Figure 3.5 Bilayered tubular scaffold schematic 

The architecture of the bilayered tubular scaffolds is shown with the film 
coated mandrel and porous outer scaffold.  
 

3.2.3.1 Effect of freezing direction and mandrel material on scaffold 

microarchitecture 

Combining the porous layer and dense film layer to create a bilayered 

scaffold was hypothesised to alter the resulting microarchitecture of the outer 

porous layer due to changes in freezing dynamics. Consequently, 

consideration was shown to this by re-examining the microarchitecture after 

combining the two layers. The incorporation of the dense inner film layer was 

found to alter the direction of travel of the freezing front by inhibiting heat 

transfer from the inner mandrel and thus forced the freezing front to primarily 

travel radially towards the lumen.  

 

                                                                     

Scaffold (Porous layer) 

Film (Dense layer) 

Mandrel 
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Figure 3.6 Freezing direction and altered mandrel material to control 
bilayered scaffold microarchitecture 

Freezing direction was altered from the vertical or horizontal direction to 
control the resulting scaffold microarchitecture as shown. The mandrel was 
also altered from stainless steel to PTFE to either act as an efficient 
conductor of heat or to act as an insulator, which consequently alters the 
freezing front path. 

 

In order to address this issue, control over the direction of the freezing fronts 

and consequently the resulting scaffold microarchitecture was possible as 

the mold was designed to enable alterations of the freezing direction 

(horizontal v vertical) and/or the mandrel materials (heat conductors v 

insulators). Freezing direction was altered from the vertical direction to the 

horizontal direction as shown in Figure 3.6. Viton® O-Rings (McMaster-Carr, 

Atlanta, USA) were secured over the top of the mandrel to ensure that it 

stayed centred and to prevent leakage of the protein suspension when 

placed in the horizontal direction. Prior to the drying step the O-rings were 

removed and all samples placed upright to ensure adequate sublimation 

during the freeze-dryer cycle. 

 

3.2.3.2 Cell seeding, static culture, and compaction 

Initial validation of cell seeding and compaction of the vascular grafts was 

determined using hSMCs as per Section 2.2.4. Constrained static culture 

was performed using a custom designed culture rig (Fig. 3.7). Constrained 
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static culture has previously been shown to result in superior circumferential 

ECM alignment due to compaction being permitted solely in the longitudinal 

direction (Barocas et al., 1998; Cummings et al., 2003). Tubular scaffolds of 

length 30mm were loaded onto the custom holder, placed in a 6-well plate, 

hydrated in media for 30 minutes, and then partially dried in a sterile flow 

hood. SMCs were resuspended at a concentration of 4 x 106 cells per ml. 

Cells were pipetted along the length of the scaffold in volumes of 50μl. 

Scaffolds were then rotated 90° and the process was repeated until the outer 

porous section of the scaffold has been seeded with a total of 3 x 106 cells. 

Scaffolds were transferred to the incubator and cells were allowed to attach 

for 30 minutes prior to the addition of 3mls of media per well. Histological 

analysis was performed after 21 days culture. Samples were fixed in 10% 

formalin for 20 minutes prior to tissue processing and paraffin embedding. 

Samples were section at 10μm, deparaffinised, and stained with 

Haematoxylin and Eosin (H&E) and DAPI (4’, 6- diaminido-2-phenylindole) to 

fluorescently label cell nuclei. 

 

 

Figure 3.7 Static culture constrainment rig 

Static culture of the tubular scaffolds was performed in a custom holder 
which permitted contraction in the longitudinal direction but not in the 
circumferential direction. The holder was designed to fit within a standard 6-
well plate and could accommodate scaffolds up to 30mm in length.  
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Statistical analysis 

Statistical analysis was conducted using one-way or two-way ANOVA 

followed by the Holm-Sidak post hoc test for pairwise comparisons using 

Sigmaplot Version 11.2 (Systat Software Inc., USA). A p-value of 0.05 or less 

was considered statistically significant (p≤0.05). The strength and direction of 

linear relationships between material parameters was determined using the 

Pearson product moment correlation coefficient (r), while the coefficient of 

determination (r2) was utilised to indicate the degree of linear association 

between factors. A strong positive correlation is considered to exist if the r is 

between 0.7 and 1 (Taylor, 1990). Error bars indicate standard deviation 

unless otherwise states. 
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3.3 Results 

3.3.1 Study 1: Development of tubular scaffolds 

Tubular collagen-elastin scaffolds were successfully fabricated via the 

custom designed mold. The macrostructure of the freezedried tubular 

scaffolds was comparable to the scaffolds produced in flat trays (Chapter 2). 

The scaffolds retained very high porosity and minimal defects were observed 

in the structures macroscopically. The fabrication process proved to be 

highly repeatable and reliable wall thicknesses were achieved. The tubular 

scaffolds displayed excellent pore interconnectivity and a homogenous pore 

structure. The custom mold allowed the fabrication of tubular scaffolds of 

lengths up to 65mm and variable wall thicknesses. Further control over the 

pore structure was examined by altering the freezing rate. 

3.3.1.1 Effect of freezing rate on tubular scaffold microarchitecture  

Freezing rate control offers the ability to alter the dynamics of ice crystal 

nucleation and growth, and consequently affects the final scaffold pore size.   

The molds were designed and manufactured to enable flash freezing 

(>50°C/min) via liquid nitrogen (Fig 3.8 A-D) or slow and controlled freezing 

(1 °C/min) via the freeze-dryer shelf (Fig 3.8 E-H). Flash freezing resulted in 

pores averaging 16.2μm ± 4.9μm while controlled freezing resulted in 

significantly larger pores of average 105.6μm ± 36.0μm (p<0.001). 
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Figure 3.8 Effect of flash freezing or controlled freezing on tubular 
scaffold microarchitecture 

(A-D) Flash freezing the collagen-elastin suspension using liquid nitrogen 
resulted in a microarchitecture with very small pores (~20ɛm). Controlled 
freezing (E-H) at a freezing rate of 1°C/min resulted in an open porous 
network with relatively large pores (~100ɛm.) Scale bar 200ɛm unless 
otherwise stated. 
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3.3.2 Study 2: Protein film development with controllable mechanical 

properties, degradation rates, and inflammation response 

In order to create bilayered tubular scaffolds we first examined methods to 

generate a dense protein film. As the dense film was designed to bear the 

majority of the mechanical load of the final scaffold, we therefore also 

investigated the effect of crosslinking to control the mechanical properties, 

degradation rates, and inflammation response. 

3.3.2.1 Fabrication of dense, non-porous protein films 

Dense protein films of collagen-elastin were successfully fabricated as 

shown macroscopically in Fig. 3.9 A (below).  The surface (Fig. 3.9 B, D) 

lacks pores and offered a more suitable surface for endothelial cell 

monolayer formation than freezedried porous scaffolds. The addition of 

elastin significantly affected the topography of the films with elastin addition 

producing films with a rougher surface (Fig. 3.9 B) than the collagen controls 

(Fig. 3.9 C). The film thickness was determined to be 49.2μm ± 8.5μm (Fig. 

3.9 E) with a lamellar fibrous structure which is discernable from the polymer 

embedded section image (Fig. 3.9 E) 
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Figure 3.9 Fabrication of dense, non-porous CE100 films. 

Macroscopic image of CE100 film (A) and SEM images of a Coll (C) and 
CE100 (B,D) films. Elastin addition resulted in a rougher topography as 
observed by the cross-section images of a Coll film (C) and CE100 films 
(B,D). Sectioned films revealed a lamellar fibrous structure with a mean 
thickness of 49.2ɛm ± 8.5ɛm. 

3.3.2.2 Quantification of film crosslinking density 

The relative efficiency of each of the crosslinking methods was determining 

by assessing the amine group content prior to and post crosslinking via 

TNBS assays. EDAC crosslinking (1.64-fold ± 0.97 fold), and glutaraldehyde 

(2.99-fold ± 0.65-fold) crosslinking resulted in significantly higher crosslink 

density than the Non-XL controls (p<0.01). DHT (1.05-fold ± 0.05 fold), 
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Riboflavin/UV (1.23-fold ± 0.14 fold) and mTGase (1.13-fold ± 0.22 fold) also 

displayed increased crosslink density although this was non-significant 

versus the Non-XL controls (p>0.05). Additionally, EDAC and glutaraldehyde 

displayed a higher degree of crosslinking than all other crosslinking groups 

(p<0.05).  

 

Figure 3.10 Characterisation of degree of crosslinking efficiency  

Crosslinking had a significant effect on crosslinking density (p<0.0001, 1-way 
ANOVA). EDAC and glutaraldehyde crosslinking resulted in a significantly 
higher degree of crosslinking than the Non-XL controls (p<0.01). EDAC and 
glutaraldehyde crosslinking density was also significantly higher than all 
other groups (p<0.05). ^ indicates p<0.05 versus all other groups. 

3.3.2.3 Effect of crosslinking on film enzymatic degradation resistance 

Estimation of the in vivo degradation rate was achieved by examining the 

resistance to collagenase in vitro. Crosslinking was found to significantly 

affect enzymatic degradation resistance (p<0.05, 1-way ANOVA). The 

chemical crosslinkers EDAC and glutaraldehyde resulted in films with the 

highest degradation resistance, with remaining masses of 89.9% ± 3.45% 

and 91.0% ± 0.8% respectively, significantly higher than all other groups 

(p<0.05). Physical crosslinking with DHT (68.5% ± 12.9%) resulted in films 

with significantly higher degradation resistance (p<0.05) than riboflavin/UV 
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(34.2% ± 15.3%). Meanwhile the enzymatic crosslinker mTGase (45.8% ± 

3.5%) displayed a similar result to the Non-XL controls (45.7% ± 10.3%). 

 

 

Figure 3.11 Effect of crosslinking on enzymatic degradation resistance  

Crosslinking resulted in a significant effect on enzymatic degradation 
resistance of CE100 films as determined via 1-way ANOVA (p<0.05). Both 
EDAC and Glutaraldehyde crosslinking resulted in a significant resistance to 
enzymatic degradation by collagenases, with both of these treatments 
significantly higher than all other groups (p<0.05). Additionally, DHT 
treatment was found to be significantly more resistant to degradation versus 
Riboflavin/UV. * indicates p<0.05 as indicated. & indicates p<0.05 versus 
Non-XL, mTGase, DHT, Riboflavin/UV, Glutaraldehyde 
 

3.3.2.4 Effect of crosslinking on film mechanical properties 

Crosslinking was found to be a highly effective method to modulate the 

mechanical properties of the films (Fig. 3.12 A), having Crosslinking a 

significant effect on the film tensile modulus, failure strain, and ultimate 

tensile strength (1-way ANOVA, p<0.05). Tensile moduli ranged from 0.58 

MPa ± 0.11 MPa for the uncrosslinking films (Non-XL) to 39.14 MPa ± 5.67 

MPa for the glutaraldehyde crosslinked films, a 67.7-fold increase (p<0.05). 

Furthermore, the tensile modulus could be altered between these values with 
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a 2.2-fold increase with mTGase, 6.26-fold with DHT, 8.8-fold with 

riboflavin/UV, and 23.52-fold with EDAC. However, a negative linear 

correlation (r=0.74) was found between the film tensile modulus and the 

resulting failure strain, with EDAC and glutaraldehyde displaying significantly 

lower failure strain than all other groups (p<0.05). DHT and riboflavin/UV 

crosslinking also resulted in reduced failure strain in comparison to the Non-

XL controls (p<0.05). Failure strain ranged from 44.38 % ± 4.05 % in the 

Non-XL films to 5.11 % ± 0.50 % for the glutaraldehyde crosslinking films. 

 

Crosslinking also caused a significant change in the ultimate tensile strength 

(UTS) of the films (1-way ANOVA, p<0.05). Riboflavin/UV crosslinking 

resulted in a 4.2-fold increase (p<0.05) in ultimate tensile stress (2.87 MPa ± 

1.21 MPa) versus the Non-XL group (0.68 MPa ± 0.21 MPa). No further 

significant differences in UTS were found for mTGase (2.60 MPa ± 0.99 

MPa), DHT (1.12 MPa ± 0.14 MPa), EDAC (1.06 MPa ± 0.55 MPa), or 

glutaraldehyde (2.18 MPa ± 0.83 MPa). No correlation between UTS and 

tensile modulus or failure strain was found. 
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Figure 3.12 Effect of crosslinking on film mechanical properties  

(A) Representative stress-strain curves show the ability to significantly 
modulate the mechanical response of the CE100 films due to crosslinking. 
EDAC and glutaraldehyde resulted in significantly higher (p<0.05) tensile 
moduli (B) than all other groups although an inverse relationship with the 
failure strain (C) was observed (R2=0.55) with EDAC and glutaraldehyde 
displaying significantly lower failure strains than all other groups (p<0.05). 
Riboflavin/UV had a significantly higher ultimate tensile stress (D) than the 
non-XL control group (p<0.05). * indicates p<0.05 as indicated. *** indicates 
p<0.05 versus all other groups. 
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Following the assessment of the crosslinking efficiency, enzymatic 

degradation resistance, and mechanical properties, 3 crosslinking treatments 

were selected for further examination. EDAC treatment was selected on the 

basis of excellent crosslinking density, excellent degradation resistance, and 

high tensile modulus but at the expense of low failure strain & UTS. 

Riboflavin/UV was also selected on the basic of good crosslinking density, 

poor degradation resistance, moderate tensile modulus, and excellent failure 

strain & UTS. DHT was the final crosslinking treatment selected as it 

provided properties intermediate of that of EDAC and riboflavin/UV. 

 

3.3.2.5 Effect of film crosslinking on film inflammatory response 

Assessment of the effect of film crosslinking on the inflammatory response of 

the films was determined via TNFα release from primary human 

macrophages. Crosslinking had a significant effect on TNFα release at day 1 

(p<0.001) (Fig 3.13A) but no effect was observed at day 3 (p>0.05) (Fig. 

3.13B). Riboflavin/UV crosslinking resulted in the highest inflammatory 

response at both timepoints, with a 57% increase at day 1 versus Non-XL 

control (p<0.05), although this reduced to a 4.8% increase by day 3. 

Crosslinking by DHT treatment resulted in a decrease of 15% and 7.6% at 

days 1 and 3 respectively (p>0.05). EDAC crosslinking resulted in the lowest 

inflammatory response with a 40.3% decrease at day 1 and a 72.5% 

decrease at day 3 (p>0.05). An interesting caveat to note is that the Non-XL 

CE100 films displayed an increase in TNFα release versus the Non-XL Coll 

controls, with a 67% increase and 305% increase at days 1 and 3 

respectively. However, EDAC crosslinking CE100 films seems to ameliorate 

this pro-inflammatory response of elastin, with the EDAC crosslinked CE100 

films resulting in 16% lower TNFα release than the Non-XL Coll films at day 

3. 
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Figure 3.13 Effect of crosslinking on primary macrophage polarisation  

Crosslinking of CE100 films was found to have a significant effect (p<0.001) 
on the expression of the inflammatory cytokine TNFŬ at day 1 (A), but no 
difference was observed at day 3 (B). Riboflavin/UV crosslinking resulted in 
the highest inflammatory response at day 1 (p<0.05) and day 3 (p>0.05). 
EDAC crosslinking resulted in the lowest inflammatory response at both 
timepoints. ^ indicates p<0.05 versus all other groups. 
 

3.3.3 Study 3: Development of bilayered tubular scaffolds with a porous 

outer layer and dense film layer 

Having developed biofabrication methods to generate both tubular porous 

scaffolds and dense films with controllable properties, we next sought to 

create a physiologically relevant architecture by incorporate both of these 
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methods to create bilayered tubular scaffolds. Initial research indicated that 

the incorporation of the film on the luminal aspect altered the freezing 

dynamics and resulted in variable microstructures. Consequently, we 

examined the effect of freezing direction and mandrel material in order to 

counteract the effect the film layer was having on ice crystal nucleation. 

3.3.3.1 Effect of freezing direction on resulting microstructure of 

bilayered scaffolds 

Utilising temperature probes to track the freeze-dryer shelf temperature and 

mold temperature revealed a temperature gradient was developing when 

freezing in the vertical direction. This temperature gradient was further 

exacerbated when a PTFE mandrel was used and resulted in a radial 

architecture (Fig. 3.14 A, B). By freeze-drying with the mold in the horizontal 

direction the thermal gradient was greatly reduced which resulted in a more 

homogenous structure (Fig. 3.14 C, D).  

 

Figure 3.14 Effect of freezing direction on bilayered scaffold 
microarchitecture 

Freezing direction could be controlled to be primarily in the (A, B) vertical 
direction (parallel to long tubular axis) or (C, D) along the horizontal direction 
(perpendicular to long tubular axis). The architecture of the bilayered tubular 
scaffolds is shown with the film lining and porous outer scaffold. Scale bar 
200ɛm unless otherwise stated. 
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3.3.3.2 Effect of mandrel material on resulting bilayered scaffold 

microarchitecture  

Utilising the optimal freezing rate (1°C/min) and horizontal freezing, we next 

sought to assess whether PTFE or stainless steel was the optimal mandrel 

material as initial results indicated that PTFE mandrels resulted in uneven 

wall thicknesses. Due to the differences in the thermal conductivity between 

stainless steel (16 W m-1 K-1) and PTFE (0.25 W m-1 K-1), it was anticipated 

that this may have forced ice crystal growth in the circumferential direction 

although this was not observed (Fig. 3.15 C, D). Macroscopically, it was clear 

that the PTFE mandrel (Fig. 3.15 A) resulted in separation of the film and 

outer porous layer. Excellent integration was observed between the layers 

when a stainless steel mandrel was utilised (Fig. 3.15 B, D, F). While the low 

coefficient of friction of PTFE allowed easy removal of scaffolds, its low 

flexural rigidity also often resulted in formation of an eccentric lumen (Fig. 

3.15 C) and consequently uneven wall thickness. The optimal mandrel was 

therefore selected to be stainless steel which facilitated excellent integration 

of the layers (Fig. 3.15 G) and provided homogenous scaffolds (Fig. 3.15H). 

