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Summary 

 

Thrombosis is central to the pathogenesis of many life-threatening diseases, 

including stroke and myocardial infarction. Current treatments for thrombosis, 

particularly anti-platelet agents that target GPIIb/IIIa, can cause serious 

bleeding complications. Unlike GPIIb/IIIa, GPIb initiates thrombus formation at 

the high shear stress that is prominent in atherosclerotic vessels. Therefore, 

this target could prevent pathological thrombosis while leaving normal 

haemostasis at low shear rates relatively unaffected. Anfibatide is a novel 

GPIb antagonist isolated from snake venom in China. Anfibatide will enter 

phase Ib-IIa trials in early 2015 and therefore, it is necessary to develop an 

assay to measure its efficacy in patients. We have developed a flow cytometry 

based receptor occupancy assay. In this assay, total GPIb receptor numbers 

are measured using an anti-GPIb monoclonal antibody, and the percentage of 

GPIb receptor occupancy by anfibatide is measured. Receptor occupancy by 

anfibatide correlated with dose-dependent inhibition of ristocetin-induced 

aggregation in whole blood by anfibatide. Functional studies were carried out 

using anfibatide. Anfibatide did not inhibit binding of two anti-GPIIb/IIIa 

antibodies. Anfibatide partially inhibited the anti-GPIb antibodies VM16d, and 

SZ 2, indicating that it binds to GPIbα between the thrombin-binding site and 

the sulfated tyrosine motif. Anfibatide did not cause platelet activation or loss 

of single platelets in vitro. Anfibatide had no effect on aggregation induced by 

low dose or high dose thrombin, ADP or arachidonic acid. Anfibatide inhibited 

Streptococcus sanguinis 133-79 induced aggregation by 50% in half of 

healthy donors, but had no effect on Staphylococcus aureus Newman 

aggregation. The receptor occupancy assay is optimised and available for use 

in Phase Ib-IIa clinical trials, and in future clinical use of anfibatide. 
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Chapter 1: Introduction 
 
Platelets are anucleate fragments from megakaryocytes. They are the 

smallest and most abundant cellular component of blood, ranging from 3 x 

108/ml to 4 x 108/ml. The GPIb-IX-V complex is present on the platelet 

membrane and interacts with von Willebrand factor to initiate thrombus 

formation at high shear stress. This interaction is central in pathological 

thrombus formation, which can lead to stroke and myocardial infarction. 

Thrombosis is treated with anti-platelet agents, usually targetting the 

GPIIb/IIIa receptor. This receptor causes thrombus formation at low shear 

stress, and its inhibition leads to bleeding complications. Since GPIb inhibition 

would not affect haemostasis at low shear stress in the periphery, it is an 

enticing target for anti-thrombotic treatment (1-6).  
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Glycoprotein Ib-IX-V Complex  

 
The glycoprotein (GP) Ib-IX-V complex is a receptor present on the platelet 

membrane with a central role in primary haemostasis under high shear 

conditions. GPIb binds to von Willebrand factor (vWF), which is exposed on 

the subendothelium following vascular damage, leading to thrombus formation 

(1-6). GPIb bound to the endothelium may mediate endothelial cell migration 

during wound repair (7). GPIb-IX-V has also been implicated in regulating 

platelet size (2). 

 

The GPIb-IX-V complex is part of the leucine rich repeat (LRR) family (3). The 

adhesion receptor contains four membrane spanning polypeptides (GPIbα, 

GPIbβ, GPIX and GPV) in the ratio 2:2:2:1 on the platelet plasma membrane 

(5). GPIbα (610 residues) is disulfide linked to GPIbβ (181 residues), and is 

noncovalently complexed with GPIX (160 residues) and GPV (544 residues) 

(2). A stable complex between GPIbα, GPIbβ, and GPIX is required for 

normal transport of each gene product though the membrane systems of 

maturing megakaryocytes, as well as for expression of the complex on the 

platelet surface (8). GPV has a high affinity binding site for thrombin (9). The 

LRRs on GPIX, GPIbβ, and GPV may be vital in controlling subunit structure 

(8). GPIb-IX-V is formed in the endoplasmic reticulum and transported to the 

Golgi apparatus for subsequent modification, including O-glycosylation of 

GPIbα (8,10). GPIb-V-IX is extensively palmitoylated (11). A GPIb-V-IX 

subset is constitutively associated with lipid rafts in unstimulated platelets, and 

the number of receptors present can triple following stimulation with vWF (11, 

12). Lipid raft disruption impairs some GPIb-IX-V dependent reactions, 

including vWF induced aggregation, tyrosine phosphorylation and adhesion to 

vWF (11). 
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GPIb (CD42b) 

The largest subunit in the GPIb-IX-V complex is GPIbα, which has an 

apparent molecular mass of 135 kDa (2, 6). It is a major sialoglycoprotein with 

multiple N- and O- linked oligosaccharides (10). The N-terminal domain (1- 

282 residues) of GPIbα contains binding sites for vWF (amino acids 26-200), 

Mac-1 (on neutrophils), P-selectin (on activated platelets and endothelial 

cells), α-thrombin (a potent platelet agonist in vivo), clotting factors XI/XIIa, 

and high-molecular-weight kininogen (2, 6, 13). Glycocalicin, a soluble 

fragment of GPIb, is produced by proteolytic cleavage, for example by 

endogenous platelet calpain, of the external part of GPIbα. Glycocalicin 

circulates freely in normal plasma (10, 14). GPIb interaction with its ligands 

generally involves large protein-protein interactions (15). GPIb usually binds 

thrombin when the agonist is present at low doses, due to the high affinity of 

the binding site (4, 13, 16). Heparin blocks thrombin induced platelet 

activation through GPIb (4). The N- terminal domain of GPIbα is enclosed by 

two conserved disulphide loop structures, and contains eight LRRs (12). 

Asparagine residues in these LRRs are required for correct conformation and 

function of the ligand binding regions (17). LRRs 2, 3, and 4 are critical for 

vWF binding and platelet adhesion. Residues 283-302 are mostly negatively 

charged, and include aspartic and glutamic acids, and three sulfated tyrosines 

(Tyr276, Tyr278, Tyr279). Mutation of the three sulfated tyrosine residues strongly 

reduces vWF levels, and thrombin binding (12). It is suggested that this 

sulfated region is necessary for GPIbα to bind vWF under shear flow (9). A 

long and highly glycosylated mucin-like macroglycopeptide domain with a 

molecular mass of 118 kDa (residues 303-485) connects these to a single 

transmembrane region (residues 486-514) (12, 18). The macroglycopeptide 

may position the ligand-binding region above other molecules present on the 

platelet surface (9). The cytoplasmic tail of GPIbα consists of 96 amino acids 

(residues 515-610) and is necessary for normal processing and function of 

GPIb-V-IX (12). Filamin-1 binds to residues 557-579, and adaptor protein 

14.3.3ζ binds to residues 605-610 (19). 
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Some reports estimate 25,000 GPIbα receptors per platelet (5, 6, 13), but this 

remains controversial. Yamamoto et al reported approximately 28,000 GPIb 

molecules per platelet using a monoclonal antibody that binds to a part of 

glycocalicin containing overlapped binding sites for vWF and thrombin (20). 

Other monoclonal antibody studies indicate that there are 20,000 to 25,000 

receptors per platelet, compared to 40,000 to 50,000 receptors indicated in 

studies using monovalent snake venom C-type lectins. Recent flow cytometry 

studies generally support higher receptor numbers, suggesting that the 

divalent nature of the monoclonal antibodies was not considered in the earlier 

studies (15).  
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Von Willebrand Factor 

 

Von Willebrand factor (vWF) is a multimeric glycoprotein bound to collagen in 

the subendothelial matrix or plasma (21). It circulates in the plasma tightly 

bound to the glycoprotein factor VIII (FVIII). FVIII accelerates activation of 

factor X by activated factor IX in the coagulation cascade. VWF has an 

important role in production, conformation, and stabilisation of FVIII (12). 

Mature vWF is 250 kDa, with 2,050 amino acids, and is characterised by A, B, 

C, and D structural domains. It is rapidly secreted as a range of multimers 

(over 2,000 kDa) from endothelial Weibel-Palade bodies and platelet α-

granules following endothelial or platelet activation by pro-thrombotic or 

inflammatory signals (2, 12, 22, 23). Patients with coronary heart disease tend 

to have high vWF concentration, and have more ultralarge multimers than 

healthy people (24). VWF is exposed on the endothelium following vascular 

damage, which can occur acutely or chronically by several pathophysiological 

mechanisms, allowing it to interact with GPIb (3, 25). GPIb-IX-V binds vWF in 

a bidentate interaction, initiating platelet aggregation and leading to thrombus 

formation at high shear rates in flowing blood (3, 4). VWF binding to GPIb-V-

IX involves vWF A1 domain and the 45 kDa extra-cellular N-terminal domain 

of GPIbα (Figure 1.1) (2, 12). The co-crystal structures of GPIb (residues 1–

267) and the vWF A1 domain (residues 478–705) show involvement of N-

terminal (-hairpin) and C-terminal (“-switch”) flanking sequences. GPIb 

residues in the N-terminal flank, the LRRs, and the C-terminal flank directly 

interact with vWF A1. The LRR sequence 59–128 is critical for vWF binding 

under static or shear conditions using human or canine chimaeras of GPIb 

expressed on CHO cells (2). The A1 domain of activated soluble vWF 

requires a conformational change to increase its affinity for GPIb-V-IX. Under 

physiological conditions, this change occurs when vWF is bound in the 

extracellular matrix, or under hydrodynamic shear stress (12). 
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GPIb-vWF Interaction 

 

Platelets become activated after adhering to vWF and undergo cytoskeletal 

rearrangement associated with shape change, spreading and secretion of 

platelet agonists, for example adenosine di-phosphate (ADP), which recruits 

additional platelets to the developing thrombus (2, 26). VWF can 

simultaneously bind different GPIb-V-IX receptors on adjacent platelets, 

possibly contributing directly to receptor clustering and activation, and 

aggregate formation (11,12). GPIbα is involved in the transient binding of 

platelets to activated vWF at sites of vascular injury (4). GPIbα binding to vWF 

initiates platelet tethering to the subendothelial matrix, as well as transient 

platelet translocation across the matrix surface (9). This binding reduces 

platelet velocity in flowing blood, causing “rolling” of platelets. This allows vWF 

to efficiently capture platelets, initiating platelet deposition and thrombus 

formation (10, 12). Using a parallel plate flow chamber model, ex vivo 

platelets adhere transiently and roll on immobilized vWF under flow 

conditions. Rolling platelets become arrested on the vWF matrix when shear 

stress increased dramatically. This shear stress model is representative of 

arterial stenosis in vivo (27). Low GPIbα receptor density has been associated 

with increased cell velocity during this rolling phenomenon, compared to cells 

with high receptor density. GPV may also be necessary for optimum binding 

of vWF and GPIbα (9). Intracellular signal transduction leads to mobilisation 

of a src kinase and phospholipase Cγ2 activation. Release of internal Ca2+ 

stores follows, which causes rearrangement of the cytoskeleton, and platelet 

shape change with filipodia extension (28, 29). The platelet surface integrin 

GPIIb/IIIa (αIIbβ3) is also activated, binding fibrinogen and mediating platelet 

aggregation (2, 26, 29). GPIb-V-IX is also an indirect collagen receptor 

through the A3 domain of vWF, and possibly the A1 domain (15).  

