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Abstract
The complement cascade is a major component of the immune defence against infection, and there is increasing evidence for
a role of dysregulated complement in major psychiatric disorders. We undertook a directed proteomic analysis of the
complement signalling pathway (n= 29 proteins) using data-independent acquisition. Participants were recruited from the
UK avon longitudinal study of parents and children (ALSPAC) cohort who participated in psychiatric assessment interviews
at ages 12 and 18. Protein expression levels at age 12 among individuals who reported psychotic experiences (PEs) at age 18
(n= 64) were compared with age-matched controls (n= 67). Six out of the 29 targeted complement proteins or protein
subcomponents were significantly upregulated following correction for multiple comparisons (VTN↑, C1RL↑, C8B↑, C8A↑,
CFH↑, and C5↑). We then undertook an unbiased plasma proteomic analysis of mice exposed to chronic social stress and
observed dysregulation of 11 complement proteins, including three that were altered in the same direction in individuals
with PE (C1R↑, CFH↑, and C5↑). Our findings indicate that dysregulation of the complement protein pathway in
blood is associated with incidence of psychotic experiences and that these changes may reflect exposure to stress.

Introduction

The early identification and treatment of subjects with psy-
chiatric disorders, both psychotic and affective, significantly
improves their clinical outcome [1]. Thus, over the last

decade, there has been a shift in research to focus on the so-
called ‘at risk mental state’ (ARMS) or ultra-high risk
(UHR) for psychosis [2] with the aim of identifying vul-
nerable subjects and offering early treatment to prevent
psychosis [3, 4]. Even so, only 16–35% UHR subjects go
on to convert to psychosis [5, 6], with 50–65% of
these subsequently experiencing non-psychotic mental
disorders, such as depression and anxiety [2, 7]. Conse-
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quently, there is now an increasing focus not just on the
vulnerability to psychotic disorder represented by psychotic
experiences but on vulnerability to major psychiatric dis-
orders generally.

Blood-based studies of the ARMS and UHR, focusing on
inflammation markers, have been undertaken and have
shown largely consistent changes implicating a pro-
inflammatory process in both psychosis and affective dis-
order [8, 9]. These findings are supported and extended by
discovery proteomic studies of first episode psychosis and
schizophrenia implicating the acute-phase response, gluco-
corticoid receptor signalling, coagulation, and lipid and
glucose metabolism [10, 11]. Furthermore, inflammatory
cytokines, chemokines, and growth factors have been
assessed in the blood during the perinatal periods and during
childhood in subjects who subsequently developed schizo-
phrenia, and in those with a first episode psychosis [12–16].
Together these studies demonstrated a picture of enhanced
inflammatory tone during and preceding psychosis, and
indeed other major mental illnesses [17]. Whereas the basis
of these changes is not clear, numerous risk factors for
schizophrenia, such as genetic background, but also expo-
sure to abuse, maternal stress during pregnancy, prenatal
famine, obstetric complications, exposure to infectious
agents, or alterations in the microbiome and adolescent
cannabis use have all been described and hypothesised to
lead to raised inflammatory tone [18–20]. Post-mortem brain
studies support the evidence for a role of inflammation,
suggesting that this process is involved during early and later
stages of the disorder [21–23].

Previous studies based on the ALSPAC cohort, a
prospective general population cohort based in the Bristol
area in South West England, have shown subgroups of
subjects who developed psychotic disorder (PD) and
psychotic experiences (PEs) [24] at age 18. These groups
showed alterations in cortical white matter microstructure
[25], working memory [26], and raised inflammatory
markers in childhood [12] in subjects with PE at age 18.
We recently used discovery methods to compare the
plasma proteome of age 12 subjects who developed psy-
chotic disorder at age 18 and we found evidence impli-
cating some protein members of the complement pathway
at age 12 in subjects with PD at age 18 [27]. The com-
plement system [28–30] has been implicated previously in
schizophrenia and other major psychiatric disorders [31,
32]. Complement has very well described roles in
inflammation both peripherally and in the brain, roles in
plasticity, neuronal growth, and neuroprotection
are increasingly appreciated (for review see [33–35]). The
genetic contribution of complement component 4 (C4) to
schizophrenia has been reported and a contribution to
schizophrenia risk through the regulation of synaptic
plasticity [23] and cortical thinning is proposed [36, 37].