The mean pore size of the final optimal scaffold was found to be 118.4μm ± 

22.0μm, significantly larger than the CE100 flat scaffolds produced in 

Chapter 2 (93.5± 2.9 μm, p<0.001), but not significantly different to the initial 

tubular scaffolds produced in Section 3.1.1 (105.6μm ± 36.0μm, 

p>0.05).Thus, the incorporation of the film layer could be achieved while 

retaining a good pore architecture which was similar to the single layered 

scaffolds. 
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Figure 3.15 Effect of mandrel material on bilayered scaffold 
microarchitecture 

Macroscopic image of bilayered scaffolds fabricated using horizontal freezing 
and a PTFE mandrel (A) or a stainless steel mandrel (B). The PTFE mandrel 
(C, E) has a higher coefficient of thermal expansion than the stainless steel 
mandrel which resulted in separation of the film and porous layer due to 
contraction and expansion during the freezedrying cycle. Additionally, the low 
flexural rigidity of the PTFE mandrel occasionally resulted in an eccentric 
lumen (C) and consequently a variable wall thickness. The optimal 
combination of fabrication techniques was to utilise a SS mandrel in the 
horizontal direction as this produced a scaffold with good integration of the 
layers (D, F, G) and a consistent wall thickness (H). Scale bar 200ɛm unless 
otherwise stated. 
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3.3.3.3 Cell seeding, migration, and compaction within tubular scaffolds 

Having established the optimal biofabrication methods to create tubular 

CE100 scaffolds we next seeded hSMCs onto the scaffolds and cultured 

them for up to 28 days. The static culture rig proved easy to assembly, 

sterilise, and load the scaffolds onto. Macroscopically the tissue compacted 

evenly around the mandrel and was easily removed (Fig. 3.16 A). 

Histologically the vessel walls displayed a uniform thickness and had 

compacted to a dense organised tissue (Fig. 3.16 B). The initial porous wall 

thickness had been selected based upon the compaction data observed in 

Chapter 2 and the wall thickness observed (~500μm) was within the range of 

normal arteries of this diameter. The method of cell seeding proved to be 

highly effective as determined with the excellent cell distribution (Fig. 3.16 C) 

throughout the wall.  

 

Figure 3.16 Initial cell seeding on tubular scaffolds 

Scaffolds compacted over time in culture to produce a dense, homogenous 
tissue (A) with H&E straining revealing a uniform wall thickness (B) and cell 
infiltration throughout the wall (C) visualised with blue DAPI fluorescent 
imaging. 
 

3.4 Discussion 

The overall objective of this chapter was to develop bilayered tubular 

scaffolds suitable for use as a TEVG. Initially we examined methods to 

modify the optimal collagen-elastin biomaterial developed in Chapter 2 

(CE100) into a physiologically relevant tubular architecture using a custom 

designed mold (Study 1). As arteries are natively composed of multiple 

layers, we next developed a fabrication method to generate dense CE100 

films with controllable properties through crosslinking (Study 2). Combining 
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these two fabrication techniques allowed the generation of a bilayered 

tubular scaffold (Study 3). The results of this study has allowed the 

development of a bilayered scaffold in which  the microstructure of the 

porous outer layer can be tailored by altering the pore direction and size 

through alterations in freezing rate, direction, and mold materials. 

Furthermore, we have shown that through crosslinking we can control the 

film properties including the residual amine content, degradation resistance, 

mechanical properties, and inflammatory cytokine expression. Taken 

together, the novel biofabrication methodology developed has led to the 

development of a biomimetic bilayered scaffold highly suitable for use as a 

tissue engineered vascular graft. 

 

Tubular porous collagen-elastin scaffolds were successfully fabricated using 

the custom designed mold (Fig. 3.8). Further control over the pore structure 

was shown by altering the freezing rate. Controlled freezing (1°C/min) 

resulted in a homogenous pore structure within the ideal range for the culture 

of SMCs (105.6μm ± 36.0μm) while flash freezing resulted in significantly 

smaller pores (16.2μm ± 4.9μm, p<0.05). Consequently, controlled freezing 

was determined to be more suitable for the intended application. The custom 

mold allowed the fabrication of tubular scaffolds of varying diameters and at 

lengths of up to 65mm. The process proved to be highly repeatable and the 

tubular scaffolds were easily removed from the mandrels. Utilising this mold 

we next sought to develop a suitable luminal lining in order to create 

bilayered tubular scaffolds. 

 

Dense films were successfully fabricated and crosslinking was examined to 

allow control over both the biological and mechanical properties of the films 

independently of the architecture or density. Initially, the degree of 

crosslinking was determined by analysing the residual amine content for 

each treatment type (Fig. 3.10).  The chemical crosslinkers, EDAC and 

glutaraldehyde, resulted in the highest crosslink densities with a 1.64-fold 

and 2.99-fold increase versus the Non-XL controls respectively. This 

increased crosslink density resulted in these groups also displayed the 

highest resistant to enzymatic degradation, losing 10.1% and 9% of their 
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mass respectively (Fig. 3.11). However, while the susceptibility of collagen to 

enzymatic degradation via collagenases is primarily determined by the type 

and density of crosslinks formed, consideration must also be shown to the 

levels of denaturation and the accessibility to cleavage sites (Charulatha and 

Rajaram, 2003; Zeeman, 1998). This complex relationship can be seen in 

the DHT crosslinked films which had a similar crosslinking density to the 

control, yet which were far more resistant to enzymatic degradation.  

Conversely, riboflavin/UV crosslinking were found to have a 1.23-fold higher 

crosslink density than the controls, yet displayed less enzymatic degradation 

resistance than the controls. It is known that DHT and UV-based crosslinking 

methods result in a portion of the proteins to undergo denaturation 

simultaneous to the formation of crosslinks, with many researchers seeking 

to create the optimal balance between crosslink density while minimising the 

denaturation levels (Gorham et al., 1992; Haugh et al., 2009). It is therefore 

hypothesized that riboflavin/UV crosslinking results in high levels of 

denaturation due to the effects of the prolonged exposure to UV (Nishad 

Fathima et al., 2007; Sionkowska et al., 2005; Weadock et al., 1996). It is 

suggested that by utilising a higher irradiance level and shorter time the 

denaturation levels may be minimised and the resistance to enzymatic 

degradation may increase (Stylianou et al., 2014). Consequently, the 

crosslinking treatments with suitable crosslinking density and degradation 

resistance were deemed to be DHT, EDAC, and glutaraldehyde. 

 

The mechanical properties of the CE100 films could also be tailored using 

crosslinking (Fig. 3.12). Crosslinking was found to cause large changes in 

the stiffness of the films with tensile moduli up to 67.7-fold higher observed 

versus the non-crosslinked controls (Fig. 3.12 A, B). The stress-strain curves 

for the films were primarily non-linear for the non-xl, DHT, riboflavin/UV, and 

mTGase crosslinking treatments (Fig. 3.12 A). Films crosslinked with the 

chemical crosslinker EDAC and glutaraldehyde displayed a more linear 

stress-stress response and stiffness was markedly increased with tensile 

moduli 23.5-fold and 67.7-fold higher respectively (p<0.05 vs non-xl 

controls). The ability to tailor the stiffness of the films independently of the 

microarchitecture or composition is a powerful tool in biofabrication as it 
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allows the ability to tune biomaterials to match native tissue properties and to 

control cell response. The tensile stiffness of human and porcine coronary 

arteries has previously been reported to be approximately 2 MPa and so 

riboflavin/UV, DHT and mTGase crosslinking resulted in films with stiffness 

values within the same order of magnitude (Koullias et al., 2005; Loree et al., 

1994; Sheridan et al., 2012). The UTS of the collagen-elastin films was also 

significantly affected by crosslinking (1-way ANOVA, p<0.05) (Fig. 3.12 D). 

Riboflavin/UV crosslinking resulted in a 4-2-fold increase (p<0.05) in UTS 

versus the non-xl controls, while all other crosslinking treatments resulted in 

non-significant increases ranging from 1-6 fold to 3.2 fold (p>0.05). The UTS 

of human and porcine coronary arteries has previously been reported to be 

approximately 2 MPa and so all crosslinking methods examined produce 

films which closely match native vessel strength (Holzapfel et al., 2005; 

Sheridan et al., 2012; Vorp et al., 2003). 

 

An important aspect of biomaterial design for vascular applications is the 

ability of the biomaterial to withstand in vivo strains (5% to 15%) without 

failure (Lin et al., 2008; van Andel et al., 2003). The strain to failure of the 

tensile tested films was significantly decreased by all crosslinking methods 

(p<0.05) versus non-crosslinked films, with the exception of mTGase 

(p>0.05) (Fig. 3.12 C). Glutaraldehyde and EDAC crosslinking treatments 

resulted in low failure strains (< 8%) and the failure was observed to be a 

brittle failure rather than the ductile failure usually observed with biological 

materials. However, it has been shown that the mechanical properties of 

EDAC crosslinked collagen scaffolds alters over time when cultured with 

cells and also when simply stored in aqueous environments at 37°C without 

cells (Grover et al., 2012). Consequent determination of the mechanical 

properties of EDAC crosslinked films which were stored in PBS for 7 days at 

37°C revealed that it ameliorated the brittle failure initially observed, with 

failure strains improving to 21.57% ±1.98% (data not shown). It is suggested 

that this change is due to the formation of ester bonds during EDAC 

crosslinking which were subsequently hydrolysed (Everaerts et al., 2008). 

Thus, in order to utilise EDAC crosslinking for tissues which will be subjected 
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to high strains it is suggested that pre-storage or pre-culture for a minimum 

of 7 days is recommended.  

 

The host-macrophage response to ECM materials is a complex process not 

fully understood but is known to be partially dictated by the specific 

proteins/biomolecules present, sterilisation technique, residual DNA material, 

degradation products/rate, and crosslinking treatment. To this end, we have 

examined the effect of crosslinking on primary human macrophage 

expression of the pro-inflammatory cytokine TNFα as a marker for the M1 

macrophage phenotype (Fig. 3.13). Crosslinking significantly affected 

(p<0.001) the TNFα expression at day 1 (p<0.05), with riboflavin/UV 

crosslinking resulting in a significant increase in the release of TNFα 

(p<0.05) while EDAC crosslinking resulted in the decrease in expression. By 

day 3 the same trend was observed although the result was non-significant. 

Thus, we can conclude that riboflavin/UV crosslinking results in increased 

inflammatory cytokine expression from macrophages while EDAC 

crosslinking masks some of the negative immunogenic response. The 

release of pro-inflammatory cytokines has previously been reported to be 

reduced by EDAC crosslinking which corroborates well with our results 

(McDade et al., 2013). Crosslinking with riboflavin/UV is an emerging 

technique within the field of tissue engineering (Tirella et al., 2012) and we 

believe this is the first study to examine the immune response to this method. 

It has been suggested that crosslinking density affects protein 

immunogenicity by shielding or modifying major antigenic sites (Lynn et al., 

2004; Yahyouche et al., 2011). Comparing the crosslinking density and TNFα 

expression we found that no relationship at day 1 (r=0.34) but by day 3 there 

exists a strong correlation between crosslinking density and TNFα 

expression (r=0.88). These results add to the growing body of literature 

which suggests that the potential immunogenic response is not dictated 

solely by crosslinking density or immunogenic site masking (Brown et al., 

2012). Taken together, EDAC crosslinking produced the most desirable 

result while DHT treatment was relatively unaltered compared to the controls. 

Consequently, EDAC and DHT crosslinking were selected for further 

analysis in Chapter 5.  
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Utilising the optimal biofabrication methods for the tubular porous scaffolds 

and dense films, we subsequently developed a physiologically relevant 

bilayered tubular architecture. Initial results suggested that the freezing 

dynamics were altered with the addition of the film layer and so optimisation 

of this process focused on first altering the freezing direction to maintain an 

isotropic architecture (Fig. 3.14). Utilising a PTFE mandrel in combination 

with vertical freezing resulted in a primarily radial pore architecture (Fig. 3.14 

A, B) as the PTFE’s low coefficient of thermal conductivity (0.25 W m-1 K-1) 

forces the thermal gradient to result in ice crystal growth from the abluminal 

side towards the lumen side, thus generating a radial architecture (Ma et al., 

2010). The presence of the films coating the mandrel exacerbates this issue 

as the dense film has a lower thermal conductivity than water (0.53 W m-1 K-

1 vs 0.6 W m-1 K-1) (Bhattacharya and Mahajan, 2003). By altering the 

orientation of the mold to the horizontal direction it allowed the formation of a 

more homogenous pore structure (Fig. 3.14 C, D). Issues with eccentric 

lumens and poor integration of the film and porous layer became apparent 

with the use of the PTFE mandrel and were hypothesised to have occurred 

due to low mandrel flexural rigidity and expansion/contraction during the 

freezedrying cycle respectively (Fig. 3.15 A, C, E). The optimal scaffolds 

were fabricated using a horizontally aligned mold, with a film coated stainless 

steel mandrel, and freezedried at a controlled freezing rate (1°C/min). The 

final scaffolds (Fig. 3.15 B, D, F-H) displayed good layer integration, uniform 

wall thickness, and an open homogenous pore structure. The mean pore 

size was found to be larger (118.4μm ± 22.0μm , p<0.001) than the flat 

scaffolds produced in Chapter 2 (93.5± 2.9 μm), although still within the ideal 

range for the intended application (Kang et al., 1999; Ross and Tranquillo, 

2003). The bilayered design combines the advantages of both the film and 

the porous scaffolds with the increased mechanical properties of the films, a 

smooth surface for endothelial monolayer formation and a porous outer layer 

for smooth muscle cell growth, migration and remodelling. Due to the multi-

step fabrication procedure each layer can be differentially modified, thus 

allowing greater control over the final scaffold properties. 
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In vitro analysis of the bilayered tubular scaffolds initially focused on 

validating the method of cell seeding, migration, and compaction on a static 

culture rig. The static culture rig constrained the scaffolds circumferentially to 

encourage compaction of the porous layer while maintaining the lumen size. 

Macroscopically the tissue compacted evenly around the static culture rig to 

produce a highly desirable dense, compacted tissue (Fig. 3.16 A). The use of 

contact guidance around mandrels for static culture is well established in the 

vascular tissue engineering field and has previously been shown to result in 

superior ECM and cell alignment in the circumferential direction (Barocas et 

al., 1998; Berglund et al., 2003; Cummings et al., 2003). Histological 

examination of the scaffolds revealed a uniform wall thickness and the lumen 

size (5 mm diameter) was maintained throughout the culture period (Fig. 

3.16 B). The cell-seeded porous layer compacted effectively around the 

mandrel and the final wall thickness (~500μm) was within the normal range 

for small diameter arteries. Attainment of the desired final wall thickness was 

achieved by utilising the contraction data from Chapter 2 which dictated that 

an initial wall thickness of 2.5 mm would be compacted to <1000μm after 14 

days culture. SMCs were found to have infiltrated through the porous layer 

effectively and excellent cell distribution was observed (Fig. 3.16C). Previous 

research utilising acellular collagen luminal supports, similar to the films 

developed, resulted in a 120-fold increase in ultimate stress and burst 

pressures up to 600 mmHg (Berglund et al., 2003). Koens et al. (2010) have 

reported a triple layered collagen/elastin vascular graft which displayed 

excellent blood compatibility and suitable burst pressures (~400 mmHg) to 

be utilised as a vascular graft although they did not examine the cellular 

response or viscoelastic characteristics of the biomaterial.  Therefore, the 

biomimetic bilayered scaffold described represents a promising platform for 

further examination. 

 

A major limitation of natural polymer vascular grafts is often their inadequate 

mechanical properties for the challenging haemodynamic system. These 

limitations range from insufficient strength to deal with the high pressure 

vascular system, to a compliance mismatch and insufficient suture retention 

strength (Grassl et al., 2003; L’Heureux et al., 1998; Seliktar et al., 2003a; 
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Tiwari et al., 2002). We have attempted to address a number of these issues 

via altering composition, architecture, and crosslinking to strive to match 

native vessel properties. While we have shown that crosslinking is an 

effective method to modify the mechanical response of biomaterials, it can 

also result in an alteration of the material stress-strain behaviour to a purely 

linear relationship, such as with glutaraldehyde crosslinking. A hallmark of 

the mechanical response of many native biological tissues is their non-linear 

stress-strain response where the characteristic J-shaped stress-strain curve 

allows biological materials to facilitate large extensions for low applied stress 

(Holzapfel et al., 2005). As the failure point approaches the material gets 

stiffer and can absorb a large amount of energy, giving rise to the 

extraordinary toughness of native tissues (Chu et al., 2013; Shahmansouri et 

al., 2015). Further work on optimising the crosslinking treatments to maintain 

this non-linear behaviour may be needed. The crosslinking treatments 

dehydrothermal, riboflavin/ultraviolet and microbial transglutaminase all 

target at least one unique amino acid residue of collagen (Table. 3.1) and 

thus theoretically may be combined to enhance their effects. Another 

interesting biomaterial fabrication strategy to match this non-linear response 

and/or enable controlled stress transfer are knitted/woven biomaterials, such 

as woven synthetic polymers combined with biological materials, although 

this is beyond the scope of this thesis (Heim and Gupta, 2009; Longchamp et 

al., 2014; Tschoeke et al., 2009; Yeoman et al., 2010). 

Table 3.1 Potential target amino acid residues to enable cumulative 

crosslinking (Adapted from Weadock et al., 1983). 
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3.5 Conclusion 

In this study, we have developed a novel natural polymer bilayered tubular 

scaffold with highly controllable properties for use as a tissue engineered 

vascular graft. Porous tubular scaffolds with a suitable microarchitecture 

were initially developed through controlled freezing (1°C/min) in a custom 

designed mold (Study 1). Dense collagen-elastin films were next developed, 

and crosslinking was utilised to modulate the residual amine content, 

mechanical properties, degradation resistance, and inflammatory cytokine 

expression from primary human macrophages (Study 2). The optimal 

crosslinking methods were determined to be DHT and EDAC treatment as 

they resulted in improved degradation resistance, a suitable range of 

mechanical properties, and EDAC resulted in a reduced inflammatory 

response.  These two crosslinkers were selected for further examination in 

Chapter 5.  A biomimetic bilayered scaffold was next developed utilising the 

porous tubular scaffolds and the dense films as a luminal lining (Study 3). 

