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Abstract
Background: Osteoporosis, a disease of decreased bone mineral density represents a significant
and growing burden in the western world. Aging population structure and therapeutic use of
glucocorticoids have contributed in no small way to the increase in the incidence of this disease.
Despite substantial investigative efforts over the last number of years the exact molecular
mechanism underpinning the initiation and progression of osteoporosis remain to be elucidated.
This has meant that no significant advances in therapeutic strategies have emerged, with joint
replacement surgery being the mainstay of treatment.

Methods: In this study we have used an integrated genomics profiling and computational biology
based strategy to identify the key osteoblast genes and gene clusters whose expression is altered
in response to dexamethasone exposure. Primary human osteoblasts were exposed to
dexamethasone in vitro and microarray based transcriptome profiling completed.

Results: These studies identified approximately 500 osteoblast genes whose expression was
altered. Functional characterization of the transcriptome identified developmental networks as
being reactivated with 106 development associated genes found to be differentially regulated.
Pathway reconstruction revealed coordinate alteration of members of the WNT signaling pathway,
including frizzled-2, frizzled-7, DKK1 and WNT5B, whose differential expression in this setting was
confirmed by real time PCR.

Conclusion: The WNT pathway is a key regulator of skeletogenesis as well as differentiation of
bone cells. Reactivation of this pathway may lead to altered osteoblast activity resulting in
decreased bone mineral density, the pathological hallmark of osteoporosis. The data herein lend
weight to the hypothesis that alterations in developmental pathways drive the initiation and
progression of osteoporosis.
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Background
Osteoporosis is a skeletal disorder characterised by low
bone mass and micro-architectural deterioration with
consequent increase in bone fragility and susceptibility to
fracture [1]. After aging and sex steroid deficiency, the
therapeutic use of glucocorticoids is the most common
cause of osteoporosis. Osteoporotic fractures are an
important cause of morbidity and mortality [2], particu-
larly in elderly women who often suffer multiple fractures
[3]. Indeed, approximately 40% of all white women and
13% of white men in the United States experience at least
one clinically significant fragility fracture in their lifetime
[4].

Glucocorticoids modify the proliferative and metabolic
activity of bone cells [5-8]. They inhibit osteoblastogene-
sis and osteoclastogenesis and reduce osteoblast lifespan
of [9-11]. These changes lead to glucocorticoid-induced
osteoporosis, via reduced bone formation. Decreased
bone formation has been demonstrated histomorpho-
metrically and clinically [7]. Histomorphometric analysis
showed diminished bone formation and turnover in dex-
amethasone-treated mice [11]. Decreases in serum osteo-
calcin were observed in patients given dexamethasone
pulse treatment [12].

Microarray technology is one of the latest and most signif-
icant breakthroughs in experimental molecular biology
[13]. The use of microarrays makes it possible to demon-
strate the fundamental genes being expressed in tissues
and cultured cells [14,15] Microarray technology is being
used in attempts to understand fundamental aspects of
growth and development, as well as to explore underlying
genetic causes of many human diseases [16]. Leclerc et al
have previously employed a microarray-based strategy to
identify MC3T3 cell genes whose expression is altered in
response to dexamethasone. These studies demonstrated
the complexity of the response to steroid and the effect on
specific functional families, including BMPs, extracellular
matrix and signalling genes. [17]. A major limitation of
these studies is the use of the mouse osteoblast like cell
line MC3T3. In this study we have determined the
response to dexamethasone of primary human osteob-
lasts, investigations that complement previously reported
experiments. In this study we have utilised oligonucle-
otide microarrays to determine the transcriptomic
response of human osteoblasts and further describe the
molecular mechanisms underpinning steroid associated
bone density loss.

Methods
Cell culture and dexamethasone exposure in vitro
Primary Human Osteoblsts were obtained from Promo-
cell, (Heidelberg, Germany) and cultured according to the
manufacturers instructions. For stimulation experiments

cells were serum starved overnight. Following overnight
Incubation In serum free media, 10 ng/ml dexamethasone
was added to each stimulation sample at the appropriate
time.