The current study had two aims, first, we used targeted
proteomic methods to carry out a comprehensive analysis of
the complement pathway within the plasma of age 12 sub-
jects who reported psychotic experiences at age 18. Second,
due to the known relationship between exposure to stress
and later psychosis [38], we also examined the plasma
proteome of mice exposed to chronic social stress. The
findings of this study are relevant to our understanding of the
role of the complement system in vulnerability to major
adult psychiatric disorder outcomes.

Methods

For extended materials and methods, please refer to
Supplementary Methods.

Participants

The ALSPAC cohort is a prospective population-based cohort,
and a rich resource of demographic, environmental, and
clinical data on the individuals involved [39, 40]. Written
informed consent was obtained prior to taking the plasma
samples. The case and control samples were retrieved from the
ALSPAC archive at the same time, stored under the same
conditions, and tested in a “blinded” fashion where samples
from the test groups were admixed. The asymptomatic con-
trols were derived from a random selection of all the
participants, who provided plasma samples, and who did not
have PEs at either age, 12 or 18. Ethical approval for the study
was obtained from the ALSPAC Ethics and Law Committee
and the Local Research Ethics Committee (REC1240). Please
note that the study website contains details of all the data that
are available through a fully searchable data dictionary
(http://www.bristol.ac.uk/alspac/researchers/access).

Measures of psychotic experiences

Psychotic experiences (PEs) were identified at 12 and
18 years through face-to-face, semi-structured Psychosis-Like
symptom (PLIKS) interviews [24], conducted by trained
psychology graduates in assessment clinics, and were coded
according to the definitions and rating rules for the Schedules
for Clinical Assessment in Neuropsychiatry, Version 2.0
(Organisation 1994 Interviewers rated PEs as not present,
suspected or definite). The psychotic experiences (PE) group
comprised subjects who fulfilled criteria for definite PEs [24]
at age 18, but not age 12.

Study design

We undertook a nested case-control study from individuals
with plasma samples available at age 12 we selected all
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subjects who had definite psychotic experiences at age 18
but not at age 12 (n= 64). Age-matched controls were
randomly selected from individuals with available plasma
samples at age 12 who did not have either suspected or
definite PEs at ages 12 or 18 (n= 67).

See Table 1. With regard to psychotropic drug use, 5 of
the 64 subjects with PEs at age 18 were recorded as taking
psychotropic medication at age 18. No subjects reported
psychotropic drug use at age 12.

Blood collection

For all ALSPAC participants, blood samples from non-fasting
individuals were collected at ~12 years of age. Blood was
collected in 7.5 ml Plasma Lithium-Heparin S-Monovette
tubes (Sarstedt). Once collected, samples were stored on ice
for a maximum of 90min until processed. After centrifuga-
tion, the plasma was stored in aliquots at−80 °C. All samples
underwent a single freeze thaw cycle to allow aliquotting
prior to the study. The standard quality of the plasma samples
was ensured by assessing the overall MS protein profile to
facilitate the identification of outlier protein expression pro-
files (see Supplementary Figure 1a and b for the PE and the
PPE, respectively).

High-abundance protein depletion of plasma
samples

To improve the dynamic range for proteomic analysis, 40 µl
of plasma from each case in all samples was immunode-
pleted of the 14 most abundant proteins (Alpha-1-
antitrypsin, A1-acid glycoprotein, Serum Albumin,
Alpha2-macroglobulin, Apolipoprotein A-I, Apolipop-
trotein A-II, Complement C3, Fibrinogen alpha/beta/
gamma, Haptoglobin, IgG A, IgG G, IgG M, Transthyretin,
and Serotransferrin), using the Agilent Hu14 affinity
removal system (MARS) coupled to a high-performance
liquid chromatography (HPLC) system [41] (see
Supplementary Methods).