Microstructure of the outer porous scaffold section was further optimised by 

altering the freezing direction and mandrel materials. Following static culture 

the bilayered scaffold was remodelled into a dense, organised tissue 

resulting in mechanically robust TEVGs. In summary, this study has resulted 

in a biomimetic bilayered scaffold which represents a promising platform for 

further in vitro maturation in order to enhance its therapeutic potential and/or 

application as an in vitro testing platform. 
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4.1 Introduction  

The in vitro generation of functional tissue engineered blood vessels requires 

a suitable cell-seeded scaffold/construct (Chapters 2 & 3) and the application 

of appropriate biomechanical and biochemical signals (Niklason et al., 1999; 

Tschoeke et al., 2009). The appropriate biomechanical signals can be 

generated by simulating the dynamic physiological environment of native 

vessels through the use of bioreactor technology (Galie and Stegemann, 

2011; Schutte et al., 2010). 

 

Over 20 years ago, pioneering research by Weinberg and Bell (1986) and 

L’Heureux et al. (1993) demonstrated the possibility of generating tubular 

vascular models composed of collagen, smooth muscle cells, endothelial 

cells and fibroblasts in a complex trilayered structure. While encouraging, 

both of these model systems displayed limited mechanical integrity, 

inadequate tissue organisation and a lack of vasoactivity. The primary cause 

of the problems with these early tissue engineered vascular grafts can be 

attributed to a lack of biomechanical stimuli during in vitro maturation of the 

tissue (Kanda and Matsuda, 1994; Seliktar et al., 2003a). Further research in 

this area has shown that bioreactor conditioning of cell seeded scaffolds can 

lead to a contractile smooth muscle cell phenotype and improved cell 

alignment (Qu et al., 2007; Schutte et al., 2010), increased extracellular 

matrix deposition (Hahn et al., 2007), a confluent aligned endothelium 

(Imberti et al., 2002), and mechanical properties closer matching native 

tissue (Galie and Stegemann, 2011; Niklason et al., 1999; Tschoeke et al., 

2009).  

 

However, whilst it is clear that dynamic mechanical stimulation can affect 

tissue maturation, the optimal method of imparting the complex native 

biomechanical environment to 3D TEVGs in vitro has yet to be elucidated.  

Bioreactors are a promising enabling technology which can be utilised to aid 

in the maturation of tissue engineered vascular grafts. Due to their very 

specific set of requirements the majority of vascular graft bioreactors are 

custom built, although recently a small number of commercial systems have 
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become available, such as Instron’s LumeGen. The optimal bioreactor for 

vascular graft tissue engineering should be capable of recreating the 

complex cardiovascular biomechanical environment for 3D 

constructs/vessels in vitro. Additionally, the bioreactor should be constructed 

from non-cytotoxic materials which can be easily sterilised via autoclaving or 

ethanol sterilisation. Moreover, precise control over the flow dynamics and 

cyclical strain experienced by mounted constructs is necessary in order to 

accurately emulate both pathophysiological and physiological conditions. The 

bioreactor must also be highly adjustable and accommodate varying 

construct diameters and lengths. 

 

A fundamental aspect of bioreactor design is to determine the design 

requirements and take a top-down approach to design whereby initial design 

should focus on the overall bioreactor configuration before progressing to 

design of individual sections of the bioreactor. To this end we have first 

detailed the design inputs for the configuration/layout, chamber design, and 

strain monitoring system. In addition the overall design requirements for the 

bioreactor were identified: 

 

• The ability to manipulate cyclical strain, pulse rate and shear stress. 

• Allow the culture of 3 or more constructs at one time. 

• Easily sterilisable and non-cytotoxic. 

• Easy assembly in a sterile environment. 

• Ability to accommodate a large variety of construct diameters and 

lengths.  

• Simple endothelial cell seeding. 

• Easy monitoring of constructs during culture. 
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4.1.1 Objectives 

The overall objective of this study was thus to develop a bioreactor system 

which was capable of recreating the complex cardiovascular biomechanical 

environment for culturing vascular constructs in vitro. The specific 

aims/design inputs of the study were to develop a system which could apply 

physiologically relevant: 1) cyclical strain, 2) shear stress/rate and 3) 

hydrodynamic pressure, while 4) being constructed from non-cytotoxic 

materials, and 5) retaining a flexible chamber design which permits the 

mounting of constructs of varying dimensions and facilitates endothelial cell 

seeding. In line with these design inputs, the specific aims of this study were: 

 

¶ 1) Design, develop, and fabricate a versatile bioreactor with 

consideration for the optimally determined layout/configuration, 

chamber design, and ability to control culture conditions over a wide 

physiological range. 

 

¶ 2) Validation of the bioreactor through assessment of the component 

cytotoxicity, determination of the flow dynamics and development of a 

cyclic strain measurement system.  

 

4.2 Materials and Methods 

4.2.1 Bioreactor Design  

4.2.1.1 Configuration/Layout 

The primary design consideration for the bioreactor configuration was to 

create a pulsatile flow bioreactor capable of extended culture of small 

diameter vascular grafts. To achieve this, a peristaltic pump was utilised to 

pump cell culture medium from a reservoir via highly compliant silicone 

tubing though a 3D vascular construct culture chamber before being returned 

to the same reservoir in a closed loop system. The system was required to fit 
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inside a standard cell culture incubator and to be maintained at an 

environment of 5% CO2 and 37°C. 

A key requirement of this custom built pulsatile flow bioreactor was the 

capability to simultaneously culture multiple constructs using the same 

system. The two methods identified to achieve this requirement are 

summarised in Fig. 4.1, below. The use of a single channel peristaltic flow 

loop to drive 3-4 culture chambers (Fig. 4.1A) was initially investigated as the 

majority of peristaltic pumps are single channel output. The single channel 

output then splits into multiple channels to apply the cyclical strain and 

pressure waveforms to the vascular constructs mounted in the culture 

chambers.  The alternative configuration consisted of a multichannel 

peristaltic pump with independent flow loops for each culture chamber (Fig. 

4.1B).  

 

Figure 4.1 Bioreactor Configuration Variants 

(A) Single channel closed loop configuration with a common medium 
reservoir and single channel peristaltic pump. (B) Multi-loop configuration 
with separate medium reservoirs driven by a multi-channel peristaltic pump. 
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Platinum cured silicone tubing (I.D 6.4mm, Fisher Scientific, Ireland) was 

used to connect all components in the system. It displays enhanced 

biocompatibility versus alternative curing methods such as peroxide. 

Additionally, silicone exhibits high gas permeability to oxygen and carbon 

dioxide.   The tubing attaches to the culture chamber via a tight interference 

fit on to a stainless steel tube while all other connections are via tubing 

connectors. 

Each configuration was designed to incorporate a tubing pinch clamp 

downstream of the culture chamber (Fig. 4.1 A & B). By controlling the 

degree of occlusion by the pinch clamp it subsequently allowed control over 

the loop pressure magnitude and the resulting cyclical strain amplitude. A 

pressure transducer (further detailed in section 4.2.1.3) was connected to the 

system to measure the pressure while the degree of cyclical strain was 

determined via video analysis (further detailed in section 4.2.2.3) 

 

4.2.1.2 Chamber design 

The culture chamber for the pulsatile bioreactor was designed to house 3D 

tubular TEVGs which could be subjected to the pulsatile flow and pressure 

produced by the system. A number of key requirements/design inputs were 

identified, namely: 

¶ Capability to house 3D tubular vascular constructs of varying length 

and internal diameter while also being easy to assemble. 

¶ Ability to mount both high strength decellularized vascular constructs 

and delicate porous scaffolds. 

¶ Non-cytotoxic material construction which also possesses good 

optical clarity for accurate non-invasive imaging. 

¶ Leak proof construction while also enabling media exchange/sampling 

and efficient gas exchange. 

¶ Highly flexible design which can be utilised for endothelialisation of 

vascular constructs on a roller platform at low revolutions to achieve a 

uniform distribution of cells. 
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¶ Ability to accommodate a silicone sleeve in order to impart only 

cyclical strain to the overlying vascular constructs. 

 

4.2.1.3 Culture conditions 

The culture conditions for the bioreactor system are controlled by the pump 

pulse frequency, tubing size, reservoir height, and degree of pinch clamp 

occlusion. During operation the pulse frequency and pressure (through the 

pinch clamp) can be easily modified without stopping the system, while 

tubing size and reservoir height are fixed once bioreactor culture begins 

operation. Consequently, examination of the pulse frequency and pressure 

allows an accurate assessment of the potential culture conditions the 

bioreactor can support without modification to the layout.  

Pulse frequency 

The pulse frequency was controlled via the multichannel peristaltic pump 

(FH100M, Thermo Scientific). In our current application the pump is utilised 

to control the flow, pulse frequency and, in combination with suitable tubing 

and bioreactor layout, also allows control of the pulse waveform. The three 

roller heads which contact the silicone tubing are offset at 120o apart and 

thus each revolution of the pump head results in 3 pulses in the system. For 

calibration and validation the pump was utilised at a speed of 20 rpm which 

corresponds to 60 beats/min and simulates the frequency of the average 

human heart rate (~60 beats/min=1 Hz).  The system is capable of operating 

between 6bpm and 600bpm which comprehensively covers the range which 

the native cardiovascular system operates in (40 bpm-200 bpm). 

Pressure 

Hydrodynamic pressure in the system is monitored via a digital manometer 

(Digitron 2082P7, Instrument Technology Ltd, Ireland) which is attached 

downstream of the bioreactor culture chamber. A 3 way luer stopcock is 

utilised to connect the manometer to the system and is bled to remove any 

trapped air. The manometer can also perform a logging function to determine 

the pressure profile over time. The manometer is capable of accurately 

measuring pressure in the range of 0-1500mmHg (±0.15%). Pressure in the 
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system is primarily regulated via a pinch valve attached to the silicone tubing 

downstream of the culture chamber. As the pinch valve is closed it creates a 

restriction in the tubing thus increasing the pressure upstream to the valve. 

The mean pressure level in the system can also be altered by raising the 

media reservoir to create an increased pressure head height although this is 

limited to within the incubator dimensions. 

4.2.2 Analysis of bioreactor cytotoxicity, flow dynamics and cyclic 

strain 

4.2.2.1 Cytotoxicity of bioreactor components 

Cytotoxicity testing was performed on all bioreactor components to ensure 

that the materials used in the construction of the bioreactor could withstand a 

wide variety of chemicals and sterilisation techniques without leaching of 

potentially cytotoxic chemicals into the system. The cytotoxicity testing was 

performed according to ISO 10993-5 Biological evaluation of medical devices 

– Part 5: Tests for in vitro cytotoxicity. Each material used in the construction 

of the bioreactor was individually sterilised by ethanol soaking or autoclaving 

in order to determine the most efficient sterilisation method for that material. 

Following identification of the ideal sterilisation method for each material, the 

entire bioreactor system was set up and additional cytotoxicity testing was 

performed. These tests were performed as extraction tests on all materials 

which came into contact with tissue culture medium during normal bioreactor 

operation. All materials were submerged in growth supplemented rat 

mesenchymal stem cell tissue culture medium (85% DMEM, 10% FBS, 2% 

Pen/Strep, 1% Glutamax, 1% L-glutamine, 1% Non-essential amino acids) 

for 24 hours at 37oC with a ratio of surface area to media volume of 6cm2/ml. 

The following materials were testing: 

¶ Polycarbonate Chamber 

¶ 316L Stainless Steel Holder 

¶ Polycarbonate Plates 

¶ Silicone Seal 

¶ Silicone Tubing 
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¶ Fully assembled bioreactor system 

¶ Polyvinyl chloride (positive control) 

¶ Polystyrene (negative control, tissue culture plastic) 

 

Tissue culture plastic (polystyrene) served as the negative control as this is 

known to be a non-cytotoxic material upon which cells will readily attach and 

proliferate. Polyvinyl chloride is known to be a cytotoxic material and so this 

material was chosen as the positive control. The bioreactor system 

components were first autoclaved, followed by assembly and flushing the 

system with ethanol and phosphate buffered saline to ensure sterility was 

achieved.  

 

Metabolic activity 

In order to assess cytotoxicity of the materials tested, we performed a MTT 

assay to measure cell metabolic activity. Metabolic activity of the cells when 

subjected to extraction media was quantified via an MTT Cell Growth Assay 

(Millipore ™, Ireland). MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide] is a tetrazolium salt which can be solubilised to 

produce a yellow solution. Dehydrogenase enzymes present within the 

mitochondria of cells can cleave the tetrazolium ring in MTT to form insoluble 

formazan which exhibits a purple colour. This reduction of MTT can thus be 

correlated to the metabolic activity of the cells and can be quantified via 

spectrophotometry. Reduction of MTT only occurs in metabolically active 

cells and thus the level of reduction of the salt can be used as a measure of 

cell viability and cytotoxicity. 

The protocol employed is as per the manufacturer’s instructions. Briefly, rat 

mesenchymal stem cells (MSC) were seeded at a density of 4 x 103 per well 

in a 96-well plate format and cultured for 24 hours using 100μl of 

supplemented growth media to allow the cells to attach to the plate. 

Following this initial 24 hour culture the media was replaced with the relevant 

material extraction test medium and cultured for a further 24 hours. 

Reduction of the MTT reagent was initiated by adding 10μl of the solution to 

each well with 90μl of culture medium and incubating for an additional four 
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hours. As the insoluble purple formazan product settles to the bottom of the 

well the overlying medium was removed and the formazan crystals were 

solubilised by adding 100μl of dimethylsulfoxide (DMSO) to each well and 

thoroughly mixed via pipetting. The samples were prepared in triplicate and 

the absorbance was measured at 570 nm with a reference wavelength at 

480 nm using a spectrophotometer (Wallac Victor2™ 1420 multilabel 

counter, Perkin Elmer Life Sciences, Waltham, MA, USA). Sample 

absorbance was then compared to untreated samples which served as 100% 

metabolic activity control. 

 

Cell number (dsDNA) 

In order to assess the quantity of cells remaining following exposure to 

conditioned media we performed a double stranded DNA assay using an 

Invitrogen Quant-iT™ PicoGreen dsDNA kit (Biosciences, Dublin, Ireland). 

Rat mesenchymal stem cells (MSC) were seeded at a density of 2 x 104 per 

well in a 6-well plate format and cultured for 24 hours using supplemented 

growth media to allow the cells to attach to the plate. Following this initial 24 

hour culture the media was replaced with the relevant extraction test medium 

and cultured for a further 24 hours. For analysis each well was washed once 

in sterile phosphate buffered saline and the cells were lysed using 1 mL of 

0.2M carbonate buffer with 1% Triton X-100 followed by three freeze-thaw 

cycles. Cell number was then quantified as per Chapter 2. Sample 

fluorescence was compared to a standard curve to determine dsDNA 

quantity and all samples were normalised to untreated samples. 

4.2.2.2 Assessment of bioreactor flow dynamics 

The bioreactor system has been designed to match the key features of 

arterial flow, namely; the flow rate, Reynolds number, shear rate, and shear 

stress. This allows the added functionality of simulating the forces 

experienced by the endothelium. In order to study the dynamic flow 

characteristics of the system a number of simplifications are necessary.  

- The vascular constructs are assumed to be straight, rigid tubes with a 

smooth luminal surface and a non-porous wall.  
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- The flow is assumed to be steady state and entrance effect are 

neglected are they are deemed to be negligible. 

The flow dynamics of the system were studied using supplemented DMEM 

and multiple flow loops were tested to ensure that similar conditions were 

experienced in all chambers. The flow rate in the system was primarily 

controlled by altering the tubing size and/or increasing the pump speed. 

 

Nature of the flow 

For the purpose of vascular tissue engineering the optimal flow profile would 

be of a laminar nature whereas turbulent flow is characteristically found in in 

areas where atherosclerotic lesions are present or at bifurcations. In order to 

determine whether the flow was of a laminar or turbulent nature inside the 

vascular constructs it was necessary to calculate the Reynolds number (Re). 

Reynolds number is a dimensionless number which quantifies the 

relationship between inertial and viscous components in a flow system and 

can be used to estimate whether the flow was of a laminar or turbulent 

nature via the following formula: 
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Where d is the internal construct diameter (0.5cm),  ” is the fluid density 

(1.05g/cm3), ‘ is the fluid viscosity which is approximately 1 centipoise (1 

mPa.s) at 37°C for supplemented tissue culture medium, and  ὠis the mean 

velocity which can be calculated from the experimentally determined flow 

rate • (60mls/min) by equation 1, below 
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Mean wall shear stress/rate 

The levels of shear stress applied on the wall of the vascular constructs by 

the flow of media through the bioreactor can be determined mathematically. 

Variations in wall shear stress are known to be important factors in 

endothelial cell mechanobiology where the shear stress affects cell 

morphology, alignment, proliferation, and alters gene expression. The mean 

wall shear stress,† , can be calculated using the Hagen-Poiseuille 
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equation, below, where the requirements of laminar flow of a Newtonian fluid 

in a rigid tube have been assumed. 

ὉήόὥὸὭέὲ ςȡ †
τz ‘z •

“z ὶ
 

Where r is the internal radius (0.25cm). 

For a Newtonian fluid the wall shear stress can then be related to shear rate 

by the equation, ‎
†

‘ 

4.2.2.3 Cyclic strain measurement system 

Vascular cell morphology and function is partially dictated by the 

mechanosensation of the haemodynamic forces, which manifest as shear 

stress and cyclic strain within the vascular wall. Consequently, cyclical strain 

is an important biomechanical force to examine when developing tissue 

engineered vascular grafts. Bioreactor systems which focus on applying 

physiologically relevant hoop strains (circumferential) are referred to as 

medial layer simulators. In order to measure the cyclical strain waveform 

experienced by the mounted vascular constructs a non-invasive 

videoextensometer tracking system was developed, in collaboration with Mr. 

Nicholas Hitchins. As the tubing was constricted by the pinch valve there was 

an increase in the amplitude of the cyclical strain experienced by the 

mounted specimens (Fig. 4.2A).  The cyclical straining of the vascular 

construct due to the pulsatile flow (Fig. 4.2B) was captured as a video by a 

USB microscope (Dino-lite, The Netherlands). Once the cyclical strain 

measurement system was run it required a reference length for calibration, in 

this case we utilised the 6mm diameter stainless steel tube (Fig. 4.2C).  The 

video frames were automatically thresholded followed by image analysis to 

determine the changes in construct strain at three points along the vessel 

(Fig. 4.2D). A custom MATLAB® (MathWorks Inc, MA, USA) script was 

written to automate the process of cyclical strain measurement and to 

increase accuracy. Additionally, a corresponding graphical user interface 

was designed for ease of use. The vascular construct strain was determined 

across all video frames and the real-time output was graphed as percentage 

strain over time.  
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Figure 4.2 Cyclical strain measurement system 

(A) A pinch clamp constricts the tubing downstream of the bioreactor 
chamber. (B) A USB microscope captures video capture of pulsing vascular 
constructs (C) The captured video was then processed via a custom 
designed MATLAB® script and measurements of vascular construct 
diameter are taken at three points along each frame of the video (D) with the 
percentage strain then graphed in real time. 

