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Abstract: Background: Diabetes is an increasingly prevalent global disease caused by the impairment
in insulin production or insulin function. Diabetes in the long term causes both microvascular and
macrovascular complications that may result in retinopathy, nephropathy, neuropathy, peripheral
arterial disease, atherosclerotic cardiovascular disease, and cerebrovascular disease. Considerable
effort has been expended looking at the numerous genes and pathways to explain the mechanisms
leading to diabetes-related complications. Curcumin is a traditional medicine with several properties
such as being antioxidant, anti-inflammatory, anti-cancer, and anti-microbial, which may have utility
for treating diabetes complications. This study, based on the system biology approach, aimed to
investigate the effect of curcumin on critical genes and pathways related to diabetes. Methods: We
first searched interactions of curcumin in three different databases, including STITCH, TTD, and
DGIdb. Subsequently, we investigated the critical curated protein targets for diabetes on the OMIM
and DisGeNET databases. To find important clustering groups (MCODE) and critical hub genes in
the network of diseases, we created a PPI network for all proteins obtained for diabetes with the
aid of a string database and Cytoscape software. Next, we investigated the possible interactions
of curcumin on diabetes-related genes using Venn diagrams. Furthermore, the impact of curcumin
on the top scores of modular clusters was analysed. Finally, we conducted biological process and
pathway enrichment analysis using Gene Ontology (GO) and KEGG based on the enrichR web server.
Results: We acquired 417 genes associated with diabetes, and their constructed PPI network contained
298 nodes and 1651 edges. Next, the analysis of centralities in the PPI network indicated 15 genes
with the highest centralities. Additionally, MCODE analysis identified three modular clusters, which
highest score cluster (MCODE 1) comprises 19 nodes and 92 edges with 10.22 scores. Screening
curcumin interactions in the databases identified 158 protein targets. A Venn diagram of genes
related to diabetes and the protein targets of curcumin showed 35 shared proteins, which observed
that curcumin could strongly interact with ten of the hub genes. Moreover, we demonstrated that
curcumin has the highest interaction with MCODE1 among all MCODs. Several significant biological
pathways in KEGG enrichment associated with 35 shared included the AGE-RAGE signaling pathway
in diabetic complications, HIF-1 signaling pathway, PI3K-Akt signaling pathway, TNF signaling, and
JAK-STAT signaling pathway. The biological processes of GO analysis were involved with the cellular
response to cytokine stimulus, the cytokine-mediated signaling pathway, positive regulation of
intracellular signal transduction and cytokine production in the inflammatory response. Conclusion:
Curcumin targeted several important genes involved in diabetes, supporting the previous research
suggesting that it may have utility as a therapeutic agent in diabetes.
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1. Introduction

Diabetes is a prevalent disease that is considered a widespread issue globally. It is
known as a set of metabolic illnesses marked by hyperglycemia caused by insulin produc-
tion or insulin function problems. Based on the International Diabetes Federation (IDF)
Atlas, in 2021, it was reported that 27 million people ranging from 20–79 years of age have
diabetes. It is expected that this number will increase to 653 million by 2030. Seventy-five
percent of people with diabetes are in low- and middle-income countries [1]. Diabetes is
linked to long-term harm, malfunction, and failure of several organs, including the eyes,
nerves, heart, kidneys, and blood vessels. Several different pathogenic mechanisms cause
diabetes. These include varying from the autoimmune destruction of the beta cells of the
pancreas resulting in insulin insufficiency to anomalies that result in insulin resistance. Dia-
betes causes glucose, lipid, and protein metabolism irregularities due to insulin’s ineffective
activity on target tissues. Inadequate insulin production and/or decreased tissue responses
cause insulin deficiency along the complicated hormone activity pathways at one or more
locations [2,3]. Diabetes in the long term causes numerous consequences: retinopathy,
nephropathy, peripheral neuropathy, amputations, Charcot joints, autonomic neuropathy,
and sexual dysfunction. It also reported that diabetic induvial increased the risk of hav-
ing peripheral arterial, atherosclerotic cardiovascular, and cerebrovascular disease. These
patients are more likely to have hypertension and impaired lipoprotein metabolism [2].
Diabetes is classified into four kinds: type 1, type 2, gestational diabetes, and secondary
or other particular forms of diabetes [4]. Diabetes type 1 accounts for around 5% of all
diabetes and is caused by an autoimmune attack on pancreatic islet beta cells. Diabetes type
2 is the other primary type of diabetes, accounting for 90–95 percent of all diabetes cases
in the United States and globally [5,6]. Insulin resistance and relative insulin insufficiency
combine to create it. Gestational diabetes is unique to pregnancy and is a precursor to
diabetes type 2. It affects anywhere from 3% to 9% of all pregnancies [5,6]. Various research
supported numerous genes and pathways involved in diabetes mechanisms and associated
with β-cell dysfunction, insulin resistance, inflammation, oxidative and nitrative stress,
hyperglycemic internal environment, autophagy defects, immune receptors, and other
factors related to the development of diabetes [7–9].