Sample preparation for mass spectrometry

Protein digestion and peptide purification were performed
as previously described [42], and is further detailed in
Supplementary Methods.

Proteomic analysis of PE focusing on complement
pathway

We used the semi-targeted approach of data-independent
acquisition (DIA) to target 29 members of the complement
pathway as defined by KEGG pathway analysis (http://www.

genome.jp/kegg/pathway.html) and see Supplementary
Table 1. DIA overcomes many of the limitations of untargeted
proteomics, for example missing values [43–46]. For DIA in
the PE and the PPE studies, 5 μl of each sample was injected
into the Thermo Scientific Q-Exactive, connected to a
Dionex Ultimate 3000 (RSLCnano) chromatography sys-
tem, and data were acquired in DIA mode.

The DIA isolation scheme and multiplexing strategy was
based on that from Egertson et al., in which five separate
4-m/z isolation windows are analysed per spectrum [47, 48].
In order to create a spectral library for targeted chromato-
gram extraction, we used an internal standard for quality
control (QC), where an equal aliquot from each protein
digest in the experiment was pooled into one sample for use
as an internal QC. QC samples were injected in data-
dependent acquisition (DDA) mode and was injected three
times at the beginning of the MS study to condition the
column, and subsequently after every 10 injections
throughout the experiment to monitor the MS performance.
To facilitate accurate prediction of peptide retention calcu-
lation in SkylineTM for DIA data, protein digests were
spiked with the PierceTM Peptide Retention Time Calibra-
tion Mixture (4 fmol/μl), according to the manufacturers’
instructions (see Supplementary Figure 2A and B for
extensive quality control). Data used for this submission
will be made available on request to the ALSPAC
Executive Committee (alspac-exec@bristol.ac.uk).

Social Defeat Stress Mouse Model

We used a well-established animal model of chronic social
defeat stress [49, 50]. Male, 8-week-old C57BL/6J mice
were exposed to 10 consecutive days of 5-min defeats by a
novel CD1 aggressor mouse and were then housed across a
Plexiglas divider to allow for sensory contact for the
remainder of the day. Mice susceptible to this repeated
stress were identified by their avoidance of interaction with
a novel mouse 24 h after day 10 of defeat in a social
interaction test. Animals (n= 5 stressed and n= 5 control
mice) were killed on day 30 and trunk blood was obtained
for analysis [51].

Protein depletion of mouse plasma samples

To improve the dynamic range for proteomic analysis,
40 µl of plasma from each animal was immunodepleted of
the three most abundant proteins (Albumin, IgG, Trans-
ferrin) using the Multi Affinity Removal Column Mouse-
3 (Agilent Technologies, UK) coupled to a HPLC sys-
tem [41]. For more details of the animal model,
sample preparation, and mass spectrometry, please see
Supplementary Methods.
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Bioinformatics and statistical analysis

Semi-targeted analysis of complement pathway proteins in
PE

All DIA files from the PE study were analysed in Skyline
(V3.5.0; https://skyline.gs.washington.edu), as detailed by
Egertson et al. [47, 48]. We identified and quantified all
proteins and their peptides listed as contributing to the com-
plement pathway according to KEGG (http://www.genome.jp/
kegg/pathway.html)). For a full list of the fragments targeted
and quantified, please refer to Supplementary Tables 2a and
2b. All peptides and associated fragment ions were visually
checked in all samples, and peak editing was undertaken
where necessary (for details see Supplementary Documents).
Pre-processing and statistical analysis of the fragment-level
data were undertaken in mapDIA [46].

