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REVIEW Open Access

System-based approaches as prognostic
tools for glioblastoma
Manuela Salvucci1†, Zaitun Zakaria1†, Steven Carberry1, Amanda Tivnan1, Volker Seifert2, Donat Kögel2,
Brona M. Murphy1 and Jochen H. M. Prehn1*

Abstract

Background: The evasion of apoptosis is a hallmark of cancer. Understanding this process holistically and
overcoming apoptosis resistance is a goal of many research teams in order to develop better treatment options for
cancer patients. Efforts are also ongoing to personalize the treatment of patients. Strategies to confirm the
therapeutic efficacy of current treatments or indeed to identify potential novel additional options would be
extremely beneficial to both clinicians and patients. In the past few years, system medicine approaches have been
developed that model the biochemical pathways of apoptosis. These systems tools incorporate and analyse the
complex biological networks involved. For their successful integration into clinical practice, it is mandatory to
integrate systems approaches with routine clinical and histopathological practice to deliver personalized care for
patients.

Results: We review here the development of system medicine approaches that model apoptosis for the treatment
of cancer with a specific emphasis on the aggressive brain cancer, glioblastoma.

Conclusions: We discuss the current understanding in the field and present new approaches that highlight the
potential of system medicine approaches to influence how glioblastoma is diagnosed and treated in the future.

Keywords: Apoptosis, Computational model, Glioblastoma, Molecular signatures, Network model, Numerical
simulation, Precision oncology, Prognostic biomarker, Systems biology, Systems medicine

Background
Systems biology combines computational technology,
numerical techniques and wet-lab research to disentan-
gle and simulate complex biological networks, allowing
researchers to understand a system’s processes and
mechanisms, deliver novel therapeutic targets, and strat-
ify patients for clinical trials [1–5]. Systems biology ap-
proaches have been successfully applied across multiple
fields of biomedical sciences including immunology [6],
inflammation [7], cardiology [8], sepsis [9], respiratory
distress [10], neurodegenerative disorders [11] and can-
cer [12]. The arrival of cost-effective, high throughput
-omic profiling and imaging technologies, in combin-
ation with advances in mathematical modelling,

bioinformatics and machine learning, has initiated trans-
lational studies that apply, for the first-time, systems
biology approaches in the clinic [12–24]. Indeed, such
approaches often require larger multi-disciplinary teams
of in silico researchers, biologists and clinician scientists
for tool development, resourcing of material to be inves-
tigated and interpretation of data.
In this review, we will outline how systems biology has

been instrumental in advancing precision oncology
encompassing early detection, diagnosis monitoring and
treatment, focusing on glioblastoma multiforme (GBM).

Main text
Glioblastoma in the era of systems biology
Glioblastoma is a grade IV primary brain tumor and the
most aggressive form of all types of glioma, with a me-
dian survival of 12–15 months [25, 26]. GBMs may be
classified into two categories, based on the history of
tumor onset. Newly-diagnosed GBMs represent more
than 90% of GBMs, clinically presenting as de novo
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cases, while the remaining 10% of tumors are classified
as secondary GBMs progressing from low-grade (grades
I–III) gliomas. As both are highly diffuse and invasive by
nature, it is not possible to achieve complete surgical re-
section of all tumor cells [27]. Therefore, cytotoxic in-
sults with temozolomide (TMZ) chemotherapy and
radiotherapy are the first-line adjuvant therapy delivered
[26] to inhibit cell proliferation and trigger apoptotic cell
death [17, 28]. Despite great strides in targeted therapeu-
tics in both pre-clinical and clinical studies, an excep-
tionally high fraction of GBM patients experience
recurrence and prognosis remains extremely poor [29–
31]. Moreover, current standard-of-care for both tumors
resected at initial diagnosis and at recurrence is largely
based on study performed on samples from newly-
diagnosed patients.
To date there is an extremely limited availability of

molecular markers for prognostic and predictive markers
with clear clinical relevance [32]. Treatment of the dis-
ease is largely ‘one size fits all’, even though GBM pa-
tients that are female, with methylated O6-
methylguanine-DNA methyltransferase (MGMT) pro-
moter, younger age, who underwent resection rather
than biopsy and with pre-operative Karnofsky perform-
ance score ≥ 70 are associated with better outcome [33–
37].
The development of any form of cancer is an ex-

tremely complex process involving the acquired muta-
tion of multiple independent genes, engaging novel
genes and signaling pathways that alter cell proliferation,
cell growth, bioenergetics, apoptosis sensitivity, angio-
genesis and immune evasion, among many others [38,
39]. Because of this complexity, application of systems
biology via both data- and hypothesis-driven approaches
for novel diagnostic and prognostic techniques for on-
cology treatment is an advancing research niche [13,
15–21, 40–48].