 

The surface expression of the GPIb-V-IX complex is downregulated following 

platelet activation. This could possibly be a mechanism to prevent excessive 

thrombus growth (15). Thrombus growth and thrombolysis are dynamic 

processes and may occur simultaneously. Inhibition of the GPIb-vWF 
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interaction may stop platelet recruitment and shift thrombus growth toward 

dissolution under shear flow. The GPIb-vWF interaction leads to ‘outside-in’ 

signaling via the GPIb-IX-V complex, stimulating GPIIb/IIIa activation in the 

thrombus (4, 26). This is necessary for platelet aggregation mediated by 

fibrinogen, and other integrin ligands (26). 

 

 
Figure 1.1. The structure of the vWF A1 domain (shown in red) and GPIbα (shown in 

blue), (PDB: 1M10)
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GPIIb/IIIa 

 

Fibrinogen, the main ligand for GPIIb/IIIa, is a plasma glycoprotein that plays 

a critical role in platelet aggregation as well as in the formation of a fibrin clot 

at the site of vascular injury. When the coagulation cascade is triggered, the 

resulting thrombin activates platelets and converts fibrinogen into fibrin 

monomers. GPIIb/IIIa changes conformation following platelet activation 

allowing binding of fibrinogen. This process is the final common pathway for 

platelet aggregation stimulated by ADP, thrombin, or collagen. GPIIb/IIIa 

contains two RGD sequences in the α-chain (residues 95-97), and a C- 

terminal dodecapeptide on the γ-chain (residues 400–411). RGD peptides 

bind to residues 109–171 of GPIIIa, and γ-chain dodecapeptides bind to 

residues 294–314 of GPIIb. The RGD sequences and the AGDV sequence 

from the dodecapeptide share the same binding site in GPIIb/IIIa, spanning 

both chains IIb and IIIa (31). There are between 60,000 and 80,000 GPIIb/IIIa 

receptors per platelet (30). GPIIb/IIIa levels are lower in patients with 

Glanzmann’s thrombasthenia compared to healthy people, resulting in 

abnormal clot retraction, prolonged bleeding time, and the absence of platelet 

aggregation (32). These interactions are central in vascular inflammation and 

thrombosis. 
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Shear Conditions in Flowing Blood 

 

Under high shear stress, as found in the arteries, large particles, including 

erythrocytes, accumulate in the centre of blood flow, forcing the smaller 

platelets to the periphery, allowing them to interact with the endothelium (33). 

The interaction of the GPIb-IX-V complex with vWF has a vital role in the 

initiation of platelet adhesion, particularly at high shear rates (> 1,200 s-1), and 

is necessary for complete vessel occlusion above a limiting shear rate 

(approximately 10,000 s-1). At sites of vascular stenosis, blood flow velocity 

increases due to lumen restriction, thus increasing the shear stress on 

platelets. Complete thrombotic occlusion of vessels initiated by the GPIb-vWF 

interaction, and completed by GPIIb/IIIa mediated thrombus formation and 

adhesion, causes blood flow obstruction and tissue damage (26). The GPIb- 

V-IX interaction with vWF can efficiently take place under high shear flow in 

arterioles and small arteries (10 - 50 Angstrom in diameter), where the shear 

rate varies from 500 s-1 to 5,000 s-1 (9, 12). Under this high shear stress, 

GPIbα has limited time to bind to vWF, and requires a strong bond to support 

and maintain adhesion (9). On the other hand, platelet surface integrin 

GPIIb/IIIa and its ligands, including fibrinogen, mediate platelet aggregation 

and contribute to platelet adhesion at low shear stress in larger arteries and 

veins (9, 12, 26).  
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In Vitro Activation of GPIb 

 

Soluble vWF can be activated artificially in vitro to bind GPIb-V-IX in the 

absence of shear stress or vWF immobilisation by ristocetin and botrocetin. 

Ristocetin is an antibiotic glycopeptide isolated from the soil bacterium 

Nocardia lurida, and botrocetin is derived from a snake venom toxin (12, 34). 

Ristocetin binds to proline rich sequences contained in the anionic sequences 

of the A1 domain of vWF (Cys1237-Pro1251 and Glu1463-Asp1472) (12, 34). 

Botrocetin binds to one or more sequences within the disulphide loop 

(residues 539-643) of the A1 domain (12). The sulfated tyrosine residues are 

important for the botrocetin-induced reaction with GPIb and vWF (35). Both 

ristocetin and botrocetin change the conformation of the vWF A1 domain to 

allow binding of GPIb, in turn causing platelet aggregation in vitro (26). The 

action of ristocetin more closely mimics the GPIb-vWF interaction induced by 

shear stress in vivo (9, 34). Ristocetin- and botrocetin- induced binding of 

GPIb to vWF leads to signal transduction and GPIIb/IIIa activation (4). 
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Monoclonal Antibodies Directed Against GPIbα  

 
Expression of GPIbα on the platelet surface can be detected by flow 

cytometry analysis after incubation with labelled monoclonal antibodies. 

Several monoclonal antibodies directed against GPIbα are commonly used. 

 

AN51 is directed against amino acids 1-35 in the N-terminal of GPIbα. It 

blocks vWF binding to GPIbα (10). Binding studies using AN51 in platelet rich 

plasma (PRP) indicate 22,000 ± 2,700 binding sites (6), though this number 

tends to vary widely depending on the donor (9). AN51 is sensitive to 

reduction, suggesting that it is dependent on protein conformation (35). It has 

no effect on vWF binding induced by botrocetin or ristocetin (35). AN51 also 

reacts with monocytes (32).  

 

WM23 is an anti-GPIb murine monoclonal antibody, which binds to the 

macroglycopeptide region of GPIbα, without affecting binding to vWF (9, 11, 

36). It detects 21,000 ± 3,400 binding sites on platelets (6). 

 

SZ 2 binds to GPIbα (residues 276-282) in the highly negatively charged 

domain on GPIbα, which contains three sulfated tyrosine residues (8). This 

region is involved in thrombin binding. SZ 2 prevents thrombin generation by 

the prothrombinase complex, but does not significantly affect the numbers of, 

or mean velocity of, rolling mammalian cells across glass slides coated with 

vWF (4, 9, 35). SZ 2 blocks botrocetin-induced binding of vWF to GPIb, and 

weakly inhibits the ristocetin-induced reaction (9, 35). It is not sensitive to 

protein reduction (35).  

 

VM16d is directed towards the thrombin-binding site on GPIbα. It inhibits 

thrombin binding, but not vWF binding. It also blocks the procoagulant 

response of platelets to low doses, but not to high doses, of thrombin. VM16d 

does not prevent ristocetin-induced binding of vWf to GPIb when measured 

using flow cytometry (4).  
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ALMA 19 is a mouse monoclonal antibody that binds to GPIbα on human 

platelets and megakaryocytes. The exact binding site has not yet been 

established (19). 

 

Figure 1.2. Binding of anti-GPIbα antibodies. AN51 binds to the N-terminal (residues 1-

35), where vWF binds. VM16d binds to the thrombin-binding site. SZ 2 binds to residues 276-

282 in the sulfated tyrosine motif. WM23 binds to the macrogylycopeptide region. ALMA 19 

binds to GPIbα, though the exact binding site is unknown.
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Disorders of GPIb 

 
Bernard-Soulier syndrome (BSS) is an autosomal recessive bleeding disorder 

that occurs when a patient has deficient, absent, or dysfunctional GPIb-IX-V, 

or impaired maturation or processing of the complex (4, 8, 18, 37). 

Thrombocytopenia (a decrease in circulating platelet levels) and impaired 

platelet adhesion to vWF is observed in BSS patients, which may lead to 

severe and possibly fatal bleeding, and may require blood transfusion (8,18). 

BSS platelets are typically large, indicating a role for GPIb-IX-V in the 

regulation of platelet size (2). BSS platelets are round, and have abundant 

vacuoles (8). BSS patients show defective procoagulant activity, with high 

basal levels, and decreased levels when stimulated by agonists compared to 

healthy people. This may be due to reduced stability of the membrane (4). 

BSS patients have low sensitivity to thrombin, but platelets can still be 

activated at high doses of thrombin (4, 18, 20).  

 

BSS can be caused by sense or missense mutations in the GPIbα, GPIbβ or 

GPIX genes. The majority of reported cases involve a defect in the GPIbα 

gene, leading to a structurally modified or truncated protein with inhibited or 

absent expression of GPIbα. This is followed by reduced expression of GPIX 

and GPV on the platelet surface. One such mutation is the Cys209 to Ser 

missense mutation (8). The Bolzano variant of BSS is hereditary, caused by a 

point mutation of A156 to V in the 6th LRR of GPIbα. In this variant, mutated 

GPIbα cannot bind vWF, but thrombin binding is unaffected (13, 27). LRRs 2, 

3, and 4 of GPIbα are critical for vWF binding and platelet adhesion, and 

mutations within the LRRs 2, 5, 6, and 7 of GPIbα have been associated with 

BSS. Mutation of the three sulfated tyrosine residues strongly reduces vWF 

and thrombin binding (12). Deletion of Leu179 in the seventh LRR of GPIbα 

causes BSS (variant Nancy I) (8). A BSS variant with one amino acid 

substitution in the extracellular domain of GPIbβ affects maturation of GPIbα 

and GPIX stability (8).  
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GPV does not seem to be a cause of BSS as deficiency in its expression on 

platelets in mice does not affect platelet structure or size, or modify surface 

expression of GPIb or GPIX. No symptoms of BSS are present in the case of 

GPV deficiency (8).  

 

Heterozygous deficiency of GPIbβ has been linked to Di George syndrome or 

velo-cardio-facial syndrome, which are characterised by a micro deletion in 

22q11.2, an area where the GPIbβ gene maps to (8) Patients with the deletion 

tend to have macrothrombocytopenia, diminished ristocetin-induced 

aggregation, and reduced expression of the GPIB-IX-V complex (50). Patients 

with autoantibodies directed against GPIb have been demonstrated to 

develop immune thrombocytopenic purpura (38).
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Platelet Antagonists 

 

Platelets have a central role in atherosclerosis (involving plaque formation in 

inflamed blood vessels), myocardial infarction (MI; the cause of tissue death 

following occlusion of a coronary vessel by a thrombus), and other potentially 

fatal thrombotic disorders. Atherosclerotic plaques can rupture following 

platelet interactions, forming a platelet-rich thormbus which can occlude 

vessels in the heart or brain, causing MI or stroke respectively (1). 

 

The most commonly used anti-thrombotic drugs inhibit GPIIb/IIIa-mediated 

platelet aggregation, including fibrinogen receptor antagonists, acetylsalicylic 

acid (aspirin), and P2Y12 antagonists, for example clopidogrel. Recent clinical 

data with intravenous fibrinogen receptor antagonists and other anti-platelet 

drugs such as Prasugrel, demonstrated platelet inhibition and prevention of 

ischaemic complications, but were associated with increased bleeding 

complications. Inhibitors of GPIIb/IIIa are effective anti-thrombotic agents in 

acute situations, but can lead to thrombocytopenia and potentially life 

threatening bleeding complications, such as haemorrhages in the cerebral, 

alveolar, and gastrointestinal systems (15, 26). Furthermore, oral GPIIb/IIIa 

inhibitors enhanced cardiovascular events in clinical trials. Lower dosage of 

the oral inhibitors was used so that they could be used for chronic treatment 

to prevent thrombosis. However, lower dosage lead to less inhibition, along 

with low bioavailability of the drug. The GPIIb/IIIa antagonists induced 

conformational changes in the receptor, and also acted as partial agonists, 

causing an increase in platelet aggregation (15, 51).  