Microarray analysis
RNA isolation, cDNA synthesis, in vitro transcription and
microarray analysis were performed as previously
reported [18]. Biotin-labelled cRNA prepared from tem-
plate cDNAs was fragmented and hybridized to the
Affymetrix HgU133A oligonucleotide microarrays as per
Affymetrix protocol (Affymetrix, Santa Clara, CA). Arrays
were then washed and fluorescently labelled prior to scan-
ning with a confocal scanner. All in vitro time points were
microarrayed in duplicate. Image files were obtained
through Affymetrix GeneChip software (MAS5). Robust
multichip analysis (RMA) was performed [19]. As each in
vivo time-point was microarrayed in duplicate an average
RMA value was computed. To ensure the average was sta-
tistically representative a t-test and p-value were gener-
ated. Only those genes with a p-value of δ 0.01 were
included in subsequent bioinformatic analysis. Thereaf-
ter, expression data for each time point was compared to
control and a signal log ratio of 0.6 or greater (equivalent
to a fold change in expression of 1.5 or greater) was taken
to identify significant differential regulation [20]. Using
normalised RMA values, Unsupervised Average Linkage
Hierarchical Cluster Analysis was performed [21]. A list of
1092 developmental genes represented on the Affymetrix
HgU133A oligonucleotide microarray was curated via the
Onto-Compare and Gene-Ontology (GO) databases [22].

Real Time quantitative PCR
Real time RT-PCR was performed on a TaqMan ABI 7700
Sequence Detection System® (AppliedBiosystems, Weiter-
stadt, Germany) using heat activated TaqDNA polymerase
(Amplitaq Gold, Applied Biosystems, Weiterstadt, Ger-
many), according to the manufacturers instructions. For
all quantitative analyses cDNA content of each sample
was compared with another sample following the ΔΔCt
technique [23]. 18S rRNA and which was amplified in
parallel with the genes of interest, served as housekeeping
gene. Primer and probes for the genes of interest were
designed in PrimerExpress® (AppliedBiosystems, Weiters-
tad, Germany) and searched against the public databases
to confirm unique amplification products. Controls con-
sisting of dH2O were negative in all runs. All measure-
ments were performed in duplicates.

Results
Global changes in gene expression elicited by 
dexamethasone
Exposure of primary human osteoblasts to 10 ng/ml dex-
amethasone was associated with significant changes in
gene expression. Data was normalised using RMA express
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and an average expression measure for each time point
used to identify alterations in gene expression. RMA nor-
malised data was found to be comparable across the time
series with the computed average expression aligning to
the individual chip hybridisation boxplots (Figure 1,
Panel A). Principal components analysis of normalised
data showed separation of the samples, demonstrating
overall changes in transcriptome activity in primary
human osteoblasts exposed to dexamethasone (Figure 1,
Panel B). Hierarchical cluster analysis of the arrays was
performed to confirm the average measurements were
representative of each time point. The total number of
genes altered was found to increase with time. The same
temporal pattern of gene expression alterations was
observed for both up and down regulated transcripts;
however of note was the find that significantly more genes
were upregulated in response to dexamethasone than
were downregulated. Of the 22,216 gene sequences repre-
sented on the Affymetrix HGU133A oligonucleotide
microarray 0.2% (31) genes), 0.47% (83 genes), 0.6%
(130 genes) and 1.3%% (300 genes) were significantly
altered following 30 minutes, 60 minutes, 2 hour and 4
hour exposure to dexamethasone respectively (Figure 2,
Panel A).

Ontological classification of dexamethasone-induced 
transcriptome identifies oxidative stress, apoptosis and 
developmental genes as drivers of cell injury
Having delineated the global transcriptomic response of
osteoblasts to dexamethasone, we categorised the signifi-
cantly perturbed genes according to their biological func-
tion. Significantly perturbed genes were used as Input In
classification searches. Figure 2 Panel B shows the overall
pattern of regulation of key functional families through-
out the time course exposure. All families studied were
found to increase over time, reflecting the increased tran-
scriptomic activity in the latter time points. Of note with
respect to the pathogenesis of steroid induced osteoporo-
sis was the finding of major changes in apoptosis associ-
ated genes, particularly at the later time points. Increases
in osteoblast apoptosis have been reported as a major
pathological hallmark of osteoporosis. Other functional
classes significantly represented in the dexamethasone-
induced transcriptome included, extracellular matrix, cell
growth and proliferation associated genes.

