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ABSTRACT

Multifaceted changes in the mechanobiological environment of skeletal joints, at multiple length scales, are central to the development of
diseases-like osteoarthritis (OA). Recent evidence demonstrates related mechanical alterations in both bone and cartilage tissues, with cross-
talk between the tissues being an important factor in acute and chronic degenerative processes. However, recapitulating multicellular tissue
systems in the laboratory to study the entire osteochondral unit remains challenging. Thus, the development of accurate and reproducible
OA model systems and the selection of the most suitable model for individual experimental approaches are critical. This review first discusses
recent progress in understanding mechanosensory processes in healthy and osteoarthritic joints. Subsequently, we review advancements in
the development of in vitro and ex vivo model systems ranging from 2D monocultures through to joint organ-on-a-chip models. Use of these
systems allows for the study of multiple cell types in controlled, reproducible, and dynamic environments, which can incorporate precisely
controlled mechanical and biochemical stimuli, and biophysical cues. The way in which these models have, and will continue to, improve
our ability to recapitulate complex mechanical/paracrine signaling pathways in osteochondral tissues is then discussed. As the accuracy of
model systems advances, they will have a significant impact on both our understanding of the pathobiology of OA and in identifying and
screening therapeutic targets to improve treatment of this complex disease.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0068277

INTRODUCTION

The healthy functioning of skeletal joints is often considered in
terms of articular cartilage only. However, in addition to cartilage, the
subchondral bone, synovial lining, ligaments, and other connective tis-
sues form an integrated system that maintains form and function.
Each of these tissues contributes to overall functionality and damage
to any of them can impact joint integrity. Considering the joint at this
level is crucial to understanding its function as well as its response to
injury and disease—all of which are significantly influenced by the
mechanical environment. The appendicular joints in the skeleton have
evolved to allow almost frictionless articulation while bearing signifi-
cant mechanical load.1 While physiological loading has long been
known to be essential for healthy maintenance of joint homeostasis,
supraphysiological conditions can drive degradative processes, such as
osteoarthritis (OA).

OA is now considered to be a multifactorial disease of the whole
joint.2–4 In cartilage, a cell-mediated shift from anabolism to catabo-
lism by the resident cells, chondrocytes, drives the degeneration of the
extracellular matrix (ECM). In the subchondral bone, dysregulation of
bone remodeling and osteophyte formation are also part of the disease
process. At present, the timing of, and relationship between, these phe-
nomena from a pathophysiological perspective is not clear.1 It is
known that the altered structure and composition of joint tissues often
suggest that the physical microenvironment of resident cells them-
selves is changed. However, at a cellular level, understanding the
mechanisms by which intrinsic properties of the ECM (e.g., stiffness)
and extrinsic forces (e.g., compression/tension etc.) are transduced is
non-trivial. Even in a single cell or tissue type (i.e., bone or cartilage)
in isolation, the process is not straightforward. In OA, characteristic
ECM degradation leads to localized changes in mechanical stress,
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driving cell stress responses, inflammation, and senescence/apoptosis.
Eventually, a feedback loop is established whereby pathological cell
phenotypes produce poor-quality ECM. This contributes to the degra-
dation of remaining ECM and so drives further joint destruction.5

Thus, despite the diverse origins and complex etiology of OA, it is clear
that the disease progression invariably involves multiple joint tissues
as well as alterations in their mechanobiological properties.

Studying this multitissue dynamic joint system, and the complex
manner in which it changes with injury and disease, remains challeng-
ing. Representative laboratory model systems have been used for
many years, but a true unifying representative system has proved diffi-
cult to achieve.6 In vivo preclinical animal models provide many
advantages over laboratory-based in vitro options as they allow the
whole joint to be considered in the context of a native tissue and
mechanical environment. Despite this, many issues surrounding their
use remain; they are complex, costly, and time-consuming and require
significant ethical consideration (adherence to 3R’s principles). In
addition, there are several biological concerns with their use, including
differences between the human and animal model immune systems,
manner of joint loading, and thus cell signaling pathways as well as
mode of initiation of OA.7 The development of more accurate models
would, therefore, be a significant contribution to this field of research.8

Conventional in vitro models show some benefits due to their well-
established and reproducible methods and relatively user-friendly
nature but often fail to recreate accurate cell environments. Recently,
an increased appreciation of the importance of cell-level mechanobiol-
ogy has emerged, and these considerations will likely be central to
future developments. Alongside these advancements, the development
of ex vivo or explant models that accurately recreate elements of OA
pathology (in particular, the consideration of multiple tissues), includ-
ing the mechanical environment, has led to a rapid expansion in their
use. Explant models can be beneficial as they recapitulate aspects of
in vivo conditions in the laboratory without some of the challenges of
in vivo work. In particular, these systems may have value in short-
term studies and drug screening applications. Advances in materials
science and regenerative medicine will also likely feature heavily in the
development of more complex (and ideally more representative)
in vitro and ex vivo models that attempt to accurately recreate cell and
tissue physiochemical microenvironments.6 This review will first dis-
cuss recent advances in the current understanding of mechanosensory
processes in healthy and osteoarthritic joints and advancements made
in the development of in vitro and ex vivo model systems ranging
from two-dimensional (2D) monocultures through to joint organ-on-
a-chip models. Finally, details of therapeutic targets identified and
tested using these models will be discussed.

BASIC FORM AND FUNCTION OF THE
OSTEOCHONDRAL TISSUES

Osteochondral joint tissues experience mechanical stress over a
wide range throughout their lifetime.9 Bone is a key structural and
protective element of the skeleton and is a complex, heterogeneous
anisotropic material. The subchondral bone can be subdivided into
several components, which combine to perform specific functions.10,11

The subchondral plate, directly adjacent to articular cartilage, primar-
ily prevents shear forces from damaging joint tissues by dispersing
them as compressive and tensile forces.12 Below the subchondral plate,
the bone becomes a porous network of trabecular bone in which

individual trabeculae are orientated along local “stress-lines,” as
described by the “Wolff’s law.”12,13 This load-sensitive structure is
maintained through the coordinated action of resident bone cells:
osteoblasts, osteoclasts, and osteocytes. In healthy bone, it is the resi-
dent (and most numerous and ubiquitous) osteocytes that “sense”
when and where bone tissue needs to be removed.14–16 A pro-
osteoclastogenic signaling cascade is produced, such that osteoclasts
can carry out this task via resorption, and that tissue is then replaced
via coupled osteoblast-mediated bone formation.17 This process is
continuous, dynamic, and is aided and influenced by a range of spe-
cialized growth factors and hormones. Multiple mechanosensing
mechanisms have been identified in these cells, including membrane
channels, integrins, the cytoskeleton, and primary cilia.18–22

