
Royal College of Surgeons in Ireland

repository@rcsi.com

Can plantar fibroblast implantation protect amputees from skin injury? a
recipe for skin augmentation

AUTHOR(S)

Colin Boyle, Claire A. Higgins

CITATION

Boyle, Colin; Higgins, Claire A. (2021): Can plantar fibroblast implantation protect amputees from skin injury?
a recipe for skin augmentation. Royal College of Surgeons in Ireland. Journal contribution.
https://hdl.handle.net/10779/rcsi.15112296.v2

HANDLE

10779/rcsi.15112296.v2

LICENCE

CC BY 4.0

This work is made available under the above open licence by RCSI and has been printed from
https://repository.rcsi.com. For more information please contact repository@rcsi.com

URL

https://repository.rcsi.com/articles/journal_contribution/Can_plantar_fibroblast_implantation_protect_amputees
_from_skin_injury_A_recipe_for_skin_augmentation/15112296/2

mailto:repository@rcsi.com
https://hdl.handle.net/10779/rcsi.15112296.v2
https://creativecommons.org/licenses/by/4.0/
https://repository.rcsi.com
mailto:repository@rcsi.com
https://repository.rcsi.com/articles/journal_contribution/Can_plantar_fibroblast_implantation_protect_amputees_from_skin_injury_A_recipe_for_skin_augmentation/15112296/2


Experimental Dermatology. 2021;00:1–5.	﻿�   | 1wileyonlinelibrary.com/journal/exd

1  |  INTRODUC TION

Skin mediates all physical interaction between the body and ex-
ternal objects/surfaces. Skin's ability to tolerate mechanical load 
is reflected in its structure, with a tough epidermis supported by a 
strong and flexible dermis.1 This load tolerance has limits, however, 
and exposure to pathological mechanical loads leads to skin injuries 
such as tears,2 blisters3 and superficial pressure ulcers.4 These inju-
ries impose a huge burden on society, costing an estimated £5 billion 
annually in the UK.5

Skin's load tolerance is highly site specific6 and reflects the func-
tion of the anatomical location.7 The foot sole (plantar skin) can tol-
erate repeated pressures and shear stresses in excess of 1000 kPa8 
without injury, while 1/200th of those loads are sufficient to injure 
other parts of the body, such as the pelvis and the heel.9

When a normally non-load bearing body site is recruited to bear 
load, such as is required of the residual limb of lower-limb amputees, 
it contributes to a variety of contact-induced dermatoses such as 
eczema, irritation, callousing and pressure ulcers.10 These injuries 
prevent prosthesis use which severely limits the quality of life of am-
putees and create a substantial roadblock to rehabilitation.11

Of these injuries, pressure ulcers are perhaps the most de-
bilitating. One reason for the lack of progress on preventing 
prosthesis-related pressure ulcers is that we are rapidly reaching 
the limits of prosthesis design. Prostheses are increasingly high-
tech12 and are approaching a point where interface pressures can 
be minimised.13 Ultimately, the issue of pressure ulcers in ampu-
tees remains because we are asking the skin of the residuum to 
perform the task of transferring ambulation loads—a task far be-
yond its normal function.
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Abstract
Skin injuries remain a persistent problem for users of lower-limb prostheses despite 
sustained progress in prosthesis design. One factor limiting the prevention of skin in-
juries is that skin on the residual limb is not suited to bear the mechanical loads of am-
bulation. One part of the body that is suited to this task is the sole of the foot. Here, 
we propose a novel strategy to actively augment skin's tolerance to load, increasing its 
resistance to mechanically induced injuries. We hypothesise that the load tolerance 
of skin can be augmented by autologous transplantation of plantar fibroblasts into 
the residual limb dermis. We expect that introducing plantar fibroblasts will induce 
the overlying keratinocytes to express plantar-specific keratins leading to a tougher 
epidermis. Using a computational finite element model of a weight-bearing residual 
limb, we estimate that skin deformation (a key driver of pressure ulcer injuries) could 
be halved by reprogramming skin to a plantar-like phenotype. We believe this strategy 
could yield new progress in pressure ulcer prevention for amputees, facilitating reha-
bilitation and improving quality of life for patients.
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2  |  PREMISES

