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miR-744-5p contributes to ocular 
inflammation in patients with 
primary Sjogrens Syndrome
Qistina Pilson2,3, Siobhan Smith1, Caroline A. Jefferies4,5, Joan Ní Gabhann-Dromgoole   1,2,6 
& Conor C. Murphy2,3,6 ✉

In primary Sjögren’s syndrome (pSS) the exocrine glands become infiltrated with lymphocytes 
instigating severe damage to the salivary and lacrimal glands causing dry eyes and dry mouth. Previous 
investigations have suggested that dysregulated localized and systemic inflammation contributes to 
the development and pathogenesis of pSS. A miR microarray performed in primary human conjunctival 
epithelial cells (PECs) demonstrated significant differences in miR expression at the ocular surface 
between pSS patients and healthy controls. MicroRNA-744-5p (miR-744-5p) was identified as being 
of particular interest, as its top predicted target is Pellino3 (PELI3), a known negative regulator of 
inflammation. Validation studies confirmed that miR-744-5p expression is significantly increased in 
PECs from pSS patients, whilst PELI3 was significantly reduced. We validated the miR-744 binding 
site in the 3’ untranslated region (UTR) of PELI3 and demonstrated that increasing PELI3 levels with 
a miR-744-5p antagomir in an inflammatory environment resulted in reduced levels of IFN dependent 
chemokines Rantes (CCL5) and CXCL10. These results reveal a novel role for miR-744-5p in mediating 
ocular inflammation via Pellino3 expression in pSS patients and suggest that miR-744-5p may be a 
potential therapeutic target for the management of severe dry eye disease and ocular inflammation in 
pSS patients.

Sjögren’s syndrome (SS) is a systemic autoimmune disorder characterized by dry eyes and dry mouth second-
ary to reduced exocrine function of both the lacrimal and salivary glands1. Due to the impaired exocrine gland 
function, dryness can extend to other parts of the body such as the skin, lungs and vaginal tract. SS occurs either 
as a primary condition (pSS) or as a complication in individuals with other inflammatory disorders including 
rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) where it is termed secondary Sjögren’s syn-
drome. pSS has a general incidence of approximately 0.5-3% of the population. It can occur at any age but is most 
common between the ages of 40 and 60 years, with women 9 times more likely to suffer from SS than men2–4. 
Chronic inflammation, accompanied by increased lymphocytic infiltration of exocrine glands, is the pathological 
hallmark of this disease. Aqueous deficient dry eye disease (DED) in patients with SS is caused by a failure of the 
lacrimal glands to secrete tears5,6.

Increased levels of inflammatory cytokines including interleukin (IL)-6, IL-12, tumour necrosis factor alpha 
(TNF-α)7–9 and more recently IL-2310 have been observed both locally and systemically and have been shown to 
play an important role in SS pathogenesis11–13. Autoantibodies such as anti-SSA/Ro and anti-SSB/La are a charac-
teristic hallmark of SS and are thought to contribute to pathogenesis through the formation of immune complexes 
and associated inflammation. More recently autoantibodies targeting the muscarinic receptor type III (M3R) have 
been shown to alter membrane trafficking of aquaporin 5 (AQP5), a protein involved in transmembrane water 
transport, in salivary glands of SS patients thus contributing to impaired fluid secretion14.

In striving to understand what drives the tissue specific and systemic inflammation associated with SS, focus 
has shifted to investigating the contribution of microRNAs (miRNAs or miRs) to the pathogenesis of pSS15–17. 
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miRs are tiny fragments of 18-25 non coding base pairs playing a posttranslational role, regulating approximately 
90% of protein-coding genes, and play a central role in various biological processes including immune cell lineage 
commitment, differentiation, proliferation, apoptosis and maintenance of immune homeostasis18. Dysregulated 
expression of noncoding RNAs, including miRs, has been associated with immunopathology of inflammatory 
autoimmune conditions such as systemic lupus erythematosus (SLE)19. Studies in an American cohort of SS 
patients demonstrated increased salivary gland expression of miR-155, a known regulator of inflammation, in 
patients with reduced salivary flow17. Indeed many of the miRs whose expression is altered in pSS are key reg-
ulators of inflammation and cytokine signalling15,17,20–22. For example, miR-125, miR-155 and miR-378 are all 
increased in SS and promote inflammation by enhancing pro-inflammatory cytokine signalling or by attenuating 
anti-inflammatory processes. Principally they target negative regulators of inflammation including Src homology 
2 (SH2) domain-containing inositol-5ʹ-phosphatase 1 (SHIP1) and suppressor of cytokine signalling 1 (SOCS1). 
Other miRs including miR-9, miR-21, miR-146, miR-147 and miR-187 are decreased in SS and attenuate inflam-
mation by repressing positive regulators of inflammation including programmed cell death protein 4 (PDCD4), 
nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), interleukin-1 receptor-associated kinase 
1 (IRAK1) and TNF receptor associated factor 6 (TRAF6)20,22. It has been suggested that inflammation and exo-
crine gland destruction in SS involves a complicated interplay between cytokine networks, innate immune cells 
and their mediators23–27. There is now strong evidence to suggest that alterations in miR expression contribute to 
the initiation and progression of pSS, although a functional link to pathogenic cytokine production has yet to be 
established.