Curcumin is a traditional medicine derived from Curcuma longa, and its features have
attracted the attention of many researchers around the world [10]. Curcumin has different
properties such as antioxidant, anti-inflammation, anti-cancer, and anti-microbial, which are
considered for treating various diseases such as diabetes complications [9,11–17]. Curcumin
indicates that it could regulate diverse genes and pathways, including inflammatory
cytokines, growth factors and their receptors, enzymes, adhesion molecules, apoptosis-
related proteins, and cell cycle proteins. Because of that, it demonstrates a protective and
curative function in various diseases such as diabetes [18–22]. Growth evidence referred
to the effectiveness of curcumin in suppressing and controlling diabetes. That evidence
suggested that the anti-diabetic properties of curcumin might be related to its capacity
to inhibit inflammatory processes and oxidative stress. Furthermore, it is reported that
curcumin significantly decreases glycated haemoglobin, fasting blood glucose, triglycerides,
very low-density lipoprotein (VLDL)-c, LDL-c, total cholesterol, serum C reactive protein,
and body mass index [23]. Consequently, curcumin can be regarded as a therapeutic agent
for diabetic patients.

In a recent investigation, virtual screening based on a bioinformatics method has
played an important role in the deconvolution and examination of the relationship of
medications and diseases [24–26].

With a bioinformatics approach, we aim to investigate the effect of curcumin on critical
genes and pathways related to diabetes, which these results might interpret as positive
curcumin’s effectiveness in remedying diabetes. In Figure 1, we describe an outlook of our
investigation process in our study.
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Figure 1. An overview of an investigative process undertaken in the present study. This investigation
is organized into three sections: (Step 1) exploring the gene/protein target of curcumin and diabetes
in different databases. (Step 2) Analyzing two data sets of curcumin targets and diabetes-related
genes/proteins and discovering the associations. (Step 3) Probing the pathways and biological pro-
cess, and gene-disease enrichment analysis related to obtained important intersection protein/genes,
and then validation with a literature review.

2. Methods
2.1. Curcumin Targets Exploring

We first searched interactions of curcumin in three different databases, including the
STITCH database (http://stitch.embl.de/ accessed on 20 May 2022), therapeutic target
database (TTD) (http://db.idrblab.net/ttd/ accessed on 20 May 2022), and drug-gene inter-
action database (DGIdb) (https://www.dgidb.org/ accessed on 20 May 2022). STITCH is a
platform for the diagnosis of interaction between chemicals and proteins. Those databases
are a repository for exploring the relation of protein targets with corresponding drugs, and
each of them has different information. Here we used all of them to obtain comprehensive
information from curcumin targets. Here for the STITCH database, we considered the high
confidence cut-off (0.700), and for the two other databases, we discovered all the targets
included, and for all databases, we limited species to Homo sapiens.

2.2. Exploring Critical Diabetes-Related Genes in OMIM and DisGeNET Databases

Subsequently, we investigated the critical curated protein targets for diabetes on two
databases, OMIM (https://www.omim.org/ accessed on 20 May 2022) and the DisGeNET
database (https://www.disgenet.org/ accessed on 20 May 2022). DisGeNET is a database
that contains a collection of genes associated with specific diseases. Those data are inte-
grated from a variety of sources. We used only curated data that existed in these databases.
OMIM is an open-access human database searching for information about genes and their
relation to diseases.

2.3. Protein-Protein Interaction (PPI) Network

To find important clustering groups and critical genes in the network of diseases, we
create a PPI network for all the proteins obtained for diabetes. For this purpose, we first
construct a PPI network using a STRING database (https://string-db.org/ accessed on
20 May 2022) with a high confidence score >0.7 and species limited to “Homo sapiens” and
then upload the data to Cytoscape (version 3.9.1) to explore Molecular Complex Detection
(MCODE) and hub genes (using NetworkAnalyzer (version 4.4.8) plugin on Cytoscape))
in the PPI network based on diabetes-related genes. STRING is a comprehensive website

http://stitch.embl.de/
http://db.idrblab.net/ttd/
https://www.dgidb.org/
https://www.omim.org/
https://www.disgenet.org/
https://string-db.org/
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that possesses physical and functional protein-protein interactions. The MCODE plugin of
Cytoscape with specifics containing degree cut-off = 4, node score cut-off = 0.2, haircut off,
k-core = 2, and maximum depth = 100 was performed. The hub genes were selected based
on two critical centralities, including Degree as topological algorithms and Betweenness
Centrality as centralities, based on the shortest paths.