The sole of the foot has a specialised structure that enables it to 
tolerate the mechanical forces of ambulation.7 For example, the fat 
pad within the heel protects the skeleton from impact.14 The skin is 
also specialised, with collagen fibres in the dermis poised to be load 
bearing7 and cytoskeletal proteins such as Keratin 9 (K9) expressed 
in the epidermis15 (Figure 1A). This distinct composition serves to 
protect skin on the sole of the foot from injuries such as superficial 
pressure ulcers.7

When plantar skin is used in the reconstruction of residual limbs, 
it performs better than skin from other donor sites.16,17 The Syme am-
putation, named after the surgeon who pioneered it, uses heel pads 
(including the skin and fat pad) to reconstruct the lower residual limb; 
these individuals can walk directly on their stumps without incurring 

skin injury.18 However, plantar skin is rarely available in sufficient 
quantities when reconstructing residual limbs. A novel approach to 
reducing skin injuries in prosthesis users is to stimulate vulnerable 
skin to enhance its load-tolerance. In practice, this would mean in-
ducing a change in non-plantar skin to exhibit more plantar-like traits.

Skin from all body sites has an innate plasticity that enables it 
to adapt to a changing mechanical environment. The epidermis dif-
ferentiates and thickens in response to shear19 and can expand in 
response to stretch.20 Indeed, the residual limb of many prosthe-
sis users develop enhanced load tolerance given sufficient time and 
careful rehabilitation.21,22 However, positional cues that confer ‘skin 
identity’ are not altered during rehabilitation and skin on the residual 
limb never acquires the positional information of distal sites such as 
the sole of the foot. A novel strategy to boost load tolerance is to 
transplant the positional information of the sole to the residual limb.

F I G U R E  1  (A) Plantar skin has a 
structure distinct from other body sites 
that enable it to tolerate mechanical 
loads. (B) We hypothesise that by 
injecting fibroblasts from a plantar 
region, non-plantar skin will develop 
a plantar-like phenotype and become 
more load tolerant. (C) Simulations of 
a weight-bearing residual limb indicate 
reprogramming skin to plantar-like 
phenotype could reduce shear strains
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Fibroblasts within the skin dermis are key orchestrators of 
both dermal and epidermal identity. In skin morphogenesis, sig-
nalling from the skin dermis directs epidermal development, while 
in adult skin cross talk between the epidermis and dermis facili-
tates skin homeostasis.23 Fibroblasts carry positional information 
via site-specific HOX gene expression, and this information is re-
tained over many passages in vitro.24,25 When HOXA13 express-
ing plantar fibroblasts are cultured in the dermis of an in vitro skin 
construct, together with non-plantar keratinocytes forming the 
epidermis, K9 expression is detected within non-planter kerati-
nocytes in as little as 30 minutes.25-27 These skin constructs also 
maintain expression of the cytoskeletal protein K9 after grafting 
onto nude mice.26

Fibroblasts have been shown to effect changes in vivo in the 
context of hair induction, where dermal papilla fibroblasts induce 
hair follicle neogenesis in recipient epithelia.28 In the context of 
plantar skin in vivo, plantar dermis can reprogramme non-plantar 
epidermal sheets to become both thicker and express K9, two hall-
marks of plantar identity.26,29 There is also evidence to suggest that 
autologous fibroblast implantation can alter dermal composition by 
increasing dermal thickness and collagen content.30,31

Collectively, these studies support the concept that plantar fi-
broblasts can instruct changes in both the composition and mor-
phology of the dermis and epidermis. A key question to ask now is 
whether implanted plantar dermal fibroblasts can also instruct re-
programming of non-plantar skin to acquire the crucial trait associ-
ated with a plantar identity: its load tolerance.