Perspective on data-driven biomarkers
Recent technological advances coupled with unprece-
dented computational infrastructures have provided re-
searchers with large-scale data from multiple sources
that can be harnessed to improve cancer detection, diag-
nosis and treatment. A major source of data include im-
aging studies such as scans from computer tomography
(CT) and magnetic resonance (MRI) [49, 50], and micro-
scopic pathology [51–55] routinely performed for diag-
nosis and assessment of treatment response. Omic data,
such as mutations and expression of genes and proteins
[42, 43, 56–63] derived from samples from blood or
tumor tissue from biopsy or surgical resection are an-
other fertile source of biomarkers for the disease. More
recently, data extracted from electronic medical records
[64, 65], mobile health applications [66, 67], social media

[68, 69] and web searches [70] have also been harnessed.
Hybrid approaches leveraging data from multiple data
types have also emerged as promising biomarkers [71–
73].
A major focus of GBM research over the past decade

has been determining and understanding the molecular
architecture of GBM predominantly from a genomic,
epigenomic and transcriptomic standpoint. Through the
efforts of the Cancer Genome Atlas (TCGA) [74] and
other consortia, between two to four GBM subtypes
have been classified based on transcriptomic profiling:
proneural (PN) and mesenchymal (MES) have been most
reliably established, with classical (CL) and neural sub-
types also described [43, 62, 75]. The PN subtype arises
in the frontal cortex of younger patients, accompanied
by platelet-derived growth factor receptor-A (PDGFRA)
amplification [43, 76], isocitrate dehydrogenase (IDH) 1/
2 mutation [42, 43, 77, 78], and tumor protein p53
(TP53) mutations [43, 79, 80]. Patients harboring IDH1/
IDH2 mutations and often a CpG island methylator
phenotype (G-CIMP) are constituted for the vast major-
ity by secondary GBMs and have the best prognosis of
any GBM subgroup [43, 81]. In contrast, proneural
GBM patients with wild type IDH status have a signifi-
cantly worse outcome in terms of progression-free sur-
vival (PFS) rates [43, 78]. MES subtype of GBM is an
extremely aggressive form, with greater vascularity [43,
82], and an associated with neurofibromin (NF1) lesions
[43, 83, 84], nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB) activity [43, 85, 86], in-
creased expression of protein kinase B (PKB or AKT),
and tumor growth factor-beta (TGF-β) [43, 87, 88].
The CL subtype is also aggressive, distinguished by the
presence of epidermal growth factor receptor (EGFR) le-
sions [43, 89]. The neural subtype however has been de-
bated and has become controversial, due to the fact that
it is less distinct and is thought perhaps to arise from
possible contamination of GBM samples with normal
brain tissue [43, 62].
Recent work by Suvà laboratory [90] integrating bulk

and single-cell transcriptomics from adult and pediatric
GBM tumors with lineage tracing experiments and
patient-derived xenograft (PDX) models has shown how
GBM cells can assume four distinct cellular states ran-
ging from neural-progenitor-like; oligodendrocyte-
progenitor-like; astrocyte-like and mesenchymal-like.
While both adult and pediatric tumor samples contain a
mixture of 2 to 4 of these cell states (with astrocyte-like
being under-represented in pediatric), their proportion
reflects the genetics and transcriptomic program of the
tumors. Tumor cell can transition between states and
this plasticity is a function of their genetic, epigenetic
and tumor micro-environment make-up and it is mir-
rored in their transcriptional subtype. Cells with an
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astrocyte-like state feature EGFR aberrations and are
found in tumors with a CL transcriptomic subtype. Simi-
larly, cells with a mesenchymal-like state present with
aberrations in NF1 and chromosome 5q (Chr5q) dele-
tions. In contrast, the PN subtype includes a mixture of
both neural-progenitor-like (Cyclin-dependent kinase A
(CDKA) amplifications) and oligodendrocyte-progenitor-
like (platelet-derived growth factor receptor-A
(PDGFRA) aberrations).
While the utilization of such tumor classification based

on transcriptomic subtypes is not yet widespread in the
clinic, it is hoped that through identification and under-
standing of critical drivers of each GBM subtype, this
will lead to more personalized therapeutic approaches
for patients and improved survival rates [42, 43, 62, 74,
79]. A significant caveat of this approach with regards to
GBM tumors, however is that potential biological targets
which are identified based on the biology of the first
GBM tumor may not be present in the recurrent tumor
[62, 75, 91–93]. Indeed, recent research has put forward
the notion that multiple longitudinal specimens sampled
from spatially-distinct regions of the tumor are necessary
to characterize continuously evolving and high heteroge-
neous GBMs [94–97]. Re-characterization of the isolated
tissue should be performed, especially in settings where
targeted agents will be employed, to ensure the targets
are relevant for a sizable fraction of the tumor cells and
still present at recurrence [62, 92, 98]. GBM notorious
intra-tumor heterogeneity translates into the presence of
multiple transcriptomic subtypes within a patient tumor
[62, 99, 100]. Moreover, the expression of the transcrip-
tomic programs differs between contrast-enhancing and
non-contrast-enhancing regions of the tumor [101].
Wang et al. found that approximately two thirds of
recurrent samples have a different (dominant) tran-
scriptomic subtype at recurrence compared to their
primary tumor, with the MES program emerging as
the most stable [98]. The transition from PN to MES
transcriptomic program (analogous to epithelial to
mesenchymal transition) [102] features among the
marked molecular differences identified from gen-
omic, epigenomic and transcriptomic analyses in
tumor samples from newly-diagnosed and recur-
rent patients (recently reviewed in [92, 103]). Recent
research has focused on developing treatments spe-
cific to transcriptomic subtyping. Anti-angiogenic
treatment has emerged as treatment of choice for
patients with MES tumors as morphometric analyses
have shown that these tumors have larger, but not
more numerous, vessels with larger necrotic and hypoxic
areas. Disappointingly, a clinical trial did not reveal
survival benefit when Bevacizumab was administered in
combination with lomustine to GBM patients not selected
based on transcriptomic subtype [104].