2.4. Evaluate Curcumin against Protein Targets of Diabetes

In step one of investigating the possible effectiveness of curcumin on protein targets
of diabetes, we evaluate the shared protein targets between protein targets of curcumin
and gene association with diabetes using Venn diagrams (https://bioinfogp.cnb.csic.es/
tools/venny/ accessed on 20 May 2022). In step two, we assay targets of curcumin with
the three top scores of the modular clusters analysis of related genes with diabetes in the
PPI network. In the last step, we evaluate the effect of curcumin on hub genes obtained
from the PPI network based on diabetes-related genes.

2.5. Biological Pathways and Process Enrichment Analysis

The biological process and pathway enrichment analysis were accomplished using
Gene Ontology (GO) and KEGG based on enrichR (https://maayanlab.cloud/Enrichr/
accessed on 20 May 2022). GO is represented in three complementary levels, including
Biological Process, Cellular Component, and Molecular Function. Likewise, KEGG is
a repository database that combines genomic, chemical, and systemic functional data.
EnrichR is an engine for seeking gene sets beside thousands of annotated gene sets. It
integrated information from numerous high-profile projects to supply synthesised data
about gene sets [27].

2.6. Validation of Shared Genes in Diseases-Genes Databases

We sought and validated shared protein targets in different genes-diseases based
on enrichR algorithms (DISEASES, DisGeNET, OMIM Disease, Rare Diseases GeneRIF
ARCHS4 Predictions Rare Diseases AutoRIF Gene Lists).

3. Results
3.1. Assembly and Analyzing PPI Network

Based on curated data on DisGeNET and OMIM, 417 genes associated with diabetes
were discovered. The constructed PPI network with 417 genes contained 298 nodes and
1651 edges with PPI enrichment p-value: <1.0 × 10−16 with confidence score >0.7. Next, the
analysis of centralities in the PPI network indicated 15 genes with the highest centralities
(Betweenness and Degree) (Table 1). We illustrate the Degree with the node’s size and
Betweenness with the colour intensifying in Figure 2.

Table 1. Important hub genes associated with diabetes.

Gene Symbol Gene Full Name Protein Class DSI g Score GDA
Network Analyser

Degree Betweenness Closeness

INS Insulin Plasma proteins 0.445 0.70 78 0.2223 0.5201

TP53 Tumour protein p53 Transcription factors 0.236 0.50 48 0.0746 0.4714

EGFR Epidermal growth
factor receptor Enzymes 0.295 0.37 50 0.0632 0.4669

STAT3
Signal transducer and

activator of
transcription 3

Transcription factors 0.320 0.35 61 0.0604 0.4752

TNF Tumour necrosis factor Plasma proteins 0.231 0.50 60 0.0451 0.4845

PPARG
Peroxisome

proliferator-activated
receptor gamma

Nuclear receptors 0.358 0.50 35 0.0411 0.4506

https://bioinfogp.cnb.csic.es/tools/venny/
https://bioinfogp.cnb.csic.es/tools/venny/
https://maayanlab.cloud/Enrichr/
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Table 1. Cont.

Gene Symbol Gene Full Name Protein Class DSI g Score GDA
Network Analyser

Degree Betweenness Closeness

ALB Albumin Plasma proteins 0.317 0.60 47 0.0406 0.4655

CAV1 Caveolin 1 Transporters 0.388 0.50 38 0.0387 0.4534

RELA RELA proto-oncogene,
NF-kB subunit Transcription factors 0.406 0.50 36 0.0338 0.4291

IL6 Interleukin 6 Plasma proteins 0.248 0.50 58 0.0302 0.4744

CASP3 Caspase 3 Enzymes 0.351 0.50 37 0.0295 0.4439

VEGFA Vascular endothelial
growth factor A Plasma proteins 0.266 0.50 41 0.0237 0.4562

NOS3 Nitric oxide synthase 3 Enzymes 0.378 0.40 30 0.0349 0.4400

PPARA
Peroxisome proliferator

activated
receptor alpha

Nuclear receptors 0.432 0.30 25 0.0337 0.4267

FN1 Fibronectin 1 Plasma proteins 0.365 0.40 35 0.0233 0.4273
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Figure 2. Illustrating critical diabetic disease PPI network based on principal centralities (Degree and
Betweenness) using Cytoscape software. The entire PPI network was identified with 298 nodes and
1651 edges. The larger the node size indicates, the higher the Degree, and the higher intensity in node
color indicates higher Betweenness in the PPI network.
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Besides, MCODE analysis identified three modular clusters based on the cut-off score:
5. The highest score cluster (MCODE 1) comprises 19 nodes and 92 edges with 10.22 scores.
TIMP1 has presented the seeds of MCODE 1. Furthermore, FGF2 and TNFRSF1A were the
seeds of MCODE 2 and 3, respectively (Figure 3).
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Figure 3. Three top clusters of the PPI network are constructed with important genes related to
diabetes based on MCODE analyses. The specification of each MCODE containing MCODE1)
Score: 10.22, Seed: TIMP1, Node: 19 Edge: 92. MCODE2) Score: 7.09, Seed: FGF2 Node: 12, Edge:
39. MCODE3) Score: 5.06, Seed: TNFRSF1A Node: 33, Edge: 81. The larger node size indicates
a higher degree, and the higher intensity in node color indicates a higher MCODE score in the
MCODE analysis.
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3.2. Curcumin and their Possible Targets in Diabetes