The structure of articular cartilage is also highly adapted to with-
stand mechanical loads, which it absorbs and disperses in an almost
frictionless environment during movement. Cartilage achieves this
through the anisotropic, hierarchical structure, and specialized compo-
sition of its ECM. The anisotropy of cartilage can be seen at the ECM
level from the joint surface to the subchondral bone in its superficial,
middle, and deep/calcified zones, and at the pericellular level (i.e., peri-
cellular, territorial, and inter-territorial ECM).23,24 At the joint surface,
superficial zone chondrocytes are flattened and aligned parallel to joint
surfaces and produce a low-friction matrix rich in hyaluronan and
lubricin. Deeper in the tissue, middle zone chondrocytes are larger/
rounder, and type II collagen fibrils increase in thickness. Aggrecan is
the most abundant hydrophilic proteoglycan in cartilage, and its con-
centration increases as a function of tissue depth.2,24–26 Other strongly
hydrophilic proteoglycans and associated glycosaminoglycans allow
cartilage to retain large quantities of water, which facilitates tissue
resistance to compressive forces and decreased friction during move-
ment. Many of the cellular mechanosensing mechanisms that exist in
bone also exist in chondrocytes, including membrane channels, integ-
rin activation, the cytoskeleton, and primary cilia, which have signifi-
cant effects on anabolic and catabolic cell processes.27

During skeletal loading, complex gradients of mechanical stress
and biochemical signals are generated that have profound impacts on
cellular responses in the joint. The mechanisms of these important
processes are yet to be fully understood.28,29 Furthermore, during the
initiation and progression of injury/disease, it becomes even more
important to understand these processes to develop new and more
effective treatments.

MECHANISMS OF MECHANOTRANSDUCTION
IN OSTEOCHONDRAL TISSUES

In order for cells in osteochondral tissues to respond to their
physical environment, they must have the ability to sense specific
parameters of the mechanical loads they sustain, such as its type, dura-
tion, and frequency. Multiple sensory mechanisms by which osteo-
chondral cells achieve this have now been identified (Fig. 1) and are
reviewed below.

Mechanotransduction in bone tissue

By virtue of their function, joints experience loading as a complex
combination of compression, tension, shear, and hydrostatic and
osmotic pressures. At a basic level, compressive forces, generated by
body weight, are transmitted through surface cartilage to the subchon-
dral bone and then away from the joint surface.
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The relatively high stiffness of the mineralized bone means that
strains experienced by resident cells (osteocytes) in vivo are signifi-
cantly lower than in the cartilage-of the order of 0.05% strain during
normal activity and 0.2% during strenuous activity.30 Some mechano-
sensory mechanisms are common between bone and cartilage cells,
including integrin activation, intracellular kinase cascades [e.g.,
mitogen-activated protein kinase (MAPK), extracellular signal-
regulated protein kinase (ERK1/2)], intracellular calcium release, and
membrane channel activation.31–33 As discussed above, osteocytes
play a dominant role in mechanosensation in bone. Ablation of osteo-
cyte populations significantly increases porosity in cortical bone and
decreases overall sensitivity to mechanical loading.34 Integrin activa-
tion is central to bone cell responses to deformative and non-
deformative loadings. In particular, b1 and b3 integrins are important
for mechanosensing in osteoblasts and osteocytes (notably the same is
true for chondrocytes—detailed below).35,36 Mice with osteoblast or
osteocyte-specific dominant negative forms of b1 integrin or b1-
ablation exhibit reduced bone mass and increased porosity due to
increased osteoclast activity.37,38 In osteocytes, b1 integrin is preferen-
tially expressed in the cell body, while b3 is predominately expressed
along the cell processes.39,40 Aside from integrin signaling, hydrostatic
pressure and fluid flow are critical mediators of bone remodeling.
Hydrostatic pressures over a broad range (�5 kPa–4MPa) have been
reported to influence bone cell behavior. Dynamic pressures �10 kPa
have been shown to regulate 30,50-cyclic monophosphate (cAMP) and
Cyclic guanosine monophosphate (cGMP) cellular accumulation,
increase alkaline phosphatase activity, osteogenic gene expression,

ECM mineralization, and promote resorptive-like phenotypes in
osteoclasts.41,42 Dynamic pressures in the�30–100 kPa range promote
anti-osteoclastogenic phenotypes in bone marrow cells. Even larger
dynamic pressures (in the MPa range) have been shown to increase
cell–cell and cell-matrix adhesions, promote actin reorganization in
the cytoskeleton, and, in bone explant tissues, promote cell viabil-
ity.43,44 Localized load-induced pressure fluctuations also generate low
velocity fluid flow through the canicular network, which is now
thought to be the primary mechanism by which osteocytes sense
mechanical loading. Osteocyte responses to fluid flow require a func-
tioning actin cytoskeleton and involve primary cilia, with loss of the
cilia attenuating cell mechanosensitivity. On experiencing fluid flow,
osteocyte signaling generally involves release of nitric oxide (NO),
Adenosine triphosphate (ATP), Ca2þ, and activation of ERK1/2,
which, in turn, regulates numerous bone remodeling pathways includ-
ing receptor activator of nuclear factor kappa-B ligand (RANKL)
expression, cell proliferation, matrix metalloproteinase-13 (MMP13)
expression, and osteogenic differentiation of MSCs.45–48 Key differ-
ences in osteocyte responses to oscillating and unidirectional flow
have been reported.18,49–54 For example, unidirectional flow increases
intracellular calcium through the release of intracellular stores and
membrane channel activation, while no such activation of membrane
channels has been reported in cells subjected to oscillatory flows.50,55

In addition to being highly mechanosensitive, osteocytes are also
expert communicators. Despite being embedded in the mineralized
matrix, osteocytes directly communicate with each other and with
other local cell-types through gap junctions.56,57 This allows for the

FIG. 1. Extracellular matrix environment and mechanosensory mechanisms in (a) cartilage and (b) bone. In cartilage, chondrocytes possess a number of cell surface receptors
involved in mechanotransduction including integrins, syndecans CD44, and discoidin domain receptor 2. Mechanosensitive ion channels such as transient receptor potential
cation channels, piezo-channels, and connexons. The primary cilium, a mechanosensory organelle, contains high concentrations of mechanosensing machinery central to cell
responses to mechanical forces. Chondrocytes are immediately surrounded by the pericellular matrix (PCM), which is characterized by the expression of type VI collagen. The
PCM acts as a force transducer for the cell and determines the local mechanical and biochemical environments. Moving out the PCM integrates with the territorial matrix
(TCM), which contains fine type II collagen fibers, proteoglycans, and glycosaminoglycans like keratin sulfate (KS), chondroitin sulfate (ChS), heparin sulfate, hyaluronic acid,
and aggrecan. The TCM acts with the PCM as a reservoir for growth factors, which are released or presented to cell surface receptors on mechanical deformation. The TCM
integrates with the interterritorial matrix (ICM) containing large type II collagen fibers, along with non-fibrillar collagens like type IX collagen, which is associated with cartilage
oligomeric matrix protein (COMP). The TCM also contains high levels of hyaluronic acid, aggrecan, and other proteoglycans, which retain high amounts of water within the
ECM.
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transmission of information from one part of the matrix to another,
thus, in turn, allowing for the regulation of bone formation and turn-
over.58 Furthermore, gap junction phosphorylation and activity are, in
part, mechanically regulated,59 and in the case of osteoblasts, they have
been shown to open and become phosphorylated in response to fluid
flow, resulting in increased ATP and prostaglandin release.59–61 While
the blocking gap junction activity was found to prevent fluid flow-
mediated production of osteopontin and osteocalcin.62 Taken
together, these findings demonstrate that mechanotransduction is a
central aspect of healthy bone function.