3  |  HYPOTHESIS

We hypothesise that the load tolerance of skin on the stump can be 
augmented by autologous transplantation of plantar fibroblasts into 
the residual limb dermis (Figure 1B).

3.1  |  How to test the hypothesis

In skin, both autologous and allogeneic fibroblasts and keratino-
cytes have been trialled extensively for wounds such as burns and 
ulcers where they serve to replace lost cells. We hypothesise that 
autologous plantar skin fibroblasts transplanted into the dermis on 
a residual limb of an amputee will operate via a different mode of 
action, and act as signalling conductors to reprogramme adjacent 
epithelium to a plantar identity. This will serve to protect the skin 
from injury such as ulceration. Our hypothesis can be tested within a 
cell-therapy framework by implanting autologous plantar fibroblasts 
into injury ‘hotspots’ on the residual limb of amputees.

The experimental approach would include expansion of suffi-
cient cell numbers in vitro, identification of appropriate injection 
sites, and quantification of changes to the skin load tolerance. There 
are well-defined protocols for fibroblast expansion in vitro that fully 
comply with GMP clinical requirements. Cells would be injected into 

the papillary dermis to maximise their paracrine effects on the adja-
cent epidermis, or throughout the papillary and reticular dermis for 
collagen synthesis and dermal remodelling.

The stratum corneum thickness can be quantified non-invasively 
using OCT imaging,21 while skin elasticity can be quantified using a 
suction cup elastomer.32 Tissue distress can be quantified by mon-
itoring transcutaneous O2 and CO2  measurements,33,34 and this 
monitoring has been successfully coupled with controlled loading 
devices to quantify tissue load tolerance.35 The ultimate measure of 
success would be fewer incidences of skin injury in treated patients 
compared to an untreated control group.

3.2  |  Preliminary supporting evidence

We have begun to test the feasibility of reprogramming skin as a 
therapy to reduce injuries by estimating how altering skin's me-
chanical properties might improve the biomechanics of prosthesis 
use. We previously compared the mechanical properties of plan-
tar and non-plantar skin,7 showing that plantar skin has a greater 
resistance to deformation (a key driver of ulceration). To estimate 
how plantar-like skin would perform on a residual limb, we devel-
oped a computational model of a residual limb interacting with a 
prosthesis (Figure  1C and Supplementary Material). This model 
enabled us to estimate the shear strains (a measure of deformation) 
in skin under typical loading (standing) in a prosthesis, and how 
these strains would change if we achieved 100% reprogramming 
after autologous cell therapy (ie plantar skin). We found that repro-
gramming non-plantar skin to a plantar-like phenotype could reduce 
shear strains by 47% (from 0.71 to 0.38) at high-pressure locations. 
This reduction would offer substantial protection to the cells and 
microvasculature of skin. While quantitative data on skin load tol-
erance is lacking, the strain tolerance of skeletal muscle cells was 
estimated at 0.65 for short-term loads.36 These results therefore 
support the concept of skin augmentation as a preventative strat-
egy. The next step is to determine to what extent residual-limb skin 
can be re-engineered.

4  |  RELE VANCE AND PERSPEC TIVES

Prostheses have become high-tech medical devices incorporating 
advances in materials and computational modelling. Despite these 
advances, pressure ulcers and other skin injuries are still a major 
limitation for prosthesis users. We believe that this is because ulti-
mately, we are asking the skin of the residual limb perform a func-
tion that it is not specialised to do—to transfer the loads experienced 
from ambulation. We propose that instead of reengineering the 
prosthesis to alter the skin-socket interface, we should exploit the 
instructive nature of fibroblasts to reengineer the skin to become 
load tolerant. We believe this strategy could yield new progress in 
pressure ulcer prevention in amputees, facilitating rehabilitation and 
improving quality of life for patients.
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