Screening curcumin interactions in the STITCH (high confidence (0.7)) and DGIdb
databases identified 158 protein targets. The Venn diagram of genes related to diabetes and
the protein targets of curcumin showed 35 shared proteins. Furthermore, the Venn diagram
indicated that ten hub genes of diabetes are significant targets of curcumin (Figure 4). The
details of the screening are reported in Table 2.
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Table 2. The hub genes of the diabetes PPI network that are the targets of curcumin.

Shared Protein Targets STITCH-Score Action

TP53 0.962 Activation/inhibition

EGFR 0.987 inhibition

STAT3 0.959 inhibition

PPARG 0.957 Activation

IL6 0.869 inhibition

CASP3 0.959 Activation/inhibition

VEGFA 0.868 inhibition

NOS3 0.820 Activation/inhibition

PPARA 0.866 Activation

FN1 0.844 inhibition

Moreover, we demonstrate that curcumin has the highest interaction with MCODE1
among all MCODs. It could interact with eleven genes, including TP53, CASP3, STAT3,
PPARG, MMP9, HIF1A, MMP2, IL6, VEGFA, FN1, and LEP in MCODE1. Curcumin also
has interacted with five genes of MCODE2 and MCODE3 (Figure 5).
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3.3. GO and KEGG Enrichment Analyses of Shared Proteins

We evaluate the biological pathways and processes in the Gene ontology and KEGG
databases. Several significant biological pathways associated with 35 shared protein sets
were observed in KEGG enrichment. The highest p-value pathways included the Advanced
glycation end (AGE)-Receptor for Advanced Glycation End (RAGE) signaling pathway in
diabetic complications, Hypoxia-inducible Factor (HIF)-1 signaling pathway, Phosphatidyli-
nositol 3-kinase-serine/Threonine Protein Kinase (PI3K-Akt) signaling pathway, Tumor
Necrosis Factor (TNF) signaling, and Janus Kinase-signal Transducer And Activator Of
Transcription (JAK-STAT) signaling pathway (Figure 6).
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Figure 6. The nine highest adjusted p-value signaling pathways were achieved by KEGG enrichment
analyses of 35 shared proteins (All genes associated with diabetes ∩ curcumin targets) using the
Enrichr algorithm.

GO analysis of 35 shared proteins indicated mainly responses to the cellular response
to cytokine stimulus, cytokine-mediated signaling pathway, the positive regulation of
intracellular signal transduction, the regulation of cytokine production in the inflamma-
tory response, the positive regulation of gene expression, and the negative regulation of
the extrinsic apoptotic signaling pathway under biological process. In addition, under
molecular function, the analysis showed that these shared proteins were chiefly involved
in DNA-binding transcription factor binding, RNA polymerase II-specific DNA-binding
transcription factor binding, transcription regulatory region nucleic acid binding, and heme
and DNA binding. Moreover, vesicle, intracellular organelle lumen, platelet alpha granule,
collagen-containing extracellular matrix, and platelet alpha granule lumen are noticed
under cellular components (Figure 7).
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3.4. Enrichment Analysis of the Different Types of Diabetes in Gene-Diseases Database

Moreover, investigating those 35 shared proteins for diabetes diseases in the various
gene-diseases databases, including Jensen DISEASES, DisGeNET, OMIM Disease, Rare Dis-
eases GeneRIF ARCHS4 Predictions Rare Diseases AutoRIF Gene Lists, showed significant
relations to different types of diabetes (Table 3). The result indicated that curcumin could
impact important genes related to diabetes type 2 and 1, Gestational Diabetes, and other
complications and consequences.
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Table 3. Enrichment analysis of 35 shared genes through diverse gene association diseases databases
based on Enrichr algorithm for diabetic diseases.