4.3 Results 

4.3.1 Bioreactor Design 

4.3.1.1 Configuration/Layout 

Based upon the design inputs detailed in 4.2.1.1 the configuration was 

modified until all inputs had been satisfied. Overall bioreactor layout was 

dictated primarily by the choice of peristaltic pump, with the relative merits of 

single channel versus multi-channel pumps examined. It was found that 

utilising a single channel peristaltic pump and subsequently splitting the flow 

into multiple culture chambers would result in an undesirable drop in the 

pressure waveform. The single channel closed loop configuration presented 

many additional challenges for setup as all chambers had to be prepared 

simultaneously and priming had to be performed on the entire system rather 

than on an individual flow loop. In the event that multiple time points were to 

be utilised during bioreactor culture the subsequent flow and pressure 

waveforms would change drastically in the remaining chambers due to the 

closed system design. Thus, we opted for a multichannel peristaltic pump 
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(Fig. 4.3) in order to obtain a system which could easily achieve aseptic 

operation, minimises contamination risk, and allows the easy assembly and 

priming of multiple loops.  

 

Figure 4.3 Multi-channel Peristaltic Roller Pump 

A multi-channel pump (FH100M, Fisher Scientific) provides pulsatile flow 
along four large bore tubing channels simultaneously which reduces 
contamination risk between samples and aids reproducibility. 
 

The use of a multichannel pump also allows the isolation of each vascular 

construct as well as allowing the operator the ability to culture multiple time 

point vascular constructs simultaneously under the same conditions. 

Additionally, the use of multiple cassettes to drive separate flow circuits 

allows the ability to independently alter the pressure and flow characteristics 

for each vascular construct chamber. For example, by altering the degree of 

pinch valve occlusion and/or the use of altered tubing size could be used to 

alter the pressure profile of a single vascular construct chamber. As each 

flow loop has a separate pinch valve it is possible to change the pressure in 

each of the four loops while running off the same pump. 

The bioreactor design was successfully constructed with the multichannel 

peristaltic pump layout presenting many advantages over the single channel 

pump in terms of assembly simplicity and maintaining sterility of the system 

(Fig. 4.4). The system was tested beyond normal physiological pressure 

(>200 mmHg) with all seals functioning correctly and preventing any leaking 

of medium and maintaining the sterility of the system. The two 0.2μm filters 

connected to the medium reservoir and culture chamber on each flow loop 

enabled adequate gas exchange. 
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Figure 4.4 Assembled bioreactor system 

(A) Entire assembled bioreactor in hood, with (1) media reservoir, (2) 
peristaltic pump, (3) culture chambers, (4) pinch valves. (B) Bioreactor 
contained within incubator with cyclical strain measurement system visible 
outside incubator. 
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4.3.1.2 Chamber design 

A number of design iterations were performed until all the design criteria had 

been satisfied. A schematic of the final chamber design is shown in Fig. 4.5, 

below. 

 

Figure 4.5 Exploded Chamber Design 

Individual chamber components shown in an exploded view. Vessels are 
mounted on to the stainless steel holders (1), maintained in the 
polycarbonate chamber (2), with luer connectors (3) for media exchange and 
filter attachment. Threaded bolts and nuts (4) are utilised to guide and 
maintain compression between the silicone seals (5) and polycarbonate 
plates (7), with set screw nuts (6) maintaining the desired compression level. 

 

A square polycarbonate tube was utilised to construct the main chamber. 

Polycarbonate was chosen as it provides excellent optical clarity and the 

square profile allows undistorted viewing of mounted vascular constructs and 

allows accurate non-invasive imaging during operation. The method of non-

invasive imaging of the vascular constructs is discussed further in Section 

4.2.2. Additionally, as the chamber houses the vascular constructs and 

culture medium it was necessary for the chosen material to be non-cytotoxic 

and exhibit excellent resistance to chemical attack by both acids and bases, 

all of which polycarbonate satisfy. Two connectors (female luer locks) are 

mounted within the chamber walls to allow the connection of a 0.2 micron 

filter for gas exchange and for medium exchange/sampling. Two custom 

molded silicone gaskets are compressed between the square culture 

chamber and two outer circular polycarbonate plates. Compression was 
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maintained via threaded nuts and bolts which run between the two plates, 

which ensured a leak proof system.  

 

 

Figure 4.6 Chamber Design 

(A) Fully assembled chamber shown with vascular construct sutured on the 
custom stainless steel holders. (B) Isometric view of the assembled culture 
chamber showing the direction of medium transfer through the system. (C) 
The stainless steel holders were designed in a number of sizes in order to 
accommodate different vascular construct sizes. The ability to adjust the 
working length was also incorporated into the design with one of the holders 
having an adjustable length. Additionally, the adjustable holder length can be 
utilised for applying axial strain.  
 

The stainless steel vascular construct holders are machined to have a ridge 

over which the vascular constructs can be sutured and maintained. 

Additionally, the vascular constructs may be secured with biocompatible O-

rings such as Viton®. Both sutures and O-rings allowed the ability to securely 

attach the vascular constructs to the holders without causing damage to the 

vascular construct. The ability to alter the working length to accommodate 

different length vascular constructs was achieved by designing one of the 

specimen holders to have an adjustable length. The adjustable length holder 

was accomplished by threading the holder though the outer polycarbonate 

plate followed by threading through the molded silicone gasket which seals 

the holder in place and prevents any leaks. The distance the specimen 

holder was threaded through the silicone gasket can be modified which 
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consequently changes the working length between the two holders. The fixed 

length specimen holder was similar in design to the adjustable length holder 

although it contains a flange which seals the holder against the 

polycarbonate plate with a silicone O-ring. Set screws secure the specimen 

holder positions against the polycarbonate plates. Multiple sized vascular 

construct holders were manufactured to enable varying diameter constructs 

to be utilised within the chamber including the option to mount tapered 

constructs.  

 

Figure 4.7 Assembled culture chamber 

(A) Suture attachment of a decellularized porcine coronary artery which was 
used as a model artery during calibration and validation of the bioreactor 
system. The tapered construct shows the versatility of the design to 
accommodate custom sized constructs. (B) Fully assembled chamber with 
two luer lock connectors visible (red caps) for connection of gas exchange 
filters and for media exchange/sampling. 
 

A leak proof chamber for the culture of vascular constructs was successfully 

designed and constructed (Fig. 4.6). The working length could be 

successfully altered to accommodate various vascular construct lengths and 

the holders could be interchanged to accommodate various diameter 

constructs including tapered geometries. Decellularized porcine carotid 

arteries were used as model arteries and were successfully sutured to the 

stainless steel construct holders with minimal handling and the connection 

proved leak proof under pressure (Fig. 4.7A). The system proved leak proof 
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during extended culture periods of up to 14 days and sterility was 

maintained.  

The chamber was designed in a modular fashion whereby the chamber could 

be utilised for efficient endothelialisation of mounted constructs which 

satisfied one of the key requirements. Endothelial seeding of vascular grafts 

generally occurs following a number of weeks culturing within a bioreactor in 

order to mature the medial layer of the construct. Therefore, the chamber 

design we have developed has the advantage of the ability to seed 

endothelial cells within the same chamber with the vascular construct still 

mounted. This was partially achieved by designing the construct chamber to 

be easily isolated from the bioreactor system. Due to the circular outer end 

plates the whole chamber can then to be utilised on a roller platform. An 

endothelial cell suspension can then be injected within the vascular construct 

lumen and the entire chamber can be rotated at low speed to achieve a 

uniform distribution of cells on the lumen surface. 

4.3.2 Analysis of bioreactor cytotoxicity, flow dynamics and culture 

conditions 

4.3.2.1 Cytotoxicity of bioreactor components 

Extraction tests for cytotoxicity were performed on all materials utilised in the 

construction of the bioreactor. The results of the extraction tests on MSC 

metabolic activity and cell number after 24 hours is shown in Fig. 4.8 and 

Fig. 4.9, below. All materials utilised in the construction of the bioreactor 

passed the cytotoxicity tests as determined by no significant reductions in 

metabolic activity or cell proliferation after 24 hours versus the negative 

control, polystyrene (p>0.05). Two-way ANOVA indicated that both 

sterilisation/disinfection method and material had an overall significant effect 

on cell proliferation and metabolic activity. Two disinfection/sterilisation 

methods were examined, namely; autoclaving and ethanol disinfection. 

Utilising ethanol disinfection resulted in stable metabolic activity and 

proliferation across all materials tested in comparison to the negative control, 

polystyrene, and significantly higher than the positive control, PVC (p<0.001). 

Autoclave sterilisation also resulted in stable cell proliferation and metabolic 
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activity, with all groups significantly higher than the positive control PVC 

(p<0.001). Interestingly, the autoclaved polycarbonate chamber exhibited 

significantly higher metabolic activity than the negative control, polystyrene 

(p<0.05). These results indicate that both sterilisation/disinfection methods 

were suitable and all materials displayed good cytocompatibility. 

Consequently, the fully assembled bioreactor system was subjected to a full 

assembly and sterilised with each of the methods and extraction tests further 

confirmed the cytocompatibility of the bioreactor system. The efficacy of the 

sterilisation/disinfection methods was then confirmed by further culturing until 

day 3 where no bacterial or fungal infections were observed. Additionally, 

mycoplasma tests were also performed and results remained negative.  
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Figure 4.8 Cytotoxicity: The effect of material and 
sterilisation/disinfection method on the metabolic activity of rat MSCs. 

The effect of sterilisation/disinfection method and the bioreactor materials 
utilised on the metabolic activity of rat MSCs as determined by MTT assays. 
No significant change (p>0.05) in metabolic activity versus the negative 
control was found when utilising ethanol disinfection (A).  Autoclave 
sterilisation (B) resulted in higher metabolic activity (p<0.05 for the 
polycarbonate chamber versus the negative control but all other bioreactor 
materials were unaltered (p>0.05). All materials displayed significantly higher 
metabolic activity (p<0.05) than the positive control (PVC) when ethanol 
disinfected or autoclaved. All results are normalised to the negative control, 
polystyrene, which is expressed as 100% metabolic activity, *p < 0.05 vs all 
other groups,  **p<0.05 vs indicated interactions. 
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Figure 4.9 Cytotoxicity: The effect of material and sterilisation method 
on proliferation of rat MSCs. 

The graphs show the effect of sterilisation method and the materials utilised 
for bioreactor construction on the cell number of rat MSCs as determined by 
Quant-iTÊ PicoGreen dsDNA assays. No significant change in cell number 
versus the negative control utilising either ethanol disinfection (A) or 
autoclave sterilisation (B) was observed (p>0.05) with the exception of the 
bioreactor conditioned group which exhibited a significant increase in cell 
number versus the autoclaved polystyrene control (p<0.05). All materials 
sterilised by autoclaving displayed significantly higher metabolic activity than 
the positive control (P<0.05), while no significant change versus the positive 
control was observed when utilising ethanol sterilisation (p>0.05). *p < 0.05 
vs all other groups; **p < 0.05 vs polystyrene 

4.3.2.2 Assessment of bioreactor flow dynamics 

At a flow rate of 60mls/min and 60bpm the Reynolds number was calculated 

to be 160 (Table 4.1). This indicates that the flow was laminar as it is below 
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the generally accepted threshold of <2100 for fully developed laminar flow. 

The shear rate within the system was found to be 82 s-1 which corresponds 

to a shear stress of 0.82 dyne/cm2. As the flow rate can be altered via 

altering the pulse rate and tubing diameters it is possible to alter the 

Reynolds number, shear rate and shear stress dynamics of the system. For 

example, by increasing the pulse rate to 90bpm the flow rate increases to 

90mls/min which corresponds to a Reynolds number of  240, a mean shear 

rate of 122 s-1 and mean shear stress of 1.22 dyne/cm2. As the shear rate 

and shear stress are both based upon the mean flow rate the maximum and 

minimum values also vary significantly due to the pulsatile nature of the flow. 

The bioreactor system produced an average pressure of 50 mm Hg with a 

systole/diastole amplitude of 30 mm at a reservoir height of 60 cm and 

6.4mm diameter tubing. It was possible to further alter the pressure 

waveform via the pinch valve, altering the reservoir height, and by altering 

the tubing size. 

Table 4.1 Flow dynamics of bioreactor system at varied flow rates 

Flow Rate Pulse Rate Reynolds number Shear rate Shear Stress 

60 mls/min 60 bpm 160 (laminar) 82 s-1 0.82 dyne/cm2 

90 mls/min 90 bpm 240 (laminar) 122 s-1 1.22 dyne/cm2 

120 mls/min 120 bpm 320 (laminar) 164 s-1 1.64 dyne/cm2 

 

4.3.2.3 Cyclical strain measurement system 

The video extensometer system proved to be very accurate in the 

measurement of the applied cyclical strain. The pinch valve could be altered 

to change the constriction on the tubing which consequently changed the 

amplitude of the cyclical strain profile to which the construct was being 

subjected. The system proved to be highly adjustable with cyclical strain 

ranges of between 1%-20% possible, although at higher strains the pressure 

exceeded normal physiological values (>200 mmHg). The basal pressure in 

the system caused the diastolic strain of the construct while the pulsatile 

pressure waveform generated the systolic strain (Fig. 4.10). 
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Figure 4.10 Cyclic strain measurement system: Variable bioreactor 
mean strain, strain amplitude, and beats per minute 

The cyclical strain measurement system was used to alter the strain 
waveform in real time to the desired strain levels. The mean strain, strain 
amplitude, and beats per minute (BPM) could independently altered by 
changing the basal pressure, pressure amplitude, and pump rpm 
respectively. Example graphs showing strains of 3.4% ±1.4% at 60bpm (A), 
and 11.2% ±1.0% at 180bpm.  

4.4 Discussion 

The overall goal of this study was to design, build, and validate a novel 

pulsatile flow bioreactor for the culture of tubular cardiovascular constructs in 

vitro. The study has led to the successful development of a novel bioreactor 

which is capable of applying the complex cardiovascular biomechanical 

environment to four independent constructs in a parallel circuit layout. This 

system described is capable of applying the biomechanical environment 

experienced by both the medial layer and the endothelium to mounted 

tubular constructs in vitro. The flexible chamber design permits the mounting 

of constructs of varying dimensions, while we have shown the system to be 

non-cytotoxic and easy to assemble. The system is capable of applying 
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physiological relevant levels of pulsatile pressure, cyclical strain, and wall 

shear rate/stress, and is thus suitable for the in vitro maturation of tissue 

engineered blood vessels/constructs. 

 

The chamber design used in this study included modifications from the 

design of Lee and Wang (2011) while also applying design elements from 

Seliktat et al. (2000). It permitted the ability to easily alter the working length 

and diameter of the holders to accommodate constructs of varying 

dimensions. The design addresses many of the issues commonly 

encountered with bioreactor chambers in this field due to the easy assembly 

process, leak proof design, and ability to be detached from the system for 

endothelial cell seeding without removing the construct (Avci-Adali et al., 

2013). The pulsatile flow of fluid through the bioreactor chamber imparts a 

cyclical strain on the mounted constructs due to the pressure pulse of the 

system. While shear stress and strain can be examined via flow dynamics 

analysis another critical biomechanical force involved in regulating 

endothelial cell and smooth muscle cell phenotype is cyclical strain. In order 

to accurately determine the levels of cyclical strain which was being imparted 

to the mounted constructs, we developed a custom video capture and 

analysis system in conjunction with Mr. Nicholas Hitchins, a Design Engineer 

in our lab. A distinct advantage of the cyclical strain measurement system is 

that the measurement is non-invasive and can be performed while the 

bioreactor is operating without compromising sterility. This allows the 

tracking of the cyclical strains experienced by the constructs over the culture 

period and can be utilised to estimate the Young’s modulus of the construct 

in a non-destructive manner as per Couet and Mantovani (2012). As the 

system is capable of on-line measurement of a constructs Youngs modulus it 

could form part of an adaptive flow regime where culture conditions, such as 

beats per minute, could be automatically controlled in order to maximise the 

rate at which graft maturation occurs. 

 

One of the primary aims of this study was to develop a bioreactor capable of 

applying physiological levels of cyclical strain, shear stress and pressure. In 

the system described, in order to be able to apply both cyclical distension 
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and physiological flow dynamics the system was designed to distend the 

mounted construct via the pulsatile pressure waveform travelling through the 

system. Additionally, this system is capable of applying the cyclical 

distension indirectly to the construct via distension of a compliant silicone 

tube over which the construct is mounted, similar to Huang and Niklason 

(2011). Medial layer simulating bioreactors, such the systems described by 

Seliktar et al. (2000), and Isenberg and Tranquillo (2003), focus on applying 

tensile hoop stress and strain which are the primary biomechanical forces 

experienced by the smooth muscle cells which reside in the medial layer. 

These medial layer simulators generally apply the cyclical distension 

required for hoop stress and strain via inflating compliant tubes hydraulically 

or pneumatically. Medial layer simulators have been shown to lead to 

improved extracellular matrix deposition, improved cell alignment, and 

mechanical properties closer matching native tissue (Niklason et al., 1999; 

Schutte et al., 2010). Endothelial layer bioreactors often neglect tensile hoop 

stress and strain and focus on applying appropriate shear stress and shear 

rates While the application of shear stress in these endothelium simulators 

can be utilised to form a confluent organised endothelium (Imberti et al., 

2002), it is the combination of factors which has arguably produced the most 

promising results (Galie and Stegemann, 2011; Tschoeke et al., 2009). 

Consequently, the bioreactor described herein has been designed to have 

the capability to act as a simulating bioreactor for the endothelium, medial 

layer, or a more physiological relevant combination. 