While there is significant interest in pSS and the area of DED and an acceptance that inflammation is the key 
driving factor, the role of miRs in the pathogenesis of inflammation of the ocular surface has not been explored. 
Specifically in the context of SS patients, who present with severe DED the majority of miR studies have focused 
on animal models, peripheral blood mononuclear cells and salivary gland biopsies15–17,28–30. In order to fully 
investigate events at the ocular surface we optimised the isolation of miR from conjunctival epithelial cells (CECs) 
by impression cytology31. Using this technique we have demonstrated significant differences in miR expression 
at the ocular surface between pSS patients and healthy controls. MicroRNA-744-5p (miR-744-5p) was identified 
as being of particular interest, as its top predicted target is Pellino3 (PELI3), a member of the Pellino E3 ubiquitin 
ligase family, is a known negative regulator of inflammation32. PELI3 plays an important physiological role by 
negatively regulating TLR3 signaling via suppression of TRAF6-mediated polyubiquitination of interferon reg-
ulatory factor 7 (IRF7), blocking its activity and expression of interferon beta (IFN-β)33. Validation of this miR 
and its predicted gene target confirmed that miR-744-5p expression is significantly increased in CECs from pSS 
patients, whilst its predicted gene PELI3 was significantly reduced. Furthermore manipulation of miR-744-5p 
expression using a mimic or antagomir resulted in reduced and increased expression of PELI3, respectively. This 
study validated the miR-744 binding site in the 3′ untranslated region (UTR) of PELI3 and demonstrated that 
increasing PELI3 levels with a miR-744-5p antagomir in an inflammatory environment resulted in reduced levels 
of IFN dependent chemokines Rantes (C-C motif) ligand 5 (CCL5)) and C-X-C motif chemokine 10 (CXCL10). 
Overall these studies reveal a novel role for miR-744-5p in mediating ocular inflammation via Pellino3 expression 
in SS patients.

Results
Altered miRNA expression at the ocular surface in pSS patients.  Previous investigations have 
focused on salivary gland or peripheral blood mononuclear cells in human and mice studies of pSS. More 
recent studies have examined the levels of inflammatory cytokines and chemokines in ocular washes from pSS 
patients34–37. Consistent with these investigations we observed significantly enhanced production of interferon 
gamma (IFNγ), IL-2, IL-4, IL-5, IL-10, IL-12, IL-13 and TNFα (Supplemental Fig. 1). To more fully address the 
unmet need to understand events occurring at the ocular surface our initial study sought to identify potential 
differentially expressed miRNA in primary human conjunctival cells (PECs) isolated from SS patients that may 
be contributing to ocular surface inflammation. A total of 20 patients with pSS who fulfilled the AECG criteria 
were included in this study. Eleven healthy volunteers constituted the control group. Patient demographic data 
and results of ocular surface parameters are presented in Table 1. The expression of >2000 miRNAs in samples 
derived from 5 pSS patients and 5 healthy controls by impression cytology (IC) were investigated by Ocean Ridge 
Bioscience using ORB MirBASE Version 19 MicroRNA Microarray. This study revealed differential expression 
profiles of miRNA in patients with pSS as compared with healthy controls (Fig. 1A). Among these miR-744-5p 
was of interest due to previous reports showing altered expression in the autoimmune condition SLE38,39 as well 
as potentially functioning as a regulator of transforming growth factor beta 1 (TGF-β1) synthesis40. Additionally, 
by targeting the ubiquitously expressed phosphatase protein tyrosine phosphatase 1B (PTP1B), miR-744-5p has 
been shown to play a feedforward role in the type 1 interferon (IFN) pathway by positively enhancing the expres-
sion of IFN induced genes (CCL2, CCL5, CXCL10 and IL6)41. Significantly increased expression of miR-744-5p 
(P ≤ 0.02) was observed in a larger cohort of PECs derived from 19 patients with pSS and 11 healthy controls 
(Fig. 1B). Comparing multiple miRNA target prediction programs including, miRDB, miRWalk and DIANA, we 
identified Pellino 3 (PELI3) as a putative target of miR-744-5p and demonstrated significantly reduced (P ≤ 0.01) 
expression of the gene in PECs from pSS patients compared to healthy controls (Fig. 1C).