Mechanotransduction in cartilage tissue

Since cartilage covers the majority of articulating surfaces, it natu-
rally takes the majority of the load imparted at the joint. At the cell
level, chondrocytes perceive load-induced tissue deformation through
a secreted pericellular matrix (PCM).63 The PCM is characterized by
the presence of collagen type VI,64 perlecan,65 aggrecan,66 laminin,67

fibronectin,68 hyaluronan,69 biglycan,70 and type IX collagen.71 The
PCM can modulate mechanical stress, osmotic pressure, and fluid-
flow in the chondrocyte microenvironment, thus acting as a key regu-
lator of mechanotransduction.72 Though significantly stiffer than the
chondrocyte itself (Young’s modulus �40–100 vs�0.5 kPa), the PCM
is softer than the cartilage ECM surrounding it (�0.1–2MPa).73–76

The PCM and Territorial Matrix (TCM) also have a role as natural,
mechanoresponsive growth factor reservoirs. For example, TGFb and
FGF bind to heparin sulfate domains in PCM/territorial matrix mole-
cules, such as perlecan, and can be released to activate cell receptors by
mechanical deformation.72,77,78

Chondrocytes also sense tissue deformation directly through
integrin-matrix adhesions. Under physiological load, integrins initiate
chondrogenic transcription through several mechanisms including
the 30,50-cyclic monophosphate (cAMP) signaling cascade79 and actin
cytoskeletal stress-mediated activation of protein kinase A (PKA).80

Subsequent activation of cAMP-response element binding (CREB)
protein converges on SOX9 phosphorylation, driving chondrogenic
gene expression.81–83 Additionally, integrin-associated kinases, such
as Proto-oncogene tyrosine-protein kinase Src (SRC) and focal adhe-
sion kinase (FAK), activate chondrogenic gene expression through
ERK–MAPK-P38 signaling cascades.84 Cell deformation also activates
membrane channels [PIEZO and transient receptor potential (TRPV)
family], causing a Ca2þ influx into the cell.85 In particular, TRPV
channels appear to have a significant role in physiological loading
responses. Loss of TRPV4 leads to disruption of cartilage homeostasis
and induction of OA,86,87 while in vitro, the addition of a TRPV4 ago-
nist increased ECM production.86 Signaling downstream of TRPV4
has yet to be fully elucidated, but studies have shown G protein-
coupled receptor (GPCR) pathway activation [phosphoinositide
3-kinase/Akt/forkhead box protein O (PI3K/Akt/FOXO)], which is
thought to be involved in preventing cartilage damage and the onset
of premature hypertrophy.88–90 Ca2þ influx also triggers ATP release
through hemichannels (connexons) in the cell membrane and acti-
vates ERK1/2 through the anti-catabolic transactivator CITED2 (cbp/
p300-interacting transactivator 2).91–95

In cartilage, as in bone, hydrostatic pressure and fluid flow also
play a role in homeostasis of the local microenvironment. Due to the
high-water content of cartilage, hydrostatic pressure bears approxi-
mately 90% of applied loads in the tissue.96–98 Pressures generated are

generally in the 3–10MPa range (but can reach 18MPa at certain sites,
such as hip joints). Hydrostatic pressure does not deform the tissue
itself, but cell adhesion, in particular through a1b1 integrin, remains
important for chondrocyte responses to hydrostatic pressure.99,100

Hydrostatic pressure, along with osmotic pressure, has significant
effects on the activity of transmembrane ion channels and pumps,
inhibiting Na/K pump and Na/K/2Cl transport activity but increasing
Na/H pump activity and activating TRPV4.86,87,101–103 Pressure also
activates the purinergic signaling pathway and drives a Ca2þ response
through inositol-triphosphate-mediated release from sarcoendoplas-
mic reticulum stores (SERCs).104 Inhibition of SERCs, hemichannels,
purine receptors, or extracellular ATP blocks cell responses to hydro-
static pressure.105,106 Other pathways involved in responses to hydro-
static pressure include estrogen receptor ERa-mediated activation of
c-Jun N-terminal kinases (JNK) and increased transforming growth
factor receptor (TGFR)I activation.107,108

Again, similar to bone, pressure variations in cartilage also gen-
erate interstitial fluid flow within cartilage, influencing chondrocyte
biosynthetic activities.109–111 Numerous studies have shown that low
fluid shear stress (�2–10 dynes/cm2) has a chondroprotective effect
and initiates repair mechanisms in chondrocytes, whereas high shear
stress (�10–20 dynes/cm2) can induce inflammation, cell death, and
cartilage degradation.112–118 Chondrocyte responses to shear stress
also appear to be time-dependent, with short duration (1–2 h)
stimulation reducing catabolic responses while a longer stimulation
(3–4 h) does not.118 Again in this case, shear stress appears to be
detected by the primary cilia,86,87,119–121 which trigger mechano-
transductive signaling cascades and ionic fluxes,120 a number of
which converge on ERK1/2 and P38 signaling.122 Blocking ERK1/2
and P38 with small molecule inhibitors suppresses shear-related
increases in ECM production and remodeling.