 

The results of the extraction tests for cytotoxicity indicate that all materials 

utilised in the construction of the bioreactor were biocompatible and did not 

elicit a cytotoxic response as determined by no significant reductions in 

metabolic activity and cell number after 24 hours versus the negative control, 

polystyrene (p>0.05). Additionally, the effect of two sterilisation methods, 

ethanol soaking and autoclaving, was examined to determine whether it 

effected the cytotoxicity of the materials utilised in the bioreactors 

construction. It was found that both ethanol and autoclave sterilisation 

maintained cell metabolic activity and cell number at the same level as the 

negative control, polystyrene (p>0.05). Increased metabolic activity was 
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observed in the polycarbonate chamber that was autoclaved versus the 

negative control (p<0.05). It is hypothesised that this may be due to the 

leaching of Bisphenol-A from the polycarbonate. Bisphenol-A is a monomer 

used in the production of polycarbonate and has been shown to act as an 

esterogenic substance which can affect cell proliferation and metabolic 

activity (Krishnan et al., 1993). However, the polycarbonate plate did not 

show the same effect although this may be due to the differences in 

manufacturing as two separate suppliers were utilised for these 

polycarbonate pieces. Overall, our results indicate that the bioreactor can be 

sterilised via ethanol soaking or autoclaving with no adverse effects to the 

inherent cytocompatibility of the materials from which the bioreactor is 

constructed. 

 

Having determined that the bioreactor could be utilised for the culture of cell 

seeded constructs and not elicit a cytotoxic response, we next sought to 

determine the flow dynamics of the system. The bioreactor system was 

found to be capable of generating intraluminal fluid flow of a laminar nature 

while applying a shear rate and shear stress within physiological ranges. The 

Reynolds number for the flow was found to be approximately 160 at 60bpm 

within the system with this rising to 240 at 90 bpm which indicates that the 

flow is fully laminar. In human coronary, mesenteric and femoral arteries the 

Reynolds number ranges from 100-1000 and so the system falls within this 

physiological range (Caro et al., 1978; Vennemann et al., 2007). Turbulent 

flow would be undesirable in our bioreactor system as it can lead to very high 

local shear stresses and may closer match the flow characteristics of a 

stenosed vessel due to atherosclerosis. Wall shear rate was found to be 

range between 82 s-1 and 122 s-1 for 60bpm and 90 bpm respectively. The 

mean carotid artery shear rate is between 340-475s-1 (Samijo et al., 1998) 

although it ranges from 60-775s-1 (Stokholm et al., 2000) due to the pulsatile 

nature of the flow and so the shear rates in our system tend towards the 

lower end of this range.  However, the mean wall shear rate in our bioreactor 

system closely matched that of the superficial femoral artery (130s-1) and 

brachial artery (194s-1) (Wu et al., 2004).  Mean wall shear stress ranged 

from 0.82-1.22 dyne/cm2 for 60-90bpm respectively.  The viscosity of blood 
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ranges from 3.5cP to 10cP depending on flow conditions and vessel 

geometries while the viscosity of cell culture medium is approximately 1cP.  

The lower viscosity medium results in the physiological shear rate of 122 s-1 

at 90 bpm translating to a low physiological shear stress of 1.22 dyne/cm2. 

Mean carotid artery shear stress has been reported to be approximately 10 

dyne/cm2 (Samijo et al., 1998) and so the shear stresses generated by the 

bioreactor are considered to be low wall shear stresses. Low wall shear 

stresses are known to be a contributor to atherosclerotic plaque formation via 

altered endothelial function and phenotype (Malek et al., 1999; Reneman et 

al., 2006). However, low wall shear stresses (0-4 dyne/cm2) have also been 

shown to increase endothelial cell proliferation via a phenotype switch from 

the normally quiescent atheroprotective phenotype to an atherogenic 

phenotype (Kaushal et al., 2001; Levesque et al., 1990).  Additionally, low 

wall shear stress has been shown to be an effective method to generate 

endothelialised tissue engineered vascular grafts due to the increased 

proliferative nature of the cells followed by an increase in the wall shear 

stress in order to switch the cells back to a quiescent phenotype (Inoguchi et 

al., 2007; Kaushal et al., 2001; Ott and Ballermann, 1995). It can be 

concluded from the flow dynamics analysis that the bioreactor system can be 

used to apply physiological shear rates and shear stresses to endothelial 

cells seeded on to the luminal aspect of cultured constructs. 

 

While the bioreactor system is highly adaptable and multiple culture 

parameters can be adjusted, it is subject to a number of limitations. Although 

the amplitude of the pressure within the system can be modified via the pinch 

valves the base pressure cannot be controlled to the same degree. The base 

pressure is primarily generated due to the pressure head formed by the 

media reservoirs. By positioning the reservoirs at the highest point of the 

incubator a base pressure of 50 mm Hg is achievable. In order to obtain a 

base pressure of 100 mm Hg it would be necessary to arrange the media 

reservoirs at an additional height of 68 cm. This may be achieved by 

positioning the media reservoirs in a separate incubator mounted above the 

culture chamber incubator to gain the additional basal pressure. The pulse 

amplitude of 30 mm Hg is comparable to the normal physiological pulse 
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amplitude of 40 mm Hg and can be further altered. A potential disadvantage 

to the combination endothelium and medial layer biomechanical simulator is 

that each of the factors is intrinsically linked to the other. For example, if the 

system was set up to apply 5% radial distension to the cultured construct 

then the pulsatile pressure of the system must be altered to achieve this. 

Additionally, the flow rate is directly linked to the pump speed and so to 

increase or decrease the flow rate the beats per minute must be altered. 

While this is an inherent limitation present in this design we sought to 

overcome this limitation by allowing the user the ability to alter the flow rate 

via the use of altered tubing sizes at the pump and reservoir.  

 

 

4.5 Conclusion 

In this study, we have successfully designed, built, and validated a novel 

pulsatile flow bioreactor which is capable of applying the complex 

cardiovascular biomechanical environment to four independent tubular 

constructs in a parallel circuit layout. The system can be utilised to apply 

physiological stresses and strains to cell-seeded vascular constructs in order 

to provide a suitable environment for tissue maturation with the appropriate 

biomechanical cues. Additionally, the bioreactor system could be utilised to 

evaluate the performance of medical devices in a physiologically relevant 

environment. The conclusions from this study can be summarised as follows: 

¶ A bioreactor system has been developed which is capable of 

recreating the complex cardiovascular biomechanical environment in 

3D. 

¶ The novel bioreactor design was shown to incorporate cytocompatible 

materials, was easy to assemble and could maintain sterility for 

extended culture periods. 

¶ The novel chamber design permits the ability to alter the working 

length and diameter to accommodate constructs of varying 

dimensions.  
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¶ The chamber design also allows the ability to remove the chamber 

and utilise it for rotational endothelial cell seeding on a roller platform 

without removing the construct.  

¶ The ability to apply physiologically relevant cyclical strain, shear stress 

and hydrodynamic pressure to mounted constructs. 
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5.1 Introduction 

Maturation of a tissue engineered construct, such as a TEVG, generally 

refers to the remodelling, compaction, and potential enhancement of the 

tissue biological and structural properties (Rabkin et al., 2002). ECM-based 

scaffolds provide structural and mechanical integrity to the developing tissue 

and should actively support cell adhesion, migration, and normal function 

(Nishimura et al., 2003). Furthermore, the ECM scaffold should be 

biodegradable to enable cell-mediated remodelling of the matrix in response 

to biochemical or biophysical signals. The continuous connection between 

intracellular cytoskeletal proteins (e.g. filamentous actin) with the surrounding 

ECM matrix is achieved through transmembrane integrin receptors (Katsumi 

et al., 2004). Therefore, this facilitates cellular sensing and response to 

external mechanical stimulation applied to the ECM scaffold. This process is 

termed mechanotransduction, where mechanical signals are converted to 

biochemical responses, and is thus intimately associated with the biomaterial 

from which the scaffold is fabricated (Wang et al., 2009).  

 

So far this thesis has demonstrated the ability to fabricate biomimetic TEVGs 

which could be crosslinked to alter their degradation rate and also their 

mechanical properties (Chapters 2/3). Crosslinking is known to affect cell-

mediated scaffold degradation and thus affects the rate of remodelling 

(Yahyouche et al., 2011). Furthermore, the degree of crosslinking has been 

shown to have drastic effects on scaffold remodelling in vivo (Kemp et al., 

1995). Positive cell-mediated remodelling occurs when the rate of cell ECM 

formation is equal to or greater than the rate of ECM degradation (Harley et 

al., 2004; Lu et al., 2011). This process is particularly pertinent for acellular 

TEVGs, with must remain stable during the additional time it takes for cells to 

effectively migrate into and remodel the graft (Huynh et al., 1999). Thus, the 

influence of the acellular film layer in the TEVGs described in Chapter 3 must 

be ascertained to determine whether it possesses the required stability to 

resist proteolytic degradation during culture and remain mechanically robust. 

Furthermore, the effect of crosslinking on the cell-mediated remodelling of 
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the porous layer is intimately associated with the resistance of the scaffold to 

proteolytic degradation. 

 

While the matrix effects on TEVG maturation primarily stem from the 

physiochemical properties of the biomaterial used, mechanotransduction 

may also stem from an externally applied force which is transferred through 

the scaffold matrix to the attached cells (Yang et al., 2002). Dynamic 

application of force is most often achieved through the use of bioreactors 

with the primary aims being to condition cells to withstand physiological 

mechanical conditions and also inducing the cells to remodel the ECM and 

form functional tissue (Bulick et al., 2009). Bioreactors, such as that 

described in Chapter 4, have become increasingly complex, and many can 

exert multiple stimuli simultaneously such as fluid flow, cyclic straining, and 

complex pressure profiles. Dynamic conditioning of TEVGs has previously 

been shown to vastly increase ECM production and remodelling (Iwasaki et 

al., 2008; Syedain et al., 2011a), while also altering cell proliferation (Solan 

et al., 2003; Yazdani et al., 2009), migration (Sheridan et al., 2014b), and 

phenotype (Jeong et al., 2005; Stegemann and Nerem, 2003). Bioreactor 

conditioning exhibits great potential for cardiovascular tissue engineering and 

it was therefore hypothesised that application of dynamic conditioning would 

accelerate the rate of tissue maturation of the novel TEVGs described in this 

thesis.  

5.1.1 Objectives 

The overall objective of this chapter was to examine the optimal approach to 

enhance the in vitro maturation of collagen-elastin scaffolds to form TEVGs. 

To achieve this, alterations in construct architecture, crosslinking, and 

dynamic conditioning on the subsequent bioengineered vessel properties 

were investigated. The specific aims of this chapter were: 

 

¶ 1) Examine the effect of construct architecture (single versus 

bilayered) and crosslinking (DHT versus EDAC) on the maturation of 

the constructs after 21 days static culture. 
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¶ 2) Examine the effect of dynamic conditioning at foetal pulse rates 

(120bpm) and strain rates (5%±1) within a custom designed 

bioreactor on the maturation of the constructs after 21 days culture. 

 

5.2 Materials and Methods 

5.2.1 Effect of construct architecture and crosslinking on TEVG 

maturation 

In Chapter 3 we demonstrated the ability to create both single layered and 

bilayered tubular scaffolds suitable for use TEVGs. Modulation of the 

properties of these TEVGs had been previously examined via crosslinking, 

with dehydrothermal (DHT) and carbodiimide-based crosslinking (EDAC) 

deemed to present individual merit for future investigation. Consequently, we 

next sought to examine the effect of overall TEVG architecture (single layer 

versus bilayered) and the effect of crosslinking (DHT versus EDAC) on the 

maturation of the constructs when cultured for up to 21 days. 

5.2.1.1 Fabrication of TEVGs and static culture 

Both single and bilayered TEVGs were fabricated as per Chapter 3 to be 

utilising for long term maturation studies. Briefly, a co-suspension of collagen 

and elastin was blended at a protein ratio of 1:1 in 0.05M acetic acid, with a 

final protein concentration of 1% w/v. CE100 films were prepared by 

controlled dehydration of the CE100 suspension on a PTFE substrate before 

being formed around the tubular mandrel of the mold and re-dried. The 

CE100 suspension was then pipetted into the remaining cavity in the custom 

designed mold described in Section 3.2.1, and freeze-dried horizontally to -

40oC using a stainless steel mandrel to create bilayered TEVGS. Single 

layered TEVGs were fabricated utilising the same method with the omission 

of the film layer. Crosslinking of the constructs was examined by treatment 

with DHT or EDAC treatment as both treatments were deemed to have merit 

(Chapter 3). Human smooth muscle cells (hSMCs) were purchased from 

ATCC (CRL-1999) and cultured using the recommended complete growth 

media and subculturing procedures as per Chapter 2. Constructs were 
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mounted on the static constrainment rig (Chapter 3) and seeded at a density 

of 1.5x106 cells per 10mm construct length. Constructs were cultured for up 

to 21 days with media changes every 3 days. 

 

5.2.1.2. Assessment of the bioengineered vessel biomechanical 

properties 

The mechanical characterisation of bioengineered vessels and traditional 

vascular prosthetics primarily focuses on functional tests. Consequently, we 

analysed the vessel burst pressure, compliance, and suture retention 

strengths as a measure of vessel strength, elasticity, and suitability for 

surgical anastomosis respectively. 

 

Assessment of the bioengineered vessel burst pressure  

Burst pressure testing was performed using a custom designed device 

developed according to ISO/ANSI 7198:1998: Cardiovascular Implants – 

Tubular Vascular Prostheses. Bioengineered vessels, of length 30mm, were 

removed from culture and hydrated for 1 hour in PBS at 37°C. Vessels were 

then secured over barbed tubing connectors, secured with sutures, and 

subjected to a longitudinal strain of 10% to mimic in vivo conditions. Vessels 

were pressurised with PBS until failure at an infusion rate of 40ml/min using 

a syringe pump (NE-1600, New Era Pump Systems, Farmingdale, NY). 

Pressure readings were measured with a digital manometer (Digitron 

2082P7, Instrument Technology Ltd, Ireland) with a range of 0-1500 mmHg 

(±0.15%). Burst pressure was defined as the maximum pressure before 

failure with values reported in mmHg (Note: 100 mmHg = 13.33 kPa). 

 

Assessment of the bioengineered vessel circumferential compliance 

Vessel compliance is defined as the ratio change in volume for the vessel for 

a given pressure change (Eqn. 1). To determine the circumferential 

compliance of the bioengineered vessels they were sutured over barbed 

tubing connectors and connected to a closed loop system where pressure 

could be accurately modified (±2 mm Hg) through control over the pressure 

head with a syringe pump (NE-1600, New Era Pump Systems, Farmingdale, 
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NY). Video tracking of vessel diameter was recorded via a USB video 

microscope (AM7013MT, Dino-Lite, The Netherlands). Image analysis was 

performed in ImageJ (US National Institutes of Health) by splitting the time 

stamped video into separate frames, thresholding the images to provide 

suitable contrast at the vessel edges, and measuring the external diameter at 

three points along the vessel for each frame. The compliance was 

determined at static pressure points between 20 mmHg and 40 mmHg and 

compliance was calculated using the following equation: 

  Ϸ ὅέάὴὰὭὥὲὧὩ ὴὩὶ άάὌὫ  
Ⱦ
 ὼρπ          (1) 

Where:  

ὖ is the lower pressure value, in mmHg 

ὖ is the higher pressure value, in mmHg 

And Ὑ  is the internal radius which can be calculated from the external 

diameter measurement (Ὀ  and vessel wall thickness (t) as follows: 

 Ὑ ὸ   

Assessment of the bioengineered vessel suture retention strength 

Suture retention strength was assessed using a tensile testing machine 

(Z050, Zwick/Roell, Ulm, Germany) and a 4-0 polypropylene suture with a 

taper point needle (Prolene, Ethicon GmbH, Norderstedt, Germany). The 

suture was inserted through one wall of the bioengineered vessel at a 

distance of 2mm from the vessel edge. A 5N load cell was used to measure 

the force during suture pull out at a crosshead speed of 50mm/min. Suture 

retention strength was defined as the maximum force experienced during 

suture pull out and results were recorded in grams-force.  

5.2.1.3. Assessment of the bioengineered vessel biological properties  

After 21 days in culture, the remodelled bioengineered vessels were washed 

in PBS and ring shaped sections were cut for analysis of the cell density 

(DNA quantification) and proportion of collagen in the vessel wall 

(hydroxyproline quantification). 
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Assessment of the bioengineered vessel cell density  

Ring shaped sections were excised from a minimum of 4 separate vessels 

per experimental repeat (n=3) for analysis (12 samples per group total). 

Samples were washed in PBS, weighed, and placed in tubes containing 1mL 

of lysis buffer (0.2 M carbonate buffer + 1% Triton X). Three freeze-thaw cycles 

to -80°C were performed to ensure lysis of all cells. DNA content was then 

quantified using a Quant-iT™ PicoGreen dsDNA kit, as per Section 2.2.4. 

Results are presented per wet weight of tissue and normalised to the single 

layer collagen construct (Coll DHT). 

 

Assessment of the bioengineered vessel collagen content. 

Assessment of the relative proportion of collagen in the vessels walls was 

achieved through quantification of the hydroxyproline content of the tissue. 

Hydroxyproline is an amino acid present primarily in collagen and so may be 

utilised as a biochemical assay for collagen content (Ignat’eva et al., 2007). 

Tissue samples were washed in PBS followed by two washed in distilled 

water before freeze-drying to prepare dry samples for assaying. Collagen 

was hydrolysed using collagenase from Clostridium histolyticum (C7926 

Sigma Blend Type F, Sigma-Aldrich, Dublin, Ireland). Free hydroxyproline 

was then oxidised through the addition of 0.2 M chloramine-T solution 

(Sigma-Aldrich, Dublin, Ireland). Finally a colorimetric product was formed by 

the addition of Ehrlich’s reagent (dimethylaminobenzaldehyde in acidified n-

proanol). Quantification of the chromophore was performed at 550nm using a 

spectrophotometer (Wallac Victor2™ 1420 multilabel counter, Perkin Elmer 

Life Sciences, Waltham, MA, USA) (Reddy and Enwemeka, 1996). A 

standard curve was prepared using trans-4-hydroxy-Lproline (Sigma-Aldrich, 

Dublin, Ireland) and conversion to collagen content was determined with a 

hydroxyproline-to-collagen ratio of 1:7.69 (Ignat’eva et al., 2007). 