 

Aspirin effectively prevents thrombotic disorders, such as MI and stroke, by 

irreversibly inhibiting cyclooxygenase 1 (COX-1), an enzyme important in 

generating thromboxane A2, a potent platelet agonist (33). Thienopyridine 

anti-platelet drugs, including ticlopidine, prasugrel and clopidogrel, are pro-

drugs that block the P2Y12 ADP receptor, a receptor that normally augments 

platelet aggregation (33). Ticagrelor is an orally administered P2Y12 blocker, 

but is not a prodrug, meaning it does not require hepatic activation. Goto et al. 

showed that ticlopidine also prevented stabilization of vWF bound to GPIb 
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under high shear stress ex vivo, causing dissociation of thrombi (39). For 

long-term anti-platelet treatment, combined aspirin and clopidogrel treatment 

has limited side effects, but increased reports of treatment resistance 

emphasise the need for new anti-thrombotic agents. Aspirin resistance may 

be due to alterations in enzyme expression and regulation. Clopidogrel 

resistance may be caused by low rates of activation of the pro-drug to the 

active species due to genetics, blockage of, or competition for cytochrome 

P450 by food components or other medicines (40). It is likely that poor 

response to aspirin is due to inappropriate dosage. Weight is associated with 

reduced response to enteric-coated aspirin (52). 

 

Small molecule GPIIb/IIIa antagonists, including the monoclonal antibody 

abciximab (Reopro), the small molecule non-peptide inhibitor tirofiban, and 

eptifibatide (Integrillin), can reduce the incidence of acute thrombotic 

complications after coronary intervention by up to half. These agents block 

platelet aggregation and are used to prevent acute thrombotic complications 

after coronary intervention in patients with acute coronary syndromes and 

stable effort angina. However, abciximab has not been shown to have any 

extra benefit over dual treatment with aspirin and heparin in patients with 

acute coronary syndromes that did not undergo coronary intervention (33).  

 

Bleeding complications are the main and most serious side effects associated 

with GPIIb/IIIa antagonists. Coronary artery reocclusion is also a serious 

problem with many thrombolytic treatments. Monoclonal antibody treatment is 

not ideal as it could lead to immunogenicity, and it may not be reversible (25). 

There is demand for safe anti-platelet agents that can prevent or reduce 

thrombosis and atherosclerosis, while minimally affecting the normal 

haemostatic process, therefore preventing bleeding complications.  
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GPIb as an Anti-Thrombotic Agent 

 

There is great interest in targetting GPIb as an anti-thrombotic therapeutic as 

it is an easily accesible surface receptor restricted to platelets and has a 

major role in thrombotic diseases including MI and stroke (2, 9, 12). The 

interaction between GPIb and vWF initiates thrombus formation under high 

shear stress, unlike the GPIIb/IIIa interaction with fibrinogen which also takes 

place at lower shear rates found in the peripheral venous system. Inhibiting 

this interaction would be more effective in the arterial system compared to the 

venous system. This could possibly reduce bleeding complications compared 

to current anti-thrombotic agents such as aspirin (12, 41).  

 

GPIb has not been fully investigated as an anti-thrombotic mainly due to the 

differences between various species in the GPIbα receptor, making it difficult 

to test human blocking antibodies in small animal models. This problem did 

not occur with GPIIb/IIIa antagonists, which made the latter antagonists easier 

to develop (40).  

 

Several studies indicate that GPIb-IX-V complex inhibition would be an 

effective treatment for thrombosis. In patients with acute coronary syndromes, 

high shear stress induced platelet aggregation was increased when plasma 

vWF levels increased (41). Treatment of arteries with ferric chloride (FeCl3)

 

caused endothelial cells to detach from the sub-endothelium, exposing 

collagens, vWF and other sub-endothelial matrix proteins. In such models 

using non-human primates, inhibition of GPV, α2β1 (collagen receptor) or 

GPIbα reduced thrombus size with little effect on bleeding time (15). GPIb-IX-

V causes pathological arterial thrombosis upon binding to vWF exposed on 

the sub-endothelium after vascular damage. Blocking this interaction has 

been shown to reduce thrombus formation, and prevent long-term restenosis 

of narrowed vessels (9). It has been established that complete inhibition of 

GPIb by specific monoclonal antibodies in vivo in guinea pigs and baboons 

does not induce a haemorrhagic state (37, 38). 
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In vWF knockout mice, arterial thrombosis still occurs but complete vessel 

occlusion is either prevented or delayed. However, thrombus formation is 

completely inhibited in GPIb knockout mice, suggesting that GPIb receptor 

ligands, other than vWF, are important in platelet aggregation and thrombus 

formation (26). Inhibition of vWf and ADAMTS13 by monoclonal antibodies 

prevented thrombocytopenia and haemolytic anaemia in a baboon model of 

thrombotic thrombocytopenic purpura. However, partial inhibition of vWF was 

not effective (53). Since GPIb deficiency impairs thrombosis more effectively 

than vWF deficiency, GPIb is a more attractive target for antithrombotic 

therapy than vWF. There is a possibility that blocking vWF could affect its 

interaction with bound FVIII, which could affect the coagulation cascade. 

Targeting GPIb would not affect this interaction (26). 

 

No GPIb antagonists have been successfully used in clinical practice, 

although several potential candidates have been investigated (26, 41). VCL 

peptide (the A1 domain of vWF) inhibited platelet adhesion to vWF under 

static and shear conditions, and prevented thrombus formation in vivo (15). 

Specific proteases have been used to cleave GPIbα, leaving other platelet 

receptors intact. The two classes of proteases used are bacterial O-

sialylglycopeptide endopeptidases, which cleave GPIbα to liberate a 45 kDa 

fragment containing the ligand binding sites, and snake venom 

metalloproteases, which cleave GPIbα in the anionic peptide region to liberate 

a slightly smaller fragment. One such snake venom is mocarhagin. However 

there are some issues with using these proteases. Snake venom 

metalloproteases cleave GPIbα, but some can also affect other proteins such 

as vWF. Also, there is variability in cleavage completion depending on the 

donor and the platelet preparation (15).  

 

Antibodies to GPIbα, or their Fab fragments, effectively prevented thrombosis 

in non-human primates without causing bleeding complications. Kleinschnitz 

et al. showed that an anti-GPIbα antibody (Fab fragments) was more effective 

than depleting GPVI (the main signaling receptor for collagen) or than using 

an anti-GPIIb/IIIa antibody (Fab fragments) in a mouse middle cerebral, artery 

occlusion model, without increased bleeding complications (15).
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Snake Venoms 

 

Snake venoms contain many polypeptides and proteins that can alter 

thrombosis and haemostasis. The use of venoms as a therapeutic for 

thrombotic disorders has become an interesting option, as they could possibly 

alter the platelet response that can lead to cardiovascular and 

cerebrovascular pathology (31, 42).  

 

Snaclecs (snake venom C-type lectins) are a subset of non-enzymatic 

proteins isolated from snake venom, which include C-type lectins, and related 

proteins including C-type-like lectins and IX/X-bp like proteins. IX/X-bp like 

protein is a class of anticoagulant venoms, including two-chain botrocetin, 

convulxin, and mamushigin (42). The venoms of this class are heterodimers 

linked by an inter-subunit disulfide bond. The molecular weight of these 

proteins is approximately 30 kDa. N-terminal amino acid sequences in these 

proteins are highly conserved and extremely similar to C-type lectins. Despite 

their structural similarity, they all display different biological activities and 

mechanisms of action (31, 42).  

 

Snake venom C-type lectins and C-type-like lectins are important GPIb 

antagonists. They are widespread and found in nearly all Viperidae and 

Crotalidae, and some Elipidae, venoms. Most of these are part of the simple 

heterodimeric class, consisting of α- and β- subunits linked by swapping loops 

and a disulphide bridge (43).  
 

C-type-like lectins proteins are important haemorrhagic proteins derived from 

snake venom. Despite the similar structure of compounds within the class, 

their biological activity varies. They bind many diverse proteins including 

Factor IX, Factor X, GPIb, GPVI, CLEC-2 and α2β1 (45). Agkistin and 

rhodocetin are two C-type-like lectins. Agkistin blocks the vWF-GPIb 

interaction, and inhibits angiogenesis in vivo (44). Rhodocetin binds the 

collagen receptor α2β1, preventing collagen-induced platelet activation, similar 

to the effect of collagen-blocking antibodies (40). 

 



 30 

C-type lectins form a large concave surface that is thought to bind to the outer 

domains of GPIbα, blocking binding to vWF, and in some cases thrombin 

(15). Some C-type lectins can bind to vWF, and GPVI (44). The C-type lectin 

jararhagin interacts with the α2β1. Some snake C-type lectins, for example 

echicetin, interact with the thrombin binding site on GPIbα, but have been 

shown to have no effect on the platelet response to thrombin, especially at 

low doses (< 0.5 U/ml) (4). Some of these proteins bind to more than one 

ligand, for example convulxin, alboaggregin A, and alboluxin all bind GPIbα 

and GPVI (44). Eptifibatide is a GPIIb/IIIa inhibitor based on barbourin, a 

disintegrin isolated from snake venom. It is a competitive inhibitor for 

fibrinogen in vivo (30). 

 

Snake venoms that bind GPIb can be agonists, for example botrocetin, or 

antagonists, such as echicetin purified from Echis carinatus (41). 

Crystallographic studies show that botrocetin, a snake venom often used to 

cause platelet aggregation in vitro, and bitiscetin, bind to both the 45 kDa 

outer domain of GPIbα and to the A1 domain of vWF, holding them together 

and enhancing their interaction. Therefore, molecules targeting GPIb may 

inhibit or activate platelets, depending on their mode of action (15).  
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Anfibatide 
 

Anfibatide is a novel GPIb antagonist purified from the compound 

agkisacutacin (26). Agkisacutacin is a large fibrinogenlytic C-type-like lectin 

containing α and β chains with interchain disulphide bonds. It has no Ca2+- or 

sugar- binding loops. It is derived from the tetrameric protein complex 

agglucetin, which is isolated from Agkistrodon acutus snake venom in the 

southern Anhui Province of China (31, 42).  
 

Agkisacutacin has two heterologous subunits linked by an intersubunit 

disulfide bond (42). It has a molecular weight of 29,500, with two heterodimers 

of 14 kDa (β-subunit with 27 residues) and 15.3 kDa (α-subunit with 31 

residues) (31, 42). Each subunit contains a compact lectin-like globular 

domain and long extended loop region (45). The N-terminal sequences of the 

two polypeptides of anfibatide hold more than 85% homology to that of the 

IX/X-bp family (31).  