As there were differences between the PE group cases
and controls in terms of BMI and gender we co-varied for
these variables in our analyses. There were no significant
differences between the groups in other variables as listed
in Table 1, and therefore we did not correct for these
potential confounders. The demographic and clinical
data were tested for differences between case and
control group using the Fisher’s Exact test and the

two-sample sample t-test. Statistical significance was
determined at the 5% level of significance. Comparison of
complement pathway proteins between groups was per-
formed using a false discovery rate (FDR) of 5%, as
described by Benjamini-Hochberg [52].

Social Defeat Stress Mouse Model

The bioinformatics and statistical analysis of the animal
model of stress was undertaken using the MaxQuant pro-
gramme specifically for label-free experiments using high
resolution instruments supported by Andromeda as a data-
base search engine for peptide identification [53]. Raw LFQ
intensities were extracted from the MaxQuant software and
log base 2 transformed prior to analysis to eliminate dis-
tributional skew and to give approximate normality. To
avoid bias associated with protein under-representation
between groups, proteins were excluded in cases where
there was less than 80% availability of the LFQ intensities
in each biological group. After data filtering, 704 LFQ
values remained.

The significance level was calculated following correc-
tion according for FDR [52] based on the whole-discovery
proteome (n= 262), but, because, the focus of the study is
on the complement pathway proteins we only report on
these latter proteins.

Results

PE study

Two PE cases and no controls were excluded from the
bioinformatics analysis due to poor chromatographic pro-
files. The final analyses compared the ALSPAC subgroup
of participants with PE (n= 64), at age 18 to controls (n=
67; Table 1).

The semi-targeted DIA approach (see Supplemen-
tary Material) was used to quantify the levels of 29 com-
plement pathway proteins in the PE group. Each of the 29
complement pathway proteins had peptides suitable for this
analysis (Supplementary Tables 2a and 2b) and following
adjustment for gender and BMI (see Table 2). Among these,
we observed differential expression in eight proteins (VTN,
C1RL, C8B, C8A, CFH, C5, C4BPA, and C2) with six
proteins remaining significant following correction
for multiple comparisons: VTN (p < 0.0005)↑,C1RL
(p < 0.0005)↑, C8B (p < 0.005)↑, C8A (p < 0.01)↑, CFH
(p < 0.01)↑, and C5 (p < 0.01)↑. (See Table 2 for all pro-
tein level results and Figure 1 for the protein abundance
from the Mass spectrometry data for the significantly
regulated proteins.)

Table 1 Descriptive information for ALSPAC subjects

Psychotic experiences (PE) study

Cases (PE12=
0, PE18=Def)

Controls (PE12=
0, PE18= 0)

Proteomics study 64 67

Gender 36 F, 28 M 28 F, 39 M

BMI at age 12 Mean (Std Dev) 18.96 (2.88) 17.72 (2.52)

Ethnicity 57 W, 3 NW,
4 NA

64 W, 3 NA

Pliks at age 18 64 definite None

Social economic status 28 NM, 30 M,
6 NA

45 NM, 17 M

Depression at age 18 20 ND, 39 D,
5 NA

58 ND, 9 D

Received medication for
hallucinations/delusions at
age 18

5 yes NA

For gender F Female, M Male. Body mass index (BMI) at age 12 is
reported, where missing BMI variables were replaced with the mean
according to gender. For ethnicity— white, NW non-white, NA
missing. PLIKS at age 12 and age 18 are reported, however in this
analysis we used PLIKS at age 18 as the main outcome measure for
our proteomic analysis. For Depression created a binary outcome:
individuals with CIS-R scores >7 as depression (D) and <7 as no
depression (ND)
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Social Defeat Stress Mouse Model

We found 10 complement proteins differentially expressed
following FDR adjustment for the 19 complement proteins
quantified; seven complement proteins were upregulated
(CFH, CFI, C5,C4BP, C1QB, C3, and C1r) and three were
downregulated (C9, C8G, and C4b). See Supplementary
Table 3 for detailed results.