5.2.1.4. Assessment of the bioengineered vessel morphology 

Assessment of the bioengineered vessel structure and collagen orientation 

The remodelling of the bioengineered vessel structure was examined via 

histology. Vessels were formalin fixed, embedded in paraffin and serially 

sectioned at 8μm transversely, as per Section 2.2.2. General tissue 
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morphology was examined via haematoxylin and eosin staining which stains 

nuclei blue/purple and ECM pink. Collagen density and orientation was 

determined via picrosirius red staining in combination with circularly polarized 

light (Lattouf et al., 2014; Whittaker et al., 1994). Briefly, picrosirius red was 

utilised to specifically stain collagen (collagens I and III) to determine the 

collagen density in the tissue. The orientation of the collagen was then 

analysed under circularly polarized light of the picrosirius red stained 

sections, with collagen fibres orientated parallel to the section plane 

exhibiting enhanced birefringence (Syedain et al., 2011a). The density of the 

collagen may also be determined via the intensity of the birefringence.  

 

Immunohistochemical assessment of bioengineered vessel structure 

The relative expression and location of SMC/vascular specific proteins was 

determined via immunohistochemistry. Formalin fixed samples were 

embedded in paraffin and serially sectioned at 8μm. Non-specific binding 

was blocked by 1% BSA (Bovine Serum Albumin) and cells were 

permeabilised with 0.1% triton X-100. Antigen retrieval for detection of αSMA 

and calponin was performed enzymatically with Proteinase K for 15 minutes 

at 37°. Heat-induced antigen retrieval was utilised for col III by incubating 

samples for 15 minutes in a 700 W microwave in 0.01M citrate buffer (pH 6) 

(Koch et al., 2012). Sections were then incubated overnight at 4°C with the 

following primary antibodies in blocking buffer: Rabbit Anti-smooth muscle 

actin (anti-αSMA, 1:90 dilution; Sigma-Aldrich, Dublin, Ireland), rabbit Anti-

calponin (anti-CNN1, 1:90 dilution; Sigma-Aldrich, Dublin, Ireland), and rabbit 

anti-collagen III (Anti-COL3A1, 1:80 dilution; Sigma-Aldrich, Dublin, Ireland). 

Secondary antibody labelling was performed for 1 hour at room temperature 

with Alexa fluor® 594 goat anti-rabbit IgG (1:800 dilution; Molecular Probes, 

Leiden, The Netherlands). Samples were mounted with FluoroShield™ with 

DAPI to counterstain cell nuclei (Sigma-Aldrich, Dublin, Ireland). Negative 

controls were performed by omitting incubation with primary antibodies. 

Sections were viewed on an epi-fluorescent microscope (Nikon Eclipse 90i, 

Nikon, Japan) and digital images were recorded at 10x magnification using 

the attached control unit connected to a PC and imaging software (Nikon DS 
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Camera control unit, Nikon, Japan with NIS Elements Basic Research V3.06, 

Nikon Instruments Europe, The Netherland). 

 

5.2.2 Effect of dynamic conditioning on TEVG maturation 

5.2.2.1. Bilayered TEVG fabrication 

Having determined the optimal architecture and crosslinking treatment 

(5.2.1), the TEVG with the most promising characteristics was selected for 

dynamic conditioning in a custom designed bioreactor (Chapter 4), with the 

optimal construct being the bilayered CE100 group which was EDAC 

crosslinked. SMCs were seeded as per sections 5.2.1.1 and the vessel was 

cultured for 7 days in static conditions prior to the application 14 days of 

dynamic conditioning. 

5.2.2.2 Dynamic conditioning in a custom designed bioreactor 

Dynamic biophysical stimulation was applied within the custom-designed 

bioreactor (Fig. 5.1) which has the capability to generate foetal, 

physiological, or pathological dynamic mechanical stimulation.  

Bilayered CE100 constructs (EDAC crosslinked) were mounted over an 

underlying silicone support sleeve in order to apply precise cyclical strain 

across the construct (Niklason et al., 1999; Seliktar et al., 2000) and to 

minimise the compounding factors involved in the dynamic stimulation of 

vessels directly in bioreactors e.g. increased fluid permeability, altered 

pressure to maintain desired strains. Recapitulation of foetal vessel culture 

conditions was achieved through application of a pulse rate of 120bpm with a 

mean cyclical strain of 5% and an amplitude of 1%  for a period of up to 21 

days in order to further enhance the bioengineered vessels promising 

characteristics. Foetal pulse rates (120bpm) have been shown to result in 

superior ECM production and higher burst pressures than normal adult pulse 

rates (Solan et al., 2003). In addition the straining regime was determined to 

be optimal to enhance cell proliferation while minimising apoptosis (Colombo 

et al., 2013). 
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Figure 5.1 Mounting of constructs within the custom designed culture 
chamber 

The bilayered CE100 (EDAC) TEVGs were pre-cultured for 7 days statically 
prior to mounting within the bioreactor culture chamber. Dynamic stimulation 
of 5% mean strain (±1%) was applied at a foetal pulse rate (120bpm) for a 
period of 14 days. 

 

Statistical analysis 

Statistical analysis was conducted using one-way or two-way ANOVA 

followed by Holm-Sidak post hoc test for pairwise comparisons using 

Sigmaplot Version 11.2 (Systat Software Inc., USA). A P-value of 0.05 or 

less was considered statistically significant (p≤0.05).  
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5.3 Results 

5.3.1 Effect of construct architecture and crosslinking on 

bioengineered vessel maturation 

5.3.1.1 Effect of construct architecture and crosslinking on 

bioengineered vessel biomechanical properties 

Biomechanical testing was used to determine the effect of construct 

architecture (single v bilayer) and crosslinking (DHT v EDAC) on the 

resulting vessel properties after 21 days static culture (Fig. 5.2). Burst 

pressure (Fig. 5.2A) was significantly increased in the bilayered CE100 

constructs versus the single layered CE100 constructs (1.54-fold, p<0.05). 

EDAC crosslinking further increased the burst pressure by 2.94-fold versus 

DHT crosslinking in the bilayered constructs (87.5 ± 14.5 mmHg v 29.83 ± 

5.0 mmHg, p<0.05). Single layer constructs failed below the required 

pressures for circumferential compliance testing (Fig. 5.2B). Circumferential 

compliance (Fig. 5.2B) was reduced by 3.45-fold with EDAC crosslinking 

(0.125 ± 0.02 %/mmHg), to a value closer to native internal thoracic artery 

(0.115 ± 0.039 %/mmHg) (Konig et al., 2010). Suture retention strength 

(Fig.5.2C) was increased 4.84-fold (p<0.05) in the bilayered CE100 

constructs versus the single layer CE100 constructs, and increased a further 

27% by EDAC crosslinking (p<0.05). The results indicate that the 

incorporation of the film layer in the bilayered constructs results in 

significantly improved suture retention strength, burst pressure, and 

compliance. Crosslinking with EDAC further improved all these properties. 
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Figure 5.2 Effect of construct architecture and crosslinking on 
bioengineered vessel biomechanical properties 

The vessel burst pressure (A), circumferential compliance (B), and suture 
retention strength (C) were all significantly affected by the incorporation of 
the film layer (bilayered groups) and also by crosslinking with EDAC 
(p<0.05). Burst pressure was significantly increased in the bilayered CE100 
constructs versus the single layer CE100 construct, while increased suture 
retention strength was also found with the incorporation of the film layer. 
Further increases to the burst pressure and suture retention strength was 
found with EDAC crosslinked constructs, while this treatment also reduced 
the circumferential compliance to a value closer to native tissue.  
 (*) denotes p<0.05 versus indicated group or  (***) versus all other groups.  
 

 

 

5.3.1.2 Effect of construct architecture and crosslinking on TEVG 

biological & morphological properties 

Having determined the effect of construct architecture and crosslinking on 

the biomechanical properties of the bioengineered vessels we next sought to 

determine their effect on the cellular response and remodelling of the 

vessels. Cell density (Fig. 5.3A) was similar between the Coll and CE100 
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single layered constructs while collagen content (Fig. 5.3B) was significantly 

reduced in the CE100 constructs due to elastin constituting 50% of the 

starting protein concentration (p<0.05). No change in cell density was found 

between the DHT and EDAC crosslinked bilayered constructs, while collagen 

content also remained similar (p>0.05). A significant reduction in cell density 

was found between the single layered constructs versus the bilayered 

constructs, although this was determined to be primarily due to the acellular 

film layer contributing towards the bilayered construct’s weight as the assay 

was determined per weight of tissue. 

 

 

 

Figure 5.3 Effect of construct architecture and crosslinking on 
bioengineered vessel biological properties 

Cell density (A) and collagen content (B) were significantly altered by 
construct architecture (p<0.05), although this was determined to be due to 
the acellular film incorporation. No significant change was found between 
DHT versus EDAC crosslinked bilayered constructs.(*) indicates p<0.05 as 
indicated, (&) indicates p<0.05 versus Coll and CE100. (***) denotes p<0.05 
versus all other groups. 
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The morphology and tissue organisation of the constructs after 21 days 

culture was determined via haematoxylin and eosin staining for general 

tissue structure (Fig. 5.4 A,B,D,E,G,H,J,K) and polarized light of picrosirius 

red strained sections to determine collagen organisation (Fig. 5.4 C,F,I,L). 

The single layer Coll and CE100 constructs displayed similar morphology 

histologically (Fig. 5.4 A,B,D,E) while the static compaction resulted in 

moderate circumferential alignment of the collagen in the vessel walls (Fig 

5.4 C, F). Similar wall thickness was observed for the single layered 

constructs with a mean of approximately 450μm (Coll: 411 ± 65 μm, CE100: 

488 ± 58μm) (Fig.5.5).  

 

The bilayered CE100 constructs crosslinked with DHT displayed a similar 

morphology to the single layered CE100 constructs, with the 2-ply film lining 

visible on the luminal side contributing towards the increased wall thickness 

(696 ± 97 μm, p<0.05) versus the single layered CE100 constructs (488 ± 

58μm). The high density of collagen in the film layer is clearly visible under 

polarized light of the picrosirius red stained samples (Fig. 5.4 I). Crosslinking 

the bilayered constructs with EDAC resulted in a further increase in wall 

thickness (890 ± 308μm), although this was non-significant versus the DHT 

crosslinked bilayered construct (p>0.05). The EDAC crosslinked constructs 

resisted cell mediated contraction of the porous outer wall and thus produced 

a more variable wall thickness in comparison to the DHT crosslinked groups; 

however tissue stability was greatly increased. 
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Figure 5.4 Effect of construct architecture and crosslinking on 
bioengineered vessel morphology and collagen organisation 

Haematoxylin and eosin stained sections reveal the degree of wall 
compaction and general tissue structure following 21 days static culture. 
Tissue and cell density was found to be highest at the abluminal side of the 
bioengineered vessels, consistent with the seeding location. Polarized light 
of picrosirius red stained sections reveals the organisation of collagen in the 
bioengineered vessels. Compacted and aligned collagen displays long 
wavelengths (red to yellow) while thinner fibres and less alignment results in 
shorter wavelengths (yellow to green). Histological artefacts are visible with 
the walls of A and G rupturing during processing, while partial delamination 
occurred in J. Vessel lumen is indicated with a L. 
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Figure 5.5 Effect of construct architecture and crosslinking on 
bioengineered vessel wall thickness 

Similar wall thickness was observed with the single layered constructs (Coll 
and CE100) while the incorporation of a film lining significantly increased the 
wall thickness in the CE100 bilayered (DHT) group (p<0.05). EDAC 
crosslinked bilayered constructs resulted in the highest wall thickness. (*) 
indicates p<0.05 as indicated, (&) indicates p<0.05 versus Coll and CE100.  
 

Immunofluorescent imaging was utilised to determine the relative expression 

and distribution of vascular specific proteins by the seeded SMCs (Fig. 5.6).  

The early stage SMC marker, αSMA, and the key fibrillar protein, collagen III, 

were expressed at expressed in all groups at a similar level. Calponin 

expression was primarily observed on the abluminal side of the vessel wall 

with the distribution limited to a wall depth of approximately 100μm.  

 

In summary, the optimal TEVG for further examination was determined to be 

the bilayered CE100 scaffolds crosslinked with EDAC based upon the 

enhanced biomechanical properties, maintenance of suitable biological 

properties, and enhanced remodelling potential due to the maintained tissue 

stability. 

 

 



182 
 

 

Figure 5.6 Effect of construct architecture and crosslinking on vascular 
protein expression by SMCs 

Immunofluorescent staining (red) for ŬSMA, Calponin, and collagen III with 
the associated cell nuclei stained using DAPI (blue). Expression of ŬSMA, 
calponin, and Coll III was primarily located on the abluminal surface of the 
cultured vessels, with no apparent differences observed between groups. 
Scale bar = 100ɛm. 
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5.3.2 Effect of dynamic conditioning on bioengineered vessel 

maturation 

5.3.2.1 Effect of dynamic conditioning on bioengineered vessel 

biomechanical properties 

Having determined the effects of construct architecture and crosslinking on 

the resulting vessel properties, we concluded that the bilayered CE100 

constructs crosslinked with EDAC were optimal for further examination. This 

conclusion was based upon the improved biomechanical properties (burst 

pressure, compliance, and suture retention strength), maintenance of cell 

viability during long term culture, and suitable remodelled architecture 

histologically. We next sought to determine the effect of dynamic conditioning 

within the custom designed bioreactor on the maturation of the bilayered 

CE100 TEVGs, crosslinked with EDAC.  

 

Biomechanical testing (Fig. 5.7) was used to determine the effect of dynamic 

bioreactor conditioning on the resulting vessel properties after 21 days 

culture (7 static + 14 dynamic). Burst pressure (Fig. 5.7 A) increased by 

35.6% (p<0.05) in the dynamically conditioned bioengineered vessels (111.7 

± 13.3mmHg) versus the static controls (82.2 ± 16.7 mmHg). Furthermore, 

dynamic conditioning also resulted in a 24.2% decrease in circumferential 

compliance (0.105 ± 0.015 %/mmHg) (Fig. 5.7 B) versus the static controls 

(0.138 ± 0.016 %/mmHg), with an inverse relationship between compliance 

and burst pressure often found in tissue engineered vascular grafts. 

Interestingly, suture retention strength (Fig. 5.7.C) remained unchanged due 

to dynamic conditioning. However, having previously shown that the vessel 

suture retention strength is primarily conferred by the film lining (Section 

5.3.1), we can infer that the acellular layer remains intact and maintains its 

structural integrity following dynamic conditioning.  
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Figure 5.7 Effect of dynamic conditioning on bioengineered vessel 
biomechanical properties 

Dynamic conditioning increased the vessel burst pressure (A) while also 
resulting in a decrease in the circumferential compliance (B). Suture 
retention strength was found to be maintained at a similar level between the 
static and dynamic conditioning. (*) denotes p<0.05 versus indicated group  

5.3.2.2 Effect of dynamic conditioning on bioengineered vessel 

biological & morphological properties 

Cell density (Fig. 5.8A) was increased by 1.57-fold (p<0.05) following 

dynamic conditioning. However, the proportion of collagen in the vessel wall 

decreased from 52.4 ± 7.0% of the dry tissue weight in the statically cultured 

vessels to 34.8 ± 11.7% in the dynamically conditioned vessels (p<0.05). The 

reduced collagen content in the vessel wall may be due to the increased 

production of non-collagenous proteins/GAGs (e.g. Elastin) following 

dynamic conditioning, or increased matrix metalloproteinase (MMP) 

production which is known to increase following dynamic conditioning 

(Seliktar et al., 2001).   
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Figure 5.8 Effect of dynamic conditioning on bioengineered vessel 
biological properties. 

Cell density (A) was significantly increased due to dynamic conditioning 
(p<0.05). Overall collagen content was significantly reduced in the 
dynamically conditioned group (p<0.05). (*) indicates p<0.05 as indicated 
 

Histological examination of the morphology of the tissue following 21 days 

culture revealed increased tissue density due to dynamic conditioning (Fig 

5.9 B, D) versus the static controls (Fig. 5.9 A, C). The film integrity was 

maintained during static and dynamic conditioning, and overall vessel 

integrity was excellent, Picrosirius red stained sections demonstrate the 

enhanced tissue density and significant circumferential alignment of collagen 

due to dynamic conditioning (Fig. 5.9 F, H) versus the static controls (Fig. 5.9 

E, G). Furthermore, vessel wall thickness was found to decrease by 17% 

(p<0.05) due to dynamic conditioning (Fig. 5.10). A mean wall thickness of 

812 ± 179μm under static conditions was reduced to 673 ± 123μm following 

dynamic conditioning (p<0.05).  
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Figure 5.9 Effect of dynamic conditioning on bioengineered vessel 
morphology and collagen organisation 

The EDAC crosslinked bilayered scaffolds were examined under static and 
dynamic culture conditions after 21 days culture. Dynamic culture (7 days 
static + 14 dynamic) resulted in an increase in apparent tissue density (B, D) 
versus the static controls (A, C). This increased density and improved 
circumferential collagen organisation was further confirmed with picrosirius 
red staining (E, F) and under polarized light (G, H). Histological artefacts are 
visible with the film layer exhibiting partial delamination due to the histology 
processing steps. Vessel lumen is indicated with a L.  
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Figure 5.10 Effect of dynamic conditioning on bioengineered vessel 
wall thickness 

Dynamic conditioning resulted in a significant reduction in the mean wall 
thickness (p<0.05) versus static culture conditions after 21 days culture. (*) 
indicates p<0.05. 
 

Immunofluorescent imaging was utilised to determine the relative expression 

and distribution of vascular specific proteins by the seeded SMCs (Fig. 5.11).  