Of Interest was the large number of developmental genes
that appear to be dysregulated in response to dexametha-
sone exposure. These data suggest that developmental
processes may be subserving the cellular response in oste-
oporosis. Tables 1 and 2 list these developmental genes
that were significantly up and downregulated in response
to dexamethasone, respectively. To probe whether these
developmental genes were dysregulated in a coordinated
fashion hierarchical cluster analysis was performed (Fig-

ure 3). As can be seen the development-associated genes
are coregulated in response to dexamethasone over the
time points versus control, suggesting that the activation
of developmental pathways may be a pathogenomic
mechanism underpinning the altered osteoblast activity
in osteoporosis.

Development associated gene pathways are co-ordinately 
regulated in primary human osteoblasts in response to 
dexamethasone exposure
The functional classification of the dexamethasone elic-
ited transcriptome identified developmental genes as
being co-ordinately regulated. To further probe the nature
of these developmental network alterations and their role
in the pathogenesis of osteoporosis we determined the
effect of dexamethasone on specific developmental net-
work pathways.

Of the 1092 development associated genes represented on
the Affymetrix HgU133A oligonucleotide microarrays,
106 were found to be differentially regulated (SLI of ≥ 5
and a SLR ≤ -0.4 and ≥ +0.4 in one or more time points
compared to control (T1)). All 106 development classi-
fied genes identified as being significantly altered were
used as input in searches of the KEGG biopathways using
the Database for Annotation, Visualization and Integrated
Discovery 2.0 (DAVID 2.0) resource [24]. Using this strat-
egy 9 of the 106 development associated genes were
mapped to the TGF-b1 signalling pathway; This pathway
alteration included extracellular components of the (fol-
listatin and thrombospondin 1), intracellular mediators
(SMAD 1, 4, & 6) and intranuclear activators of TGF-b1
signalling (inhibitor of DNA binding 1, 2, 3 and 4).

9 of the identified development associated genes were
found, using pathway analysis to be components of the
WNT signalling pathway (Figure 4). The Wnt signalling
pathway comprises a family of secreted glycoproteins with
functions relating to cell specification, formation of the
body plan, cell growth, differentiation and apoptosis. Wnt
proteins bind to the frizzled family of receptors and their
low-density lipoprotein-related protein (LRP) co-recep-
tors, which transduce the signal through either the canon-
ical β-catenin pathway or non-canonical pathway. The
Wnt/β-catenin or canonical Wnt pathway is particularly
important for bone biology [25,26]. Activation of this
pathway occurs upon binding of Wnt to the 7-transmem-
brane domain-spanning frizzled receptor and LRP5/6
coreceptors. Loss of function mutations in human LRP5
are associated with osteoporosis-pseudoglioma syn-
drome, which causes low bone mass and skeletal fragility
[27]. More direct roles for Wnt signalling in the reduction
of trabecular bone formation and bone mass have been
shown in studies of mice lacking the soluble Wnt inhibi-
tor sFRP1, with the mice demonstrating reduced osteob-
Page 3 of 12
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Global Changes in osteoblast gene expression in response to dexamethasoneFigure 1
Global Changes in osteoblast gene expression in response to dexamethasone. Gene expression was assessed using 
Affymetrix HG-U133A oligonucleotide microarrays. Panel A shows boxplot of normalised data and computed average arrays 
for each time point. Panel B shows a principal components analysis plot of all arrays.
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Gene expression changes in osteoblasts exposed to dexamethasoneFigure 2
Gene expression changes in osteoblasts exposed to dexamethasone. Comparisons were made between control and 
30, 60, 120 and 240 minute time exposures to dexamethasone. Panel A shows a bar graph representing the percentage of 
genes represented on the microarray that were found to be significantly altered at each time point. T1 = control, T2 = 30 mins, 
T3 = 60 mins, T4 = 120 mins and T5 = 240 mins dexamethasone exposure. All significantly dysregulated genes (SLR < -0.6 & 
SLR > 0.6) were used in classification searched. Panel B shows bar chart describing the dysregulated transcripts, from each fam-
ily that were found to be significantly changed at each time point. Panel
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last and osteocyte apoptosis [28]. Current studies suggest
that endogenous Wnt signalling plays an important role
in osteoblatogenesis and bone formation [29].