Discussion

Our study provides evidence that altered expression of
plasma complement proteins at age 12 is associated with
psychotic experiences (PE) at age 18. Because, subjects
who report psychotic experiences (PEs) are at increased risk
not solely for schizophrenia, but for other major psychiatric
disorders, such as depression and anxiety disorders [2, 7],

our findings are of broad relevance to adult psychiatric
syndromes. The complement pathway has recently been
highlighted as important in schizophrenia from genomic,
neuroimaging, and biomarker studies, and over the last
decade, its importance in inflammatory and degenerative
brain disorders has been increasingly appreciated [36].
Thus, our study represents a further step in our under-
standing of the involvement of the complement pathway in
disease and suggests that alterations in this pathway as early
as age 12 are associated with psychotic experiences and
thus vulnerability to later psychiatric disorders generally.
Measures of complement pathway protein expression
should be considered for inclusion in future psychosis risk
prediction studies, such as those using measures from
numerous various diverse domains, such as neuropsychol-
ogy, neuroimaging, and clinical phenotype [4, 6].

Using a unique prospective cohort, we first investigated
blood plasma samples obtained from children at age 12 who

Table 2 Differential protein
expression in PE

PE study findings

Protein names Gene names Fold change p-value FDR

Vitronectin VTN 1.219 0.00150 0.02226

Complement C1r subcomponent-like protein C1RL 1.291 0.00154 0.02226

Complement component C8 beta chain C8B 1.270 0.00352 0.03399

Complement component C8 alpha chain C8A 1.207 0.00535 0.03537

Complement factor H CFH 1.207 0.00610 0.03537

Complement C5 C5 1.161 0.00847 0.04096

C4b-binding protein alpha chain C4BPA −1.155 0.02734 0.11326

Complement C2 C2 1.124 0.03709 0.13446

Mannan-binding lectin serine protease 1 MASP1 1.193 0.05725 0.18448

Complement C1s subcomponent C1S 1.118 0.07756 0.22036

Complement factor B CFB 1.103 0.08624 0.22036

Complement component C8 gamma chain C8G 1.162 0.09791 0.22036

Complement C1q subcomponent subunit A C1QA 1.139 0.09878 0.22036

Complement C4-A C4A 1.122 0.11874 0.24596

Complement C1q subcomponent subunit B C1QB 1.251 0.15870 0.30683

Complement factor I CFI 1.094 0.20871 0.36678

Clusterin CLU 1.097 0.21501 0.36678

Complement C1r subcomponent C1R 1.095 0.23435 0.37756

Complement component C6 C6 1.078 0.28313 0.43214

Complement C1q subcomponent subunit C C1QC 1.068 0.32245 0.46611

C4b-binding protein beta chain C4BPB −1.087 0.33762 0.46611

Complement factor H-related protein 5 CFHR5 −1.189 0.35984 0.46611

Complement component C9 C9 1.066 0.36968 0.46611

Complement factor D CFD 1.235 0.38710 0.46774

Plasma protease C1 inhibitor SERPING1 1.106 0.41419 0.48046

Mannose-binding protein C MBL2 1.069 0.61155 0.68211

Complement C4-B C4B 1.077 0.73548 0.78996

Complement component C7 C7 1.023 0.78675 0.81485

Complement C3 C3 −1.018 0.84266 0.84266

Semi-targeted proteomic analysis of 29 biomarker candidates between cases (n= 64) and controls (n= 67)
in the PE cohort. Protein level data were assessed for significance between the PE cases and healthy controls,
following correction for False Discovery as described by Benjamini-Hochberg [52], and following
adjustment for BMI and gender, respectively. The protein name, gene name, fold change (FC) in disorder,
ANCOVA adjusted p-values, and FDR cutoff values are listed for all 29 proteins profiled. Proteins are sorted
by p-value for the PE study. The FDR positive findings are depicted in bold
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reported psychotic experiences (PE) at age 18. We specifi-
cally studied 29 members of the complement protein path-
way and following correction for multiple comparisons
observed six proteins to be upregulated (VTN, C1RL, C8B,
C8A, CFH, and C5). These findings from the ALSPAC
cohort relating complement changes associated with PE,
confirm and extend the findings from our previous smaller
discovery proteomic study of age 12 protein biomarkers of
psychotic disorders at age 18 [27], in which we also
observed significant elevations of CFH and VTN and
reductions in C4BPA and C4BPB. In contrast to the pre-