Perspective on hypothesis-driven biomarkers
Dynamic systems modelling techniques, often based on
ordinary differential equations, can be used to under-
stand the complex and often nonlinear relationship be-
tween multiple components within a biological system.
Such systems models calculate the dynamic changes in
the various elements of signal transduction pathways
and take into account network topology and biochemical
pathways including feed-back/forward loops and alterna-
tive pathway branches. Because of their quantitative na-
ture, dynamic systems models can also be employed to
qualitatively and quantitatively predict responses to ther-
apies that target the signaling network under investiga-
tion [105–107]. Such modelling techniques have been
successfully employed in the case of apoptosis (reviewed
in [108]), kinase [109–111] and microRNA signaling
[112]. Dynamic systems models have the potential to de-
liver powerful prognostic biomarkers for the clinical
management of cancer that outperform statistical ap-
proaches, and have been shown to significantly improve
‘traditional’ histopathological risk factors of disease pro-
gression [12, 15–22, 44, 47].
Work from the Swanson lab has highlighted how rele-

vant parameters can be extracted from MRI scans rou-
tinely performed as part of the diagnostic and treatment
monitoring protocol and how they can be leveraged as
input to a mathematical model dabbed “Proliferation-In-
vasion” to estimate the nature and aggressiveness of
GBM tumors. This work builds upon the pioneering
work of Murray [113] and models the “Go or Grow” na-
ture of cancer with a spatio-temporal framework where
cells either migrate (go) or proliferate on site (grow).
Swanson et al. detailed how net migration and prolifera-
tion rates can be estimated from macroscopical features
of the tumor detected in MRI scans on a patient by pa-
tient basis and demonstrated how patients with nodular
tumors (low migration and high proliferation) have bet-
ter survival prospects compared to those with diffuse
(high migration low proliferation) tumors. By extracting
the parameters from pre- and post-treatment MRI scans,
the model leads to the calculation of “days gained” as a
proxy for treatment success. Patients predicted to benefit
from the treatment (higher days gained) exhibited sig-
nificantly longer PFS and overall survival (OS). These re-
sults suggest that, if implemented in clinical practice,
days gained could be used to monitor patient response
to treatment and to identify promptly case with insuffi-
cient response requiring an alternative therapeutic regi-
men [15, 16].
Interestingly, this modelling approach has been re-

cently applied in conjunction with other data-driven ap-
proaches [37, 114] highlighting how these two branches
of systems biology can be complementary and
integrated.
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Yang et al. applied this class of models in support of
data-driven analysis in the investigation of differences in
transcriptomic programs between male and female and
their putative role in treatment response and outcome
[37]. Initial tumor growth velocities predicted by the
mechanistic model from serial MRI scans showed no dif-
ference between male and female subjects. In contrast,
the authors observed a decrease in velocities following
TMZ treatment in female, but not male subjects. When
comparing survival curves from females with high vs.
low predicted first TMZ velocities, the authors found
that females with low velocities survived longer. These
associations were null in male patients [37]. Moreover,
gene expression analysis identified transcriptomic pro-
grams common to both sex (calcium-calmodulin signal-
ing) along with pathways specific to male (cell cycles
signaling) and females (integrin signaling). Interestingly,
Yang et al. also observed a differential role played by the
IDH mutation and transcriptional subtypes by sex.
Gaw and co-workers [114] integrated the mechanistic

insights from the “Proliferation-Invasion” model (PI)
with feature extractions capabilities by semi-supervised
machine learning (ML) into a hybrid model (dabbed
ML-PI). The ML-PI model takes as input images from
sequential MRI scans and outputs a (spatial) map of
tumor cells that can help clinicians identify the invasive
front of the tumor (under-estimated by current MRI en-
hancement signal) aiding in planning radiation treatment
and, in the future, surgery. In this proof-of-concept
study performed on MRI scans from n = 18 newly-
diagnosed GBM patients the authors found improved
performance when using the hybrid model (ML-PI)
compared to either single algorithm (ML or PI)
highlighting the importance of leveraging both the data-
and hypothesis-driven branches of systems biology to
advance precision oncology [114].
Fey et al. developed an ODEs system for the JUN N-

terminal kinase (JNK) pathway by applying rule-based
modelling in tandem with extensive in vitro validation
(including SH-SY5Y cells). The model takes as input the
kinase expression for ZAK (sterile alpha motif and leu-
cine zipper containing kinase), AKT, MKK4 (dual speci-
ficity mitogen-activated protein kinase kinase 4), MKK7
(dual specificity mitogen-activated protein kinase kinase
7) and JNK, either protein- or transcriptomic-based, and
predicts JNK activation via phosphorylation. The model
can satisfactory reproduce experimental profiles of JNK
activation mediated by isomycin and other stressors. Im-
portantly, features extracted from the model-predicted
JNK activation profile, namely signal amplitude, half-
activation threshold and, particularly, ultrasensitivity (i.e.
Hill coefficient) were identified as control points and po-
tential treatment avenues. The model development was
geared towards the neuroblastoma settings, a type of

childhood cancer with remarkably diverse prognosis ran-
ging from spontaneous remission to death. Patients with
N-Myc (MYCN) amplification (~ 20–25% of the cases)
have worse prognosis, however poor outcome is ob-
served also in children not affected by this molecular
change. Fey and colleagues described how patients
whose simulations showed a higher amplitude and a
more marked switch-like behavior (higher Hill coeffi-
cient) in JNK activation, suggestive of a functional apop-
tosis machinery, had better outcome compared to those
with a more dampened response. Remarkably, the model
prognostic value was demonstrated in a training and two
validation cohorts (over 700 patients) and found to be
independent of MYCN amplification status.
By combining mathematical modelling with carefully