Jensen Diseases

Diseases Adj. p-Value Gene Name

Diabetic retinopathy 8.32 × 10−8 IL6; NOS3; AKR1B1; ICAM1; VEGFA

Diabetes mellitus (1,2) 5.67 × 10−5 LEP; STAT3; PPARG; SLC2A4

Type 2 diabetes mellitus 0.027 IL1B; PPARG; VEGFA

GWAS Catalog

Type 2 diabetes 0.01278 LEP; STAT3; PPARG; VEGFA; BCL2

DisGeNET

Diseases Adj. p-value Gene Name

Diabetes Mellitus, Non-Insulin-Dependent 2.33 × 10−31

CDKN1A; AKR1B1; SLC2A4; PTGS2; HIF1A; EGFR; ICAM1;
CASP3; HMOX1; CCL2;

GSTM1; NOS2; NOS3; MMP2; STAT3; FN1; MMP9; VEGFA;
AR; IL6; IL1B; LEP; DDIT3;

CYP1A2; BCL2; CYP1A1; IAPP; PPARG; PPARA; TP53; TLR4;
BCL2L1; NFE2L2

Diabetes Mellitus, Insulin-Dependent 1.56 × 10−27

AKR1B1; SLC2A4; PTGS2; EGFR; ICAM1; CASP3; HMOX1;
CCL2; GSTM1; NOS2; NOS3;

STAT3; FN1; MMP9; VEGFA; AR; IL6; IL1B; LEP; DDIT3; BCL2;
IAPP; PPARG; TP53;

TLR4; BCL2L1

Diabetic Nephropathy 1.73 × 10−29

CDKN1A; AKR1B1; PTGS2; HIF1A; THBS1; EGFR; ICAM1;
CCL2; GSTM1;

NOS2; NOS3; MMP2; STAT3; FN1; MMP9; VEGFA; IL6; IL1B;
LEP; BCL2; IAPP;

PPARG; PPARA; TLR4; NFE2L2

Diabetic Retinopathy 5.79 × 10−26

GSTM1; NOS2; NOS3; MMP2; FN1; AKR1B1; PTGS2; HIF1A;
THBS1; MMP9;

ICAM1; VEGFA; IL6; CASP3; CCL2; PPARG; PPARA;
TLR4; NFE2L2

Gestational Diabetes 2.02 × 10−12 AR; IL6; NOS3; IL1B; LEP; CCL2; PPARG; VEGFA

Prediabetes syndrome 5.82 × 10−9 IL6; IAPP; PPARG; SLC2A4; TP53; TLR4

Brittle diabetes 1.54 × 10−4 NOS3; DDIT3; STAT3

OMIM Disease

Diseases Adj. p-value Gene Name

diabetes mellitus, type 2 0.567 × 10−3 SLC2A4; PPARG

Rare Diseases GeneRIF ARCHS4 Predictions

Diseases Adj. p-value Gene Name

Diabetic mastopathy 5.515 × 10−6 STAT3; IL6; IL1B; TLR4; NFE2L2; PTGS2

Rare Diseases AutoRIF Gene Lists

Diseases Adj. p-value Gene Name

Insulin-resistance type B 4.197 × 10−28
NOS2; NOS3; STAT3; SLC2A4; PTGS2; EGFR; ICAM1; IL6;

CASP3; IL1B;
LEP; HMOX1; CCL2; IAPP; PPARG; TLR4; NFE2L2

Diabetic mastopathy 1.58 × 10−22
CDKN1A; STAT3; AKR1B1; FOXO3; PTGS2; HIF1A; THBS1;

MMP9; ICAM1;
VEGFA; IL6; CASP3; DDIT3; BCL2; CYP1A1; TP53; BCL2L1

Nephrogenic diabetes insipidus 2.45 × 10−5 NOS2; NOS3; PTGS2; EGFR; NFE2L2

Cardiomyopathy diabetes deafness 6.12 × 10−4 NOS3; HMOX1

Maturity-onset diabetes of the young 9.82 × 10−4 CASP3; IAPP; PPARG

Neurogenic diabetes insipidus 0.006854232 CASP3; PTGS2
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4. Discussion

Given that different genes are involved in the development and spread of diabetes, by
searching and studying these genes, we can target the most important of them and prevent
the progression of diseases. Numerous studies have shown that with its antioxidant and
anti-inflammatory properties, curcumin can effectively control the disease’s progression. In
this bioinformatics study, we investigated the protein targets of curcumin in diabetes along
with their biological pathways.

We first sought genes associated with diabetes in the DisGeNET and OMIM databases
and selected the curated data. Then, we sought the effective protein interaction of curcumin
in two popular drug-gene databases (STITCH and DGIdb). Compared to the two datasets
collection, we achieved 35 shared protein targets. Additionally, the biological processes
and pathways of 35 shared proteins are suggested that were primarily concerned with
inflammatory process and response. The biological pathways that were shown were mainly
involved in the AGE-RAGE signaling in diabetic complications, HIF-1, and the PI3K-
Akt signaling. By constructing a PPI network from a curated gene collection of diabetes,
we reported three top MCODEs and fifteen hub genes. Of fifteen hub genes, ten genes,
including TP53, EGFR, STAT3, PPARG, IL6, CASP3, VEGFA, NOS3, PPARA, and FN1, were
the targets of curcumin. The results also demonstrated that curcumin is closely associated
with three MCODE clusters, especially MCODE1.