Modulation of miR-744-5p expression in primary human conjunctival cells.  To establish PELI3 
as a genuine target of miR-744-5p we transfected PECs derived from healthy controls with a miR-744-5p mimic 
which demonstrated significantly enhanced expression of miR-744-5p and significantly reduced (P ≤ 0.02) PELI3 
expression (Fig. 2A,B). Transfection with a miR-744-5p antagomir resulted in significantly reduced miR-744-5p 
expression and significantly enhanced PELI3 expression (Fig. 2C,D). To determine if the effects of miR-744-5p 
on PELI3 expression were direct, we cloned 2 regions of the PELI3 3′UTR into a luciferase reporter construct, one 

https://doi.org/10.1038/s41598-020-64422-5


3Scientific Reports |         (2020) 10:7484  | https://doi.org/10.1038/s41598-020-64422-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

containing the conserved putative miR-744-5p binding site (Site 1), as well as a region from the PELI3 3′UTR that 
contained no miR-744-5p binding site, the unrelated fragment control (Site 2). Co-transfection of HEK293T cells 
with the two reporter constructs with either the miR-744-5p mimic or negative control demonstrated that trans-
fection of HEK293T cells with a miR-744-5p mimic significantly attenuated Site 1 luciferase activity but failed to 
inhibit activity of the Site 2 luciferase construct (Fig. 2E), indicating that miR-744-5p directly targets the 3′ UTR 
of PELI3. Taken together, our data demonstrates that PELI3 is both a novel and direct target of miR-744-5p.

Poly I:C mediated inflammation is reduced in human conjunctival cells treated with a miR-
744-5p antagomir ex vivo.  To determine the potential relevance of modulating PELI3 expression in pSS, 
we examined the possibility of enhancing PELI3 expression under inflammatory conditions using a miR-744-5p 
antagomir in primary human conjunctival epithelial cells (HConEC) which were sourced from Innoprot. To 
induce an inflammatory environment that is comparable to that observed in pSS patients, HConECs were treated 
with polyinosinic:polycytidylic acid (Poly(I:C)). Previous studies in female NZB/WF1 SS prone mice have shown 
that Poly(I:C) treatment resulted in accelerated development of salivary gland disease which was associated with 
the production type I IFN, inflammatory cytokines and chemokines42,43. Treatment of healthy mice with TLR3 
ligand has been shown to result in increased expression of proinflammatory cytokines in salivary glands and 
lacrimal tissue from healthy mice44–46. Investigations in murine conjunctival epithelium cells have found these 
cells respond to Poly(I:C) treatment and have suggested that TLR3 plays a critical role in regulating ocular surface 
inflammation47. Furthermore, human conjunctival epithelial cells have been shown to express TLR3 and pro-
duce pro-inflammatory cytokines including IL-6, IL-8, CXCL10, CXCL11, Rantes and MCP-1 following Poly(I:C) 
treatment48,49.

Firstly, we characterised HConECs by determining expression of the epithelial specific markers cytokeratin-18 
(CK18) and cytokeratin-19 (CK19) by PCR (Fig. 3A). Secondly we examined transfection of HConECs with a 
FITC-labelled miR-744-5p antagomir (Exiqon) using an inverted bright field microscope (Fig. 3B–E) and quan-
tified this uptake by flow cytometry after 72 h of culture. These studies demonstrated significant transfection 
of miR-744-5p in HConECs (filled histogram) relative to negative antagomir-treated cells (unfilled histogram) 
(57.33 ± 5.03, P ≤ 0.003) (Fig. 3E). Finally, HConECs were either left untreated or cultured with Poly(I:C) dur-
ing the final 24 hours of antagomir transfection. Significantly increased expression of PELI3 in these Poly(I:C) 
cells was accompanied by a significant reduction (P ≤ 0.03) in Rantes and CXCL10 levels relative to negative 
antagomir-treated cells (Fig. 3F–H). Our data demonstrates that increasing PELI3 expression represents a mech-
anism to modulate inflammation at the ocular surface.