  

Early studies using flow cytometry and competitive enzyme-linked 

immunosorbent assay (ELISA) demonstrated that agkisacutacin binds to GPIb 

and inhibits human vWF binding, while also binding to factor IX and factor X 

(44). The binding of the monoclonal antibody SZ 2 to GPIbα on platelets was 

blocked by agkisacutacin. Agkisacutacin did not block binding of the anti-

GPIIIa monoclonal antibody SZ 21 or the anti-GPIIb monoclonal antibody SZ 

22 to human platelets (44). After studying the crystal structure of the 

compound, it was suggested that each agkisacutacin αβ-heterodimer 

molecule binds to one GPIb molecule and inhibits the GPIb-vWF interaction 

without causing GPIb clustering, unlike flavocetin-A (26, 45). Flavocetin-A and 

echicetin are two C-type lectins with similar structures to anfibatide. They 

inhibit vWF-GPIb binding, and prevent platelet aggregation, but increase 

platelet agglutination by forming tetramers, or by binding to immunoglobulin 

Mκ (IgMκ) in the blood plasma, respectively (26, 45). 
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Agkisacutacin inhibited platelet adhesion and aggregation in vitro and in vivo, 

but did not cause platelet agglutination in plasma (45). In vivo in canines, 

agkisacutacin (0.9-3.6 µg/kg) significantly inhibited platelet aggregation (44). 

Agkisacutacin did not inhibit ADP- or collagen- induced PRP aggregation, and 

had little effect on thrombin induced aggregation (44). It significantly 

prolonged clotting time, prothrombin time and activated partial thromboplastin 

time, and showed dose-dependent anticoagulation ex vivo in human blood 

(44). Agkisacutacin did not cause significant platelet activation (as measured 

by P-selectin expression and GPIIb/IIIa activation) ex vivo, prolong tail-

bleeding time in vivo, or cause spontaneous bleeding in mice (26). 

Agkisacutacin was shown to be stable at -70°C for up to 46 days (41). 

 

Agkisacutacin had a linear relationship between protein concentrations and 

fibrinolytic activity, significantly and directly reducing plasma levels of 

fibrinogen in a dose-dependent manner. It cleaved the fibrinogen α-chain and 

β-chain slowly, with little γ-chain cleavage, producing polypeptides of 

molecular weight 43 kDa, 40 kDa, 36 kDa, and 23 kDa. Lysis of the fibrinogen 

α-chain caused fibrinogen clotting ex vivo (26, 42). Agkisacutacin had a 

different cleavage site on fibrinogen than thrombin or plasmin. Unlike other 

fibrinolytic venom metalloproteases, agkisacutacin cleaves fibrinogen at a 

specific site, with little haemorrhagic or anti-coagulant activity (42). It is 

unknown why agkisacutacin could have fibrinolytic activity along with 

inhibitory effects on platelet aggregation in vitro and in vivo. The 

fibrinopeptides, containing RGD sequence, that result from fibrinogen 

cleavage may competitively inhibit fibrinogen binding to GPIIb/IIIa, thereby 

inhibiting platelet aggregation. In rats, agkisacutacin can significantly 

accelerate the lysis of pulmonary emboli, suggesting fibrin digestion either 

directly or indirectly, or both (31). When agkisacutacin was further purified by 

three-step chromatography to form anfibatide, all fibrinogenlytic activity was 

lost (44). 
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Agkisacutacin was used in ten healthy Chinese volunteers to assess its 

pharmacokinetics. Agkisacutacin protein was dissolved in sterile normal saline 

for intravenous bolus administration at a concentration of 5 µg / 60 kg. The 

peak time for agkisacutacin concentration in plasma was eight hours and the 

terminal half-life was 10.5 hours. No antibodies to agkisacutacin were formed 

in the volunteers, and there were no changes in haematological or 

coagulation parameters. Bleeding time was not significantly prolonged (41).  

 

Anfibatide, the purified form of agkisacutacin, inhibited ristocetin-induced 

aggregation in washed murine platelets with recombinant murine vWF (26, 

44). It blocked botrocetin-induced binding of vWF from murine plasma to 

recombinant human GPIbα as measured by ELISA. It did not inhibit 

botrocetin-induced aggregation in murine PRP. Anfibatide inhibited ristocetin-

induced, but not botrocetin-induced, aggregation using human PRP, indicating 

a different binding site than other snake venom-derived GPIb antagonists. In 

an ongoing clinical trial, anfibatide inhibited ristocetin-induced aggregation in 

human PRP, confirming the difference in tertiary interactions between 

anfibatide, and human and mouse GPIb. In a rat arterio-venous shunt model 

anfibatide significantly inhibited thrombus formation in a dose-dependent 

manner (26). 

Anfibatide strongly inhibited platelet adhesion, aggregation, and thrombus 

formation in perfusion chambers, at high shear rates (1,800 s-1), and 

dissolved preformed thrombi ex vivo. Anfibatide inhibited thrombus formation 

at low shear rates (300 s-1), though less than at high shear rates. As shear 

stress increased incrementally from 100 s-1 to 5,000 s-1 in perfusion 

chambers, inhibition of thrombus formation by anfibatide increased. The 

inhibition was approximately 100 times stronger at high shear (1,800 s-1) 

compared to low shear (300 s-1). In anfibatide-treated platelets at 5,000 s-1, 

adhesion and aggregation on collagen was undetectable (26). Anfibatide may 

interact with other plasma proteins that favour thrombolysis, possibly 

explaining how anfibatide induces thrombus dissolution ex vivo (26).  
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Anfibatide markedly inhibited thrombosis in laser-injured cremaster vessels 

and prevented vessel occlusion in FeCl3-injured mesenteric vessels in mice. 

In anfibatide-treated mice, thrombus formation was delayed, unstable, easily 

dissolved, and not occlusive. In vWF-deficient mice that had impaired laser-

induced thrombosis compared to wild-type (WT) mice, anfibatide inhibited 

thrombus formation further than knockout alone. This suggests that anfibatide 

inhibits thrombotic pathways mediated by GPIbα, aside from the GPIb-vWF 

interaction (26).  

 

Lee’s Pharmaceutical Limited is currently recruiting participants in China for a 

phase Ib-IIa clinical trial. The trial will investigate the safety and efficacy of 

anfibatide in non-ST segment myocardial infarction patients. It is a multi-

center, randomised, double-blind, placebo-controlled trial. The primary 

outcome measure is thrombosis formation 48 hours after infusion during stent 

implantation. Secondary outcome measures are mortality (30 days after 

treatment), bleeding events and thrompbocytopenia. The study is due to finish 

in February 2015 and it is hoped that 90 patients will participate. A bolus 

injection with different doses of anfibatide will be administered immediately 

when the guidewire passes through the first stenosed vessel, along with an 

intravenous infusion at 0.002 IU/kg/h for 48 hours afterwards. Saline will be 

used as a placebo. The study aims to establish the efficacy of different doses 

of anfibatide so that Phase III trials can progress. The study will accept males 

or females aged between 18 and 70 years. Patients must show an increase in 

markers of myocardial damage, ischaemic symptoms, and must give informed 

consent (46). Phase I Clinical trials were completed in March 2011. Anfibatide 

was administered to 94 healthy volunteers. The primary outcome measure 

was the number of adverse events in patients with single or multiple 

intravenous injections or infusions. The secondary outcome measure was the 

observation of area under curve characteristics of anfibatide in single or 

multiple dose groups. A dose of 0.33 – 5 µg/60 kg was administered in a  

single dose (47). The Phase I trial demonstrated that anfibatide did not 

significantly decrease platelet count or prolong bleeding time. There were no 

serious adverse events or deaths during the study, and all results indicated 
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that anfibatide is a safe and potent anti-platelet reagent, and a potential anti-

thrombotic therapy (48).
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Bacterial-Platelet Interactions 

 

A major cause of MI, stroke, and other conditions involving dysregulated 

platelet function, is pathogenic bacteria circulating in the blood. Many strains 

of bacteria can cause platelet activation, aggregation, and thrombocytopenia. 

Staphylococcus aureus is the most common cause of infective endocarditis, 

and acts through GPIIb/IIIa. Streptococcus sanguinis and streptococcus 

gordonii act through the GPIb receptor, at the N-terminal (1-225 residues) of 

GPIbα, to cause direct platelet aggregation. The ability of S. sanguinis to 

adhere to and to activate platelets corresponds to disease severity. GPIb 

interacts with a glycoprotein, serine-rich protein A (SrpA) on S. sanguinis to 

cause strong adhesion and rapid platelet aggregation. Anti-GPIb antibodies 

can inhibit the aggregation response to S. sanguinis. S. gordonii binds GPIb 

through the surface-anchored GspB to stimulate platelet activation. 

Heliobacter pylori strains also interact with GPIb, as indicated when anti-GPIb 

antibodies prevented platelet aggregation in its presence (1). In this study we 

investigate the effect of anfibatide on S. sanguinis-induced platelet 

aggregation, in order to determine if it would be useful as a therapeutic agent 

in treating or preventing bacterial-induced cardiovascular events.
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The Assay 
 

As anfibatide progresses through clinical trials, it is necessary to develop a 

tool to accurately measure the exact occupancy of GPIb receptors by 

anfibatide. An assay that measures receptor occupancy needs to be simple to 

learn, and accessible in hospital laboratories so that it can be widely used 

wherever patients are being treated. By measuring receptor occupancy of 

anfibatide, clinicians can precisely control dosage of the drug, thereby 

providing optimal therapeutic benefit, while limiting side effects. 

 

There are three main approaches to measuring drug levels in patients: 

measuring plasma levels of the drug, measuring receptor binding, or 

functional analysis. Measuring plasma levels of drugs is not always accurate, 

particularly in the case of drugs that have high affinity binding to their 

receptor. For example, even when aspirin levels are low, antiplatelet effects 

are still seen as the drug is bound to platelets rather than circulating in the 

plasma (54). Functional analysis for anti-platelet agents generally involves 

measuring platelet aggregation. This involves isolating PRP from patient 

blood samples, and the assay may be long and difficult. Furthermore, most 

hospitals do not have access to platelet aggregometers, and the majority of 

health professionals are not trained in the technique. There is also wide 

variation in the results obtained from different platelet functional tests (24). 

Receptor binding is usually difficult to measure due to the tissue where 

receptors are present being inaccessible. This is not the case with anti-

platelet agents, as platelets are easily accessible in the blood. The receptor 

occupancy method has previously been used to evaluate binding of abciximab 

to GPIIb/IIIa (55). 

 

We have developed a novel GPIb receptor occupancy assay based on a 

GPIIb/IIIa receptor occupancy assay previously developed in this lab (55). A 

platelet calibrator kit, marketed by Biocytex, was used. The kit is normally 

used to measure platelet glycoprotein expression levels. We have optimised 

the assay using GPIb monoclonal antibodies. This assay is accessible to any 

clinician who has access to a flow cytometer. The development of this assay 
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is particularly important when studying the pharmacokinetics of anfibatide in 

Phase Ib-IIa trials. It will help clinicians assess the receptor occupancy of 

anfibatide, and therefore it could be used to help determine the appropriate 

dose in patients based on these trials.
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Aims 
 

1. To develop a quantitaive flow cytometry based receptor occupancy 

assay for the novel GPIb receptor antagonist anfibatide. 

2. To validate this assay in healthy donor platelets ex vivo. 

3. To use this assay to investigate the efficacy of Anfibatide in healthy 

donor blood ex vivo. 

4. To investigate the effect of Anfibatide on S. sanguinis induced platelet 

aggregation ex vivo. 
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Chapter 2: Materials and Methods 

Materials 

Materials used are summarised in table 2.1 below. 