In our study, the AGE-RAGE signaling pathway in diabetic complications with a set
of genes including IL6, NOS3, CASP3, MMP2, IL1B, STAT3, FN1, BCL2, CCL2, ICAM1,
and VEGFA is significantly linked with diabetes and curcumin. In this way, curcumin
influencing several genes in this pathway might control diabetes. The AGE-RAGE signal-
ing pathway has been extensively researched in a variety of disease conditions, especially
diabetes. The AGE-RAGE signaling cascade has been shown to contribute to increased
fibrosis, increased RAGE expression, and higher oxidative stresses [28,29]. By binding
to AGE receptors (RAGEs), AGEs modify adaptive and innate immune responses, result-
ing in reactive oxygen species (ROS), the production of proinflammatory cytokines, and
reactive nitrogen intermediates which cause immunosuppression and inflammation. In
AGE-related disorders, these pathogenic chemicals affect vascular endothelial/smooth
muscular/connective tissue cells and renal mesangial/endothelial/podocyte cells [30]. In
hyperglycemic and calcification settings, AGE-RAGE signaling promotes cellular and sys-
temic responses to increase bone matrix proteins via the Protein Kinase C (PKC), fetuin-A,
p38 Mitogen-Activated Protein Kinase (MAPK), Nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB), Transforming Growth Factor-β (TGF- β), and Extracellular
Signal-Regulated Kinases 1

2 (ERK1/2) signaling pathways [28]. Through the activation
of Nox-1 and the reduced expression of Superoxide Dismutase-1 (SOD-1), AGE-RAGE
signaling has been demonstrated to enhance oxidative stress and accelerate diabetes-
related vascular calcification. Increased oxidative stress caused by AGE-RAGE signaling
in diabetes-related vascular calcification was also linked to the phenotypic transforma-
tion of Vascular Smooth Muscle Cells (VSMCs) to osteoblast-like cells in AGE-induced
calcification. According to the researchers, pharmacological treatments and antioxidants
were observed to reduce calcium deposition in AGE-induced diabetes-mediated vascular
calcification [30]. In a study, transcriptome profile analysis demonstrated that curcumin
hindered the AGE-RAGE signaling pathway in diabetes and ameliorated diabetic retinal
damage through the antioxidant property [31]. Another study also reported that curcumin
neutralizes the effect of AGEs in its function on RAGE and inhibits the activation of hepatic
stellate cells (HSC) [32].

Another significant pathway found in enrichment analysis was the HIF1 signaling
pathway (Adj-p-value: 9.71 × 10−16). This pathway, with a set of genes comprising
CDKN1A, IL6, NOS2, NOS3, STAT3, BCL2, HMOX1, HIF1A, TLR4, EGFR, and VEGFA,
was observed. The activation or inhibition of the HIF-1 signaling pathway indicated in-
volvement with insulin resistance, β-cell dysfunction, and glucose intolerance [33]. It is
reported that HIF-1-alpha activates SCOS3 and following it hinders Janus kinase (JAK),
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which activates STAT3 and hence hinders the expression of adiponectin and promotes in-
sulin resistance [34,35]. The expression amount of HIF-1 in pancreatic β-cells from patients
with type 2 diabetes was lowered by 90% compared to non-diabetic control adults. Rodents
deficient in HIF-1 expression in β-cells displayed impaired glucose tolerance, decreased
insulin production, and abnormal gene expression patterns [36]. Furthermore, HIF1 dis-
ruption in β-cells worsens β-cell dysfunction and glucose intolerance by downregulating
glycolysis and electron-transport-chain-related gene expression, resulting in lower ATP
production [37]. It was also suggested that the Sodium-glucose Cotransporter 2 (SGLT2)
inhibitors’ renoprotective effects might be linked to increasing oxygen deprivation signals
in the diabetic kidney [38]. According to these findings, hypoxia and HIF signaling may
play a crucial part in the pancreatic-cell operation.