Patient Characteristic

AECG

(n = 20)

Positive diagnosis (%) 20 (100)

Mean age in years (Range) 57.88 (35-70)

Female (%) 15 (75)

Male (%) 5 (25)

Disease duration  (Years) 5.18 (0.17-28)

Symptoms

   Dry eyes (%) 20 (100)

   Dry mouth (%) 20 (100)

Systemic involvement (%) 15 (75)

Constitutional (%) 4 (20)

Lymphadenopathy (%) 3 (15)

Glandular (%) 1 (5)

Articular (%) 7 (35)

Cutaneous (%) 1 (5)

Respiratory (%) 6 (30)

Renal (%) 0

Muscular (%) 1 (5)

PNS (%) 0

CNS (%) 0

Haematological (%) 5 (25)

Biological (%) 13 (65)

Irish (%) 20 (100)

Schirmer’s 1 (mm/5 min) 1.75 ± 2.5

TBUT (seconds) 2.5 ± 0.88

Table 1.  Demographics and results of ocular surface parameters of patients. Data shown are number and 
percentage of patients under each American European Consensus group classification criteria (AECG) category. 
TBUT: tear film breakup time.
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Discussion
SS is a complex autoimmune disease with multifactorial pathogenesis and multisystem manifestations. There is 
no cure for SS and current treatments aim to alleviate disease symptoms by treating dry eye with artificial tears 
and using anti-inflammatories to treat localised and systemic inflammation. In many patients these treatments 
show little long term clinical benefit due to problems with maintaining therapeutic concentrations of the agents 
at the ocular surface and unwanted side effects. In the context of SS-related DED prolonged use of immuno-
suppressive agents such as corticosteroids and cyclosporine can result in glaucoma, cataracts and an increased 
susceptibility to ocular infections50. In addition, systemic administration of biologic and immunosuppressive 
therapies do not help to ameliorate ocular surface inflammation in SS related dry eye disease, indicating the 
need to explore other inflammatory pathways to control this disease51–53. Our studies reveal a novel role for miR-
744-5p in mediating ocular surface inflammation via modulating PELI3 expression and reducing inflammation 
in primary human conjunctival cells.

Figure 1.  Altered expression of microRNA-744-5p (miR-744-5p) and its target gene Pellino3 in conjunctival 
epithelial cells from patients with primary Sjogrens Syndrome (pSS) as compared with normal controls. (A) 
Microarray analysis of miRNA expression in primary conjunctival epithelial cells from patients with pSS and 
healthy controls. (A) Heatmap displaying relative expression of miRs in pSS patients compared to healthy 
controls (n = 5). (B) Independent verification in conjunctival epithelial cells of hsa-miR-744-5p expression in 
19 pSS patients and 11 healthy controls (CTL) by quantitative real-time polymerase chain reaction (qPCR) 
analysis, **P ≤ 0.01. (C) Conjunctival epithelial cell expression of Pellino3 in 19 pSS patients and 11 healthy 
controls, as determined by qPCR analysis. Each data point represents a single subject; horizontal lines show the 
mean, *P ≤ 0.02 ***P ≤ 0.001.

https://doi.org/10.1038/s41598-020-64422-5
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MiR-744-5p has shown utility as a plasma biomarker for pancreatic cancer54, in addition to being expressed 
in the plasma of patients with wet age-related macular degeneration55. In the context of autoimmunity previous 
reports have demonstrated reduced expression of this miRNA in the naive B cell subset of SLE patients as well 
as increased expression of miR-744 in peripheral blood mononuclear cells from patients with lupus nephritis 
compared with healthy controls38,39. Finally miR-744 transfection in HK-2 cells was shown to inhibit endogenous 
TGF-β1 synthesis which has important implications for inflammation40.

We observed significantly enhanced expression of this miRNA in PECs derived from pSS patients and identify 
PELI3 as a novel target, whose expression was significantly reduced in PECs derived from pSS patients.