vious paper, the current study is larger (64 cases vs 38) and

focused on the entire set of 34 complement proteins (versus
9) of which we successfully targeted 29. We also tested our
findings in an animal model of sociala defeat stress to
investigate possible etiological mechanisms.

Our findings of altered expression of complement path-
way proteins implicates both the classical (C1RL, C2, and
C4bp) and terminal (C8, C9) pathway, but also suggest an
involvement of the alternative pathway (CFH, CFD). The
involvement of the classical pathway in schizophrenia has
been previously suggested [30, 54]; and was recently con-
firmed through the genetic association of classical pathway
component C4 [23]. One recent study found decreased

Fig. 1 Plots the protein abundances derived from the mass spectrometry data for the significantly regulated proteins, VTN, C1RL, C8B, C8A,
CFH, and C5
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TCC complex (sC5b-9) plasma levels, a marker of terminal
pathway activation in patients with first episode psychosis
[55]. Another study showed increased alternative
pathway activity in schizophrenia patients [56]. Our data
point to the general enhancement in complement activity as
a result of increased complement component levels in
plasma.

Overall, the complement and coagulation cascade has
previously been identified as the most significant pathway
implicated in plasma samples of drug naive schizophrenia
patients [10, 28, 41, 55–59]. The cause of these changes are
not known, but are in keeping with evidence for raised
inflammatory tone preceding psychosis and major psy-
chiatric disorders generally [8, 12–17, 60]. The complement
system is tightly functionally interlinked with inflammatory
cytokines and chemokines with which it reciprocally
interacts [33, 35]. Diverse early and later life stresses are
associated with raised inflammatory measures, such as IL6,
TNFα, and CRP and thus these factors may have roles in the
complement changes that we observe [18]. However,
increased complement activity itself may be primarily
responsible for the raised inflammatory tone observed in
major psychiatric disorders and not merely a reflection of
that process. This possibility is supported by the vulner-
ability associated with genetic variation of complement 4
[23] and will have implications for potential complement-
based therapeutics [61] of at risk children demonstrating
elevated complement activity.

In order to investigate the potential role of exposure to
psychosocial stress in the observed plasma complement
pathway changes, we undertook an unbiased (DDA) pro-
teomic study of the plasma of mice exposed to chronic
social defeat stress. Complement protein changes were
prominent in the plasma of these mice, showing increases in
seven (CFH, CFI, C5, C4bpa, C1qb, C1R, and C1qc) and
reductions in four complement proteins (C9, C8g, C4b, and
SerpinG). These clearly indicate that dysregulated comple-
ment pathway protein expression is associated with expo-
sure of adult mice to psychosocial stress. To our knowledge
this is the first such study of complement proteins in social
stress. Previously, a single study of heat stressed cows has
observed complement activation [62]. Our psychosocial
stress study shows interesting overlaps with the results of
the PE study in demonstrating upregulated CFH, CFI
(alternative pathway) and C1 complex subcomponent C1R
(classical pathway). In contrast, social defeat is associated
with reduced C9 and C8g (terminal pathway) and in the PE
study these latter proteins were increased. Interestingly, the
decrease in terminal complement components C9 and C8 in
mice is mirrored in a recent study showing decreased TCC
in first episode psychosis (FEP) compared to normal con-
trols [55]. This suggests a distinct mechanism for FEP, with
FEP potentially showing a closer association to proximate

psychological stress, which likely reflects a more acute
inflammatory response, and is somewhat distinct from the
lower grade upregulated inflammatory tone we observe to
be associated with future psychotic experiences. Future
studies are needed to address the distinct complement
pathway changes associated with stress at different devel-
opmental time points and following different recovery
periods.