designed experiments in patient samples, cell-line and
patient-derived xenografts and patient-derived cell cul-
tures, Niclou’s laboratory has recently recapitulated
phenotypic plasticity [115]. This research work put for-
ward the notion that cancer stem cells (CSCs) do not
represent a separate class of cells with immutable fea-
tures. In contrast, this work indicates that the microen-
viroment may mediate the (reversible) transition from a
non-stem cell to a stem cell-like phenotype. The authors
describe transitions across cell states as a Markovian
process depending on the current cell state and micro-
enviroment signals (drawn from normoxia/hypoxia and
in vivo scenarios). Results from computational and ex-
perimental analyses revealed that the degree of plasticity
was associated with tumorigenesis potential in the
in vivo settings and recommend that future therapeutic
endeavors should focus on harnessing this plasticity as
opposed to targeting the cancer stem cells subpopulation
[116].
Chemo- and radiation-therapy require functional

apoptosis pathways to be effective. Indeed, apoptosis de-
ficiency, induced by an imbalance among pro- and anti-
apoptotic agents, characterizes the proteomic landscape
of the vast majority of tumors and is the object of a vast
body of research in GBM [17, 117–122].

Apoptosis systems modelling in oncology
Systems biology tools describing the ‘all-or-none’ nature
of apoptosis signaling have been developed over several
years through a close interaction of in silico and wet lab-
based research [47, 123–126]. The application of systems
modeling for apoptosis research began in 2000 by Fusse-
negger et al., [127] focusing on mathematical models
with ordinary differential equations (ODEs). Fussenegger
et al. recapitulated into a mathematical framework how
initiator caspases from both the intrinsic and extrinsic
pathways, when triggered, activate effector caspases lead-
ing to apoptosis. The model includes activation of initi-
ator caspases 8 and 9 leading to the formation of the
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apoptosome and death-inducing signaling complexes via
stress- and receptor-mediated mechanisms, respectively.
Inhibition mechanisms for initiator caspases by anti-
apoptotic proteins from the B-cell lymphoma 2 (BCL-2)
family (BCL-2 and B-cell lymphoma-extra large (BCL-
xL)) and decoy receptors and by inhibitor of apoptosis
(IAPs) proteins for executioner caspases, respectively,
are also modelled. The authors demonstrated that the
model output (active caspases) was in agreement with
experimental results under different simulation scenarios
and could be used to simulate perturbation by thera-
peutic interventions (disruption of Fas-associated protein
with death domain (FADD), BCL-2 or inhibitor of apop-
tosis (IAP) overexpression) to promote or inhibit cell
death. Our understanding of the apoptosis pathways has
progressed dramatically and mathematical models have
followed suit, as outlined in Table 1, providing valuable
insight into the mechanistic role of dysregulated apop-
totic components in a myriad of conditions and disease
models.
While individual proteins have limited prognostic

power (reviewed in [151–153]) due to the complexity
and signaling redundancy of the biological network
under investigation, systems models have been shown to
deliver powerful prognostic biomarkers. Application of
such apoptosis systems models in the clinic requires the
quantitative profiling of individual proteins (or proxy
thereof such as mRNAs profiles) involved in apoptosis
activation, followed by in silico simulation of apoptotic
signaling based on the quantitative profiles of individual
patients. The combination of patient specific apoptotic
protein expression profiles and in silico simulations of
apoptotic protein interactions is then able to deliver
patient-specific predictions of apoptosis sensitivity. Re-
cent studies by our group highlighted the applicability of
the systems modelling approach, APOPTO-CELL, in
predicting patient outcome, including in the GBM set-
tings [17].
APOPTO-CELL is a mathematical model of caspases-

dependent apoptosis validated against single cell micros-
copy experiments in HeLa cell [47]. The model describes
the dynamic network of interactions of key proteins
involved in the downstream apoptosis signaling with a
set of ordinary differential equations. The model takes as
input the concentration of key regulatory pro- and anti-
apoptotic proteins, namely Apaf-1, Procaspase-3,
Procaspase-9, Second Mitochondria-derived Activator of
Caspases (SMAC) and X-linked inhibitor of apoptosis
protein (XIAP). APOPTO-CELL outputs the temporal
profile of cleaved Caspase-3 substrate (substrate cleavage,
SC). Substrate cleavage represents the degree of caspases
activation and thus the cell propensity to undergo apop-
tosis. APOPTO-CELL has been comprehensively tested in
several cancer cell lines models [17, 105, 154] and mouse

xenografts [105]. The application of APOPTO-CELL
model for aggressive cancers such as the primary
brain tumor, glioblastoma, was shown to provide an
advantageous mean of predicting therapeutic efficacies
based on individual patient expression profiles and is
outlined as an example in this review [17].