During embryonic development, β-catenin is elevated in
differentiating osteoblasts and pharmacological and
genetic approaches have indicated the Wnt signalling
increases bone mass through a number of mechanisms
including renewal of stem cells, stimulation of preosteob-
last replication, induction of osteoblastogenesis and inhi-
bition of osteoblast and osteocyte apoptosis. β-catenin is
needed for the early parts of osteoblastogenesis, as well as
osteoblast maturation [30].

In human osteoblasts Wnt signalling is repressed by dex-
amethasone which suggests a role for this pathway in glu-
cocorticoid induced osteoporosis [32]. Wnt 10b has been
shown to increase bone mineral density throughout the
weight-bearing skeleton, with increased trabecular bone
in the endocortical compartment and a 4-fold increase in
bone volume fraction in the distal femoral metaphysic
[33,34].

DKK1 is a member of the dickopff family of secreted
inhibitors of wnt signalling. DKK1 has been shown to
block WNT2-induced cell growth in cultured fibroblasts
and the WNT2-induced increase in uncomplexed beta-cat-

Table 1: Developmental genes undergoing up-regulation following exposure to dexamethasone

Accession Gene SLR 30 SLR 60 SLR 120 SLR 240

N25732 FOXO3A -0.1 0.4 0.9 1.6
NM_012242.1 DKK1 0.1 0.5 0.9 1.6
NM_002015.2 FOXO1A -0.1 0.0 0.7 1.1
NM_005842.1 SPRY2 0.3 1.6 1.1 0.9
AI572079 SNAI2 0.3 0.7 1.1 0.8
NM_003243.1 TGFBR3 0.1 0.0 -0.3 0.7
NM_030775.1 WNT5B 0.0 0.2 0.2 0.7
NM_016932.1 SIX2 0.3 0.2 0.0 0.6
BC004395.1 APOL2 0.1 0.0 0.1 0.6
NM_001554.1 CYR61 0.4 0.4 0.1 0.5
NM_005359.1 MADH4 0.6 0.1 0.1 0.5
U52914.1 LEPR 0.3 0.1 -0.2 0.5
AI951720 TLE1 -0.1 0.1 0.2 0.5
AF308601.1 NOTCH2 0.2 0.0 -0.1 0.5
M24782.1 ELN -0.1 -0.1 0.0 0.5
M60721.1 HLX1 0.0 0.1 0.2 0.5
NM_003062.1 SLIT3 0.2 0.0 0.0 0.5
NM_001430.1 EPAS1 0.2 0.1 0.0 0.5
NM_001423.1 EMP1 0.2 0.1 0.6 0.5
NM_004335.2 BST2 0.2 0.1 0.4 0.4
NM_003244.1 TGIF 0.3 0.1 0.4 0.4
AF072872.1 FZD1 0.3 0.2 0.2 0.4
AI264196 FBN1 0.2 -0.2 -0.3 0.4
AI962897 SEMA3C 0.5 -0.1 -0.3 0.4
NM_001448.1 GPC4 0.3 -0.1 0.2 0.4
AF281859.1 SHFM3 0.3 0.2 0.3 0.4
NM_000041.1 APOE 0.1 0.3 0.3 0.4
NM_016453.1 AF3P21 0.2 0.2 0.2 0.4
NM_006884.1 SHOX2 -0.1 0.0 -0.2 0.4
NM_004472.1 FOXD1 0.2 0.4 0.0 0.3
NM_005251.1 FOXC2 -0.1 0.4 0.1 0.3
NM_012062.1 DNM1L 0.4 0.0 0.0 0.3
AI812030 THBS1 0.2 0.0 -0.4 0.3
NM_001992.2 F2R 0.1 -0.6 0.2 0.2
NM_003483.2 HMGA2 0.0 0.0 0.6 0.2
H71805 MCL1 -0.1 0.8 0.6 0.1
AW190873 ROD1 0.0 -0.2 -0.5 0.1
NM_013246.1 CLC -0.1 0.4 -0.1 0.1
NM_005882.2 MAEA 0.4 0.0 -0.2 0.1

(SLI of ≥ 5 and a SLR ≤ -0.4 and ≥ +0.4 in one or more timepoints compared to control (T1)
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enin Of note with respect to the pathogenesis of oste-
oporosis, was the finding that production of DKK1, which
inhibits osteoblast differentiation, is associated with the
presence of osteolytic bone lesions in patients with multi-
ple myeloma. [35]. Figure 5 Panel A demonstrates tempo-
rally regulated induction of this mRNA by dexamethasone
in primary human osteoblasts, with significant increases
in expression detected 60 minutes post exposure, a trend
that continued for 4 hours. These data lend further weight
to the hypothesis that altered developmental networks
drive the pathogenesis of steroid associated bone disease.