Pathological changes in osteochondral tissue
and mechanotransduction in OA

Subchondral bone and cartilage undergo degenerative changes
during OA progression (Fig. 2). One of the most pressing questions in
the field is whether changes in the subchondral bone occur before or
after cartilage changes, and whether changes in the two tissues are
causally linked, or independently changing in parallel. Recent clinical
studies have suggested that in fact, bone remodeling and composition
changes occur prior to detectable changes in cartilage.123,124 In the
case of post-traumatic OA (PTOA), in the initial aftermath of injury, a
transient loss in subchondral bone has been observed through
increased osteoclast activity. This period is then followed by an
increase in bone formation, density, and volume as OA becomes more
advanced.125–128 Interestingly, the bone formed in that period is often
of poor quality, consistent with the idea that this is a rapid injury-
response. Similarly, osteophyte formation occurs at the joint margins
in later stages of disease, which causes pain and discomfort. These sub-
chondral changes have long been hypothesized to play roles in disease
progression through both biomechanical means and also biochemical
bone-cartilage crosstalk.129,130 However, the precise mechanisms driv-
ing these processes remain elusive. It has long been known that sub-
chondral porosities allow mass transport between bone and cartilage
compartments in both healthy and OA joints.131–133 Increased osteo-
clastic activity is thought to increase plate porosity, at least in the initial
stages of OA, facilitating crosstalk.125 This increased porosity is also
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linked to vascular invasion of the deep cartilage and aberrant chondro-
cyte hypertrophy.134–139 Studies using murine OA models support this
idea, with both cartilage damage and vascular invasion coinciding with
increased subchondral porosity and increasing in exchange of soluble
factors.134,140 In addition to porosity, there is evidence that repetitive
loading of joints creates subchondral bone microcracks, even in
healthy joints.141,142 These microcracks also drive targeted remodeling,
through localized osteocytes production of RANKL and decreased
osteoprotegerin production.15,143,144 Further study is required, how-
ever, to understand these acute and chronic responses. As mentioned
above, OA-associated accelerated bone remodeling is also connected to
lower bone mineralization. OA osteoblasts appear to generate abnor-
mal type I collagen, producing a homotrimer composed of a1 chains
rather than the healthy heterotrimer formed from two a1 chains and
one a2 chain.145,146 This abnormal collagen I production may contrib-
ute to deficient matrix mineralization.12 In addition to this, OA osteo-
blasts produce increased interleukin-6 (IL-6), prostaglandin E2 (PGE),
and TGFb; the latter drives increased Dickkopf-related protein 2, an
inhibitor of mineralization.12,146,147 The significance of this shift in
bone composition and structure to the overall disease progression
needs further exploration. This deficient mineralization is continued as
OA progresses and bone deposition and thickness increase, resulting
in more bone being present in the area (sclerosis), but reduced

subchondral ECM stiffness.148–151 Other animal and human studies
have examined the effects of inhibiting bone remodeling on OA initia-
tion and progression through the use of bisphosphonates.152–157 In
these models, bisphosphonate treatment inhibits bone remodeling and
attenuates degeneration of cartilage. However, to date in the clinic,
while bisphosphonate treatment has been shown to be effective at
inhibiting bone remodeling, they have not shown conclusive effects on
modulating cartilage degeneration in OA patients.

Osteocyte density and morphology are also altered in the sub-
chondral bone of OA joints. The number of viable femoral head osteo-
cytes is decreased in OA, while their markers are dysregulated, and
cell–cell communication via gap junctions is decreased. These changes
correspond to an increase in new bone formation and total bone vol-
ume, although as above—the mineral content and quality are
altered.158–160 Recent reports have highlighted a fascinating link
between OA and dysregulation of osteocyte remodeling of their perila-
cunar/canalicular channels (PLR).161–165 In these studies, MMP13 was
selectively ablated in murine osteocytes, but not in chondrocytes.161

Not only these mice suppressed PLR in cortical and subchondral bone,
but these changes also significantly impacted cartilage, reducing pro-
teoglycan content, altering the production of type II collagen, aggre-
can, and MMP13, and increasing the incidence of cartilage lesions. All
of which are consistent with the development of early OA.

FIG. 2. Progression of osteoarthritis in cartilage and bone. In early stage OA, cartilage ECM degeneration by matrix degrading enzymes, such as matrix metalloproteinases,
increases frictional, shear, and tensional stress on movement. Changes in cartilage ECM composition decrease tissue hydration, altering fluid flow and hydrostatic and osmotic
pressures on loading. The subchondral bone plate decreases in thickness and increases in porosity, facilitating increases in bone-cartilage crosstalk and altering load distribu-
tion. These structural changes lead to the development of localized mechanical stress within the tissue, triggering the initiation of catabolic cell responses and mechano-
inflammation. Senescent and apoptotic cells secrete disease-propagating molecules [senescence-associated secretory phenotype (SASP)]. The subchondral bone and calci-
fied cartilage also become increasingly innervated and vascularized, contributing significantly to pain development and progression of inflammation. In late-stage OA, high fric-
tion, pathological ECM composition, and dehydration drive fissure cartilage fissure formation. Aberrant hypertrophic chondrocyte phenotypes are observed, and the calcified
cartilage thickness increases. Sclerotic bone formation thickening of the subchondral bone plate occurs. Mechanical functionality of the joint is compromised, and inflammation
and SASP-related secretion drive end stage degeneration and joint pain.
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These findings highlight a role for osteocyte-cartilage crosstalk, and in
particular, a causal role for suppressed PLR in onset of OA.

In cartilage, OA-related degradation of the hydrated,
proteoglycan-rich cartilage matrix leads to macroscopic disruption
in the form of fissuring, and chondral flaps or tears.26,166 At the cel-
lular level, PCM degradation is an early event during OA progres-
sion and has a significant impact on the mechanical environment
of chondrocytes.167 Recent work showed that preventing this PCM
degradation is sufficient to modulate overall disease progression.168

Several studies suggest that PCM degradation during OA leads to
modulus reductions of between 30% and 50% and increased intra-
cellular Ca2þ signaling.169,170 These changes in pericellular envi-
ronment have been linked to cell organization changes observed in
OA, whereby healthy columns of cells become disorganized clus-
ters.171–174 Recently, this disorganization was used to categorize
OA degradation, and chondrocyte PCM stiffness was measured at
each stage. Strikingly, significant decreases in PCM stiffness were
found between each stage of cellular disorganization and by extension
OA progression.171 Intriguingly, the complete loss of PCM has been
associated with the appearance of long cytoplasmic processes (>8lm)
on chondrocytes, which extend into the territorial ECM.175,176 Aside
from the direct mechanical implications of decreased PCM stiffness,
recent work indicates that such changes are also important in cellular
responses to biochemical signaling. PCM degradation also increases
chondrocyte exposure to abnormal ECM adhesion sites, specifically
type II collagen fibrils (which are more highly expressed in the sur-
rounding ECM rather than the healthy PCM). It is currently thought
that this increased interaction, most notably through discoidin domain
receptor 2 (DDR2), has significant effects on the cell metabolic process
and cell signaling downstream of the receptor,177,178 including the
upregulation of MMP13 expression.179,180

When joint injury or disease causes the development of an
abnormal mechanical environment, chondrocytes receive damag-
ing mechanical stimuli and driving catabolic and proinflamma-
tory processes. Studies suggest that piezo-channels are activated
in response to supraphysiological loading (strains of 13%–45%),
leading to pathologically high intracellular Ca2þ concentrations
and hyperactivation of downstream responses, cell damage, and
apoptosis.181,182 Inhibition of piezo-channel activity protects
chondrocytes during overload and reduces subsequent cell
death.85 Despite its role in healthy responses to loading, recent
work has shown that under pathological loading, TRPV4 can also
trigger apoptotic responses in chondrocytes.183 Intracellularly,
the transforming growth factor-b-activated kinase 1 (TAK1)-
JNK2 cascade is critical to injury responses, acting as an upstream
regulator and driving the expression of inflammatory markers
and matrix catabolism.184,185

IN VITRO MODELS TO STUDY OA AND
OSTEOCHONDRAL MECHANOBIOLOGY

Understanding these complex processes in both bone and car-
tilage tissues individually and in the complete osteochondral unit
requires novel experimental approaches and/or a combination of
in vitro, ex vivo, and in vivo models. In the sections below, we dis-
cuss current experimental models and recent developments, which
will help researchers in this field unravel the mechanisms of this
condition.