Case study: application of APOPTO-CELL to GBM
When concentrations of the key proteins involved in the
apoptosis machinery, Procaspase-3, Procaspase-9, SMAC
and XIAP, were determined in GBM patient tumor re-
sections, APOPTO-CELL was capable of stratifying pa-
tients by progression-free survival times (PFS) [17].
Since then, a greater number of patient tumor samples
(n = 25 de novo and n = 21 previously published [17], to-
taling 31 samples (67%) isolated at initial-diagnosis and
critically 15 (33%) isolated at tumor recurrence allowed
for a more comprehensive analysis of the clinical applic-
ability of APOPTO-CELL. Clinical characteristics of our
in house GBM cohort including MGMT methylation
and treatment(s) received before resection are
highlighted in Table 2. In line with standard-of-care
regimen [26], the newly-diagnosed tumor samples had
not received any chemo/radio treatment prior to their
surgical removal, while the recurrent tumor samples
were obtained from patients who either had no follow-
up treatment or who did receive chemo- and/or radio-
therapy following their initial surgery. The clinical end-
point for survival analysis was progression-free survival
(PFS), defined as the time interval between surgical re-
section of the tumor (either newly-diagnosed or recur-
rent) and progression or loss to follow-up. Median PFS
of 11.1 months (95% CI 8.4–16.8) and 5.8 months (95%
CI 2.3–7.6) were observed for newly-diagnosed and re-
current tumors, respectively, in line with published lit-
erature [29, 30]. The histopathological and systems
biology workflow is outlined below.

Protein profiling in patient tumor samples
The expression of the proteins involved in caspase-
mediated apoptosis, inputs to APOPTO-CELL, were de-
termined by Western blotting in our in house GBM co-
hort (n = 46, Fig. 1a), normalized to β-actin and mapped
to μM concentrations [13, 17, 47], (Fig. 1b-f). Heteroge-
neous protein levels can be clearly observed among pa-
tients, with Procaspase-3 (Fig. 1c) and Procaspase-9 (Fig.
1d) expressing the highest and lowest protein concentra-
tions within tumor samples, respectively. Newly-
diagnosed tumors were found to express higher concen-
trations of both pro- (Apaf-1, Procaspase-3, Procaspase-
9 and SMAC) and anti-apoptotic (XIAP) proteins (P <
0.05, Mann–Whitney U test), (Fig. 1b-f).
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In line with more “classical” analyses, the prognos-
tic significance of individual proteins was evaluated
and benchmarked against APOPTO-CELL perform-
ance (Fig. 2). Kaplan-Meier estimates for patients
grouped by protein expression (>median vs. ≤median)
showed no difference in PFS for Apaf-1 (A),
Procaspase-9 (C), SMAC (D) and XIAP (E), (Fig. 2).

However, patients expressing low concentrations
(≤median) of Procaspase-3 showed approximately a
two-fold increased risk of progression (HR 1.91, 95%
CI 0.99–3.69, P = 0.06) compared to those with high
levels (Fig. 2b and Table 3). These findings indicate
that single proteins have limited to no prognostic
value in these settings.

Table 1 Key publications in apoptosis systems modeling

Year Author Major findings Ref.

2000 Fussenegger et al. Theoretical study on mitochondrial permeabilization induced by BCL-2 family proteins [127]

2004 Eissing et al. Theoretical study analysing death receptor-induced apoptosis including bistability analysis [128]

2004 Bentele et al. ODE-based modelling of apoptosis signalling supported by quantitative Western blotting [125]

2005 Stucki et al. Theoretical study into mitochondrial cytochrome-c and SMAC release on caspase activation [129]

2006 Rehm et al. First study that combined single cell imaging and ODE modelling of caspase activation in response to
mitochondrial permeabilization (MOMP)

[47]

2006 Bagci et al. &
Legewie et al.

Theoretical studies that highlighted positive feedback loops which guarantee bistability subsequent to
MOMP and co-operation in Apaf-1 oligomerisation

[130,
131]

2007 Chen et al. Theoretical study on Bax-activation [132]

2007 Lavrik et al. Introduced robustness analysis into the field. Provided structural model of extrinsic apoptosis induced by
CD95/Apo-1

[133]

2007 Eissing et al. Theoretical studies to evaluate robustness of computational models against parameter variations [134,
135]

2008 Albeck et al. Combined study employing live cell imaging of caspase activation and MOMP, flow cytometry,
immunoblotting and modelling during death receptor-induced apoptosis

[126]

2009 Zhang et al. Theoretical study into how genotoxic stress proceeds to MOMP and caspase activation [136]

2009 Chen et al. &
Dussmann et al.

Application of stochastic models based on cellular automata (CA) to study Bax activation in mitochondrial
membranes during apoptosis

[137,
138]

2009 &
2010

Rehm et al. & Huber
et al.

Spatial signal propagation during apoptosis signalling including experimental testing and mathematical
modelling using partial differential equations (PDE)

[123,
124]

2011 Aldridge et al. Combined in silico and wet-lab analyses focussed on TRAIL-induced apoptosis [139]

2011 Lau et al. Identification of spatial and temporal aspects of apoptosis signalling [140]

2012 Hector et al. Clinical application of caspase modelling to predict recurrence in CRC [13]

2012 Lee et al. Combined study employing mathematical modelling and wet-lab validation identifying optimal treatment
scheduling for apoptosis re-sensitization

[141]

2012 Gaudet et al. Comprehensive assessment with sensitivity analyses of the impact of cell-to-cell deviations in protein con-
centrations on apoptosis dynamics

[142]

2012 Schleich et al. Combined theoretical and wet-lab analyses into the role of apoptosis activation by caspase-8 [143]

2013 Lindner et al. Use of BCL-2 systems analysis to predict patient response to chemotherapy in CRC [18]

2013 Murphy et al. Use of systems analysis to predict progression-free survival in GBM [17]

2014 Kallenberger et al. Combined in silico and wet-lab study into the regulation of apoptosis by caspase-8 [144]

2014 &
2015

Bertaux et al. & Roux
et al.