 
Table 2.1: Summary table of materials and suppliers 

Anti-anfibatide antibody 1B9 

Anfibatide 

Lee’s Pharmaceutical Limited, Hong 

Kong 

PLATELET calibrator kit 

PLATELET GPIIb/IIIa Occupancy kit 

CD42b clone ALMA 19 

CD42b clone SZ 2 

Biocytex, Marseilles, France 

CD62P (P-selectin), PE format BD Biosciences, Oxford, UK 

Round bottom FACS test tubes VWR International Ltd, Dublin, Ireland 

Sodium Citrate 

Brain Heart Infusion (BHI) Broth 

BHI Agar 

Phosphate buffered saline (PBS) 

All other reagents 

Sigma Aldrich Ireland Limited, Co. 

Wicklow, Ireland 

 

Adenosine di-phosphate (ADP) 

Arachidonic acid 

AggRecetin (ristocetin) 

Aggregation test tubes 

Micro-magnetic stir bars 

Bio/data Corp, PA, USA 

Multiplate test cells Roche Diagnostics, West Sussex, UK 

VM16d anti-CD42b antibody Abcam, Cambridge, UK 

Mouse anti-human monoclonal 

antibody, IgG2a isotype, AN51 

Fischer Scientific Ireland, Dublin, 

Ireland 

S. aureus Newman Gift from Prof. Timothy J Foster, TCD 

S. sanguinis NCTC 7863 National Collection of Type Cultures, 

UK 

S. sanguinis 133-79 Gift from Dr. Mark Herzburg 
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Methods 

1. Preparation of Blood 

Whole blood was collected in 3.8% sterile sodium citrate, in the ratio 9:1, from 

healthy volunteers who had abstained from using anti-platelet agents in the 

previous 10 days. This study was approved by the RCSI Research Ethics 

Committee, approval number REC676. To prepare platelet rich plasma (PRP), 

whole blood was aliquoted and centrifuged at 150 rpm for 10 minutes. PRP 

was collected. To prepare platelet poor plasma (PPP), 1 ml of PRP was 

centrifged for a further 5 minutes. PPP was collected and the platelet pellet 

was discarded. 

 

2. Quantitative Flow Cytometry  

Quantitative flow cytometry was performed using a BD FACS Canto II flow 

cytometer (Becton Dickinson, UK). A platelet calibrator kit (Biocytex, France) 

was used, and the accompanying instructions were followed. Briefly, platelets 

were stained with specific monoclonal antibodies by no wash indirect 

immunofluorescence. Whole blood (10 µl) was diluted 1:10 with diluent from 

the kit. Diluted samples were incubated with either a negative control from the 

kit, or a specific chosen antibody at a final concentration of 10 µg/ml for 20 

minutes at room temperature. Anti-mouse IgG-FITC (10 µl) was added for 10 

minutes. This antibody was previously optimised and provided in the kit. 

Beads coated with an increasing and specifically known amount of mouse IgG 

were labelled with IgG-FITC for 10 minutes, and used to create a calibration 

curve. The samples were then diluted with 1 ml of diluent from the kit. The 

samples were analysed using quantitative flow cytometry. Platelets were 

gated, 10,000 events were recorded, and the FITC-A geomean was used for 

analysis. 

 

3. 1B9 Concentration Optimisation 

A mouse monoclonal anti-anfibatide antibody, 1B9, was developed in China 

(41). The optimal concentration of anti-anfibatide antibody 1B9 to be used in 
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the development of this assay was determined using quantitative flow 

cytometry. Serial dilutions of 1B9 were made using tris buffered saline (TBS; 

50 mM Tris-Cl, 150 mM NaCl, pH 7.5). Whole blood was incubated with 

anfibatide (final concentration of 6.24 µg/ml) for 30 minutes at room 

temperature. Of each dilution of 1B9, 10 µl was incubated at room 

temperature for 20 minutes with 10 µl of anfibatide-treated whole blood. 

Mouse anti-IgG FITC (10 µl) was added for 10 minutes at room temperature. 

The sample was diluted using 1 ml diluent from the platelet calibrator kit 

(Biocytex, France). The sample was analysed using quantitative flow 

cytometry on a FACS machine as described above. 

 

4. Flow Cytometry based Dose Response of Anfibatide in Whole Blood 

A platelet calibrator kit (Biocytex, France) was used to determine the optimal 

concentration of anfibatide that causes maximum binding to platelets. 

Platelets in whole blood were stained by no wash indirect 

immunofluorescence with the optimal dose of 1B9, as determined previously 

in section 3. Whole blood was incubated with varying doses of anfibatide at 

room temperature for 30 minutes. Each sample was diluted 1:10 with diluent 

from the kit. Diluted whole blood (10 µl) was labelled with 10 µl of 1B9 (final 

concentration: 3.68 µg/ml) for 20 minutes at room temperature. Mouse anti-

IgG FITC was added (10 µl) for 10 minutes at room temperature. Sample was 

then diluted using 1 ml diluent from the kit, and analysed as described in 

section 2. 

 

5. Effect of Anfibatide on Various Anti-GPIb Monoclonal Antibodies 

Anfibatide treated whole blood was incubated with various anti-GPIb 

monoclonal antibodies (AN51, SZ 2, VM16d, ALMA 19, and WM23) at a final 

concentration of 10 µg/ml, and protocol was carried out as described in 

section 2. 
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6. Effect of Anfibatide on Anti-GPIIb/IIIa Monoclonal Antibodies  

A platelet GPIIb/IIIa occupancy kit (Biocytex, France) was used to determine 

the effect of anfibatide on GPIIb/IIIa. Whole blood was incubated with 

anfibatide (final concentration: 10 µg/ml) for 30 minutes at room temperature. 

Anfibatide-treated, and control whole blood was incubated with MAb1 and 

MAb2, two anti-GPIIb/IIIa antibodies provided in the kit. Protocol as described 

in section 2. 

 

7. Platelet Activation by Anfibatide 

Whole blood was incubated varying concentrations of anfibatide at room 

temperature for 30 minutes. This whole blood (10 µl) was added to 10 µl 

CD62-PE for 10 minutes. Whole blood incubated with 20 µM thrombin 

receptor activating peptide (TRAP) acted as a positive control. Each sample 

was diluted with 1 ml PBS, and analysed using a FACS machine. PE 

geomean was recorded and used for analysis. 

 

8. Loss of Single Platelets in PRP  

PRP was prepared as described in section 1. PRP was incubated with various 

concentrations of anfibatide for 30 minutes at room temperature. Platelet 

count was measured using a Sysmex haematology analyser (Kobe, Japan). 

 

9. Effect of Anfibatide on Whole Blood Aggregation and PRP Aggregation 

Induced by S. aureus Newman and S. sanguinis 133-79 

S. aureus Newman, and S. sanguinis 133-79 bacterial strains were grown 

overnight in brain heart infusion (BHI) broth at 37°C . Innoculated broth was 

centrifuged at 5,000 rpm for 10 minutes. Broth was removed and the bacterial 

pellet was resuspended in 50 ml sterile PBS. The bacterial solution was 

centrifuged at the same settings again. PBS was removed and the final pellet 

was resuspended in 1 ml PBS. Bacteria was adjust to an optical density 

(OD600) of 1.6 using an Ultraspec III spectrophotometer (Pharmacia Biotech, 

UK).  
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For whole blood aggregometry, a Multiplate analyser (Roche Diagnostics, UK) 

was used. The Multiplate test cell consists of two sensors onto which platelets 

can adhere and aggregate when activated by an appropriate agonist. This 

adhesion and aggregation causes an increase in impedance, which is then 

recorded in arbitrary aggregation units and plotted against time on the 

analyser. The area under the aggregation curve (AUC) is the commonly used 

parameter. This takes the total height of the aggregation curve, and the slope 

of the curve, into account. Whole blood was incubated with 32 µg/ml 

Anfibatide at room temperature for 30 minutes. Anfibatide-treated whole blood 

(300 µl) was diluted with 300 µl PBS and allowed to rest at 37°C for 5 minutes 

in a Multiplate test cell. Bacteria (1:10) was added to the test cell and 

aggregation was recorded for 20 minutes. All aggregations took place in the 

Multiplate analyser (Roche Diagnostics, UK), at 37°C, and samples were 

mixed using disposable magnetic stir bars. Anti-GPIb antibody AN51, at a 

final concentration of 12.5 µg/ml, was incubated with whole blood for 10 

minutes, prior to aggregation. 

 

For PRP aggregation, PRP and PPP were both isolated as outlined in section 

1. A PAP-8 platelet aggregometer (Biodata, USA) was used to carry out light 

transmission aggregometry. PRP was incubated with anfibatide for 30 

minutes at room temperature. PPP (250 µl) was used to blank the machine. 

Bacteria was then added to PRP (1:10 dilution) and aggregation was 

measured for 30 minutes. Magnetic stir bars were used to mix the samples 

druing aggregation, and all aggregations took place at 37°C. 

 

10. The Effect of Anfibatide on Ristocetin Induced Whole Blood Aggregation 

A dose response to ristocetin in a healthy volunteer using a Multiplate 

analyser found that 0.5 mg/ml ristocetin was the minimum dose of ristocetin to 

induce aggregation in whole blood. Following this, whole blood was incubated 

with various doses of anfibatide for 30 minutes at room temperature. 

Aggregations were carried out as described in section 8, inducing aggregation 

by adding ristocetin at a final concentration of 0.5 mg/ml. 
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11. Effect of Anfibatide on Aggregation in PRP Induced by Various Agonists 

PRP was incubated with anfibatide at a final concentration of 10 µg/ml for 30 

minutes at room temperature. Various agonists were added to PRP and 

aggregation was recorded using light transmission aggregometry (LTA) with a 

PAP-8 platelet aggregometer for 10 minutes. Agonists included low dose 

thrombin (0.05 U/ml), high dose thrombin (0.5 U/ml), ADP, arachidonic acid 

and ristocetin (1 mg/ml). 

 

12. Statistical Analysis 

Results were analysed using ANOVA and Student’s T-test, paired and 

unpaired. Data was considered statistically significant when p<0.05. 
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Chapter 3: Results 
 

3.1. 1B9 optimisation 
 

In order to develop an assay to measure the occupancy of the GPIb receptor 

on platelets by the novel drug anfibatide, an antibody directed against 

anfibatide was developed in China and named 1B9. The optimal 

concentration of 1B9 to be used, that is the concentration of 1B9 that 

maximally detects anfibatide binding, was determined using quantitative flow 

cytometry. A high dose of 10 µg/ml anfibatide was chosen from previous 

literature (26). Whole blood was labelled with various concentrations of 1B9, 

and the optimal dose was determined to be 3.68 µg/ml. At this concentration, 

54,784 ± 7,592 molecules of anfibatide were detected. As 1B9 concentration 

increased past this point, binding to anfibatide decreased (Figure 3.1.1). 

 
 
Figure 3.1.1. The optimum concentration of anti-anfibatide antibody 1B9 that detects 10 

µg/ml anfibatide, in whole blood, using quantitative flow cytometry, is 3.68 µg/ml. 