Frizzled 7 is a member of the frizzled family of wnt pro-
tein receptors. The frizzled-dependent signalling cascade
comprises several branches whose differential activation

depends on specific Wnt ligands, frizzled receptor iso-
forms, and the cellular context. During gastrulation, friz-
zled-7-dependent PKC signalling controls cell-sorting
behaviour in the mesoderm [36]. The activity of this
mediator in the canonical wnt pathway suggests its differ-
ential regulation may be a key effector of altered osteob-
last differentiation in the setting of osteoporosis. Real
time PCR identified an initial increase in expression of
Frzzled-7 following exposure to dexamethasone for 30
mins, with the level of expression being reduced at subse-
quent time points (Figure 5, Panel B)

The frizzled-2 receptor binds WNT proteins and can signal
by activating calcium release from intracellular stores.
Whilst its exact function in the setting of bone remains to

Table 2: Developmental genes undergoing most striking ownregulation following exposure to dexamethasone

Accession Gene SLR 30 SLR 60 SLR 120 SLR 240

BF001670 EFNB2 0.0 -0.1 -0.2 -1.3
NM_006350.2 FST -0.2 -0.3 -0.7 -1.2
NM_005585.1 MADH6 0.2 -0.2 -0.4 -1.1
NM_001546.1 ID4 0.3 0.1 -0.6 -1.0
NM _013409.1 FST -0.2 -0.1 -0.3 -0.9
U16797.1 EFNB2 -0.2 -0.2 -0.7 -0.9
NM_005924.1 MEOX2 0.3 -0.2 0.0 -0.9
NM_000346.1 SOX9 -0.1 0.0 -0.5 -0.8
U41813.1 HOXA9 0.0 -0.7 -0.8 -0.8
S69738.1 CCL2 0.4 0.6 0.3 -0.8
U58111.1 VEGFC -0.1 0.1 -0.2 -0.8
NM_018951.1 HOXA10 0.1 -0.3 -0.5 -0.7
NM_002166.1 ID2 0.4 0.0 -0.4 -0.7
NM_000600.1 IL6 0.2 0.0 -0.9 -0.6
AF022375.1 VEGF 0.1 0.2 -0.4 -0.6
AI246769 HOXA9 -0.1 -0.6 -0.7 -0.6
D13889.1 ID1 0.2 0.4 0.0 -0.6
NM_002006.1 FGF2 0.1 -0.3 -0.6 -0.6
NM_018951.1 HOXA10 0.0 -0.3 -0.3 -0.6
NM_003633.1 ENC1 0.0 0.0 -0.1 -0.6
AI333651 FZD7 0.1 -0.2 -0.1 -0.6
NM_001290.1 LDB2 0.1 0.1 -0.1 -0.4
NM_002309.2 LIF -0.1 0.2 -0.2 -0.4
NM_002506.1 NGFB -0.1 -0.1 -0.7 -0.4
NM_005095.1 ZNF262 0.0 0.1 0.3 -0.4
NM_001356.2 DDX3 0.1 -0.1 -0.2 -0.4
NM_020249.1 ADAMTS9 -0.4 -0.3 -0.1 -0.4
AI968085 WNT5A 0.1 -0.1 0.2 -0.4
AI819238 ID2 0.0 -0.4 -0.5 -0.4
U16153.1 ID4 0.2 -0.1 -0.5 -0.4
AI967981 ZNF45 0.0 -0.1 0.0 -0.4
U54826.1 MADH1 -0.1 0.0 -0.1 -0.4
NM_002167.1 ID3 0.2 0.0 -0.1 -0.4
NM_004333.1 BRAF -0.4 -0.4 -0.3 -0.4
NM_005574.2 LMO2 0.0 -0.1 -0.4 -0.3
R61374 HEY1 -0.4 -0.2 -0.1 -0.3
M27968.1 FGF2 0.1 -0.1 -0.5 -0.3
NM_014240.1 LIMD1 -0.3 -0.2 -0.5 -0.3
L37882.1 FZD2 0.1 -0.2 -0.6 -0.2