Two-dimensional (2D) culture systems to study
osteochondral mechanobiology

Single cell type model systems

Two-dimensional culture systems are widely used to examine cell
signaling, responses to stimuli, and screen therapeutics. Often, these
cell culture models consider single cell populations in isolation (chon-
drocytes for cartilage; osteoblasts, osteocytes, and osteoclasts for bone).
These approaches have utility for studying cell-level responses to stim-
uli due to the ability to tightly control experimental conditions, rapidly
screen multiple experimental parameters and their relative low cost. In
the context of the joint, 2D culture systems are commonly used to
model OA environments through the supplementation of culture
media with proinflammatory cytokines, such as IL-1b and tumor
necrosis factor (TNF)-a. The simplicity of such approaches has
allowed interrogation of many of the individual intracellular signaling
pathways now known to be critical in joint anabolic and catabolic pro-
cesses. Despite these benefits, these conventional approaches often
neglect the significant impact of mechanical stimuli and environment
in the osteochondral cell function. Therefore, in recent years, these
models have progressed beyond static culture on stiff tissue culture
plastic to allow investigators to control the cellular mechanical, along
with the biochemical, culture environment. These include 2D hydro-
gels controlling stiffness and adhesion motifs (i.e., cells seeded onto
hydrogel substrates), dynamic substrate tension/cell stretching sys-
tems, and systems allowing the generation of fluid flow/shear stress
and hydrostatic/dynamic pressures (Fig. 3).186–193

One simple system that delivers mechanical stimulation to 2D
cell cultures involves seeding cells onto pneumatically or electromag-
netically deformed membranes, which can deliver predetermined lev-
els of strain over the designated culture surface. Chondrocytes
stimulated in this way with physiological-like tensile strain (0.5Hz,
10% strain for a duration of 24 h) decrease the expression of catabolic
enzymes and increase the expression of anabolic markers such as
aggrecan.194–196 Larger strains and durations were shown to have an
opposing effect, increasing catabolic MMP-1, -3, -9, and -13 expres-
sion.195–197 Similar studies using 2D membrane-stretching systems
seeded with bone cells identified signaling pathways involved in
responses to stretch, which are directly translatable to more complex
models and even the in vivo environment. For example, in osteocytes,
cell stretching (5% elongation over 1–20min) has an anti-apoptotic
effects through ERK1/2 activation.198 In osteoblasts, numerous studies
applying cyclical stretching have shown that osteoblastic maturation is
accelerated, osteogenic gene expression is increased, and ECM deposi-
tion enhanced,199–201 while in osteoclasts, bone resorbing activity is
increased by cyclic stretching in 2D cultures.202 These devices have
been limited by their relatively low through-put capabilities. However,
ongoing research is significantly increasing the throughput of these
types of stretching systems.203,204

Aside from cell stretching, fluid flow systems allow the investiga-
tion of the effects of shear on osteochondral cells. These typically
involve application of controlled unidirectional or oscillatory fluid
movement in a cell culture chamber and range from rocking cultures
and cone viscometers to complex microfluidic devices. In chondro-
cytes, cone viscometer experiments have helped to define flow condi-
tions that elicit catabolic or anabolic responses and study
morphological and molecular responses. For example, continuous,
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unidirectional laminar fluid flow (1.64Pa) was found to significantly
decrease the expression of type II collagen and aggrecan and increase
nitrite levels in culture media, indicating cell stress.205 Higher shear
stress regimes (3.5 Pa for 4 days) result in rounded chondrocyte mor-
phology in comparison to static cultures,206 while shear stresses of 2 Pa
were found to regulate IL-6, toll-like receptor (TLR)4, and caveolin-1
synthesis in a cyclooxygenase-2 (COX-2)-dependent manner.207

Similarly, the effects of fluid flow on bone cells have been studied in a
variety of experimental systems.208,209 For example, in a parallel plate
chamber, oscillatory flow was found to increase osteoblastic marker
gene expression and modulate the activity of alkaline phosphatase
(ALP) in mesenchymal stem cells (MSCs).210–212 Pairing these mecha-
nostimulatory techniques with -omics analysis provides valuable
insights into cell responses to similar stresses that might occur in vivo.

FIG. 3. Two-dimensional culture models to study mechanotransduction in osteochondral cells. (a) Uniaxial strain can be applied to cells in monolayer culture by seeding onto
deformable membranes. In a typical setup, a vacuum can be applied pulling a polymer membrane uniformly around a loading post and creating a uniaxial strain in the stretched
membrane. (b) Simple two-dimensional fluid flow experiments can be conducted in cone viscometer culture, which allows accurate establishment of defined fluid flow across
the culture substrate. (c) Fluid flow chambers allow analysis of fluid flow across multiple substrates, which can include different cell types and culture setups simultaneously.
Due to directional fluid flow, crosstalk between culture substrates may be limited. (d) Hydrostatic pressure can be applied to cultures through control of culture chamber pres-
surization. These systems can be used to apply constant or oscillatory hydrostatic pressures to cells in culture over relevant physiological and pathological ranges. (e)
Microfluidic devices offer diverse options for steady state and oscillatory two-dimensional culture fluid flow analysis. Alongside this, through the chip design of culture chambers
and channels, co-cultures and varied conditions can be achieved simultaneously to recreate in vivo conditions and probe pathology relevant signaling.

APL Bioengineering REVIEW scitation.org/journal/apb

APL Bioeng. 6, 011501 (2022); doi: 10.1063/5.0068277 6, 011501-7

VC Author(s) 2022

https://scitation.org/journal/apb


For example, pairing oscillating fluid flow with transcriptomic micro-
array analysis in osteocyte-like cells (MLO-Y4) demonstrated that at
1 Pa peak shear stress for 2 h, ATP producing enzyme nucleoside-
diphosphate kinase (NDK), calcium-binding calcyclin, and G-protein
couple kinase 6 were all significantly upregulated.213 Such investigation
has indicated that bone cells respond differentially to oscillatory and
steady flow, with oscillatory flow conditions being advantageous for
bone formation in vitro.212,214,215