Theoretical study investigating fractional killing in apoptosis [145,
146]

2015 &
2016

Zhao et al. & Li et al. Theoretical study into the role played by mutations in apoptosis signalling [147,
148]

2017 Salvucci et al. Large scale validation of caspase modelling as independent prognostic biomarker in CRC and refinement
of the prognostic power of apoptosis systems models with machine learning

[19]

2017 Lindner et al. Large scale validation of BCL-2 modelling as independent prognostic biomarker in CRC and analysis of
apoptosis systems models in molecular subtypes of CRC

[20]

2018 Márquez-Jurado
et al.

Study combining mathematical modelling with experimental microscopy data focussed on the role played
by mitochondria in regulating apoptosis

[149]

2018 Hantusch et al. Regulation of BCL-XL via Bax retrotranslocation [150]
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Apoptosis susceptibility predicted by APOPTO-CELL is an
independent prognostic marker of PFS
APOPTO-CELL can predict the apoptotic propensity of
tumor cells for each individual patient by initializing the
model with protein concentrations assessed from their
brain resections (Fig. 1b-f). Figure 3a depicts the model
predictions (i.e. substrate cleavage time-courses) for each
individual patient in our GBM cohort. Patients for
whom substrate cleavage reached 80% within 15 min of
simulation were classified as apoptosis-sensitive (in blue)
whereas those who did not overcome this threshold were
considered incapable of mounting apoptosis (in red).
APOPTO-CELL predicted apoptosis deficiency in n = 9
(20%) patients (Fig. 3b). Exploratory analyses suggested a
trend, albeit non-statistically significant (χ2 P = 0.10),
whereby the fraction of patients predicted to be
apoptosis-resistant (SC ≤ 80%) was greater in the recur-
rent tumors (n = 5 out of n = 15, 33%; dark red shade)
than in newly-diagnosed cases (n = 4 out of n = 31, 12%;
light red shade), (Fig. 3c). However, further analyses with
greater number of patients and paired longitudinal sam-
ples are required to further investigate whether apop-
tosis deficiency worsens as tumors progress. Of note,
statistically significant differences (P = 0.0001) in PFS
were observed among patients categorized as apoptosis-
sensitive vs. resistant (Fig. 3d). Patients with impairment
in apoptosis (SC ≤ 80%, in red) showed approximately a

five-fold increase in risk of progression (HR 5.02, 95% CI
2.04–12.33, likelihood ratio test P = 0.001) compared to
participants predicted to be apoptosis-sensitive (SC >
80%, in blue), (Table 3). Within the patient group that
harbored newly-diagnosed tumors, this observation was
repeated and those patients with tumors that were pre-
dicted to mount an apoptotic response to treatment had
significantly longer PFS, (P = 0.0002, log-rank test), (Fig.
3e). In contrast, we did not find a statistically significant
association between apoptosis execution capability and
PFS in the patient group (n = 15) that suffered recur-
rence (P = 0.38, log-rank test, Fig. 3f). Further studies in
larger cohorts with a balanced set of newly-diagnosed
and recurrent patients are required to investigate the re-
lationship between apoptosis susceptibility and PFS.
Univariate Cox regression analyses examining the

prognostic value of clinico-pathological characteristics,
assessed routinely as part of the treatment decision plan,
revealed limited utility in our in house cohort (Table 3).
Critically, apoptosis susceptibility predicted by
APOPTO-CELL remained an independent prognostic
marker in multivariate analysis after adjusting for age,
history of tumor samples and methylation status of the
MGMT promoter (HR 4.40 95% CI 1.59–12.14, P =
0.006; Table 3).
Of note, functional alterations in caspases activation in

the glioblastoma settings that may be uncovered by

Table 2 Clinical baseline characteristics of GBM patient samples (n = 46)

Newly-diagnosed (n = 31, 67%) Recurrent (n = 15, 33%)

Age (median, range) [years] 57 (16–75) 53 (12–74)

Sex

M 14 (45%) 10 (67%)

F 17 (55%) 5 (33%)

Location

Left side 10 (32%) 3 (20%)

Right side 18 (58%) 10 (67%)

Other 2 (6%) 2 (13%)

Not available 1 (3%)

MGMT promoter methylation

Methylated 11 (35%) 6 (40%)

Unmethylated 14 (45%) 8 (53%)

Not available 6 (19%) 1 (7%)

Treatment

None 31 (100%) 6 (40%)

TMZ + radiotherapy 7 (47%)

TMZ + radiotherapy + Avastin + Irinotecan 1 (7%)

TMZ + radiotherapy + Cilengitide 1 (7%)

PFS (median, 95%CI) [months] 11.1 (8.4–16.8) 5.8 (2.3–7.6)

Abbreviations: TMZ Temozolomide, MGMT O6-methylguanine-DNA methyltransferase
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future research could be incorporated in APOPTO-
CELL by revising the model skeleton (addition/
deletion of reactions), by updating values for kinetic
parameters and by modelling dynamics of additional
species. This work could lead to a glioblastoma-
specific APOPTO-CELL model with a revised panel
of protein inputs to determine on a tumor-by-tumor
basis and could indeed yield improved performance
for APOPTO-CELL as prognostic marker for PFS in
glioblastoma.