(SLI of ≥ 5 and a SLR ≤ -0.4 and ≥ +0.4 in one or more time points compared to control (T1)
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be elucidated, recent data indicate that endogenous
expression of WNT antagonists by osteoblasts controls
osteoblast maturation and subsequent functional activity
[37]. Figure 5 Panel C, demonstrates significantly
enhanced expression of frizzled 2 following exposure to
dexamethasone for four hours.

WNT5B is a member of the wnt family of genes. The WNT
gene family consists of structurally related genes encoding
secreted signalling molecules that have been implicated in
oncogenesis and in several developmental processes,
including regulation of cell fate and patterning during
embryogenesis. Members of the WNT family of secreted
signalling molecules have been implicated in regulating

chondrocyte differentiation. WNT5B is expressed in a sub-
population of prehypertrophic chondrocytes in the devel-
oping chicken limb [38]. Furthermore this family is
thought to play a key role in the regulation of osteogenesis
and skeletal development. Figure 5 Panel D shows signif-
icant increases in the expression of WNT5B at both 2 and
4 hours post dexamethasone exposure.

Discussion and conclusion
Glucocorticoids modify the proliferative and metabolic
activity of bone cells. They inhibit osteoblastogenesis and
osteoclastogenesis and reduce the lifespan of osteoblasts.
They are also potent repressors of osteoblast function and
probably stimulators of mature osteoclasts. Together,

Functional classification of dexamethasone induced transcriptomeFigure 3
Functional classification of dexamethasone induced transcriptome. Hierarchical cluster analysis of developmental 
genes 106/1092 mRNA transcripts that encode developmental processes had a SLI of ≥ 5 and a SLR ≤ -0.4 and ≥ +0.4 in one or 
more timepoints compared to control (T1). This Figure shows both total cluster and specific coordinate regulation clusters of 
developmental genes significantly altered in at least one time point. T1 = control, T2 = 30 mins, T3 = 60 mins, T4 = 120 mins 
and T5 = 240 mins dexamethasone exposure
Page 8 of 12
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these changes lead to glucocorticoid-induced osteoporo-
sis, mainly via reduced bone formation.

The direct impairment of the proliferative and metabolic
activity of osteoblasts is mediated by a number of differ-
ent mechanisms. In recent years, research in the field of
glucocorticoids and bone metabolism has focused to a
significant extent on the capacity of glucocorticoids to
inhibit the synthesis of cytokines and their binding pro-
teins and also of collagen and other bone matrix proteins.
Of particular importance in this regard are proinflamma-
tory cytokines, which play a significant role in the patho-
genesis of various inflammatory-rheumatic diseases.
Increased bone resorption and reduced bone formation
have been shown to occur especially with interleukin-1
(IL-1) and also to some extent with tumour necrosis factor
(TNF)-α and TNF-β [39-42]. TNFs, in particular, are
known to be potent stimulators of osteoclastogenesis
[43]. IL-1 and TNFs are produced by a variety of cells (e.g.,
T lymphocytes, monocytes, and osteoblasts) and their

synthesis can be inhibited by glucocorticoids. The gener-
alized reduction in bone density seen in patients receiving
long-term glucocorticoid therapy is therefore not due to
increased effects of IL-1 and TNF [41,42] In this context, it
should be noted glucocorticoids also have favourable
effects on bone metabolism, for instance, on the oste-
oporosis that occurs in the vicinity of articular surfaces in
patients with rheumatoid arthritis. Glucocorticoid ther-
apy reduces inflammatory activity and thus also reduces
the loss of bone density mediated by cytokines and medi-
ators of inflammation [42].