PELI3, a member of the Pellino E3 ubiquitin ligase family, is a known regulator of inflammation via interac-
tions with Toll-like receptors32. PELI3 is expressed in most tissues, and has been reported to interact with IRAK1, 
NF-κB-inducing kinase, TRAF6, and transforming growth factor-β activated kinase 1 (TAK1)56. Its contributes 
to control of the innate immune system through pathways downstream from TLR-3 activation by regulating the 
expression of Type 1 interferons (T1IFN)57, nucleotide-binding oligomerization domain-containing protein 2 
(NOD2) activation of NF-κB58 and the TNF-induced activation of NF-κB59 (Fig. 4). Other autoimmune con-
ditions have been linked to PELI3 dysfunction, including inflammatory bowel disease60 and multiple sclerosis 
(MS)61. Murine studies using PELI3 knockout mouse have shown increased levels of T1IFNs in response to TLR3 
stimulation with Poly(I:C)33. In the context of ocular inflammation PELI3 represents an interesting target as it 

Figure 2.  Modulation of miR-744-5p expression in primary human conjunctival cells. (A,B) Expression of 
miR-744-5p and Pellino3 (PELI3) in miR-744-5p mimic transfected primary human conjunctival epithelial 
cells, isolated from healthy volunteers by impression cytology, after 72 h as determined by real-time PCR. Values 
are the mean ± SD of 4 samples, *P ≤ 0.02. (C,D) Expression of miR-744-5p and Pellino3 (PELI3) in miR-
744-5p antagomir transfected primary human conjunctival epithelial cells, isolated from healthy volunteers 
by impression cytology, after 72 h as determined by real-time PCR. Values are the mean ± SD of 4 samples, 
*P ≤ 0.02. (E) Luciferase activity in HEK293T cells transfected with the 3′UTR of Pellino3 containing the miR-
744-5p binding site (Site 1) and an unrelated fragment control (Site 2) and either 50 nm of negative control or 
miR-744-5p mimic. Values are the mean ± SD of 4 samples, *P ≤ 0.02.

https://doi.org/10.1038/s41598-020-64422-5


6Scientific Reports |         (2020) 10:7484  | https://doi.org/10.1038/s41598-020-64422-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

functions as a negative regulator of T1IFN58 and pSS has been characterized by T1IFN signature in the salivary 
glands and systemically62.

Both gain and loss of function studies demonstrate that transfecting PECs with miR-744-5p mimic or antag-
omir has reciprocal effects on PELI3 expression and analysis of the ability of miR-744-5p mimic to bind the 3′ 
UTR of PELI3 confirms PELI3 as a direct target. Previous reports have suggested that reduced PELI3 expression 
contributes to disease pathogenesis via its role in regulating inflammation60,61. In keeping with this we have shown 
that increasing PELI3 expression via use of a miR-744-5p antagomir in PECs under conditions that mimic pSS 
inflammation results in significant reductions in IFN dependent chemokines Rantes and CXCL10. Which is 
significant given the role of inflammatory cytokines and chemokines to disease induction in mouse models of 
pSS42,43.

Taken together our results demonstrate a novel role for PELI3 in the regulation of ocular surface inflam-
mation and suggest that modulation of its expression using a miR-744-5p antagomir has potential therapeutic 
implications.

Materials and methods
Ethics.  This study was reviewed and approved by the Research and Ethics Committee of the Royal Victoria 
Eye and Ear Hospital (RF2012) and written informed consent was obtained from all participants. This study was 
conducted in accordance with the Helsinki Declaration and applicable regulations.

Patient recruitment.  All pSS patients were recruited from the Royal Victoria Eye and Ear Hospital, 
Adelaide Road, Dublin 2, Ireland. Thirty consecutive patients who were previously diagnosed with pSS or sus-
pected of having pSS were thoroughly assessed using clinical history, clinical examination, slit lamp examination 
and dry eye tests. Of these, 20 patients were confirmed to have pSS based on the American European Consensus 
Group (AECG) Classification Criteria for Sjögren’s syndrome63. Those who did not satisfy the AECG criteria 