The PI3K/Akt pathway is important in our results and was discovered to have a
significant relation with curcumin and its targets in diabetic diseases. It was enriched
with a set of genes including CDKN1A, IL6, NOS3, FN1, BCL2 FOXO3, THBS1, TP53,
TLR4, EGFR, VEGFA, and BCL2L1. In diabetes, the PI3K/Akt signaling pathway has been
shown to be involved in all cell processes. It is involved in synthesis, glucose transport,
and breakdown and serves as a critical insulin regulator of blood glucose homeostasis.
Experiments have shown that upregulating PI3K/Akt activity in diabetes individuals can
enhance glucose transporter 4 membrane translocation (GLUT4). This might aid in the
decrease in insulin resistance variables and treat gestational diabetes [39]. The PI3K/Akt
pathway involved as a factor influencing β-cell volume and function has been demonstrated
in vitro and in vivo [40] and is associated with ß-cell dysfunction in type 2 diabetes [41].
Established mice lacking the PI3K/Akt pathway developed severe diabetes and increased
ß-cell death [42]. Furthermore, In an STZ (Streptozotocin)-induced diabetes model, a deficit
in the PI3K/Akt pathway was characterized [43]. It is crucial to note that transgenic mice
overexpressing a constitutively active PI3K/Akt pathway have larger pancreatic β-cells and
higher glucose tolerance [44]. A recent study by Ren et al. in 2020 reported that curcumin
could provide an active PI3k-Akt signaling pathway and eliminate reactive oxygen species
(ROS) in the diabetic rat model [45]. Other recent research suggested that curcumin exerts
its anti-diabetic effect chiefly through its anti-apoptotic property and PI3-Akt signaling
pathway modulation in the liver [46].

Our study discovered fifteen hub genes from a network analysis of diabetic protein
interactions that ten genes indicated are the target of curcumin. Three genes, including
STAT3, EGFR, and TP53, were the highest targets in diabetes that strongly curcumin interact
with them.

STAT3 (Signal Transducer And Activator Of Transcription 3) activation has been in-
formed to be implicated in the progression of diabetic insulin resistance by regulating set
genes involved in glycolipid metabolism and insulin sensitivity [47,48]. In the STZ-induced
diabetes animal model and the in vitro high glucose (HG)-stimulated renal tubular epithe-
lial cells, the activation of STAT3 was found. They also reported that the STAT3 inhibitor
repressed STAT3 activation in both experimental models, and reduced diabetic nephropathy
was observed [49]. The previous studies indicated that metformin and bromocriptine might
alleviate hepatic insulin resistance through modulating the STAT3-dependent pathway,
insulin sensitivity, and gluconeogenesis [50,51]. This research demonstrates the critical
role of the therapeutic action of drugs in regulating STAT3 in diabetic diseases. Numerous
studies showed that curcumin exerts its antitumor, chemo-preventive, anti-angiogenesis,
and anti-cancer activity via hindering STAT3 phosphorylation and blocking related genes in
the STAT3-mediated signaling pathway [52–56]. Previously, it also indicated that curcumin
could reduce glomerular sclerosis and albuminuria in diabetic mice models by blocking
the phosphorylation of STAT3 [57]. STAT3 in our study was recognized as a key protein
interaction based on PPI network analysis with a high score GDA that introduced this
gene as one of the critical therapeutic targets for diabetes. It also illustrated that curcumin
strongly could inhibit STAT3 (STITCH score: 0.959).
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EGFR (epidermal growth factor receptor) is a transmembrane tyrosine kinase recep-
tor belonging to the Erythroblastosis Oncogene B (ErbB) family presented on different
mesenchymal, epithelial, and neuronal cells [58]. A study in 2009 reported that in the
diabetic rat model, the level of the expression of EGFR was reduced, and an induction in
the Ras/Raf/MPK signaling pathway through the increased activation of the signaling
elements such as insulin receptor substrate-1 (IRS1) was observed [59]. Another previous
study indicated that EGFR has a critical role in progressing STZ-induced diabetes in rat
models. In a recent clinical study in a Japanese population with type 2 diabetes, soluble
EGFR as a hepatokine was indicated to be associated with insulin resistance in the liver [60].
In clinical research in 2020, over 7.6 years of monitoring and follow-up reported that the
change of the annual mean EGFR in type 1 diabetes was −5.7 and in healthy people, it was
0.6 mL/min/1.73 m2, which demonstrates the potential rapid biomarker and possible ther-
apeutic targets for individuals with type 2 diabetes [61]. Other previous studies indicated
that EGFR has a critical role in the progression of STZ-induced diabetes in rat models [62].
It also demonstrated that curcumin inhibits hyperglycemia and the invasion and migration
of pancreatic cancer cells through suppressing the EGF/EGFR signaling pathway and
its downstream-related pathways like Akt and ERK [63]. Other research showed that a
concentration-dependent dose reduces EGFR phosphorylation by inducing EGFR degra-
dation and suppressing cell proliferation in various gefitinib-resistant non-small-cell lung
carcinoma cell lines [64]. Likewise, numerous studies referred to curcumin inhibition and
regulating EGFR in different diseases [64]. In our analysis, EGFR showed great impact in
the PPI network of diabetes and scored a GDA of 0.37, which curcumin strongly interacts
with, and it blocks its function with the highest score among other curcumin targets based
on the STITCH database (STITCH score: 0.987).