Number of anfibatide molecules bound to platelets as measured by various doses of anti-

anfibatide antibody 1B9 in whole blood samples from healthy donors using quantitative flow 

cytometry, n=3-4, error bars represent SEM. 
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3.2. Anfibatide dose response 
 

Following the determination of the optimal dose of 1B9 (3.68 µg/ml) to be 

used in this assay, binding of anfibatide to healthy donor platelets was 

measured. Various doses of anfibatide were incubated with whole blood for 

30 minutes at room temperature. In this dose response, maximal binding was 

detected at 16 µg/ml, showing 69,181 ± 6,242 binding sites per platelet 

(Figure 3.2.1). 

 

Figure 3.2.1. Anfibatide dose response, using quantitative flow cytometry, with whole 

blood and 3.68 µg/ml anti-anfibatide antibody 1B9. Number of anfibatide molecules bound 

to platelets varying with dose, as measured using quantitative flow cytometry, with anti-

anfibatide antibody 1B9 (3.68 µg/ml) in whole blood samples from healthy donors, n=3, error 

bars represent SEM.  
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The results from figure 3.1.1 suggested that the optimal concentration for 1B9 

use was 3.68 µg/ml, after which detection decreased. In order to ensure that 

this was the optimum dose of 1B9, 3.68 µg/ml and a higher dose of 7.35 

µg/ml were tested against a range of Anfibatide concentrations. At 3.68 µg/ml, 

1B9 detects significantly more binding sites at high doses of anfibatide 

compared to 7.35 µg/ml 1B9, p=0.016 (Figure 3.2.2). 

 

 
 
Figure 3.2.2. 3.68 µg/ml 1B9 detects more binding sites to anfibatide than 7.35 µg/ml 

1B9, as measured using flow cytometry. Number of anfibatide molecules bound to 

platelets varying with dose, using quantitative flow cytometry, comparing 3.68 µg/ml 1B9 and 

7.35 µg/ml 1B9 in whole blood samples form healthy donors, n=3. There is a significant 

decrease in receptor numbers detected by 1B9 at 7.35 µg/ml compared to 3.68 µg/ml, 

p=0.016, paired t-test, error bars represent SEM. 
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3.3. Effect of anfibatide on anti-GPIb monoclonal antibodies 
 

An anti-GPIb antibody that is not inhibited by anfibatide is required to measure 

total GPIb receptor numbers per platelet. The effect of anfibatide on binding of 

five anti-GPIb antibodies to platelets was measured using quantitative flow 

cytometry. These monoclonal antibodies were also used to determine the 

binding site of the drug. All antibodies were used at a final concentration of 10 

µg/ml. Each anti-GPIb antibody showed a different number of binding sites 

per platelet (Figure 3.3.1). AN51 had the lowest number of binding sites 

(14,325 ± 1,949 binding sites), ALMA 19, SZ 2, and WM23 detected between 

27,000 and 33,000 receptors, and VM16d had 40,880 ± 8,931 binding sites. 

There was a significant difference between GPIb receptor numbers as 

measured by AN51 compared to WM23, SZ 2, and ALMA 19 (p<0.05). 

 

 
Figure 3.3.1. GPIb receptor numbers vary depending on the anti-GPIb monoclonal 

antibodies used in quantitative flow cytometry. Whole blood was labelled with various 

anti-GPIb monoclonal antibodies and receptor numbers were measured using quantitative 

flow cytometry. All antibodies were used at a final concentration of 10 µg/ml. There was a 

significant difference in receptor numbers as measured by AN51 compared to WM23, SZ 2, 

and ALMA 19, p<0.05, multiple paired t-tests, error bars represent SEM. 
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Binding of WM23, AN51, and ALMA 19 antibodies was not significantly 

affected by anfibatide (p>0.7). Binding of VM16d was inhibited by 52 ± 2% by 

10 µg/ml anfibatide pre-incubated with whole blood for 30 minutes at room 

temperature, p=0.036. SZ 2 was inhibited 23 ± 1% by 10 µg/ml Anfibatide, 

p=0.012 (Figure 3.3.2).  

 

Figure 3.3.2. Anfibatide partially inhibits VM16d and SZ 2 at 10 µg/ml. Whole blood was 

incubated with various doses of anfibatide for 30 minutes. Binding of five anti-GPIb antibodies 

(VM16d, SZ 2, ALMA 19, AN51, and WM23) to healthy donor platelets was measured using 

quantitative flow cytometry. Binding of two antibodies was significantly inhibited by anfibatide 

compared to the control group which was not incubated with anfibatide: VM16d, p=0.036, and 

SZ 2, p=0.012, one-way ANOVA, error bars represent SEM, n=3.
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The effect of anfibatide on high dose VM16d (20 µg/ml) was also tested 

(Figure 3.3.3). Anfibatide did not significantly inhibit VM16d at 20 µg/ml 

binding in the presence of 10 µg/ml anfibatide (p>0.05). VM16d at 10 ug/ml 

was partially inhibited by 10 µg/ml anfibatide (p=0.0123). 

 

 
Figure 3.3.3. High dose VM16d (20 µg/ml) is not inhibited by anfibatide. Anfibatide was 

incubated with whole blood for 30 minutes at room temperature. Binding to 20 µg/ml and 10 

µg/ml VM16d was measured using quantitative flow cytometry and compared to the control 

blood samples, which had not been incubated with anfibatide. No significant inhibition of 

binding was detected with 20 µg/ml VM16d, p>0.05. VM16d at 10 µg/ml was significantly 

inhibited by 10 µg/ml anfibatide, p=0.0123, paired t-test, n=3-6, error bars represent SEM. 
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GPIb receptor numbers were measured using VM16d at 20 µg/ml, and 1B9 at 

7.35 µg/ml directed against two doses of anfibatide. Both antibodies gave 

similar receptor numbers (40,000 – 50,000 binding sites) and were not 

inhibited by increasing anfibatide dosage (p>0.3). 

 
Figure 3.3.4. Number of GPIb receptors detected, by quantitative flow cytometry, on 

platelets by VM16d and 1B9 are not statistically different following incubation of whole 

blood with anfibatide. Whole blood was incubated with two doses of anfibatide for 30 

minutes at room temperature. GPIb receptor binding was detected using quantitative flow 

cytometry. VM16d (20 µg/ml) and 1B9 (7.35 µg/ml) were used. Control samples were not 

incubated with anfibatide. There was no significant difference between receptor numbers 

when incubated with 16 µg/ml, or 51 µg/ml anfibatide, as detected by VM16d, and 1B9, p>0.3, 

two-way ANOVA and multiple t-tests, n=3, error bars represent SEM. 

0 

10000 

20000 

30000 

40000 

50000 

60000 

0 16 51 

M
ol

ec
ul

es
/c

el
l 

Concentration Anfibatide (µg/ml) 

VM16d (20 
µg/ml) 

1B9 (7.35 
µg/ml) 



 53 

3.4. Effect of anfibatide on anti-GPIIb/IIIa monoclonal antibodies 
 

The effect of anfibatide on binding of monoclonal antibodies directed against 

the GPIIb/IIIa receptor was examined to confirm that GPIIb/IIIa was not the 

binding site of anfibatide. Anfibatide at a final concentration of 10 µg/ml did 

not inhibit binding of two monoclonal antibodies, MAb1 and MAb2, as 

measured by quantitative flow cytometry (p>0.999). Both antibodies were 

from the GPIIb/IIIa receptor occupancy kit (Biocytex, France). 

 

 
Figure 3.4.1. Anti-GPIIb/IIIa monoclonal antibodies, MAb1 and MAb2 (Biocytex, France), 

are not affected by anfibatide. Anfibatide does not significantly affect binding of the anti-

GPIIb/IIIa monoclonal antibodies, MAb1 and MAb2 in whole blood samples using flow 

cytometry, compared to control samples which were not incubated with anfibatide, n=3, 

p=>0.999, paired t-test, error bars represent SEM. 
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3.5. Effect of anfibatide on platelet activation 
 
The effect of anfibatide on platelet activation was measured using quantitative 

flow cytometry. Platelet activation was quantified by measuring CD62 (P-

selectin) levels on the platelet surface. CD62 is released from α-granules in 

platelets and displayed on the cell surface following activation, for example by 

TRAP. TRAP activated platelets were used as a positive control to measure 

CD62 expression. Anfibatide at 6 µg/ml, and 25.5 µg/ml, did not cause platelet 

activation after incubation for 30 minutes at room temperature. 
 

 
Figure 3.5.1. Anfibatide does not activate platelets (CD62P) as measured by flow 

cytometry in whole blood. Measurement of platelet activation by anfibatide as measured by 

CD62 levels using flow cytometry. Anfibatide did not cause platelet activation compared to 

control sample incubated with 20 µM TRAP in whole blood samples from healthy donors, 

n=3, error bars represent SEM.
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3.6. Loss of single platelets following anfibatide treatment 
 
The effect of Anfibatide on platelets was examined using a loss of single 

platelets study. Following incubation with anfibatide for 30 minutes at room 

temperature, platelet count was measured using a Sysmex haematology 

analyser. Recorded platelet numbers did not significantly differ following 

anfibatide treatment (p=0.27) indicating that anfibatide does not cause a loss 

of single platelets in vitro (figure 3.6.1). 

 

 
Figure 3.6.1. Anfibatide does not cause a loss of single platelets. Various concentrations 

of anfibatide do not cause a decrease in the average number of platelets in PRP samples 

incubated with anfibatide at room temperature for 30 minutes, compared to a sample that was 

not incubated with anfibatide, p=0.27, ANOVA, n=3, error bars represent SEM. 
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3.7. The effect of anfibatide on ristocetin-induced platelet aggregation in 

whole blood 

 

Ristocetin was used to induce platelet aggregation in whole blood, and the 

effect of anfibatide on this aggregation was examined. Anfibatide inhibited 

ristocetin-induced aggregation in whole blood in a dose dependent manner 

(p=0.043). On average, a dose of 10 µg/ml anfibatide inhibited aggregation by 

77.5% (figure 3.7.1). IC50 is 2.39, 95% CI 1.08 – 5.31, R2=0.84.  
 

 
Figure 3.7.1. Anfibatide inhibits whole blood aggregation induced by 0.5 mg/ml 

ristocetin in a dose dependent manner. Anfibatide inhibited whole blood aggregation 

induced by 0.5 mg/ml ristocetin in a dose dependent manner, compared to aggregation 

occuring in the absence of anfibtide, as measured using a Multiplate analyser, n=3, p=0.043, 

ANOVA, error bars represent SEM.  
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3.8. The effect of anfibatide on ristocetin-induced platelet aggregation in PRP 

 
The effect of anfibatide on platelet aggregation induced by 1 mg/ml ristocetin 

in PRP was measured using a PAP-8 aggregometer. Anfibatide significantly 

inhibited platelet aggregation in a dose dependent manner (p=0.019). 

Anfibatide at a final concentration of 5 µg/ml inhibited aggregation by 94 ± 4% 

(figure 3.8.1). 

 

 
Figure 3.8.1. Anfibatide inhibits ristocetin induced aggregation in PRP in a dose 

dependent manner. Anfibatide inhibited aggregation induced by 1 mg/ml ristocetin in PRP as 

measured by light transmission aggregometry. The inhibition was dose dependent, p=0.092, 

ANOVA, n=3-4, error bars represent SEM.  