Figure 3.  Poly(I:C) mediated inflammation is reduced in human conjunctival cells treated with a miR-744-5p 
antagomir ex vivo. (A) PCR analysis of cytokeratin-18 (CK18) and cytokeratin-19 (CK19) in primary human 
conjunctival epithelial cells (HConEC) from Innoprot. Results are representative of 3 samples, with 18 s used 
as a control. The full gel image is included in the supplementary data. (B–E) Human conjunctival epithelial 
cells (Innoprot) were transfected with a FITC-labeled miR-744-5p antagomir for 72 hours. (B–D) Transfection 
of miR-744-5p antagomir was visualised using an inverted bright field microscope (Leica, DMIL) x20 
magnification. (E) Uptake FITC-labelled miR-744-5p antagomir assessed by flow cytometry after 72 h of culture 
(filled histogram) relative to negative antagomir-treated cells (unfilled histogram). Data are representative of 
three independent experiments. (F–H) Human conjunctival epithelial cells (Innoprot) were treated with a miR-
744-5p antagomir for 72 hours. Cells were lither left untreated or cultured with polyinosinic:polycytidylic acid 
(Poly I:C) during the final 24 hours of culture. (F) Expression of Pellino3 in miR-744-5p antagomir transfected 
human conjunctival epithelial cells (Innoprot) after 72 hours was determined by real-time PCR. Values are 
the mean ± SD of 6 samples, *P ≤ 0.03. (G,H) Levels of CXCL10 and Rantes in human conjunctival epithelial 
cells (Innoprot) as determined by ELISA. Values are the mean ± SD of 3 samples, *P ≤ 0.03, **P ≤ 0.005. 
UT = untransfected cells, Neg A = negative antagomir and 744A = miR-744-5p antagomir.

https://doi.org/10.1038/s41598-020-64422-5
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were excluded from the subsequent analysis. The mean age of the patients was 57.9 years (range 35-70 years) 
with an approximately 4:1 ratio of females to males. All patients had had sicca symptoms with dry eyes and dry 
mouth while 75% of them demonstrated systemic manifestation which is consistent with other studies2,64. Patient 
demographics and results of ocular surface parameters are summarised in Table 1. Clinical data and medication 
history were recorded for each patient at the time of the blood draw and summarised in Supplemental Tables 1 
and 2 respectively. Age- and sex-matched healthy donors who had no history of ocular or autoimmune diseases 
or treatment with immunosuppressive agents were also recruited as controls.

Ocular wash collection and analysis.  To collect ocular wash samples, 30 μL of phosphate-buffered saline 
(PBS) was instilled into the inferior fornix (without topical anesthetics). Tear fluid and buffer were collected with 
a micropipette and placed into a 1.5-mL Eppendorf tube and stored at −80 C until further examination. Ocular 
washes from pSS patients and healthy controls were analysed using a multiplex cytokine ELISA from Meso Scale 
Discovery (MSD) which included interferon gamma (IFNγ), interleukin (IL)-10, IL-12p70, IL-13, tumour necro-
sis factor alpha (TNFα), IL-2, IL-4, IL-5, IL-8 and interleukin 1beta (IL-1β).

Isolation of primary human conjunctival cells by impression cytology.  Impression cytology was 
preformed using a Biopore membrane (Merck Millipore, Darmstadt Germany) as previously decribed65. Briefly 
topical Minims Proxymetacaine hydrochloride 0.5% (Bausch & Lomb, Surrey United Kingdom) was instilled 
into the inferior fornix of both eyes. A Barraquer speculum was then inserted. Air drying was performed for 
15 seconds prior to testing 6 areas of the bulbar conjunctiva being sampled, taking care to avoid the fornix. The 
membrane was then applied gently but firmly against the conjunctiva, with the rim of the cylinder just adjacent to 
the limbus, for 15 seconds. This prevents the membrane from touching the limbus and collecting limbal material. 
This procedure was repeated for both eyes. For gene and miR expression studies all 12 membranes were processed 
in TRI Reagent® (Sigma). For transfection studies cells were dissociated from the membrane following incuba-
tion with trypsin/EDTA (Labtech). Cells were visualised using an inverted bright field microscope (Nikon Eclipse 
TS100) x 10 magnification.