Hydrostatic pressure can also be simulated in culture to study
osteochondral cell responses. Applying intermittent hydrostatic pressure
over a range (1–4Hz, at 1, 5, and 10MPa for 4h per day for 4days)
through hydraulic loading was found to alter healthy and OA human
chondrocyte phenotypes.216 Application of higher pressures (5 and
10MPa) corresponded with the upregulation of aggrecan and type II
collagen at gene and protein levels.216 This experimental approach also
allows the simultaneous study of the effects of mechanical and biochemi-
cal stimuli by supplementation of culture media. For example, in a sepa-
rate study, bone morphogenetic protein (BMP)-2 was applied to human
OA chondrocytes, with and without the application of hydrostatic pres-
sure (10MPa, 1Hz, 4h a day for 4days). Through this work, it was
demonstrated that the growth factor and mechanical stimuli had com-
plementary effects. BMP-2 was found to increase aggrecan, but when
applied with hydrostatic pressure, an increase in type II collagen was
also observed. The expression of the catabolic marker MMP-2 was also
decreased with hydrostatic pressure application but not when BMP-2
was supplied alone.217 These results highlight how these systems can fur-
ther our understanding of the mechanical and biochemical interplay
required for healthy anabolic chondrocyte phenotypes and also the fine
balance that exists between different stimuli. Interestingly, while physio-
logical levels of hydrostatic pressure (5–10MPa) have been shown to
decrease catabolic marker genes like MMP-13 and a disintegrin and
metalloproteinase with thrombospondin motifs 5 (ADAMTS5), high
hydrostatic pressures in the range of 50MPa (replicating joint overload-
ing) have been shown to increase the expression of vascular endothelial
growth factor (VEGF), which could be one of the mechanisms by which
vessel invasion of the cartilage is increased in OA.218–220 Interstitial fluid
flow in bone through the lacunar-canalicular system is important to
maintain bone homeostasis. Similar to work with chondrocytes, simple
cyclic hydrostatic pressure bioreactors can be used to investigate bone
cell responses. Using such approaches, cyclic hydrostatic pressures in the
range of 10–300kPa (0.5–2Hz) have been found to increase the expres-
sion of osteogenic markers like RUNX Family Transcription factor 2
(RUNX2) and osteopontin in MSCs.221 In vivo, the mode of mechanical
stimulation may impact cell responses in a cell-type dependent manner.
Comparisons of the effects of fluid flow and hydrostatic pressure on
osteoblastic MC3T3 cells showed that the two modes of mechanical
stimulation had differing effects, for example, fluid flow has increased
ATP release and F-actin fiber formation, while hydrostatic pressure did
not, despite both increasing COX-2 expression.222 This further highlights
the need for careful selection of the most relevant mechanical stimuli for
the investigation of specific signaling responses.

Co-culture model systems

2D co-culture systems allow for the investigation of multiple cell
types cultured in shared environments and can help determine the
complex bone-cartilage signaling crosstalk processes in osteochondral

tissues. Critical parameters for co-cultures include the type of cells, cul-
ture media, order in which cells are cultured, and numbers/ratio of cell
types. Even though optimization of these technical details can be time
consuming, such co-cultures are valuable tools to systematically
increase culture complexity and move closer to recapitulating real tis-
sue microenvironments while retaining control over experimental
conditions.223 These systems can involve direct cell–cell contact or
cells not in direct contact but sharing culture environments, for exam-
ple, through the use of cell culture inserts or microfluidic chambers.
Such systems have been employed to determine, for example, that
co-culturewith chondrocytes can improve the chondrogenic differenti-
ation of MSCs through mechanisms involving both soluble factor
secretion and cell–cell contact.224–226 As with monolayer cultures,
combining these co-cultures with methods to mechanically stimulate
the cells will provide new insights into their function and behavior.
For example, combining tensile stimulation with co-cultures of MSCs
and chondrocytes was reported to increase chondrogenic phenotypes
and rapidity of cell expansion.227 Though few reports of 2D osteo-
chondral co-cultures under tensile stimulation exist, the examination
of fluid shear on cell–cell communication is a promising area of
research, particularly through microfluidics. Microfluidic systems can
be used to create complex multicompartment co-cultures with precise
control of fluid flow and physical parameters, while the integration of
sensors allows direct read-outs of cell responses.228 These microfluidic
approaches have been used to show crosstalk between bone cells in
response to fluid flow. For example, osteocyte-like MLO-Y4 cells were
cultured with osteoclasts (RAW264.7) and exposed to 0.5 Pa shear
stress simulation, which resulted in a decrease in RANKL expression
in osteocytes, which suggests a reduced osteoclastogenic phenotype.229

Though these co-cultures are useful for examining cell–cell inter-
actions, particularly in response to stimuli, the limitations of 2D cul-
tures still apply, not least in terms of altered cell morphologies, a lack
of physiological ECM, and cell–ECM interactions.192 The use of 2D
models in OA research has been hugely beneficial and has provided
many of the major steps forward in this field of research as well as
establishing fundamental tenets of disease. Nonetheless, some aspects
of disease, which are now recognized as being particularly important,
cannot easily be captured by these methods.

Three-dimensional (3D) model systems to study
cartilage and bone mechanobiology

Three-dimensional culture systems can recapitulate in vivo envi-
ronments for cartilage and bone cells, where they are surrounded by
and interact with ECM. In vitro 3D culture models have been devel-
oped using a number of biomaterial formats and from a range of natu-
rally and synthetically derived polymers. The most prevalent material
formats include lyophilized polymer scaffolds and hydrogels.230 These
have been produced from natural polymers such as collagen (including
gelatin), hyaluronic acid, chondroitin sulfate and alginate, or synthetic
polymers, including polyethylene glycol, poly-D,L-lactic acid
(PDLLA), and poly(N-isopropylacrylamide (PNIPAM). These poly-
mers confer mechanical and biological properties to materials fabri-
cated from them, which can be tuned to provide cues that can control
specific cell responses or mimic the properties of the natural ECM.
Natural, ECM-derived materials may also have the added advantage of
containing cell attachment motifs as well as an inherent bioactivity
that can be cell-instructive. Though alone materials fabricated from
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these natural polymers may not have sufficient mechanical properties
(or range of mechanical properties achievable) for models of the load-
bearing joint tissues, they can be easily modified chemically to achieve
this. One example of this is gelatin methacryloyl (GelMA), which has
been shown to be biocompatible, bioactive, and non-immunogenic.231

Other native osteochondral ECM constituents such as hyaluronic acid
and chondroitin sulfate are commonly incorporated into materials for
both their mechanical and biochemical properties and can be similarly
modified chemically to further control their properties.232 Though
numerous material formats are available, hydrogel models, in particu-
lar, allow tight control of 3D cell environments in vitro facilitating the
investigation of the effects of altering intrinsic matrix microenviron-
ment cues (e.g., mechanical and viscoelastic properties, cell adhesion
motif density and type, and degradation) and extrinsic mechanical
forces (e.g., compression and tension). Through such investigation,
more accurate tissue mimics can be produced to create bone cartilage
and osteochondral models.