-20 

0 

20 

40 

60 

80 

100 

0.5 5 

%
 A

gg
re

ga
tio

n 

Log Concentration Anfibatide (µg/ml) 



 58 

3.9. GPIb receptor occupancy compared to inhibition of ristocetin-induced 

aggregation in whole blood by anfibatide 

 

As shown in figure 3.3.4, 20 µg/ml VM16d detects a similar number of binding 

sites to high dose anfibatide. VM16d was used to measure total GPIb receptor 

numbers. A flow cytometry based dose response to anfibatide was carried out 

using 7.35 µg/ml 1B9. Each dose was compared to the total receptor number 

as measured by VM16d and receptor occupancy was measured as a 

percentage. On the same day, using the same healthy donor whole blood 

samples, a dose response of ristocetin-induced platelet agregation to 

anfibatide was carried out. The inhibition of aggregation was expressed as a 

percentage and plotted with receptor occupancy as measured by VM16d 

(figure 3.9.1). Inhibition matched of aggregation closely matched GPIb 

receptor occupancy by anfibatide in each donor. IC50 for receptor occupancy 

is 5.295, and 95% CI is 1.96 – 14.29. IC50 for inhibition of aggregation is 4.33. 

95% CI is 1.43 – 13.14. R2 = 0.97, 0.95 respectively. 
   

 
Figure 3.9.1. Receptor occupancy by anfibatide correlates with inhibition of whole 

blood aggregation by anfibatide. Total GPIb receptor number is measured using 20 µg/ml 

VM16d, and GPIb receptor occupancy by anfibatide is measured with 7.35 µg/ml anti-

anfibatide antibody 1B9, using quantitative flow cytometry. This is compared to the inhibition 

of aggregation induced by 0.5 mg/ml ristocetin in whole blood samples incubated with varying 

doses of anfibatide for 30 minutes at room temperature, n=3, error bars represent SEM.
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Receptor occupancy was also measured using a lower doses of VM16d (10 

µg/ml), and 1B9 (3.675 µg/ml), and compared to inhibition of aggregation by 

anfibatide at 0.02 µg/ml and 10 µg/ml (figure 3.9.2). Receptor occupancy and 

inhibition of aggregation also matched at these concentrations. 

 

 
 
Figure 3.9.2. GPIb receptor occupancy by anfibatide correlated with inhibition of 

ristocetin-induced whole blood aggregation by anfibatide. Total GPIb receptor number is 

measured using 10 µg/ml VM16d, and GPIb receptor occupancy by anfibatide is measured 

using 3.675 µg/ml anti-anfibatide antibody 1B9. This is compared to the inhibition of 

aggregation induced by 0.5 mg/ml ristocetin in whole blood samples incubated with varying 

doses of anfibatide for 30 minutes at room temperature, n=3, error bars represent SEM. 
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3.10. The effect of Anfibatide on aggregation induced by various agonists 

 

The effect of high dose anfibatide (10 µg/ml) on platelet aggregation induced 

by various agonists in PRP was tested using a PAP-8 platelet aggregometer. 

Anfibatide did not significantly affect aggregation induced by high dose 

thrombin, low dose thrombin, ADP or arachidonic acd. Anfibatide fully 

inhibited aggregation induced by 1 mg/ml ristocetin (p=0.0002). 

 

 
Figure 3.10.1. 10 µg/ml anfibatide does not effect aggregation induced by high dose or 

low dose thrombin, ADP or arachidonic acid in PRP, but does inhibit ristocetin induced 

aggregation, as measured by light transmission aggregometry. Anfibatide did not 

significantly affect aggregation induced in PRP by low dose thrombin (0.05 U/ml), high dose 

thrombin (0.5 U/ml), ADP, or arachidonic acid, compared to control samples that were not 

incubated with anfibatide. Anfibatide completely inhibits ristocetin-induced aggregation in 

PRP, p=0.0002, multiple paired t-tests, n=3-5, error bars represent SEM. 
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3.11. The effect of anfibatide on bacteria-induced platelet aggregation in 

whole blood  

 

Two bacteria strains were used to induce platelet aggregation in whole blood 

samples from healthy donors: Staphylococcus aureus Newman, and 

Streptococcus sanguinis 133-79. S. aureus Newman causes platelet 

aggregation by interacting with the FcγRIIa receptor and GPIIb/IIIa. Since 

anfibatide does not interact with GPIIb-IIIa as measured by a monoclonal 

antibody study (figure 3.4.1), it is expected to have no effect on S. aureus 

Newman induced platelet aggregation. As hypothesised, high dose anfibatide 

(32 µg/ml) had no significant effect on S. aureus induced aggregation in whole 

blood, n=3, analysed using a Multiplate analyser (p=0.104).  

 

S. sanguinis 133-79 induces platelet aggregation through the GPIb receptor. It 

was expected that the GPIb antagonist anfibatide would inhibit aggregation 

induced by this bacterial strain. Whole blood from six healthy donors was 

tested. In three of these donors, anfibatide at 3.2 µg/ml, 10 µg/ml, and 32 

µg/ml had no significant effect on platelet aggregation (p=0.156). In the 

remaining three donors, anfibatide partially inhibited whole blood aggregation 

in a dose dependent manner (figure 3.11.1). Anfibatide at a final concentration 

of 32 µg/ml significantly inhibited aggregation by 49 ± 17% (p<0.05). AN51, an 

anti-GPIb antibody, partially and significantly inhibited aggregation by 53 ± 

17% (p=0.04), indicating that S. sanguinis 133-79 does cause aggregation 

through the GPIb receptor, at least in part (figure 3.11.2). 
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Figure 3.11.1. Anfibatide inhibits S. sanguinis 133-79 induced aggregation in whole 

blood samples from half of healthy volunteers by 50%. In 3 of 6 healthy volunteers, 32 

µg/ml anfibatide inhibited whole blood aggregation by 49 ± 17%, p<0.05, compared to control 

samples which were incubated with PBS. In these three donors, the anti-GPIb antibody AN51 

significantly inhibited platelet aggregation by 53 ± 17%, p<0.05, ANOVA, n=3, error bars 

represent SEM.  

 
Figure 3.11.2. S. sanguinis 133-79 is inhibited by AN51 and high dose anfibatide, S. 

aureus Newman induced platelet aggregation is not inhibited by anfibatide in whole 

blood. High dose anfibatide (32 µg/ml) and the anti-GPIb antibody AN51 (12.5 µg/ml) both 

inhibit S. sanguinis 133-79 induced platelet aggregation in whole blood to the same extent. S. 

aureus Newman induced platelet aggregation is not significantly inhibited, compared to 

control samples incubated with PBS instead of anfibatide, p=0.104, ANOVA, n=3, error bars 

represent SEM.
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3.12. The effect of anfibatide on bacterial induced aggregations in PRP 

 

The effect of anfibatide on bacterial induced platelet aggregation in PRP was 

measured using two strains of S. sanguinis: S. sanguinis NCTC 7863, and S. 

sanguinis 133-79, both of which act through the GPIb receptor to cause 

platelet aggregation. Anfibatide at a final concentration of 10 µg/ml had no 

significant effect on platelet aggregation in PRP induced by either strain 

(figure 3.12.1). 

 

 
Figure 3.12.1. High dose anfibatide did not effect S. sanguinis induced aggregations in 

PRP, as measure by LTA. High dose anfibatide (10 µg/ml) did not significantly effect 

aggregation induced by S. sanguinis 133-79 (p=0.144) or S. sanguinis NCTC 7863 (p=0.802), 

compared to control samples which were not incubated with anfibatide, as measured by light 

transmission aggregometry, paired t-test, n=3-4, error bars represent SEM. 
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The lag time for S. sanguinis NCTC 7863 was 8.4 ± 0.8 minutes, and was not 

significantly affected by anfibatide treatment (p=0.356). The lag time for S. 

sanguinis 133-79 was 3.2 ± 0.6 minutes, and was not significantly altered by 

anfibatide (p=0.547) (figure 3.12.2).  

 

 
Figure 3.12.2. Anfibatide did not significantly affect lag time in bacterial induced 
aggregation in PRP. High dose anfibatide (10 µg/ml) did not significantly affect the lag time 
of S. sanguinis NCTC 7863 (p=0.356), or S. sanguinis 133-79 (p=0.547), compared to control 
samples which were not incubated with anfibatide, as measured by light transmission 
aggregometry, paired t-tests, n=3-4, error bars represent SEM. 
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Chapter 4: Discussion 
 

Anfibatide is a novel anti-GPIb antagonist that is entering Phase Ib-IIa trials in 

early 2015. This trial will investigate the pharmacokinetics of the compound so 

that an effective dose can be chosen with which to treat patients. For the 

compound to be used effectively in patients with non-ST segment myocardial 

infarction, or possibly in the future in patients suffering from other thrombotic 

disorders, the extent of drug binding needs to be established. This is 

particularly important when targeting the GPIb receptor as not only do platelet 

numbers vary between patients, but receptor numbers per platelet also vary. 

 

In a clinical setting, it is necessary to monitor the levels of many 

pharmaceutical agents in patients. For example, in warfarin treatment, drug 

levels and activity in patients must be constantly monitored in order to control 

bleeding risk and optimise drug efficacy. Warfarin is a commonly used 

anticoagulant that can prevent thrombosis and thromboembolism (49). There 

are three main approaches to measuring drug levels in patients: measuring 

plasma levels of the drug, measuring functional analysis, or measuring 

receptor binding. Measuring the plasma levels of a drug is not always 

accurate, particularly in the case of drugs that have high affinity binding to 

their target receptor. For example, even when aspirin levels are low, 

antiplatelet effects are still seen as the drug is bound to COX-1 in platelets 

rather than freely circulating in the plasma (54). Anfibatide is expected to have 

high affinity binding to the GPIb receptor, making this an inappropriate tool. 

Functional analysis for anti-platelet agents generally involves measuring 

platelet aggregation. Most aggregometers require manipulation of blood, 

which is time consuming and can lead to platelet activation. Furthermore, 

most hospitals do not have access to platelet aggregometers, and the majority 

of health professionals are not trained in the technique. There is also wide 

variation in the results obtained from different platelet functional tests, making 

them unreliable and inconsistent (24). Receptor binding is the most 

appropriate way to measure anfibatide levels in patients in clinical trials. 
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A receptor binding assay was previously developed in this lab for GPIIb/IIIa 

(55), and it is on this principle that the current GPIb receptor occupacy assay 

is based. The assay that we have developed measures total GPIb receptor 

numbers per platelet for each patient, and measures binding of anfibatide to 

the platelet with the anti-anfibatide antibody 1B9. Therefore, the percentage of 

GPIb receptors occupied by anfibatide can be calculated using our assay. 

This is a no-wash assay, meaning that both the primary and secondary 

antibodies must be used at saturating concentrations. The secondary 

antibody, IgG-FITC, was part of the platelet calibrator kit (Biocytex, France) 

and was pre-optimised, meaning that only the primary antibody had to be 

optimised. The primary antibody, 1B9, was found to detect optimal binding of 

anfibatide at 3.8 µg/ml. It is recommended that the primary antibody is not 

used in excess of 10 µg/ml as part of the platelet calibrator kit, which means 

that this dose of 1B9 is appropriate. As 1B9 concentration increased beyond 

3.8 µg/ml, 1B9 detection of anfibatide decreased. This could be due to excess 

1B9 binding the FITC-labelled antibody in the plasma, preventing binding to 

anfibatide. 