miRNA expression profile assay.  A microarray screen of miR expression in the primary human conjunc-
tival epithelial cells (PECs) from pSS patients (n = 5) and healthy controls (n = 5) was performed with the use of 
ORB MirBASE Version 19 MicroRNA Microarray, Ocean Ridge Bioscience (Palm Beach Gardens, FL). Quality 
control of the total RNA samples was assessed using UV spectrophotometry. The samples sent to Ocean Ridge 
Biosciences were checked for quality by Bioanalyzer on Agilent 2100 Bioanalyzer RNA 6000 Pico Chip(s). The 
RIN numbers were used to determine whether or not the samples were intact, partially/moderately degraded, 
degraded or ultimately degraded. For miR data, log2 transformed probe intensities were normalized by sub-
tracting the normalization factor (N = 20% trim mean of the non-saturated human probes above threshold in all 
samples) and scaled by adding the grand mean of the normalization factor across all samples. The As for mRNA, 

Figure 4.  Schematic demonstrating the role of Pellino 3 in inflammation. (A) Recognition of bacterial products 
by nucleotide-binding oligomerization domain-containing protein 2 (NOD2), results in NOD2 oligomerization 
and recruitment of receptor-interacting-serine/threonine-protein kinase 2 (RIP2). This complex then recruits 
Pellino 3 which ubiquitinylates (Ub) RIP2 leading to the recruitment of TGFβ-activated kinase 1 (TAK1) 
and the IKK complex. This facilitates activation of mitogen-activated protein kinase (MAPK) and nuclear 
factor-κB (NF-κB) pathways culminating in the induction of inflammatory cytokines and chemokines. (B) 
Ligand interactions with Toll-like receptor 3 (TLR3) results in the recruitment of TIR domain-containing 
adaptor protein-inducing IFNβ (TRIF) which initiates a signal cascade that results in the phosphorylation 
and ubiquitylation of interferon-regulatory factor 3 (IRF3) and IRF7 via TANK-binding kinase 1 (TBK1)–IκB 
kinase-ε (IKKε)and TNF receptor-associated factor 6 (TRAF6) respectively. Nuclear translocation of IRF3 and 
IRF7 induce the expression of type I IFNs. Additionally the TBK1–IKKε–IRF3 pathway also induces the Pellino 
3 expression resulting in ubiquitylation of TRAF6 and inhibition of type I IFN expression.
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the log2 transformed probe intensities were normalized by subtracting the 70th percentile of the human probes 
(for each sample) and scaled by adding the grand mean of the 70th percentile of the human probes across all sam-
ples. The criteria for detection of the miR and mRNA is that the signal for a given miR and mRNA must be above 
the normalized thresholds in >25% of the samples. Correction for multiple testing was performed using Paired 
T-Test P values and the adjusted P values that controls the False Discovery Rate (FDR). The P values were adjusted 
according to the method of Benjamini and Hochberg66.

Real-time polymerase chain reaction (qPCR).  RNAs were extracted from conjunctival epithelial cells 
using TRI Reagent® (Sigma). Samples were reverse transcribed to complementary DNA using Tetro cDNA 
Synthesis Kit (Bioloine) or miRScript II RT kit (Qiagen) according to the manufacturer’s recommendations for 
gene and miR analysis respectively. Real-time quantitative PCR investigating gene expression was performed 
using primer sequences in Table 2 with SYBR Green Taq ReadyMix (Sigma) as per manufacturer’s recommenda-
tions. Data were analyzed using an ABI Prism 7900 system (Applied Biosystems). Genes were normalised to an 
RNU6B reference. miRs were normalised to the U6 small nuclear RNA (U6 snRNA). Real-time PCR data were 
analyzed using the 2-ddct method67.

Mimic and inhibitor transfection.  MicroRNA-744-5p oligonucleotides were obtained from Exiqon. 
Negative controls were based on the sequences of miRNA in Caenorhabditis elegans (cel-miR-67). Cells were 
seeded at 1 × 105 cells/well in a 96-well for primary human conjunctival epithelial cells and HConECs. Cells 
were then transfected with 50 nM of either a negative control/miR-744-5p mimic or antagomir. Transfection of 
primary human conjunctival cells and HConEC was performed using Metafectene SI transfection reagent as rec-
ommended by the manufacturer’s protocol. Evaluation of the experiment was carried out 72 h after transfection.