Systems models as tools to inform treatment regimen
Figure 3 exemplifies how computational models can de-
scribe the state of a system (apoptosis susceptibility) for

a given set of initial conditions (protein concentrations at
surgery) on a patient-by-patient basis. A key advantage
of these models over more “traditional” statistical ap-
proaches is the ability to predict what would happen
upon perturbation of the system. Perturbations that
mimic pharmacological interventions are of particular
relevance for translational applications.
Figure 4 illustrates this point by simulating the impact

that SMAC mimetics supplementation could have on
apoptosis capabilities for each patient in our cohort.
SMAC mimetics are compounds that, as the name sug-
gest, mimic the effect of SMAC and thus induce apop-
tosis [155]. These small class of compounds are in phase
II clinical trials and have so far shown to be effective in
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Fig. 1 Newly-diagnosed tumors (n = 31) expressed higher protein concentrations of Apaf-1, Procaspase-3, Procaspase-9, SMAC and XIAP
compared to specimens collected from recurrent patients (n = 15) in the GBM cohort. a Representative images of Western blot experiments. Each
lane contains a unique patient tumor sample from newly-diagnosed or recurrent tumors as indicated. β-actin served as a loading control. b-f
Normalized protein levels were converted to absolute concentrations (in μM, as required for inputting into APOPTO-CELL) by linear regression
with known concentrations in HeLa cells [13, 17, 47]. Reference concentrations were previously determined in HeLa cell extracts with titrated
concentrations of recombinant proteins [47]. Prior to pooling together protein quantifications for the de novo patients with those reported in
[17], batch-effects in the measurements were removed. For each protein, the median concentration from the de novo newly-diagnosed samples
was aligned to the median concentration measured in the newly-diagnosed specimens from [17]. Protein concentrations measured in tumor
samples from de novo recurrent patients were also batch-corrected, but the scaling constants were computed based on median-aligning the
newly-diagnosed samples only. Statistically significant differences between protein expression in newly-diagnosed vs. recurrent samples were
examined by Mann-Whitney U tests
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Apaf-1 (a), Procaspase-9 (c), SMAC (d) and XIAP (e) showed no statistical significant differences in PFS curves among patients grouped by protein
expression (>median vs. ≤median, in black and gray, respectively). Patients expressing higher concentrations of Procaspase-3 (>median) had
longer PFS compared to those with low levels (≤median), (log-rank P = 0.049, b)

Table 3 Cox proportional hazards regression models examining the prognostic value of clinical factors and signatures derived from
single proteins and apoptosis modelling

Predictors HR 95% CI P

Age (continuous, n = 46) 1.02 1.00–1.05 0.06

Sex (ref. M, n = 24) 0.40

F (n = 22) 0.76 0.41–1.43

Location (ref. left side, n = 13) 0.58

Right side (n = 28) 1.28 0.62–2.64

Other (n = 4) 0.73 0.20–2.66

History (ref. newly-diagnosed - no treatment, n = 31) 0.06

Recurrent - no treatment (n = 6) 1.86 0.69–5.01

Recurrent - treatment (n = 9) 2.73 1.19–6.25

MGMT promoter methylation (ref. methylated, n = 17) 0.52

Unmethylated (n = 22) 1.26 0.62–2.59

Apaf-1 (ref. >median, n = 23) 0.20

≤median (n = 23) 1.52 0.80–2.87

Procaspase-3 (ref. >median, n = 23) 0.06

≤median (n = 23) 1.91 0.99–3.69

Procaspase-9 (ref. >median, n = 23) 0.49

≤median (n = 23) 1.25 0.66–2.37

SMAC (ref. >median, n = 23) 0.38

≤median (n = 23) 1.34 0.70–2.55

XIAP (ref. >median, n = 23) 0.47

≤median (n = 23) 1.27 0.67–2.40

Apoptosis susceptibility (ref. SC > 80%, n = 37) 0.001

SC≤ 80% (n = 9) 5.02 2.04–12.33

Adjusted apoptosis susceptibility (ref. SC > 80%, n = 37)a 0.006

SC≤ 80% (n = 9) 4.40 1.59–12.14

P-values determined by likelihood ratio tests
aAdjusted for age, history and MGMT promoter status
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restoring apoptosis sensitivity in several cancers [105,
156–161].
Individual patient simulations were performed in basal

conditions (no treatment) and with a physiological range
of SMAC mimetics doses (1 nM - 1 μM). When compar-
ing apoptosis susceptibility predicted by APOPTO-CELL
among our GBM patients, three clusters of patients with
distinct responses to SMAC mimetics were observed.
Patients predicted as apoptosis-sensitive (SC > 80%) in
basal simulations were considered “responsive to stand-
ard therapy” and targeted treatment was deemed un-
necessary (Fig. 4a, n = 37). Patients predicted to remain
apoptosis-resistant despite treatment with SMAC mi-
metics (Fig. 4c, n = 6) were considered “non-responsive
to standard therapy and SMAC mimetics” and deemed
unsuitable candidates for this class of targeted treatment.
In contrast, patients categorized as apoptosis-resistant in

basal simulations, but whose phenotype could be res-
cued with SMAC mimetics were considered “responsive
to only standard therapy and SMAC mimetics” (Fig. 4b,
n = 3). These patients are the optimal sub-population
that should receive this treatment and should be priori-
tized for clinical trials for these compounds.