The early stage SMC marker, αSMA, was expressed at increased vessel wall 

depth in the dynamically conditioned vessels which is consistent with the 

enhanced cell migration observed. Calponin expression was primarily 

observed on the abluminal side of the vessel wall with the distribution limited 

to a wall depth of approximately 100μm. Collagen III, a key fibrillar protein in 

vasculature, was produced by SMCs under both static and dynamic 

conditioning, although enhanced expression depth was observed in the 

dynamic groups. 
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Figure 5.11 Effect of dynamic conditioning on spatial distribution of 
vascular protein expression by SMCs 

Immunofluorescent staining (red) for ŬSMA (A, C), calponin (E, G), and 
collagen III (I, K) with the associated cell nuclei stained using DAPI (blue). 
Expression of ŬSMA, calponin, and Coll II was primarily located on the 
abluminal surface of the statically cultured vessels, while the improved cell 
migration observed with dynamic conditioning increases the depth of 
expression of the proteins of interest. Scale bar = 100ɛm.Vessel lumen is 
indicated with a L. 
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5.4 Discussion 

The overall goal of this chapter was to examine methods to enhance the 

maturation of collagen-elastin constructs to form bioengineered blood 

vessels. To this end, the specific goals of this chapter were to investigate the 

effects of construct architecture (single v bilayered), crosslinking (DHT v 

EDAC), and dynamic conditioning on the subsequent bioengineered vessel 

properties after 21 days culture. The results demonstrate that bilayered 

constructs result in enhanced biomechanical properties (burst pressure, 

compliance, and suture retention) versus the single layer constructs while 

maintaining suitable biological properties (cell density and collagen content). 

The vessel biomechanical properties were shown to be further enhanced 

through crosslinking with the carbodiimide crosslinker EDAC, while biological 

properties (cell density, collagen content) remained relatively unchanged. 

Vessel morphological analysis revealed that EDAC crosslinking resulted in 

increased resistance to cell-mediated vessel wall contraction, leading to 

thicker walls. However, the application of dynamic conditioning resulted in an 

apparent increase in vessel wall density, improved cell density, and improved 

collagen circumferential alignment, which translated to a significant increase 

in burst pressure and a compliance closer matching native vessels. 

Additionally, these bioengineered vessels displayed cell-mediated synthesis 

of the vascular proteins αSMA, calponin, and collagen III within the vessel 

wall, with enhanced cell migration observed in the dynamically conditioned 

vessels. Therefore, the optimal strategy established in this study for the 

maturation of the described natural polymer (Collagen-elastin) TEVGs 

consists of a bilayered tubular architecture, crosslinked with EDAC, and 

dynamically conditioned in a bioreactor to produce a novel bioengineered 

blood vessel. 

 

Structural-functional relationships exist for many organs and tissue 

engineered products, including vascular grafts (Badylak et al., 2009; Butler et 

al., 2000). We have previously shown the capability to alter the architecture 

of our constructs (Chapter 3) through the developed biofabrication 

techniques and thus we have subsequently assessed the effect this has on 
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the functional TEVG properties following 21 days culture. The incorporation 

of a dense film layer resulted in vastly improved biomechanical properties 

including a 4.84-fold increase in suture retention strength (p<0.05) and a 

1.54-fold increase in burst pressure (p<0.05) versus the single layer 

constructs (Fig. 5.1). Morphologically, the dense film layer resulted in an 

increase in overall wall thickness (Fig. 5.4) although similar levels of 

compaction were observed on the outer porous layer (Fig. 5.3). The film is 

easily discernable in the polarized light imaging of the picrosirius red stained 

sections, where the high intensity and colour of the birefringence indicates 

the very high collagen density and partial circumferential alignment. This 

alignment in the films is hypothesised to occur due to the method in which 

the film is fabricated, whereby the protein suspension is dehydrated to 

effectively form a 2D structure and thus limits the collagen organisation to 

two potential axes rather than three (Moritani et al., 1971).  

 

While reinforcement of natural polymer vascular grafts has been primarily 

achieved though incorporation of synthetic polymers (Koch et al., 2010; 

McClure et al., 2012; Tschoeke et al., 2008) there has also been reports of 

multi-layered vascular grafts based solely on natural polymers, including the 

incorporation of acellular support sleeves from collagen (Berglund et al., 

2003) and elastin (Koens et al., 2015, 2010). One study has shown the ability 

to create acellular vascular grafts from collagen and elastin (elastin-like 

protein polymer) polymer films, with the very high density walls resulting in 

impressive mechanical properties (Kumar et al., 2013). However, when 

implanted into a rat aortic interposition model for 2 weeks, no cell infiltration 

was observed due to the grafts non-porous microstructure leading to 

questions regarding long term graft stability in vivo due to a lack of 

remodelling. Consequently, the approach detailed in this study exhibits a 

number of advantages due to the ability to independently alter each of the 

layers, including modification of the composition, crosslinking type and 

microstructure suitable for cell infiltration. We have also shown the ability to 

significantly alter the biomechanical properties of these natural polymer 

based TEVGs solely through non-cytotoxic crosslinking techniques. 
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Crosslinking allows the modification of biomaterial mechanical properties and 

degradation rate independently of the structure/architecture (Chapter 3) 

(Mason et al., 2013). Consequently, it is a powerful tool to further tailor the 

properties of TEVGs, such as those described in this thesis. While the base 

bilayered CE100 constructs were crosslinked with DHT, the application of 

EDAC crosslinking resulted in a further 2.94-fold increase in burst pressure 

(p<0.05) and a 27% increase in suture retention strength (p<0.05) (Fig. 5.1). 

Additionally, the compliance (0.125 ± 0.02 %/mmHg),  was reduced to a 

value similar to that found in native internal mammary arteries (0.115 ± 0.039 

%/mmHg) (Konig et al., 2010).  Remodelling of the construct was also 

altered through crosslinking, with the EDAC crosslinked vessels displaying 

an increased resistance to cell-mediated contraction of the outer porous 

layer of the construct wall (Fig. 5.3). This led to an increase in the mean wall 

thickness (p<0.05) (Fig. 5.4). Consequently, this also impacted the density of 

the tissue, with the EDAC crosslinked group retaining a more open 

architecture versus the DHT crosslinked group which may aid in further cell 

migration throughout the walls (Haugh et al., 2011). Both crosslinking 

methods also supported the attachment and migration of cells and did not 

elicit any negative cellular response, with a similar cell density (Fig. 5.2) 

observed between both crosslinking treatments, with similar results 

previously reported (Hafemann et al., 2001; Haugh et al., 2011, 2009). 

Therefore, the optimal crosslinking method for the natural polymer TEVGs 

developed here was determined to be EDAC treatment. 

 

The increased resistance to cell-mediated contraction after EDAC 

crosslinking may also be explained in part by changes in the local stiffness, 

with a 4.54-fold increase in tensile modulus found for the outer porous layer 

with EDAC versus DHT crosslinking (results not shown).  Indeed, it is well 

established that local scaffold stiffness can play a critical role in the biological 

response of cells, as a scaffold can be considered analogous to the natural 

extracellular matrix produced by cells by providing structural support, 

adhesion sites, facilitating movement, regulating cell behaviour, and assisting 

cell-to-cell recognition. Substrate stiffness has been shown to have a direct 

influence on cell migration, development, proliferation and shape (Discher et 
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al., 2005). It has previously been shown that SMC are sensitive to substrate 

stiffness changes and specify their phenotype commitment partially based on 

this, with increased SMC marker expression on high stiffness substrates (35-

135kPa) versus low stiffness substrates (1-25kPa) (Park et al., 2011; 

Sazonova et al., 2011). Additionally, myogenic differentiation of MSCs has 

also be shown to be dependent on substrate viscoelastic properties, with 

high creep substrates showing enhanced SMC differentiation (Cameron et 

al., 2014). Thus, it is clear that further investigation would be necessary to 

elucidate the specific response of EDAC and DHT crosslinking on SMC 

phenotype and/or myogenic differentiation. 

 

The ability of dynamic conditioning, applied through a custom designed 

bioreactor (Chapter 4), to aid in the maturation of the TEVGs was then 

investigated. Recapitulation of foetal vessel culture conditions was achieved 

through application of a pulse rate of 120bpm (Couet et al., 2011) with a 

mean cyclical strain of 5% and an amplitude of 1% . Natively, human aortic 

SMCs generally experience a mean cyclical strain of 10%; however, this 

physiological strain regime results in significantly reduced cell proliferation 

(Kona et al., 2009) and increased production of matrix metalloproteinase 2 

(MMP2), which may be involved in vessel remodelling or result in loss of 

structural integrity of the graft due to excessive proteolytic activity (Seliktar et 

al., 2003, 2001). Low mean circumferential strain (5%) is known to result in 

higher proliferation than 10% mean strain, while also inducing ECM 

production/remodelling (Solan et al., 2003). Additionally, low cyclic strain 

amplitude (1%) is known to decrease apoptosis versus higher strain 

amplitudes (3%) (Colombo et al., 2013). This is consistent with our results 

where increased cell density (Fig. 5.8) was observed in the dynamically 

conditioned vessels which were subjected to cyclical strain of 5% and an 

amplitude of 1%. However, decreased collagen content was found in the 

dynamically conditioned vessels which may indicate increased levels of 

MMP2 production. Despite the decreased collagen content a significant 

increase in burst pressure was observed with dynamic conditioning (Fig. 

5.7), coupled with a decrease in compliance. This would suggest that 

significant remodelling of the bioengineered vessel is occurring due to the 
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mechanical conditioning, which was confirmed via histological analysis (Fig. 

5.9) where significantly increased vessel wall density and enhanced collagen 

circumferential organisation were observed. Finally, dynamic conditioning 

resulted in improved cell migration (Fig. 5.10) and the expression of αSMA, 

calponin, and collagen III was observed in the vessel walls. 

 

Despite almost 30 year having passed from the first attempt at fabricating a 

tissue engineered vascular graft (Weinberg and Bell, 1986), their remains no 

vessel which satisfies the numerous biological and biomechanical 

requirements to serve as a long term replacement vessel. Due to the 

challenging haemodynamic environment, a replacement vessel must 

possess high strength (burst pressure) while also maintaining elasticity 

(compliance) and the ability to be anastomosed easily with the native 

vasculature (suture retention strength). Traditionally, the field has focused on 

achieving suitable burst pressures and suture retention strength, with 

compliance and biological suitability a secondary concern. The 

bioengineered vessel described in this chapter has been shown to possess 

suitable compliance and suture retention strength, while possessing 

excellent biological characteristics due to the protein composition, 3D 

architecture, and ability to be actively remodelled. We believe it represents 

an ideal in vitro platform for examining vascular cell interaction, disease 

progression, pharmacological toxicity, or cardiovascular medical devices 

testing, in addition to having potential therapeutic as a vascular graft. 
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5.5 Conclusion 

The optimal approach to enhance the in vitro maturation of the CE100 

TEVGs was examined with alterations in construct architecture, crosslinking, 

and dynamic conditioning in the custom designed bioreactor. Bilayered 

TEVGs resulted in enhanced biomechanical properties (burst pressure, 

compliance, and suture retention) versus the single layered TEVGs while 

maintaining suitable biological properties (cell density and collagen content). 

The results of this study also demonstrated that TEVG biomechanical 

properties could be further improved with EDAC crosslinking. Furthermore, 

the application of foetal-like dynamic mechanical conditions resulted in 

significant remodelling of the TEVGs, with an apparent increase in vessel 

wall density, improved cell density, and improved collagen circumferential 

alignment, which translated to a significant increase in burst pressure and a 

compliance closer matching native vessels. These tissue engineered 

vascular grafts displayed cell-mediated synthesis of the vascular proteins 

αSMA, calponin, and collagen III within the vessel wall, with enhanced cell 

migration observed in the dynamically conditioned vessels. 
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6.1 Overview 

Tissue engineering, in its currently recognised form, first came about in the 

early 1980’s through the work of Prof. Ioannas Yannas (MIT) and Dr. John 

Burke, (Massachusetts General Hospital) for the generation of artificial skin 

(Vacanti, 2006; Yannas and Burke, 1980). Just a few short years passed 

before pioneering research by Weinberg and Bell (Weinberg and Bell, 1986) 

and L’Heureux (L’Heureux et al., 1993) demonstrated the possibility of 

generating tubular vascular models composed of smooth muscle cells, 

endothelial cells and fibroblasts embedded within a collagen gel. Almost 30 

years have passed since Weinberg and Bells tubular model and while the 

field has advanced significantly towards the generation of TEVGs suitable for 

implantation, full scale clinical translation remains an aspirational goal. 

 

While blood vessels may superficially seem to be a comparatively simple 

tissue to bioengineer, the extremely challenging mechanical conditions 

coupled with the multifaceted biological requirements, has resulted in limited 

clinical success. The propensity of the field to focus on a single 

characteristic, burst pressure, has undoubtedly resulted in many TEVGs with 

suitable strength yet often at the expense of elasticity and biological 

characteristics. Consequently, this thesis focused on the latter two aspects, 
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with a specific focus on creating collagen-elastin composite scaffolds which 

mimic native vessel composition and anatomical structure. 

 

Due to the many shortcoming of utilising synthetic polymers for vascular graft 

construction we consequently opted to develop a natural polymer based 

TEVG. Although it is clear that a TEVG must have sufficient strength to 

withstand the arterial environment and be non-thrombogenic, it is also 

imperative that the vessel displays a suitable compliance, be vasoactive, and 

facilitate active remodelling in order for the vessel to be fully functional 

(Nerem, 2000; Yao et al., 2005). In Chapter 2 we sought to improve the 

viscoelastic properties of collagen-based scaffolds through the incorporation 

of elastin. The results corroborated this hypothesis as elastin addition 

resulted in a higher degree of cyclical strain recovery and improved creep 

resistance which may aid in providing compliance closer to native vessels 

and resisting aneurysm formation in vivo. Additionally, the gene expression 

and proliferation data suggested that the presence of elastin resulted in a 

more contractile-like SMC phenotype, in the absence of any exogenous 

stimulation. This biomaterial platform was deemed to possess great potential 

for cardiovascular tissue engineering and was amenable to multiple 

fabrication methods to generate a physiologically relevant architecture. 

 

This biomimetic biomaterial was subsequently developed into a novel 

bilayered tubular architecture (Chapter 3) with a porous outer layer suitable 

for smooth muscle cell seeding, analogous to the native artery medial layer, 

while the inner dense film layer was designed to increase the overall graft 

mechanical properties while also presenting a suitable surface to support a 

confluent endothelium. Optimisation of the fabrication process allowed the 

generation of an outer layer with a homogenous pore structure and high 

porosity, ideally suited to enable very efficient diffusion of cell nutrients and 

waste products while facilitating cell attachment and migration in an in vivo-

like 3D environment. The properties of the dense luminal lining were 

controllable via crosslinking which enabled the modification of the 

mechanical properties, degradation resistance, and inflammatory profile. This 
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bilayered tubular scaffold was ultimately considered highly suitable for use as 

the basis for a TEVG. 

 

Dynamic biophysical stimulation is an important aspect in the development of 

a functional tissue engineered vascular graft (Schutte et al., 2010) which has 

been shown to aid in the development of TEVGs  in numerous different ways 

including improved strength (Tschoeke et al., 2009), improved cell alignment, 

increased ECM deposition (Hahn et al., 2007), and inducing normal 

physiological cell phenotype (Qu et al., 2007).  Chapter 4 of this thesis 

outlined the development of a novel pulsatile flow bioreactor system capable 

of recreating the complex haemodynamic environment in vitro. The system 

was capable of applying physiological fluid shear stresses, cyclical strain and 

pulsatile pressure to mounted TEVGs. The flexible design allowed the 

mounting of variable diameter scaffolds/TEVGs and was designed to be 

utilised to examine the effect of mechanical stimulation on the in vitro 

maturation of the bilayered tubular collagen-elastin TEVGs. 

 

In the final chapter (Chapter 5) we examined the effect of scaffold 

architecture, crosslinking, and dynamic conditioning in the custom pulsatile 

bioreactor from Chapter 4 on the maturation of the TEVGs. Bilayered TEVGs 

were found to display significantly enhanced mechanical properties versus 

single layered TEVGs due to the incorporation of the dense film layer. The 

scaffolds could be crosslinked prior to cell seeding, thus reducing the risk of 

cytotoxicity which is present when crosslinking cell-embedded hydrogels. 

Crosslinking with EDAC was shown to further improve the mechanical 

properties of the grafts and also resist degradation during culture, an issue 

often present with fibrin based TEVGs (Cholewinski et al., 2009). The optimal 

TEVGs were dynamic conditioned in the custom designed bioreactor which 

resulted in higher cell density, improved collagen circumferential alignment, 

and consequently, enhanced mechanical properties. The following sections 

will summarise the key findings and implications from each individual chapter 

and review the possible future directions which have arisen from this 

research. 
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6.2 Chapter 2: Effect of elastin incorporation on the 

microstructure, mechanical properties, and biological 

response of collagen scaffolds for cardiovascular 

tissue engineering 

A major challenge in cardiovascular tissue engineering is the design and 

fabrication of biomaterials with suitable biological instructive cues to guide 

cell behaviour, while additionally supporting the challenging haemodynamic 

mechanical environment once implanted in vivo (Annabi et al., 2013; Quint et 

al., 2011). Our approach to this has been to utilise insoluble elastin in 

combination with collagen as the basis of a biomimetic scaffold for 

cardiovascular tissue engineering. Elastin is an ideal protein to examine as a 

composite with collagen due to its important mechanical and biological role in 

vivo. Consequently, a series of elastin containing scaffolds were developed 

with collagen as the base structure. The overall goal of this chapter was to 

assess the effect of elastin on collagen scaffold microstructure, mechanical 

properties, and subsequently the response to seeded smooth muscle cells 

(SMC) in vitro. 

 

Morphologically it was shown that elastin was homogenously distributed at 

higher concentration (CE100, a 1:1 ratio of collagen to elastin), with the 

elastin fibres primarily encapsulated in the collagen struts. The bulk addition 

of the protein caused a predictable decrease in scaffold porosity, although it 

was still comparatively excellent with a minimum of 98.8%, far above the 

minimum required for effective tissue repair/regeneration (~90%). The pore 

architecture remained unchanged although some deviations in mean pore 

size were observed; however the mean pore size results were within the 

idealised range for effective cell migration, proliferation(Lee et al., 2008) and 

ECM production (Ross and Tranquillo, 2003) while facilitating sufficient 

nutrient exchange for SMCs/MSCs. 

 

One of the key finding of this study was that the incorporation of elastin 

significantly improved the viscoelastic characteristics of the biomaterial. The 

results suggest that elastin confers a vastly improved resistance to creep, 
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which supports the importance of elastin as a load bearing cardiovascular 

protein which store elastic-strain energy. Indeed, multiple reports of tissue 

engineered vascular grafts with an absence of elastin in their structure have 

exhibited graft dilation via creep in vivo (L’Heureux et al., 2007; Niklason et 

al., 2001).  Although elastin did result in a decrease in the scaffold stiffness, 

this was to be expected due to elastin natively displaying a stiffness 

(~0.5MPa) an order of magnitude lower than collagen  (~5MPa) (Nowatzki 

and Tirrell, 2004). Interestingly, following cell-mediated contraction of the 

scaffold it was determined via cellular solids modelling that the scaffold 

modulus closely matched native heart tissue at ~33kPa while also being 

within the range found for native human tunica media moduli, reported to 

range between 1.3kPa for coronary arteries (Holzapfel et al., 2005) and 

190kPa for carotid arteries (Khamdaeng et al., 2012). 