Luciferase reporter assay.  The putative miR-744-5p target sequence in the 3′UTR of human Pellino3 
(site 1) and an unrelated fragment control region of the 3′UTR of human Pellino3 (site 2) was cloned into the 
psiCHECK-2 vector (Promega) downstream of the Renilla luciferase reporter gene with the primers sequences 
in Table 3. All constructs were sequenced, and were prepared with the use of an EndoFree Plasmid Maxi kit 
(Qiagen). 293 T cells were seeded at 1×105 cells/well in a 96-well plate 1-day pre-transfection and then transfected 
with a mixture of 50 ng Pellino3-UTR site 1 or site 2 luciferase reporter vector and 50 nM of either a negative 
control/miR-744-5p mimic. The cells were harvested 48 h later, and luciferase activity was assessed using a Dual 
Luciferase Reporter Assay System (Promega). Firefly luciferase was used to normalise the Renilla luciferase. All 
experiments were carried out in triplicate.

Culture of primary human conjunctival epithelial cells (HConEC).  Primary human conjunctival 
epithelial cells (HConEC) were purchased from Innoprot. These cells are isolated from human conjunctiva, cryo-
preserved at primary culture and guaranteed to further expand for 15 population doublings at the conditions pro-
vided in the data sheet. HConECs were cultured in Corneal Epithelial Cell Medium (CEpiCM) which is designed 
for optimal growth of normal human corneal epithelial cells in vitro and contains essential and non-essential 
amino acids, vitamins, organic and inorganic compounds, hormones, growth factors and trace minerals. For 
some experiments HConECs were either left untreated or treated with polyinosinic:polycytidylic acid (Poly(I:C)) 
20 µg/ml during the final 24 hours of culture. Transfection of FITC-labelled miR-744-5p antaogmir (Exiqon) 

Gene/miR Forward primer Reverse Primer

miR-744-5p AAGGTGCGGGGCTAGGGCTAA AGTAAGGTTGAGGTTA

Pellino3 GATGGCCTGATGGATGGACTG AGGTCGATGAGAGAGCCGTC

Rantes (CCL5) CCTCGCTGTCATCCTCATTGCT TACTCCCGAACCCATTTCTTCTC

CXCL10 GGAAGCACTGCATCGATTTTG CAGAATCGAAGGCCATCAAGA

CK18 GGCATCCAGAACGAGAAGGAG ATTGTCCACAGTATTTGCGAAGA

CK19 ACCAAGTTTGAGACGGAACAG CCCTCAGCGTACTGATTTCCT

RNU6B CTCGCTTCGGCAGCACA AACGCTTCACGAATTTGCGT

18 s GGGAGGTAGTGACGAAAAAT ACCAACAAAATAGAACCGCG

Table 2.  Real-time quantitative PCR primer sequences.

Name Sequence: (5′ to 3′)

Site 1 
FP GAGAGACTCGAGACCTCGCTGCTCAGCTGCCC

Site 1 
RP GAGAGAGCGGCCGCTCTGGAGAGTGCTCAATGGA

Site 2 
FP GAGAGACTCGAGAGTTCACAGTCTAGTGGAGG

Site 2 
RP GAGAGAGCGGCCGCTCCACAAATGAGGTTCAGAA

Table 3.  Luciferase reporter primers sequences.
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was visualised using an inverted bright field microscope (Leica, DMIL) x20 magnification. Gene expression was 
investigated by real-time quantitative PCR and production of Rantes (CCL5) and CXCL10 was determined by 
ELISA (RnD Systems). HConECs were mycoplasma free and characterised by expression of CK18, CK19 by PCR.

Flow cytometry.  Single-cell suspensions of HConECs were prepared 72 h after transfection with a FITC 
labelled miR-744-5p antagomir (Exiqon). Briefly, cells were suspended in fluorescence-activated cell sorting 
(FACS) buffer containing 1×phosphate-buffered saline (PBS) (pH 7.2), 2% fetal bovine serum (Sigma), and 0.1% 
sodium azide. 10,000 events were acquired on a BD Biosciences FACS Canto II. Data analysis was performed by 
using FlowJo_V10 (Tree Star). Negative antagomir treated cells were used as negative controls.

Statistical analysis.  Data were analyzed using Prism 6 software, version 6.07 (GraphPad Software, La Jolla, 
CA, USA). The nonparametric Mann-Whitney test was used to compare differences in gene expression, miR 
expression and cytokine levels between patients and controls. The Students paired t test was performed to exam-
ine differences in miR, protein and cytokine levels between transfected cells and Poly(I:C) treated cells. Data 
deemed significantly different at P values less than 0.05.
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