 

In order to detect total GPIb receptor numbers, an anti-GPIb antibody was 

required for the assay. Five anti-GPIb monoclonal antibodies were tested. It 

was found that high dose VM16d (20 µg/ml) was not affected by anfibatide. 

Since the receptor numbers indicated in flow cytometry studies using VM16d 

are similar to those reported when measuring anfibatide binding using 7.35 

µg/ml 1B9, this antibody was chosen to measure total GPIb receptor number. 

This study showed that GPIb receptor occupancy by anfibatide, calculated 

using the anti-GPIb antibody VM16d, was directly related to functional activity 

as measured by inhibition of ristocetin-induced platelet aggregation in whole 

blood. In a clinical setting, blood samples could be tested using this assay to 

determine the occupancy of GPIb receptors by anfibatide. Since the 

percentage correlates with functional studies, dosage of anfibatide can be 

adjusted in order maximise receptor occupancy, while minimising the dose so 

as to prevent possible side effects. In order for this assay to be used in this 

way, this would need to be tested in a clinical trial. 
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VM16d was chosen as the receptor numbers detected by it most closely 

matched binding sites detected by 1B9. However, since low dose VM16d 

binding to GPIb is partially inhibited by anfibatide, it may not be the ideal 

candidate to measure receptor numbers. 1B9 at 3.8 µg/ml detected 

approximately 60,000 binding sites, compared to only approximately 30,000 

receptors detected by the anti-GPIb antibodies WM23, ALMA 19, and SZ2. 

Assuming that the evidence pointing to anfibatide being a GPIb antagonist is 

correct, there are some explanations for double the receptor numbers 

detected by 1B9 binding compared to normal GPIb receptor numbers. 

Anfibatide may be forming dimers, onto which two 1B9 molecules bind. It is 

unknown where 1B9 binds to anfibatide, and there may be two binding sites 

on 1B9 for the compound. There could potentially be an additional pool of 

GPIb receptors that is undetectable by the monoclonal antibodies. Since 

neither WM23 or ALMA 19 are affected by anfibatide, and they detect 

approximately half the number of binding sites that 1B9 detects with 

anfibatide, these could possibly be used to measure total receptor numbers, 

and the measured total could be doubled before calculating receptor 

occupancy by anfibatide. 

 

The assay is simple to use, and is very quick. From the initial blood draw, the 

entire assay could be completed and analysed in two hours by someone 

trained in the technique. Whole blood can be used, meaning that preparation 

time is short. The fact that the blood does not need to be manipulated limits 

the possiblity of platelet activation which could affect the results. The assay is 

easily taught, and easily learned, and completely accessible by any laboratory 

or hospital facility that has access to a flow cytometer. The optimum doses of 

each antibody has been determined in this study, so no calculations or 

optimisation has to be carried out in individual facilities. These factors make it 

feasible for the assay to be widely used in hospitals where patients would be 

undergoing anfibatide treatment. The assay would have to be validated in a 

cinical study prior to use in the clinic. 

 

In this study, 10 µg/ml of anfibatide resulted in maximal binding, which was 

matched with close to complete inhibition of ristocetin-induced whole blood 
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aggregation. The dose of anfibatide being used in the clinical studies in China 

would produce an estimated final concentration of only 2 ng/ml. In this study, 

the lowest concentration of anfibatide tested was 0.1 µg/ml, which had no 

recorded occupancy of GPIb receptors, and had no functional effect on 

aggregation. The concentration used in China is approximately 5,000 times 

more dilute than the concentration we found to have maximal effect in healthy 

donor blood, yet they are reporting an anti-thrombotic effect. This substantial 

difference in reported effective dosage raises a number of questions. The 

journey of anfibatide from China to Ireland may effect its potency. The protein 

is being transported in a lyophilised state, and is stored and prepared in the 

same manner as it is in China, making this an unlikely cause of the 

discrepancy. A second possible explanation for the discrepancy could be 

population differences. Chinese donors may have a higher affinity for 

anfibatide than Irish donors. A study comparing European and Chinese 

donors response to anfibatide should be carried out in one laboratory under 

the same conditions in an attempt to explain this difference. 

 

Identification of the Anfibatide Binding Site 

 
The effect of anfibatide on anti-GPIb antibodies gives an insight into the 

possible binding site of the drug. Anfibatide had no effect on WM 23, AN 51, 

and ALMA 19 binding. This indicates that anfibatide does not bind to the 

macroglycopeptide region, or the vWF binding site on GPIbα. Anfibatide 

partially inhibited both VM16d and SZ 2, which bind to the thrombin binding 

site and the sulfated tyrosine region respectively. Anfibatide did not inhibit 

aggregation induced in PRP by thrombin at low dose or high doses. This 

indicates that the drug does not bind directly to the thrombin binding site 

where VM16d does. Thus we hypothesise that anfibatide binds to GPIbα in 

the region between the thrombin binding site, and the sulfated tyrosine region 

contained in residues 276 - 282.  
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Estimation of GPIb Receptor Numbers 

 
Five different anti-GPIbα antibodies were used in this study. Surprisingly, the 

antibodies had varying numbers of binding sites. It was anticipated that all 

antibodies would give similar receptor numbers, as they all bind to the same 

receptor, and all antibodies were tested in the same donor on the same day 

(n=3). WM23, SZ 2, and ALMA 19 all had a similar number of binding sites 

(27,000 – 30,000 receptors). Previous studies with WM23 demonstrated that 

there were approximately 21,000 binding sites (6). However their study 

indicated that there was wide variability in recepetor numbers depending on 

the donor, indicating that the results of our study are reasonable and in line 

with previous data. In our study, AN51, which binds to the vWF binding site on 

GPIbα, has had only 15,000 binding sites, significantly less than the other 

anti-GPIb antibodies. Previous studies with AN 51 indicated 22,000 binding 

sites, though once again there was high inter-donor variability (6, 9). VM16d 

had the highest receptor numbers, with an average of 40,880 binding sites. 

However, there was no statistical significance when comparing WM23, SZ 2, 

ALMA 19, and VM16d receptor numbers. Conventionaly, it is believed that 

there are 25,000 – 30,000 GPIb receptors per platelet, half the number of 

GPIIb-IIIa receptors present. This is in agreement with data from WM23, SZ 2, 

and ALMA 19. The higher numbers indicated by VM16d may indicate that 

more than one antibody binds to each GPIb receptor, or there may be 

clustering of the antibody on GPIb. The fact that AN51 binds half the number 

of receptors compared to the other antibodies suggests that perhaps AN51 

can only bind one GPIbα molecule per GPIb-IX-V complex, or cleavage of 

glycocalicin may be occurring. 
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Anfibatide and Bacteria-Platelet Interactions 

 
If anfibatide is demonstrated to be a clinically effective and safe anti-

thrombotic, it could theoretically be used to inhibit bacteria that activate 

platelets through the GPIb receptor. S. sanguinis 133-79 has been shown to 

activate platelets by directly interacting with GPIb (57). Anfibatide inhibited S. 

sanguinis 133-79 induced whole blood aggregation in a dose dependent 

manner, to the same extent as the anti-GPIb antibody AN51. It did not inhibit 

S. aureus Newman induced aggregation, which is stimulated directly through 

GPIIb/IIIa receptor activation (56). These results indicate that anfibatide may 

be useful and effective in preventing or treating bacterial-induced sepsis, 

initiated by the interaction of certain bacterial strains with platelets. In our 

study however, aggregation was only inhibited in three of six healthy donors. 

This suggests that the treatment would not be effective in all patients, possibly 

due variations in GPIb structure between donors. Anfibatide also had no effect 

on aggregation induced in PRP by S. sanguinis 133-79. There is a possibility 

that there is some component of the whole blood that is not present in PRP 

that affects the anfibatide - platelet interaction. Whole blood aggregations are 

mosre physiologically relevant than aggregations in PRP. The PRP 

aggregations were only carried out in four healthy donors, so it is possible, 

based on the donor variation seen in the whole blood study, that the sample 

size was too small to analyse the true effect of anfibatide.  

 

Whole Blood Aggregation 

 

Ristocetin is a commonly used platelet agonist that induces platelet 

aggregation through the GPIb receptor, closely mimicking the in vivo 

interaction between vWF and the GPIb-IX-V complex. Anfibatide inhibited 

ristocetin - induced platelet aggregation in whole blood and PRP. This is 

further confirmation that anfibatide is a GPIb antagonist.  

 

Whole blood aggregation is a straightforward and easily learned technique. 

Use of Multiplate software could allow professionals in a clinical setting to 
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complete functional testing, along with the flow cytometry based receptor 

occupancy assay, to confirm that patients receiving anfibatide treatment are 

being effectively treated. Whole blood aggregations require no manipulation of 

blood, meaning that preparation time for the assay is short, and minimising 

platelet activation due to inappropriate handling. Furthermore, the assay only 

takes a few minutes to complete, and analysis is simple and fast. Inhibition of 

ristocetin-induced aggregation correlates with receptor occupancy by 

anfibatide, meaning that it is an excellent indicator of anfibtide efficacy, and 

suggesting that there are no free GPIb receptors. This indicated that whole 

blood aggregation could be used as a functional assay alongside the flow 

cytometry assay. 

 

Anfibatide Specificity  

 
The results of this in vitro study indicate that anfibatide is a potentially safe 

anti-thrombotic therapeutic. Anfibatide did not cause platelet activation, or loss 

of single platelets. It had no effect on GPIIb-IIIa in a monoclonal antibody 

binding study, which indicates that it would not cause bleeding at low shear 

stress, where GPIIb-IIIa is most active. Anfibatide studies in S. aureus 

Newman aggregation, as well as the GPIIb-IIIa monoclonal antibody studies, 

indicate that the inhibitory activity is specific to GPIb. It also had no effect on a 

range of agonists, including ADP, thrombin, and arachidonic acid, suggesting 

no off target effects. This implies that in vivo, anfibatide could effectively 

inhibit thrombus formation at high shear stress, for example in atherosclerotic 

arteries, while leaving the GPIIb-IIIa interaction unffected. Since the GPIIb-IIIa 

interaction is predominant at low shear stress in the periphery, excessive and 

unwanted bleeding would be prevented, making anfibatide an enticing 

alternative to GPIIb-IIIa antagonists. 

 

Future Work 
 
Anfibatide needs to be validated in upcoming clinical trials in China. This 

assay will be validated in approximately 100 non-ST segment myocardial 
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infarction patients on site in a military hospital in Beijing, beginning in March 

2015. Further investigation is also required to elucidate the exact binding site 

of anfibatide in order to fully understand its mechanism of action.
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Conclusion 

 
A flow cytometry based receptor occupancy assay has been developed. The 

technique involves measuring total GPIb receptor numbers with the 

monoclonal antibody VM16d, measuring anfibatide binding, and calculating 

total receptor occupancy, which is an indicator of functional activity. The 

assay is simple and quick, and can be used alongside the Multiplate analyser 

to measure functional activity through whole blood platelet aggregation. The 

assay is appropriate to use in forthcoming clinical trials on anfibatide in China, 

and in clinical practice in the future. The binding site of anfibatide is 

hypothesised to lie between the thrombin binding site and the sulfated 

tyrosine residues on GPIbα. Anfibatide inhibits ristocetin-induced aggregation 

in a dose-dependent manner, and partially inhibited S. sanguinis 133-79 

induced aggregation in 50% of healthy donors, indicating its potential use for 

bacterial-induced sepsis. 
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