Conclusions
Studies, such as those outlined above, showcase the ap-
plicability of systems models in the clinical workflow.
Mathematical models predict not only the state of a sys-
tem (tumor cell), but importantly they provide insights
on how such phenotypic behaviour emerge, what the key
components (proteins) and their interactions (wiring)
are. Importantly, computational models provide a plat-
form to put into context the impact that single compo-
nents have when coupled in the system, epitomized by
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Aristotle’s quote “the whole is greater than the sum of
its parts”. Importantly, computational models provide a
tool to simulate ‘what-if’ scenarios such as up/downreg-
ulation of key components that could be targeted. In
silico clinical trials, recently baptized phase i trials [162],
aid in matching the “right drug to the right patient” [13,
18, 163]. A key idea is the shift from real-world clinical
trial testing a single treatment option on many, mostly
unselected, patients to first test in silico several treat-
ment options, both approved or repurposed, for each in-
dividual patient. Importantly, mathematical models can
also optimize the dosage and scheduling of the selected
treatment [141, 162, 164–166].
Tailoring systems models to each patient tumour re-

quires determining personalized inputs. Recent advances
in proteomics [167–169] will provide the high through-
put, spatially and temporal resolved patient-specific in-
puts that systems models such as APOPTO-CELL
require. We anticipate that insights from multiple math-
ematical models (each describing key features of cancer
cells) may be integrated via machine learning to shape
the clinical management of GBM. It is critical for the
adoption of systems models in translational settings that
individual patient inputs can be measured rapidly and
accurately with high-throughput techniques available in
the clinic small portions of tumour samples. Moreover,
the inputs to determine on a patient-by-patient basis

should be minimized and optimized for the specific clin-
ical application in hand [170]. While in research settings
model inputs are typically quantified by Western blot-
ting and/or reverse transcription polymerase chain reac-
tion, alternative detection techniques need to be
explored for clinical applications. Enzyme-linked im-
munosorbent assays [171, 172], multiplex immunoassays
[173] or quantitative immunohistochemistry [174] are
particularly appealing alternatives for protein-based in-
puts. In recent years, the use of gene expression as sur-
rogate for protein levels has been put forward as
transcriptomic assays (or reduced panels such as those
provided by the Nanostring Technologies nCounter plat-
form, https://www.nanostring.com/) are becoming more
affordable and are now starting to be routinely inte-
grated in the clinical portfolio. However, correlation be-
tween gene expression and protein levels may not be
sufficiently high for all required inputs [175] and further
studies are required to identify optimal combinations of
genes that can serve as surrogate for protein expression.
Critical for any systems model is the validation of the

predictions against experimental data. Recent advance-
ments have made possible testing predictions from sys-
tems models in more physiological and clinically-
relevant scenarios such those delivered by microfluidics
chips [176], organoids [177], patient-derived xenografts
[178] and tumor sponges [179].

CA B

80% apoptosis susceptibility cut-off

SMAC mimetics dose [μM]

S
ub

st
ra

te
 C

le
av

ag
e 

at
 1

5 
m

in
 [%

]

Responsive to standard therapy
n=37

Responsive to standard therapy
and SMAC mimetics

n=3

Non responsive to standard therapy
and SMAC mimetics

n=6

0 10-3 10-2 10-1 100

0
10
20
30
40
50
60
70
80
90

100

0 10-3 10-2 10-1 100

0
10
20
30
40
50
60
70
80
90

100

0 10-3 10-2 10-1 100

0
10
20
30
40
50
60
70
80
90

100

Fig. 4 APOPTO-CELL can conduct in silico clinical trials for targeted apoptosis sensitization with SMAC mimetics. a-c Patient-specific dose-
response curves simulated by APOPTO-CELL depicting the relationship between apoptosis susceptibility and pharmacological intervention.
Apoptosis susceptibility is represented by the amount of simulated substrate cleavage reached at 15 min from the simulation start. Left hand-side
of each plot before gap highlights basal apoptosis susceptibility (i.e. no administration of SMAC mimetics). Concentrations of SMAC mimetics
tested in silico where selected to span the physiological doses administered in real-world clinical trials (1 nM - 1 μM). Patients were deemed
“responsive to standard therapy” if classified as apoptosis-sensitive in simulations without any SMAC mimetics intervention (n = 37, a). Conversely,
patients predicted to have apoptosis impairment in basal settings were deemed “responsive to only standard therapy and SMAC mimetics” (n = 3,
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With the establishment of more advanced and cost-
effective technologies, often at single cell level, it is now
possible to characterize different molecular layers (genome,
epigenome, transcriptome and proteome), and to integrate
with sophisticated data-driven systems biology approaches
insights from spatially resolved longitudinal patient samples
into a comprehensive atlas. Furthermore, international con-
sortia such as GLIOTRAIN (Exploiting GLIOblastoma in-
tractability to address European research TRAINing needs
in translational brain tumour research, cancer systems
medicine and integrative multi-omics, www.gliotrain.eu)
and GLASS (Glioma Longitudinal AnalySiS Consortium,
www.glass-consortium.org) bring together multi-
disciplinary expertise to gather large scale patients-specific
data to deliver a new generation of patient stratification
tools for this aggressive form of cancer. We envisage that in
a not-so-distant future, data- and hypothesis driven ap-
proaches from systems medicine will be routinely applied
in the clinic and that “clinical decision support systems” will
be developed to support reviewing of cases. Such systems
will likely integrate machine learning algorithms to capture
and analyse molecular and clinical data for each patient,
and rank options for clinical management [180].
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