Glucocorticoids have been also been noted to have effects
on the extracellular matrix such as their ability to reduce
levels of mRNA for type I collagen and osteocalcin and to
modulate levels of mRNA for osteopontin, fibronectin,
β1-integrin, bone sialoprotein, and insulin-like growth
factors (IGFs). Many studies have examined the effects of
glucocorticoids on the metabolism of IGF-1 and IGF-2, in
particular. These two peptides are of crucial importance in

wnt pathway genes identified as being dysregulated in osteoblasts following exposure to dexamethasoneFigure 4
wnt pathway genes identified as being dysregulated in osteoblasts following exposure to dexamethasone. A list 
of 9 wnt pathway associated genes were identified using KEGG pathway analysis. The Microarray determined expression levels 
of these genes are represented in the bar chart and demonstrate the temporal regulation patterns of these genes. T1 = con-
trol, T2 = 30 mins, T3 = 60 mins, T4 = 120 mins and T5 = 240 mins dexamethasone exposure
Page 9 of 12
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bone metabolism, as they act as local regulators of bone
cell function [44]. They have been shown to inhibit colla-
genase-3 synthesis in rat bone cell cultures in vitro [45].
They also inhibit proliferation of osteoblasts and reduce
the amount of osteoblastic type I collagen synthesis [46].
The action of IGFs on the metabolic activity of osteoblasts
affects not only osteoblastic functions, but also, via mod-
ulation of osteoblast-osteoclast interactions, osteoclastic
functions, and may even disturb the formation of osteo-
clasts. A number of studies have shown that glucocorti-
coids reduce the expression of IGF-1. The functions of
IGF-1 and IGF-2 depend on the presence of their binding
proteins, the IGFBPs (IGF binding proteins). Six different

IGFBPs have now been identified, of which IGFBP-5 has
been observed to increase bone cell growth [47]. Gluco-
corticoids modulate the insulin-like growth factor system
not only directly by inhibiting IGF-1 synthesis, but also by
regulating the production of IGFBPs [48-50]

In this study we have employed an integrated functional
genomics and bioinformatics based strategy to identify
the key genes and gene clusters whose differential expres-
sion underpins the pathogenomic response of human
osteoblasts to dexamethasone. The global population age
trend is increasing with the result that more patients are
progressing to end stage osteoporosis, requiring joint

Dexamethasone elicited alterations in developmental gene expressionFigure 5
Dexamethasone elicited alterations in developmental gene expression. Confirmation of the microarray identified 
alterations in expression of DKK1, frizzled 2, frizzled 7 and WNT5B (Panels A, B, C and D respectively.) by quantitative real 
time PCR. All expression values were normalised to 18S rRNA. All measurements were completed in triplicate. Data are 
quoted relative to control. (* P < 0.05)
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replacement surgery. Steroids are widely used in clinical
medicine. However increased, long-term use of steroid is
contributing to the increased burden of osteoporosis glo-
bally. Despite significant advances in our knowledge per-
taining to the mechanism of this disease process, novel
therapeutic strategies have yet to emerge, placing consid-
erable strain on surgical services.

The osteoblast is a key cell in bone biology and its role in
depositing minerals contributes to overall bone density.
Alterations in bone deposition by osteoblasts as well as
bone resorption by osteoclasts are the key biological
events in osteoporosis. Herein the effect of steroid expo-
sure on osteoblast gene expression was determined using
oligonucloeotide microarrays. Data analysis identified a
cohort of genes whose expression was seen to alter in this
setting. 31, 83, 130 and 300 genes were significantly
altered following 30 minutes, 60 minutes, 2 hour and 4-
hour exposure to dexamethasone respectively. A major
limitation of microarray strategies is the large amount of
uncurated data that is routinely produced. To make sense
of the large amount of transcriptome information
obtained, functional and pathway classification of signif-
icantly altered genes was completed. These strategies iden-
tified developmental networks as being key gene clusters
altered in response to dexamethasone. Further analysis
identified genes at checkpoints in the Wnt signalling path-
ways as being dexamethasone targets. Increasing evidence
proposes a major role for the Wnt pathway in the elabora-
tion of bone disease, as well as its physiological role in
skeletal development and cellular differentiation. Further
studies confirmed these gene expression changes, using
quantitative PCR.

In aggregate the data presented herein lend further weight
to the hypothesis that osteoporosis arises, at least in part,
from alterations in the developmental control pathways
in human osteoblasts. Further studies will aim to articu-
late the exact mechanism of dysregulation of these devel-
opmental genes, characterise the effect of altered
expression on osteoblast biology with a view to further
characterising these mediators as indices of disease activ-
ity, diagnostic markers and therapeutic targets in oste-
oporosis.
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