Changes in ECM properties, including stiffness/strength, signifi-
cantly impact OA pathogenesis and progression. Within cartilage, gra-
dients of stiffness exist in healthy tissue, from the softest superficial
zones to the stiffest deep calcified zones. To investigate the impact of
ECM stiffness on chondrocyte behavior and function and on the
chondrogenesis of MSCs, previous work has tested chondrocyte and
chondrogenic MSC responses to 3D hydrogels over a large range of
stiffnesses, with wide variation in results. Differences in material com-
position, cell source, and mechanical testing methods make definitive
comparisons difficult. However, in general, the cartilage ECM pro-
duced by MSCs and chondrocytes in hydrogels with stiffnesses
between approximately 7.5–40 kPa have been reported to be most sim-
ilar to the hyaline cartilage observed at joint surfaces.233–239

Encapsulation in stiffer materials leads to the formation of hypertro-
phic chondrocyte phenotypes and initiation of osteogenic pro-
cesses.237,240,241 The differential effects of stiffness on chondrogenic
and osteogenic differentiation are of particular importance in design-
ing models of the osteochondral interface. For example, recently
hydrogels with tunable stiffness gradients were developed using
gelatin-PNIPAM hydrogels containing both beta-sheet and amor-
phous silk nanofiber solutions. Through a combination of cross-
linking and electric field alignment, a gradient of stiffness mimicking
that of the ECM stiffness from the superficial to the deep cartilage/
subchondral bone was produced.237 Using this system, MSC chondro-
genesis was enhanced in softer regions of the hydrogel, while osteo-
genic differentiation was favored in the stiffer regions. This and other
similar approaches can be used to mimic natural tissue stiffness gra-
dients and produce multiple differentiated cell types from a single
seeded population.242–244 Until recently, these investigations into
intrinsic hydrogel mechanical cues have typically used elastic materials
with varied stiffness or disregarded a material’s viscous component.
Both bone and cartilage ECM are highly viscoelastic, meaning that
they display time-dependent deformation in response to an applied
force and corresponding recovery time (relaxation time) for the mate-
rial to return to its original form. The generation of hydrogels that de-
couple stiffness and relaxation times allows the investigation of this
effect on cell behavior. For example, alginate-poly(ethylene glycol)
(PEG) hydrogels with controllable stiffness (�3 kPa) and variable
relaxation times were used to demonstrate that in faster relaxing gels,
bovine chondrocytes significantly increased the volume and

interconnectivity of the ECM they produced, while slower relaxation
times promoted catabolic processes.245 This result highlights the
importance of considering viscoelasticity when designing materials for
osteochondral engineering and also the utility of these 3D culture sys-
tems in understanding the fundamental mechanobiology of the cells
in the joint.

Aside from the intrinsic material/ECM properties of 3D models,
the application of extrinsic forces can be investigated. The type of
force, magnitude, and frequency of extrinsically applied mechanical
forces have been determined to drive differential responses in bone
and cartilage cells through 3D in vitro studies, with even nanoscale dis-
placements able to control MSC osteogenic differentiation.246,247

These in vitro 3D mechanically stimulated assays are valuable tools as
they allow precise control of loading type, magnitude, duration, and
biochemical conditions, to understand thresholds for anabolic and cat-
abolic cell responses and differences in the cell signaling. These can be
taken into account in the development of treatment strategies.

In cartilage model cultures, compression is most commonly
applied to simulate joint loading. Through these studies, compressive
loading has been shown to modulate chondrocyte phenotypes, ECM
biosynthesis, and inflammatory responses. For example, when stimu-
lated with dynamic compression at physiological magnitudes, hydro-
gel embedded chondrocytes show reduced inflammatory response to
exogenous IL-1b stimulation, increased MAPK and TGF-b pathway
activities, and increase their proliferative capacity.186,190 Similarly,
dynamic compression of chondrocytes cultured in PEG hydrogels
increased cartilage-specific ECM deposition.248 Aside from compres-
sion, these hydrogel systems also allow the testing of other modes of
mechanical stimulation, such as cyclical shear. Using different modes
of mechanical stimulation has potential to be used to produce cartilage
zone specific phenotypic responses or ECM organization in tissue
engineered constructs.249

Co-culture and organ-on-a-chip model systems

The next generation of advanced 3D culture systems have the
capacity to recreate more complex, joint mimicking environments by
supporting multiple cell types or, for example, by directing tissue-
specific differentiation MSCs or induced pluripotent stem cells (iPSCs)
via controlled physical and biochemical environments250–252 (Fig. 4).
Creating realistic bone and cartilage environments facilitates the inves-
tigation of crosstalk between the two. 3D co-culture models combining
osteoblast culture with alginate bead-embedded chondrocytes were
shown to be effective at directing bilateral phenotypic thorough such
paracrine interactions. Notably, co-culture increased chondrocyte
hypertrophy and matrix mineralization. Similarly, a 3D co-culture
model system replicating cell–cell interaction between osteoblasts and
chondrocytes in the presence of pulsate cyclic tensile stress (15 kPa;
23% strain) reported bilateral phenotypic change with increased
chondrocyte hypertrophy, and down regulation of type II collagen,
aggrecan, cartilage oligomeric matrix protein precursor (COMP), and
SOX-9 expression.250 Together, these studies suggest that perhaps
through positioning osteoblast and chondrocyte cell populations cor-
rectly in models, tissue-like gradients can be created in vitro. In a sepa-
rate study, osteocytes and osteoblasts were seeded in type I collagen
hydrogels and stimulated with mechanical loading, which increased
type I collagen and prostaglandin E2 (PGE2) expression, demonstrat-
ing osteocyte influence on osteoblast behavior in response to
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mechanical loading.252 A challenging but important aspect of these
models is recreating realistic communication between joint compart-
ments or cells, since this is a vital factor in both healthy and diseased
joints. One approach involves the creation of microfluidic devices,
such as “organ-on-chip,” that contain carefully designed channel and
chamber systems to recreate tissue-level mass transport and fluid
flow.253 For instance, a “multiorgan chip” has been developed to reca-
pitulate the complexity of the human bone marrow niche. Results
from experiments using this device show that it could be used to con-
trol colony formation of granulocytes, erythrocytes, macrophages, and
megakaryocytes.254 Furthermore, it could be used to regulate the
expression of osteopontin, VEGF, angiopoietin 1, and fibronectin in
these cells with greater accuracy than in standard monolayer condi-
tions. In a similar study, a novel microchip was used to apply dynamic
hydraulic compression of 1 psi at 1Hz to human bone marrow-
derived MSCs, which controlled cell proliferation, differentiation, and
increased osteogenic ECM production.255 These methodologies are

likely to become ever more important as model systems are developed
to incorporate more aspects of the osteochondral microenvironment
from macroscale structure down to the level of mass transport and
molecular diffusion. However, attaining that level of complexity will
require significant research. In the interim, the use of explant (multitis-
sue) systems is another tool in our research armamentarium, which
can be used to replicate the complex interactions between osteochon-
dral tissues, while still retaining the levels of control that are required
in the laboratory setting.