TP53 (Tumor protein p53) is considered the security of the genome with primary
activity as a tumour suppressor. It regulates a vast of signaling pathways related to
suppressing oncogenic transformation [65]. Various investigations have referred to the
influence of TP53 on diabetes. For example, in a high-fat diet animal, the metabolic
stress causes the activation of TP53, which induces cell senescence and insulin resistance.
However, many studies have reported conflicting results in relation to diabetes. Some
studies have shown that activating it causes diabetes, while others have reported it stopping
diabetes [66–69]. A polymorphisms study of the Chinese population in the case-control
form design in 2011 indicated that TP53 is significantly associated with the risk of type
2 diabetes [70]. Furthermore, a study on the European population also indicates that
TP53 is linked with the prevalence of Type 2 diabetes (T2D) [71]. Other polymorphism
investigations in the form of the cross-sectional study indicated that TP53 impacts insulin
resistance in patients with type 2 diabetes independently of body mass [72]. On the other
hand, it was reported that curcumin might, through hindering the expression of microRNA-
125a-5p, increase the expression of TP53 [73]. Other studies also showed that after curcumin
administration, the levels of the TP53 were significantly elevated in rat cells with oxidative
DNA impairment [74]. Curcumin stimulates the protein interaction of NAD(P)H Quinone
Dehydrogenase 1 (NQO1) with TP53. Consequently, it raises the half-life of TP53 and
enables the cytotoxic impact of curcumin [75]. Our obtained data shows that TP53 is closely
related to diabetes and is considered one of the most critical hub genes in diabetes. This
gene showed that it is strongly regulated with curcumin (STITCH: 0.962).

5. Conclusions

In summary, we explored critical diabetes-related genes and pathways that curcumin
potentially could interact with. Based on the first obtained result, 35 genes responsible
for debates are firmly the target of curcumin. Moreover, our analysis identified 15 vital
hub genes involved in the progress and forming of diabetes, and that curcumin strongly
regulates 10 genes of these 15 genes. Further study also indicated that curcumin is closely
associated with three MCODE clusters, especially MCODE1. According to our results, this
interaction and association of curcumin with the related genes with diabetes were in line
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with ameliorating diabetes based on the literature. We believe that further clinical trials
researching will better show the positive effect of curcumin on the therapeutic of diabetes.
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Abbreviations

Acronyms Full Name
IDF International Diabetes Federation
VLDL Very low density lipoprotein
TTD Therapeutic target database
DGIdb Drug-gene interaction database
OMIM Online Mendelian Inheritance in Man
DisGeNET Gene-disease Associations
PPI Protein-Protein interaction
STRING Search Tool For The Retrieval Of Interacting Genes
STITCH Search Tool For Interactions Of Chemicals
MCODE Molecular Complex Detection
GO Gene Ontology
KEGG Kyoto Encyclopedia of Genes and Genomes
HIF-1 Hypoxia-inducible Factor-1
TNF Tumor Necrosis Factor
JAK-STAT Janus Kinase-signal Transducer And Activator Of Transcription
ROS Reactive oxygen species
AGE-RAGE Advanced glycation end-Receptor for Advanced Glycation End
PKC Protein Kinase C
MAPK Mitogen-Activated Protein Kinase
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
TGF-β Transforming Growth Factor-β
ERK1/2 Extracellular Signal-Regulated Kinases 1/2
SOD-1 Superoxide Dismutase-1
VSMCs Vascular Smooth Muscle Cells
HSC Hepatic stellate cells
SGLT2 Sodium-glucose Cotransporter 2
GLUT4 Glucose transporter 4 membrane translocation
STZ Streptozotocin
STAT3 Signal Transducer And Activator Of Transcription 3
HG High glucose
EGFR Epidermal growth factor receptor
ErbB Erythroblastosis Oncogene B
IRS1 Insulin receptor substrate-1
T2D Type 2 diabetes
NQO1 NAD(P)H Quinone Dehydrogenase 1
INS Insulin
TP53 Tumor protein p53
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EGFR Epidermal growth factor receptor
PPARG Peroxisome proliferator activated receptor gamma
ALB Albumin
CAV1 Caveolin 1
RELA RELA proto-oncogene, NF-kB subunit
IL6 Interleukin 6
CASP3 Caspase 3
VEGFA Vascular endothelial growth factor A
NOS3 Nitric oxide synthase 3
PPARA Peroxisome proliferator activated receptor alpha
FN1 Fibronectin 1
THBS1 Thrombospondin 1
TLR4 toll like receptor 4
FOXO3 forkhead box O3
HMOX1 heme oxygenase 1
ICAM1 intercellular adhesion molecule 1
IL1B interleukin 1 beta
MMP2 matrix metallopeptidase 2(MMP2)
BCL2 BCL2 apoptosis regulator(
CDKN1A cyclin dependent kinase inhibitor 1A
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