 

Smooth muscle cells (SMCs) display extraordinary plasticity and  it is known 

that they alter their phenotype partly in response to local environmental 

changes (Rensen et al., 2007). To this end we examined the proliferation 

and maturation of SMCs seeded on the CE100 composite scaffolds. Elastin 

addition was found to result in the modulation of the SMC phenotype towards 

a contractile state which was determined via reduced proliferation and 

significantly enhanced expression of early (α-SMA), mid (calponin), and late 

stage (SM-MHC) contractile proteins. Conversely, collagen-only scaffold 

induced a more synthetic phenotype. While elastin has been implicated in 

altering SMC/MSC towards a contractile phenotype in 2D (Gong and 

Niklason, 2008; Park et al., 2004), we believe this is the first conclusive 

evidence of this effect in 3D.  This effect is hypothesised to occur through 

direct signalling between elastin and SMC with evidence suggesting G-

protein coupled receptors, the 67-kDa elastin binding protein, and a variety of 

integrins (Bax et al., 2009; Lee et al., 2014). Ultimately, the application of this 

CE100 biomaterial would involve replicating native vasculature 

structure/architecture, sustained in vitro maturation, and mimicking native 

dynamic stimulation to create a bioengineered blood vessel. This was the 

focus of the subsequent studies shown in Chapters 3-5. 
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6.3 Chapter 3: The development of bilayered tubular 

collagen-elastin scaffolds for vascular tissue 

engineering 

In Chapter 2, CE100 composite scaffolds were shown to emulate many of 

the desirable characteristics for cardiovascular tissue engineering and 

represented a promising biomaterial platform for further investigation. 

Consequently, we sought to utilise this biomimetic biomaterial to create a 

tissue engineered vascular graft (TEVG) which would mimic not just the 

native vasculature protein microenvironment but also structure, and be 

composed of a multi-layered lamellar tubular structure. The overall goal of 

this chapter was thus to develop a biomimetic scaffold with a physiologically 

relevant bilayered tubular architecture suitable for vascular tissue 

engineering. 

Natural polymer fabrication techniques have traditionally lagged behind those 

used with synthetic polymers due to the risk of denaturing the proteins under 

challenging conditions, such as high temperature. The hierarchically 

structuring of natural polymers, like collagen, has thus only recently received 

attention in the field and may be achieved by altering the protein 

concentration between the layers to leverage the effect of density on the 

overall mechanical properties (Caliari et al., 2011; Kumar et al., 2013). To 

this end, dense CE100 films were developed for use as an acellular dense 

luminal layer on the TEVGs.  

Importantly, this study demonstrated the capability to modulate the properties 

of these films through a number of physical, chemical, and enzymatic 

crosslinking techniques including DHT, mTGase, riboflavin/UV, EDAC, and 

glutaraldehyde. These crosslinking treatments were shown to alter the film 

residual amine content, mechanical properties, degradation resistance, and 

inflammatory cytokine expression from human macrophages.  The optimal 

crosslinking methods were determined to be DHT and EDAC treatments as 

they resulted in improved degradation resistance and enhanced mechanical 

properties over a suitable range. Interestingly, EDAC crosslinking was found 

to result in an improved immunogenic response with reduced inflammatory 
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cytokine expression (TNFα) from primary macrophages. Ultimately, both 

DHT and EDAC crosslinking displayed properties which merited inclusion in 

future studies on the in vitro maturation of the TEVGs (Chapter 5). 

 

Utilising the CE100 films developed above, this study subsequently 

developed a biomimetic bilayered TEVG with a porous tubular outer scaffold 

and a dense film luminal lining. Initial results showed the ability to create 

single layered porous TEVGs using freezedrying in a custom designed mold. 

The optimal fabrication process allowed the capability to create tubular 

TEVGs of lengths of up 65mm, with varying diameters, and the ability to 

further tailor the pore size using controlled freezing (~100μm) or rapid flash 

freezing (~15μm). Utilising the optimal biofabrication methods for the tubular 

porous scaffolds and dense films, we subsequently incorporated these two 

methods to create more a more physiologically relevant bilayered TEVG. 

Initial results suggested that the freezing dynamics were altered with the 

addition of the film layer and so optimisation of this process focused on 

altering the mold freezing direction and mandrel thermal conductivity to 

control the direction of ice crystal growth and consequently control the final 

TEVG microarchitecture. The bilayered design combines the advantages of 

both the film and the porous scaffolds with the increased mechanical 

properties of the films, a smooth surface for future endothelial monolayer 

formation, and a porous outer layer for smooth muscle cell growth, migration 

and remodelling. Due to the multi-step fabrication procedure each layer can 

be differentially modified, including altered compositions and crosslinking, 

thus allowing greater control over the final properties to generate a 

biomimetic TEVG. 

Following the development of the bilayered TEVG, an initial in vitro study 

demonstrated the ability of SMCs to attach, migrate, and compact the porous 

scaffold wall during culture. Overall, the novel bilayered TEVGs were 

deemed to represent a promising platform for further in vitro maturation in 

order to enhance its therapeutic potential or application as an in vitro testing 

platform.  
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6.4 Chapter 4: Design, develop, and validate a 

versatile pulsatile bioreactor for culture of small 

diameter vascular grafts 

In the first two results chapters of the thesis we demonstrated the ability to 

generate a suitable collagen-elastin biomaterial (Chapter 2) with anatomically 

relevant architecture (Chapter 3) and controllable properties for vascular 

tissue engineering. However, the in vitro generation of a functional TEVG 

requires not just a suitable cell-seeded scaffold/construct but also the 

application of appropriate biomechanical and biochemical signals (Niklason 

et al., 1999; Tschoeke et al., 2009). The appropriate biomechanical signals 

can be generated by simulating the dynamic physiological environment of 

native vessels through the use of bioreactor technology (Galie and 

Stegemann, 2011; Schutte et al., 2010). Consequently, the aim of this 

chapter was to design, develop, and validate a bioreactor system which was 

capable of recreating the complex cardiovascular biomechanical 

environment for culturing TEVGs in vitro. 

The overall bioreactor system designed consists of a multi-channel peristaltic 

pump with four independent flow loops which pumps cell culture medium 

from an elevated reservoir via highly compliant silicone tubing though a 3D 

TEVG culture chamber before being returned to the same reservoir in a 

closed loop system. This layout facilitates the independent setup and priming 

of each individual loop, minimises contamination risk, and allows the ability to 

alter culture conditions and timepoints between individual flow loops. 

A novel chamber was developed for the mounting of TEVGs for subsequent 

dynamic stimulation. The chamber design included modifications from the 

design of Lee and Wang (Lee and Wang, 2011) while also applying design 

elements from Seliktar (Seliktar et al., 2000). The flexible chamber design 

permits the mounting of TEVGs of varying length and internal diameter in 

conjunction to being easy to assemble. The design addresses many of the 

issues commonly encountered with bioreactor chambers in the field due to 

the easy assembly process, leak proof design, and ability to be detached 

from the system for endothelial cell seeding without removing the TEVG 
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(Avci-Adali et al., 2013). Cytotoxicity analysis of the individual bioreactor 

components and the fully assembled system revealed that the system was 

biocompatible and suitable for culturing cell-seeded TEVGs. 

One of the primary requirements of the bioreactor was to ensure capability of 

applying physiological levels of cyclical strain, shear stress and pressure. 

The bioreactor system was found to be capable of generating intraluminal 

fluid flow of a laminar nature with a Reynolds number of between 160-320 at 

pulse rates between 60bpm-120bpm, which is within the physiological range 

(100-1000) of coronary, mesenteric and femoral arteries (Caro, 2012; 

Vennemann et al., 2007). It is capable of applying a shear rate (82 s-1 -164 s-

1 at 60-120bpm respectively) closely matching the superficial femoral artery 

(130s-1) and brachial artery (194s-1) (Wu et al., 2004) and shear stress (0.82-

1.64 dyne/cm2) within the physiological ranges for these vessels (Kornet et 

al., 2000; Mitchell et al., 2004). Pressure waveforms of 50-80mmHg can be 

generated in the system, although this can be increased to >100mmHg by 

positioning the media reservoirs in a separate incubator mounted above the 

culture chamber incubator to gain the additional basal pressure. Cyclic strain 

can be applied directly to the TEVGs via the pulsatile fluid pressure or may 

be applied to TEVGs mounted over a compliant silicone tube to isolate the 

effects of strain on the maturation of the TEVGs. Measurement of the applied 

cyclic strain was achieved via a non-invasive video capture and analysis 

system which may be utilised to estimate the Young’s modulus of the TEVG 

in a non-destructive manner (Couet and Mantovani, 2012).  

Overall, the bioreactor system can be utilised to apply physiological stresses 

and strains to cell-seeded vascular grafts. In order to provide the optimal 

environment for tissue maturation, the application of dynamic mechanical 

stimulation within the bioreactor was the subject of investigation in Chapter 5. 
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6.5 Chapter 5: Maturation of collagen-elastin based 

TEVGs: The effect of scaffold architecture, 

crosslinking, and dynamic conditioning 

The ideal approach to enhance the in vitro maturation of the CE100 TEVGs 

was examined by first assessing the effect of TEVG architecture (single v 

bilayered) and the two optimal crosslinking treatments from Chapter 3 (DHT 

and EDAC) on remodelling and functional characteristics of the vascular 

grafts after 21 days static culture. The optimal TEVG from this analysis was 

then selected for dynamic conditioning in the custom designed bioreactor. 

Having previously developed both single layered and bilayered TEVGs, the 

stability of the acellular film layer after long term culture remained unknown. 

Bilayered TEVGs were found to result in enhanced biomechanical properties 

(burst pressure, compliance, and suture retention) versus the single layer 

TEVGs, with suture retention strength alone increased almost 5-fold. This 

was due to the very high collagen density in the film layer, which was clearly 

demonstrated via histology. While overall cell density was reduced, this was 

to be expected as the cell density was assayed per weight of dry tissue, with 

the acellular film layer contributing negatively towards this. Morphologically, 

the graft wall was contracted from the initial value of 2mm to approximately 

500μm by the seeded SMCs.  

 

The biomechanical properties of the bilayered TEVGs were further improved 

with EDAC crosslinking, with burst pressure increased almost 3-fold versus 

DHT crosslinking. Interestingly, EDAC crosslinking also significantly reduced 

the compliance by almost 3.5-fold and reaching a value (0.125 ± 0.02 

%/mmHg) close to that of the internal thoracic artery (0.115 ± 0.039 

%/mmHg), a commonly used autologous graft for coronary artery bypass 

grafting (Konig et al., 2010). Immunofluorescent imaging demonstrated the 

expression of αSMA, calponin, and Collagen III in all groups, although it was 

primarily located on the abluminal surface of the cultured TEVGs. 

SMCs/MSCs have previously been shown to display increased contractile 

marker expression on stiffer substrates (Park et al., 2011; Sazonova et al., 
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2011), and thus it was hypothesised that EDAC crosslinking may have 

resulted in increased expression of these vascular specific proteins due to 

the increased stiffness. However, no apparent different was observed 

between the DHT and EDAC crosslinked groups, although quantification of 

the expression levels via western blotting would be necessary to confirm this. 

 

Having determined that the bilayered TEVGs crosslinked with EDAC 

possessed the most potential, we subsequently selected this TEVG to 

investigate the effect of dynamic conditioning in the bioreactor on the 

maturation and remodelling of the grafts. Recapitulation of foetal vessel 

culture conditions was achieved through application of a pulse rate of 

120bpm (Couet et al., 2011) with a mean cyclical strain of 5% and an 

amplitude of 1%. Dynamic conditioning resulted in increased cell density but 

decreased collagen content which may indicate partial degradation due to 

increased levels of MMP production. Despite the reduced collagen content, 

burst pressure was significantly increased while compliance was further 

improved. This would suggest that significant remodelling of the TEVG is 

occurring due to the mechanical conditioning, which further supports the 

hypothesis that increased MMP activity is occurring. While MMP production 

is necessary for graft remodelling, this may warrant future investigation to 

balance the effects of matrix remodelling and potential degradation. 

Nevertheless, dynamic stimulation was found to cause an apparent increase 

in vessel wall density, and enhanced collagen circumferential organisation. 

Additionally, these bioengineered vessels displayed cell-mediated synthesis 

of the vascular proteins αSMA, calponin, and collagen III within the graft 

walls, with enhanced cell migration observed in the dynamically conditioned 

TEVGs. 
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6.6 Future work 

¶ This thesis focused in part on the potential of the CE100 biomaterial 

(Chapter 2) for cardiovascular applications, but future studies on the 

application of this biomaterial to other tissues where elastin is present in 

high proportions are merited, including: elastic cartilage, lung, heart 

valves, tendon, and skin tissue engineering. Furthermore, the technology 

presented in Chapter 3 could be adapted for other applications. To this 

end, we have used the same technique to prepare bilayered nerve 

conduits which have subsequently shown success in repairing damaged 

nerves in vivo. Consequently, we believe that the ability to create 

complex tubular architectures utilising natural proteins could be 

successfully applied to tissues other tissues such as airway (trachea, 

oesophagus), urinary and gastrointestinal tissues. 

 

¶ While the compliance and suture retention strength of the bilayered 

TEVGs can be deemed sufficient, the burst pressure is below the 

minimum requirement for in vivo implantation. Numerous approaches 

could be utilised to improve this property, including increasing the number 

of film layers within the TEVGs, seeding a co-culture of fibroblasts and 

SMCs to enhance the formation of ECM, or extending the culture period 

in the bioreactor. Importantly, while the biomaterial described has been 

shown to induce a more-contractile phenotype, it may be beneficial to add 

in mitogenic factors such as PDGF-BB during the early stage culture 

period to induce a synthetic SMC phenotype to enhance cell proliferation 

and to improve ECM synthesis (Gong and Niklason, 2008).   

 

¶ While we have demonstrated the ability to generate bilayered TEVGs 

which can be adaptable remodelled by SMCs, the idealised graft would 

require endothelialisation to further mimic native vessels and to ensure a 

non-thrombogenic response if implanted in vivo. Preliminary work has 

already been carried out to seed human umbilical vein endothelial cells 

on the luminal surface of these vessels, with the film layer supporting 

excellent cell attachment.  
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¶ While endothelialisation provides a non-thrombogenic interface for blood 

contacting vascular grafts, it also requires a fully confluent cell monolayer 

which may be disrupted during implantation or due to the challenging 

haemodynamic conditions. Consequently, the inherent thrombogenicity of 

the luminal layer is of great importance. To this end we are currently 

examining the inherent thrombogenicity of a number of proteins to act as 

a suitable basement membrane including collagen IV, laminin, and 

elastin. A custom microfluidic chip is being employed to gain a real-time 

measurement of the platelet response of whole human blood to each of 

the proteins both with and without a coating of endothelial cells.  

6.7 Thesis conclusions 

This study has shown that elastin addition to porous collagen scaffolds can 

play a major role in altering its biological and mechanical response. The 

addition of elastin was found to result in improved viscoelastic properties 

which indicates the biomaterial may possess sufficient recoil to be utilised for 

long-term cyclical distension for cardiovascular tissue engineering. 

Additionally, the presence of elastin resulted in a more contractile-like SMC 

phenotype which is necessary for vasoactivity and inhibition of intimal 

hyperplasia in vivo. This biomimetic biomaterial is amenable to multiple 

fabrication methods and represents a versatile biomaterial platform which is 

capable of being applied for numerous tissues including skin, elastic 

cartilage, lung tissue engineering, or as a cardiac patch for cell delivery. 

Utilising the optimal biomaterial formulation, we subsequently developed a 

biomimetic tubular scaffold with a bilayered architecture and highly 

controllable properties for use as a tissue engineered vascular graft (TEVG). 

In order to hierarchically structure the scaffold, dense Coll-Eln films were 

developed with crosslinking utilised to modulate the residual amine content, 

mechanical properties, degradation resistance, and inflammatory cytokine 

expression from human macrophages. A biomimetic bilayered construct was 

subsequently developed with a porous tubular outer layer and a dense film 
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luminal lining using a custom mold. The microstructure of the outer porous 

scaffold section was further optimised by altering the freezing direction and 

mandrel materials. Initial in vitro results revealed the biomimetic TEVGs 

represented a promising platform for further in vitro maturation in order to 

enhance the therapeutic potential or application as an in vitro testing 

platform. 

A novel pulsatile flow bioreactor was successfully designed, built, and 

validated which was capable of applying the complex cardiovascular 

biomechanical environment to four independent tubular TEVGs in a parallel 

circuit layout. The flexible chamber design permitted the mounting of TEVGs 

of varying dimensions, while we have shown the system to be non-cytotoxic 

and easy to assemble. The system can be utilised to apply physiological 

stresses and strains to cell-seeded vascular grafts in order to provide a 

suitable environment for tissue maturation with the appropriate 

biomechanical cues. Additionally, the bioreactor system could be utilised to 

evaluate the performance of medical devices in a physiologically relevant 

environment.  

The optimal approach to enhance the in vitro maturation of the CE100 

TEVGs was examined with alterations in TEVG architecture, crosslinking, 

and dynamic conditioning in the custom designed bioreactor. Bilayered 

TEVGs resulted in enhanced biomechanical properties (burst pressure, 

compliance, and suture retention) versus the single layer TEVGs, while 

maintaining suitable biological properties (cell density and collagen content). 

Biomechanical properties were further improved with EDAC crosslinking 

while TEVG remodelling through dynamic bioreactor conditioning resulted in 

an apparent increase in vessel wall density, improved cell density, and 

improved collagen circumferential alignment, which translated to a significant 

increase in burst pressure and a compliance closer matching native vessels. 

Additionally, these bioengineered vascular grafts displayed cell-mediated 

synthesis of the vascular proteins αSMA, calponin, and collagen III within the 

vessel wall, with enhanced cell migration observed in the dynamically 

conditioned TEVGs. 
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