The complement system within the brain has important
functions in the regulation of synaptic plasticity [23, 34, 35,
63] and cognitive function [64] and is associated with brain
disorders [61, 65–67]. Our findings are thus in keeping both
with the literature implicating inflammation in major psy-
chiatric disorders [18, 68] and with potential mechanisms
involved in complement and altered synaptic plasticity [20,
23, 36, 69–71]. It is not yet clear, however, to what extent
peripheral complement pathway changes such as we have
observed are reflected within the brain. Under normal
physiological conditions the majority of plasma comple-
ment proteins are believed to be produced within the liver
[72], and C1q in the brain is produced specially in microglia
[73]. However, it is not known if this is altered under stress
or situations where the blood brain barrier may be com-
promised. Of interest, stress is associated with increased
microglial activity in the brain [74] and increased microglial
activity and numbers are reported in schizophrenia [22, 75–
78]. This raises the intriguing possibility that stress-induced
complement activation may mediate increased microglial
activity and synaptic plasticity in schizophrenia and other
major psychiatric disorders. Future studies will need to
investigate the relationship between peripheral and central
complement pathway activation, microglial function, and
synaptic plasticity. Furthermore, considering the long-
itudinal relationship that we show between complement
pathway proteins and psychosis the long-term consequences
of altered peripheral complement pathway, and its manip-
ulation, will need to be assessed in the brains of animal
models of psychiatric disorders. A testable hypothesis with
the potential for clinical translation, is that complement 1
inhibition may protect from stress-induced contribution to
psychotic experiences and psychotic disorder.

Our study is not without its limitations. First, our study
utilised the uniquely characterised ALSPAC cohort and we
could not access a similar age-matched sample in which we
could perform a direct replication of the PE study. How-
ever, the findings of the PE study overlap with the findings
in PD [27] that we observed previously in terms of C4BPA,
CFH, C1R, and VTN. Both studies show a general upre-
gulation of complement protein expression, and they both
overlapped with the animal stress study in showing upre-
gulation of CFH and C1R. A second limitation of our study
is that we do not have long-term outcome data and thus the
more precise long-term psychiatric outcomes of psychotic
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experiences at age 18 cannot yet be analysed in the context
of complement pathway protein expression. Third, whereas
various approaches for bioinformatic analyses of DIA
datasets are still under development [46], we used a con-
servative method for the analysis of DIA data which gen-
erated protein level intensities from peptide fragment-level
data. Fourth, we are able to report fold changes as low as
1.16 as significant, because our study is relatively well
powered. However, these small effect sizes have obvious
implications for the practicality of using such markers for
screening. Fifth, we controlled for BMI and gender in our
analyses due to known effects of these variables on
inflammatory marker expression [79, 80]. However, both
BMI and gender can themselves impact on mental health
and psychopathology [81, 82] and this can be considered in
future studies. Finally, the social defeat model, whereas a
well-established model of exposure to stress, is not a stan-
dard model of psychosis. Future work studying the invol-
vement of complement pathway and indeed the impact of its
inhibition in for example a double-hit animal model (e.g.,
[83]) are planned.

In conclusion, our study is unique in focusing on the
entire plasma complement pathway proteins at age 12
associated with PEs at age 18. Our study provides evidence
for alterations in the complement pathway among subjects
with PEs and following exposure to social stress in mice.
Future studies are needed to elaborate further on our
understanding of the cause and the consequence of these
changes and whether the complement pathway represents a
drug-able target for future psychiatric illness among chil-
dren who present with psychotic experiences.
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