EXPLANT MODEL SYSTEMS

An alternative to 3D co-culture model system, which as we have
seen can be complex, is ex vivo or explant model system. Explants are
a valuable tool as they allow investigation of cell responses to con-
trolled stimuli or environments while maintaining some aspects of the
in vivo tissue, in particular the native ECMmicroenvironment. As OA
is now recognized to be a disease of the whole joint, the use of

FIG. 4. Three-dimensional models to study mechanotransduction in osteochondral tissue. (a) Unconfined compression—axial strain. Compression can be applied to 3D models
in culture in unconfined (a) and confined (b) systems. For unconfined compression, mechanical testing machines can be used to apply defined deformation with defined param-
eters, though often these are limited by single sample analysis. Confined dynamic compression can be applied as a uniaxial or biaxial deformation to a three-dimensional con-
struct. These systems can be applied with standard culture ware to increase the throughput of analysis. For biaxial deformation, simultaneous movement of sliding
compartments can be used to result in shear deformation. (c) Schematic of a three-dimensional bioreactor to study bone ex vivo explants or scaffold cultures. A hydrostatic
pressure bioreactor chamber is used to enable cyclic or continuous mechanical loading through a pumped system to control fluid flow of medium. Z (d) and y represent the
direction of the strain created through the trabecular explant.
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osteochondral explants allows for the controlled analysis of how
changes in one tissue type might affect another. Traditionally, femoral
head or osteochondral core samples, from small or large animals,
respectively, have been used for this purpose. These are of particular
utility where the highly specialized ECM of bone or cartilage plays key
roles in regulating cell behavior in response to specific stages or aspects
of disease. While a potential drawback of using explants is that exces-
sive ECM can limit diffusion, both bone and cartilage cells are unique
in that they are specifically adapted for low oxygen and nutrient envi-
ronments, facilitating the effective use of osteochondral explant cul-
ture. Furthermore, explants provide increased ability to control the
mechanical and biochemical environment compared with in vivo
experiments. These factors, among others, have seen an increased
interest in the use of the explant model system in orthopedic research
as well as many other areas of medicine.

To study the effects of physiological and pathological loading on
skeletal tissues, such explant systems can be mechanically stimulated
using modified mechanical/material testing protocols. A range of load-
ing modes are available including unconfined compression, indenta-
tion, tension, and osmotic and hydrostatic pressures. The parameters
that are used with these systems can test tissues responses to a variety
of different types of loading and frequencies. For example, simple
compression of bovine cartilage explants promotes matrix biosynthesis
while dynamic (cyclic and intermittent) loading can differentially stim-
ulate chondrocyte metabolism.256 Similarly, differences in cell and tis-
sue responses to physiological and pathological loads can be studied
using modifications of these test setups. For example, impact loading
of cartilage explants, at different timepoints, showed a delayed (but sig-
nificant) biological response following low impact, whereas high
impact caused early and strong degenerative changes. The use of high
impact (defined as imparting energy levels of 2.8 J) also resulted in a
decreased tissue stiffness and increased cell death, which corelated
with those degenerative changes. Furthermore, these changes were
maintained for 4weeks, and tissue degradation was manifested as
increased glycosaminoglycan release and decreased overall content.
These data provide consistent and realistic comparisons with real cases
of joint injury and disease and demonstrate the utility of explants in
this scenario.257 From a practical perspective, the ease with which bio-
chemical agents can be added or detected in these mechanically stimu-
lated culture environments is an additional advantage. For example,
compression of cartilage explants was shown to modulate the proin-
flammatory responses that are normally generated in response to
IL-1b and IL-4 stimulations.258

Explant cultures also have utility in determining the precise load-
ing conditions and regimes that are most relevant to the joint and also
how that initial damage can progress to disease. Using these systems, it
was determined that applying compressive loading to cartilage
explants at low frequency but for long time periods can produce a
greater damage response than the same loads at higher frequency over
shorter periods.259 Furthermore, close control of the precise magni-
tude of loading on cartilage explants (compression: 4–25MPa) dem-
onstrated force-specific apoptotic responses in chondrocytes peaking,
as expected at higher magnitudes.259 More recently, this apoptotic
response to high magnitude mechanical loading has been linked to
increased mitochondrial dysfunction, including decreased basal respi-
ration and ATP turnover, through direct mechanosignaling path-
ways.260–262 Similar investigations using bone explants have explored

loading thresholds for eliciting tissue damage responses and to com-
pare the micro- and macro-architecture of ovine, bovine, and human
subchondral bone.263–266 Despite these insights, there remains much
to learn about cell responses to loading in the joint, not least the order
of cell response events following injury, the extent and importance of
cellular crosstalk, and the loading conditions that lead to tissue micro-
damage. The expanding portfolio of well characterized explant models
in the field has the potential to address many of these outstanding
questions and provides an important preclinical tool in furthering our
understanding of the joint injury and disease.

SUMMARY AND FUTURE PERSPECTIVES

The complexity of the cellular, architectural, and mechanical
environments of the joint means that a range of model systems are
required to understand the processes underpinning its health and dis-
ease. Improving our understanding of these key processes is critical for
the identification of potential therapeutic targets. For this, it is impor-
tant that the correct experimental model is selected to allow interroga-
tion of the relevant question. Research advances over the last decade,
in diseases like OA, have made it clear that multiple interacting signal-
ing pathways and cell types must be considered rather than isolated
targeting of a single pathway or molecule. In particular, investigating
the impact of mechanosignaling on OA-relevant signaling pathways is
a rapidly expanding area in the field, but there remain technical chal-
lenges. As discussed above, different in vitro and ex vivo models have
complementary advantages and can be leveraged to determine mecha-
nisms behind the different physiological and pathological features of
the system. In addition, microfluidic/joint-on-a-chip technologies and
mechanically stimulated osteochondral explant models allow the
examination of bone-cartilage crosstalk in tightly controlled culture
environments, and these are likely to be key going forward. Central to
the success of these technologies is their ability to accurately recreate
in vivo interactions that occur in OA, which, in turn, will allow identi-
fication and refinement of drug targets within the joint. As use of
advanced joint-on-a-chip and explant systems becomes more wide-
spread, it is important that validation and comparison with model sys-
tems (particularly in vivo preclinical models) is carefully conducted.
The increased throughput and precision of these osteochondral mod-
els will decrease the downstream failure rate of identified therapeutic
targets and allow rapid and accurate screening of potential targets. In
conclusion, a wide range of bone, cartilage, and osteochondral experi-
mental models are now available to researchers in the field of musculo-
skeletal medicine. These approaches continue to be refined, and, their
complexity increased, to incorporate more cell types, treatments, and
stimuli. Recent advances in the development of mechanically stimu-
lated higher-throughput models and explant cultures, along with bio-
materials technology, are significantly impacting our understanding of
OA pathology. In particular, the ability to create biomaterial environ-
ments with spatially controlled physical properties through additive
manufacturing techniques, such as 3D printing, provides distinct
opportunities for detailed investigation of cell responses and in vitro
model fabrication. Furthermore, combining these advances with tech-
niques such as biomaterial-mediated RNA interference will allow the
controlled shutdown of signaling pathways involved in cell responses
and identification of possible therapeutics. In the near future, this will
lead to the development of more effective therapies and disease-
modifying drugs for this complex disease.
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